NUMERICAL ANALYSIS OF TBM TUNNEL BEHAVIOUR AND SUPPORT UNDER HIGH STRESS ROCK MASSES IN PAHANG-SELANGOR RAW WATER TRANSFER TUNNEL

HEYAM HUSSEIN SHAALAN

UNIVERSITI SAINS MALAYSIA

2019

NUMERICAL ANALYSIS OF TBM TUNNEL BEHAVIOUR AND SUPPORT UNDER HIGH STRESS ROCK MASSES IN PAHANG-SELANGOR RAW WATER TRANSFER TUNNEL

by

HEYAM HUSSEIN SHAALAN

Thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

March 2019

ACKNOWLEDGEMENT

First of all, I would like to express my deepest appreciation to Assc. Prof. Dr. Mohd Ashraf Mohamad Ismail, my supervisor for his excellent guidance and advices throughout the process of this study. He helped me to improve my skills and permanently provided me with precious guidance, recommendations and suggestions.

I would like to thank the School of Civil Engineering, University Sains Malayisa, for providing me with the easy access of Rocscience and Plaxis Programs. I want also to thank Mr. Ahmad Halmi, Mr. Abdul Muluk Tajudin, Mr. Mohd Mazlan Kamis and also all the friendly staff in the School of Civil Engineering.

A deep gratitude I would like to present to Miss Lim Xiao Phin who has helped me with the software operation and installation. My special thank is extended to Mrs. Romziah Azit my schoolmate for her help to provide me with the required field data of my case study.

I would like to dedicate this thesis work to the memory of my father, Hussein Shaalan, I miss him every day. You left fingerprints of grace on our lives. You shan't be forgotten. Love, thanks and gratitude to my mother and brothers for all they have done for me throughout my life.

Furthermore, I want to thank my uncle Prof. Adil Hassan for his encouragement and support throughout my study in Malaysia. I have also to thank my lovely husband and best friend Marwan for been there when I need him. Last but important, my sweet, precious daughter, Zaynep, I dedicate this thesis work to you with love.

TABLE OF CONTENTS

ACKNOWLEGEMENT	ii
TABLE OF CONTENTS	iii
LIST OF TABLES	Х
LIST OF FIGURES	xii
LIST OF ABBREVIATIONS	xxi
LIST OF SYMBOLS	xxii
ABSTRAK	xxvi
ABSTRACT	xxviii

CHAPTER ONE - INTRODUCTION

1.1	Background	1
1.2	Problem Statement	3
1.3	Objectives	6
1.4	Scope of work	8
1.5	Research Significance	10
1.6	Thesis outline	11

CHAPTER TWO - LITERATURE REVIEW

2.1	Introd	uction	13
2.2	Tunne	lling under high overburden stresses	15
	2.2.1	In-situ stresses	17

	2.2.2	In-situ str	ess measurement	19
		2.2.2(a)	Flat jack method	21
		2.2.2(b)	Overcoring method	22
		2.2.2(c)	Hydraulic fracturing	23
	2.2.3	Constituti	ve models of rock mass	25
		2.2.3(a)	Generalized Hoek-Brown criterion	26
		2.2.3(b)	Mohr-Coulomb criterion	31
2.3	Granit	ic rock		33
	2.3.1	Weathere	d profile of granitic rock	34
2.4	Rock l	orittle failur	e around tunnels	36
	2.4.1	Overstres	sing in deep rock tunnels	41
2.5	Estima	tion of rock	c brittle failure around underground openings	43
	2.5.1	Empirical	approach	43
	2.5.2	Numerica	l modelling of rock brittle failure	45
2.6	Stabili	ty of underg	ground excavations in overstressing rock mass	49
	2.6.1	Rock sup	port systems	51
	2.6.2	Estimatin	g the required rock support	51
		2.6.2(a)	Rock quality designation index (RQD)	52
		2.6.2(b)	The RMR system	52
		2.6.2(c)	Rock tunnelling quality index, Q-system	53
	2.6.3	Support s	ystems for overstressed rock masses	55
		2.6.3(a)	Rock bolts	58
		2.6.3(b)	Wire mesh	60
		2.6.3(c)	Cable lacing	61

		2.6.3(d)	Shotcrete lining	62
	2.6.4	Time-depe	endent behaviour of shotcrete material	67
		2.6.4(a)	Modelling the shotcrete lining behaviour	68
	2.6.5	Shotcrete	constitutive model	71
		2.6.5(a)	Introduction	71
		2.6.5(b)	Model formulation	72
		2.6.5(c)	Yield surfaces	72
		2.6.5(d)	Strain hardening/softening principles	74
		2.6.5(e)	Time dependent stiffness and strength	76
		2.6.5(f)	Creep and shrinkage	79
2.7	Summa	ary		80

CHAPTER THREE - RESEARCH METHODOLOGY

3.1	Introduction		82	
3.2	Project description		85	
	3.2.1 Geological conditions of the study area			86
	3.2.2	Field data	investigation	88
		3.2.2(a)	Rock mass properties	89
		3.2.2(b)	In-situ stress measurements	90
		3.2.2(c)	Rock mass classification	92
		3.2.2(d)	Tunnel support system	94
	3.2.3	Tunnellin	g in overstressing rock mass	96
		3.2.3(a)	Overstressing assessment	98
3.3	Numer	rical modelli	ing	100

	3.3.1	Tunnel ex	cavation process	103
	3.3.2	Brittle fail	ure simulation	105
		3.3.2(a)	Failure indicators	106
	3.3.3	Influence failure	of CSFH model strength parameters on the rock	106
		3.3.3(a)	Peak cohesion and friction angle	107
		3.3.3(b)	Residual cohesion and fiction angle	108
		3.3.3(c)	Dilation angle	108
3.4	Evalua	tion of the T	unnel Stability	109
3.5	Time-c	lependent be	ehaviour of the TBM tunnel lining	112
	3.5.1	Numerical	modelling	112
		3.5.1(a)	Field stresses	114
		3.5.1(b)	Tunnel excavation process	114
		3.5.1(c)	Material parameters for the shotcrete model	115
		3.5.1(d)	Shotcrete model validation	117
	3.5.2	Elastic and	l Elasto-plastic behaviour of the shotcrete lining	118
	3.5.3	SFRS linir	ng behaviour with time	119
3.6	Effect	of the Shotc	rete model parameters	120
	3.6.1	Time-depe	endent strength parameter	120
	3.6.2	Time-depe	endent stiffness parameter	121
	3.6.3	Effect of c	reep and shrinkage	121
	3.6.4	Steel fibre	effect	122
3.7	Effect	of tunnel par	rameters	123
3.8	Summa	ary		124

CHAPTER FOUR - RESULTS AND DISCUSSION

4.1	Introdu	action	126
4.2	Evalua	tion of the rock overstressing	127
4.3	Numer	ical modelling of the rock failure	128
	4.3.1	Elastic analysis	128
	4.3.2	Elastic- Perfectly plastic model	130
	4.3.3	Elastic-Brittle plastic model with (residual friction $m_r = 0$ and residual cohesion $S_r = 0.11$)	131
	4.3.4	Parametric analysis of the CSFH model parameters	132
		4.3.4(a) Effect of the peak friction angle	132
		4.3.4(b) Effect of the peak cohesion strength	133
		4.3.4(c) Effect of the residual fiction angle	137
		4.3.4(d) Effect of the residual cohesion strength	139
		4.3.4(e) Effect of the dilation angle	141
		4.3.4(f) Optimized input parameters for the CSFH model	143
4.4	Stabilit	ty evaluation of the TBM tunnel	149
	4.4.1	Effect of the lining thickness	149
	4.4.2	Effect of the tunnel size	151
	4.4.3	Effect of fallout removal or scaling	154
	4.4.4	Effect of the tunnel overburden	158
	4.4.5	Summary	164
4.5	Numer	ical analysis of the TBM-2 tunnel lining	165
	4.5.1	Model validation	166

	4.5.2	Comparison study between the shotcrete model and elastic analysis	167
4.6	Time-c	lependent behaviour of the SFRS lining	170
	4.6.1	Compressive strength of the SFRS lining	170
	4.6.2	Elastic stiffness of the SFRS lining	172
	4.6.3	Stresses of the SFRS lining	174
	4.6.4	Vertical displacement in the SFRS lining	179
4.7	Effect	of the shotcrete model input parameters	183
	4.7.1	Time-dependent strength parameter	183
	4.7.2	Time-dependent stiffness parameter	185
	4.7.3	Effect of creep and shrinkage	186
	4.7.4	Steel fibre effect	190
4.8	Effect	of tunnel parameters	194
	4.8.1	Effect of SFRS lining thickness	194
	4.8.2	Effect of tunnel diameter	200
4.9	Summa	ury	205

CHAPTER FIVE - CONCLUSION AND RECOMMENDATION

REFE	RENCES	215
5.2	Recommendation for future works	214
5.1	Conclusion	208

APPENDICES

APPENDIX A:	Steps for calculation RQD (Deere, 1989)
APPENDIX B:	Rock Mass Rating System (After Bieniawski, 1989).
APPENDIX C:	Guidelines for excavation and support of 10 m span rock tunnels according to the RMR system (After Bieniawsk 1989)

- APPENDIX D: Classification of individual parameters used in the Tunnelling Quality Index Q (Barton et al, 1974)
- APPENDIX E: Geological mapping for case 1
- APPENDIX F: Geological mapping for case 2
- APPENDIX G: Geological mapping for case 3
- APPENDIX H: Analysis of rock strength using ROCKLAB for the case 1
- APPENDIX I: Analysis of rock strength using ROCKLAB for the case 2
- APPENDIX J: Analysis of rock strength using ROCKLAB for the case 3
- APPENDIX K: Shotcrete early strength classes according to EN 14487 (2006)

LIST OF PUBLICATIONS

LIST OF TABLES

Page

Table 2.1	Guidelines for estimating disturbance factor D	27
Table 2.2	Examples of rock overstressing (Brox, 2013)	42
Table 2.3	ESR values (Barton et al. 1974)	55
Table 2.4	Advantages and disadvantages of shotcrete dry process	66
Table 2.5	Advantages and disadvantages of shotcrete wet process	66
Table 3.1	Critical cases of TBM-2 section used for the research study	89
Table 3.2	Rock compressive strength from overcoring test	89
Table 3.3	Rock mass properties from the Schmidt hammer test	89
Table 3.4	Summary of in-situ stress test	91
Table 3.5	JH rock mass classes (after Azit and Ismail, 2014)	93
Table 3.6	Steel fibre shotcrete mix proportion	95
Table 3.7	Site results of the SFRS compressive strength	95
Table 3.8	Steel fibre reinforced shotcrete lining properties	95
Table 3.9	Summary of the critical cases with the site observed failure details	98
Table 3.10	Rock overstressing classification (Hoek and Marinos, 2009)	100
Table 3.11	Input parameters of the numerical modelling	102

Table 3.12	Parameters values for the stability analysis	110
Table 3.13	Tunnel depths for the stability analysis	111
Table 3.14	Input parameters for the equivalent Mohr-Coulomb model	113
Table 3.15	Shotcrete model input parameters for the SFRS lining	116
Table 3.16	Input parameters of the shotcrete model of the concrete lining	118
Table 3.17	Shotcrete model parameters for the unreinforced tunnel lining	123
Table 4.1	Rock failure classification	127
Table 4.2	Simulated failure depth using the elastic-perfectly-plastic model	130
Table 4.3	Simulated failure depth using the Elastic-Brittle-plastic model with 143 $m_r = 0$ and $S_r = 0.11$	131
Table 4.4	Summary of the significance of CSFH model parametric study	143
Table 4.5	Strength parameters of CSFH model	144
Table 4.6	Summary of the parametric study significance	164

LIST OF FIGURES

Figure 2.1	Tunnel instability and brittle failure as a function of rock mass strength and in- situ stress (Hoek et al., 1995)	15
Figure 2.2	The three principal stresses σ_1 , σ_2 and σ_3 induced in an element of rock close to a horizontal tunnel subjected to a vertical in- situ stress σ_v , a horizontal in situ stress σ_{h1} in a plane normal to the tunnel axis and a horizontal in situ stress σ_{h2} parallel to the tunnel axis. (Hoek et al. 1995)	18
Figure 2.3	Principal stress directions in the rock surrounding a horizontal tunnel subjected to a horizontal in situ stress σ_{h1} equal to 3 σ_v , where σ_v is the vertical in situ stress (Hoek et al. 1995)	18
Figure 2.4	Schematic Diagram of (a) Flat Jack, (b) Test Configuration	22
Figure 2.5	General steps in overcoring clarified by the Borre probe (Hakala et al., 2003)	23
Figure 2.6	hydraulic fracturing principles	24
Figure 2.7	General chart for GSI estimates from the geological observations	28
Figure 2.8	Failure zone observed around a circular test tunnel. The micro-seismic events locations in the notch area (+), and acoustic emission locations (-) in the tensile failure zone (after Read 1994).	37
Figure 2.9	Stability classification developed for square tunnels in South Africa modified by Martin et al., (1999) from the field observations of Hoek and Brown (1980)	40
Figure 2.10	Severe overstressing of 1700m deep tunnel (Brox, 2013)	42
Figure 2.11	Failure depth as a function of $(\sigma_{\theta \max} / \sigma_{ci})$ modified by Martin et al. (1999)	44
Figure 2.12	Strength envelopes representing by the spalling failure parameters and the simulated breakout zone at the Mine-by tunnel (Diederichs, 2007).	48

Figure 2.13	V-notch zone created by scaling in the Kristineberg mine (Edelbro and Sandström 2009)	50
Figure 2.14	Steps for calculation RQD (Deere, 1989)	53
Figure 2.15	Estimated rock support according to the tunnelling quality index Q (After Grimstad and Barton, 1993)	55
Figure 2.16	Cable lacing in a hard rock mass in Chile to reduce damage from brittle failure (Hoek and Marinos 2009).	57
Figure 2.17	Steel sets Installed directly behind the TBM shield in the Olmos tunnel in Peru (Hoek and Marinos, 2009)	58
Figure 2.18	Adjust of a single block and systematic bolting (Palmstöm and Nilsen, 2000)	59
Figure 2.19	Chain linked, single braided wire mesh, left, and welded wire mesh, right (Hoek et al. 1995).	61
Figure 2.20	Wire mesh to support failure zone (Hjálmarsson, 2011)	61
Figure 2.21	Dry-mix shotcrete technology (after Austin & Robins, 1995)	65
Figure 2.22	Wet-mix shotcrete process (after Austin & Robins, 1995)	65
Figure 2.23	Yield surfaces and failure envelope of the mode (Schädlich and Schweiger, 2014b)	73
Figure 2.24	Stress - strain curve in compression (Schädlich and Schweiger, 2014b)	75
Figure 2.25	Shotcrete model tension behaviour (Schädlich and Schweiger, 2014b)	76
Figure 2.26	Evaluation of shotcrete stiffness with time (Schädlich and Schweiger, 2014b)	77
Figure 2.27	Evaluation of shotcrete strength with time (Schädlich and Schweiger, 2014b)	78
Figure 3.1	Research methodology flowchart	84
Figure 3.2	Tunnel structure of Pahang-Selangor Raw Water Transfer tunnel (after Azit and Ismail, 2016 b)	85
Figure 3.3	Geological profiles along the tunnel and TBM excavation location (MEGTW, 2014)	87

Figure 3.4	Geological condition along the tunnel alignment (after Azit and Ismail, 2016 a)	87
Figure 3.5	Grain size and quartz contents of Main Range Granite (MEGTW, 2014)	88
Figure 3.6	Location of the study cases	88
Figure 3.7	In-situ stress test locations in Pahang-Selangor Water Transfer Tunnel (after Azit et al., 2015)	91
Figure 3.8	Schmidt net projection of principal stress (after Azit et al., 2015)	91
Figure 3.9	JH classification for rock mass classes (after Azit and Ismail, 2014)	93
Figure 3.10	Percentage of total rock classes	94
Figure 3.11	Rock spalling in Pahang-Selangor water transfer tunnel (after Azit and Ismail, 2016 b)	97
Figure 3.12	Stress-induced fractures that developed at tunnel sidewalls (after Kawata et al., 2014)	97
Figure 3.13	Geometrical model and meshing around the tunnel	102
Figure 3.14	Progressive development of the rock stress by the load split method	104
Figure 3.15	Flowchart of the tunnel stability evaluation	111
Figure 3.16	Yield elements failed in shear, dashed line indicates the scaled notch	111
Figure 3.17	(a) Geometric model, (b) Mesh around the tunnel	113
Figure 3.18	Schematic representation of β -method for the analysis of TBM tunnel	115
Figure 4.1	Strength factor of elastic analysis model for the three cases	129
Figure 4.2	Yield elements failed in the shear of the elastic-perfectly- plastic	130
Figure 4.3	Yield elements failed in the shear of the elastic-brittle- plastic model with $m_r = 0$ and $S_r = 0.11$	131
Figure 4.4	Effect of the peak friction angle on the simulated failure zone for the Case 1 (Ch. 23048m)	133

Figure 4.5	Effect of the peak friction angle on the simulated failure zone for the Case 2 (Ch. 23732m)	133
Figure 4.6	Effect of the peak friction angle on the simulated failure zone for the Case 3 (Ch. 23048m)	134
Figure 4.7	Effect of the peak friction angle on the failure depth for the three critical cases	134
Figure 4.8	Effect of the peak cohesion strength on the simulated failure zone for the Case 1 (Ch. 23048m)	135
Figure 4.9	Effect of the peak cohesion strength on the simulated failure zone for the Case 2 (Ch. 23732m)	136
Figure 4.10	Effect of the peak cohesion strength on the simulated failure zone for the Case 3 (Ch. 23742m)	136
Figure 4.11	Effect of the peak cohesion strength on the failure depth	137
Figure 4.12	Effect of the variation in the residual friction angle for the Case 1	138
Figure 4.13	Effect of the variation in the residual friction angle for the Case 2	138
Figure 4.14	Effect of the variation in the residual friction angle for the Case 3	138
Figure 4.15	Effect of residual friction angle on the failure depth	139
Figure 4.16	Influence of different residual cohesion strength values on the yield elements that failed in the shear for the case 1	140
Figure 4.17	Influence of different residual cohesion strength values on the yield elements that failed in the shear for the case 2	140
Figure 4.18	Influence of different residual cohesion strength values on the yield elements that failed in the shear for the case 3	140
Figure 4.19	Effect of the residual cohesion on the failure depth	141
Figure 4.20	Variation in the dilation angle and its influence on the failure depth and extension for the Case 1	142
Figure 4.21	Variation in the dilation angle and its influence on the failure depth and extension for the Case 2	142
Figure 4.22	Variation in the dilation angle and its influence on the failure depth and extension for the Case 3	142

Figure 4.23	Effect of the dilation angle on the failure depth	143
Figure 4.24	Simulated failure zone of the tunnel sides utilising the CSFH model	144
Figure 4.25	Peak and residual strength envelopes of the rock utilising the CSFH model for Case 1	145
Figure 4.26	Peak and residual strength envelopes of the rock utilising the CSFH model for Case 2	146
Figure 4.27	Peak and residual strength envelopes of the rock utilising the CSFH model for Case 3	147
Figure 4.28	Comparison between the actual and the simulated failure depth	148
Figure 4.29	Average increase in the failure depth for the three cases	148
Figure 4.30	Effect of SFRS lining thickness on the depth of the failure for the Case 1	150
Figure 4.31	Effect of SFRS lining thickness on the depth of the failure for the Case 2	150
Figure 4.32	Effect of SFRS lining thickness on the depth of the failure for the Case 3	150
Figure 4.33	The relationship between failure depth and the SFRS lining thickness for the three cases	151
Figure 4.34	Effect of tunnel diameter on the depth of failure for Case 1	152
Figure 4.35	Effect of tunnel diameter on the depth of failure for Case 2	152
Figure 4.36	Effect of tunnel diameter on the depth of failure for Case 3	152
Figure 4.37	The relationship between failure depth and the tunnel diameters	153
Figure 4.38	Variation of tunnel diameter with the tangential stress at the tunnel sidewalls	153
Figure 4.39	Variation of tunnel diameter with the total vertical displacement of surrounding rock mass	154
Figure 4.40	Yield elements failed in shear for the gradual removal of the failure region for the Case 1	155

Figure 4.41	Yield elements failed in shear for the gradual removal of the failure region for the Case 2	155
Figure 4.42	Yield elements failed in shear for the gradual removal of the failure region for the Case 2	155
Figure 4.43	Major principal stress $\sigma 1$ distribution for the gradual removal of the failure region for Case 1	156
Figure 4.44	Major principal stress $\sigma 1$ distribution for the gradual removal of the failure region for Case 2	157
Figure 4.45	Major principal stress $\sigma 1$ distribution for the gradual removal of the failure region for Case 3	158
Figure 4.46	Distribution of yield elements failure in shear for each case at different depths for Case 1	160
Figure 4.47	Distribution of yield elements failure in shear for each case at different depths for Case 2	160
Figure 4.48	Distribution of yield elements failure in shear for each case at different depths for Case 3	160
Figure 4.49	Effect of tunnel overburden on the rock failure depth	161
Figure 4.50	Principal stress distribution around the tunnel at different depths for the Case 1	161
Figure 4.51	Principal stress distribution around the tunnel at different depths for the Case 2	162
Figure 4.52	Principal stress distribution around the tunnel at different depths for the Case 3	163
Figure 4.53	Effect of tunnel depth on the tangential stress at tunnel sidewall	163
Figure 4.54	Effect of tunnel depth on the total vertical displacement of the rock mass	164
Figure 4.55	Shotcrete model validation for concrete compressive strength with time from Al-Ameeri (2013)	167
Figure 4.56	Distribution of major principal stress of the tunnel lining using (a) Shotcrete model and (b) Elastic analysis	168
Figure 4.57	Major principal stress along the tunnel lining using the shotcrete model and the elastic analysis	169

Figure 4.58	Distribution of the vertical displacement of the tunnel lining using (a) Shotcrete model and (b) Elastic analysis	169
Figure 4.59	Vertical displacement along the tunnel lining using the shotcrete model and the elastic analysis	170
Figure 4.60	Early strength of shotcrete with time at the first six hours	172
Figure 4.61	Development of shotcrete compressive strength with time at 28 days	172
Figure 4.62	Development of the shotcrete Stiffness with time in the first six hours	173
Figure 4.63	Stiffness of the shotcrete lining with time at 28 days	174
Figure 4.64	Distribution of the principal stresses along the tunnel lining at $H = 1002m$	175
Figure 4.65	Distribution of the principal stresses along the tunnel lining at $H = 700m$	176
Figure 4.66	Development of the lining stress with time for tunnel depth of 1002m	176
Figure 4.67	Development of the lining stress with time for tunnel depth of 700m	177
Figure 4.68	Development of the lining stress with time at tunnel crown	178
Figure 4.69	Development of the lining stress with time at tunnel sidewall	178
Figure 4.70	The relationship of the elastic stiffness and the stresses in SFRS lining with time	179
Figure 4.71	Vertical displacement along the tunnel lining at H=1002m	180
Figure 4.72	Vertical displacement along the tunnel lining at H=700m	180
Figure 4.73	Development of the lining vertical displacement with time at tunnel depth of 1002m	181
Figure 4.74	Development of the lining vertical displacement with time at tunnel depth of 700m	181
Figure 4.75	Development of the lining displacement with time at tunnel crown	182

Figure 4.76	Development of the lining displacement with time at tunnel sidewall	183
Figure 4.77	Evaluation of shotcrete strength classes with time at 7 days	184
Figure 4.78	Evaluation of shotcrete strength classes with time at 28 days	185
Figure 4.79	Shotcrete elastic stiffness with time in 7 days	186
Figure 4.80	Shotcrete elastic stiffness with time up to 28 days	186
Figure 4.81	Effect of the creep and shrinkage strain on the lining tensile stress with time at the tunnel crown	188
Figure 4.82	Effect of the creep and shrinkage strain on the lining compression stress with time at the tunnel sidewall	188
Figure 4.83	Effect of creep and shrinkage strain on development of lining displacement with time at the tunnel crown	189
Figure 4.84	Effect of creep and shrinkage strain on development of lining displacement with time at the tunnel sidewall	189
Figure 4.85	The compressive strength of reinforced and unreinforced tunnel lining with time	190
Figure 4.86	The elastic stiffness of reinforced and unreinforced tunnel lining with time	191
Figure 4.87	Effect of steel fibre content on the development of lining stress with time at the tunnel crown	192
Figure 4.88	Effect of steel fibre content on the development of lining stress with time at the tunnel side wall	192
Figure 4.89	Effect of steel fibre parameters on the development of lining vertical displacement with time at the tunnel crown	193
Figure 4.90	Effect of steel fibre parameters on the development of lining vertical displacement with time at the tunnel sidewall	193
Figure 4.91	Stress distribution along the tunnel lining with different lining thicknesses	195
Figure 4.92	Effect of lining thicknesses on the SRFS lining stresses with time at the tunnel crown	197

Figure 4.93	Effect of lining thicknesses on the SRFS lining stresses with time at the tunnel sidewall	197
Figure 4.94	Vertical displacement along the tunnel lining with different lining thicknesses	198
Figure 4.95	Effect of lining thicknesses on the SRFS lining vertical displacement with time at the tunnel crown	199
Figure 4.96	Effect of lining thicknesses on the SRFS lining vertical displacement with time at the tunnel sidewall	199
Figure 4.97	Stress distribution along the tunnel lining using different tunnel diameters	200
Figure 4.98	Effect of tunnel diameter on the SRFS lining stresses with time at the tunnel crown	202
Figure 4.99	Effect of tunnel diameter on the SRFS lining stresses with time	202
Figure 4.100	Vertical displacement along the tunnel lining using different tunnel diameters	202
Figure 4.101	Effect of tunnel diameter on the SRFS lining vertical displacement with time at the tunnel crown	204
Figure 4.102	Effect of tunnel diameter on the SRFS lining vertical displacement with time	205

LIST OF ABBREVIATIONS

TBM	Tunnel boring machine
CSFG	Cohesion-Softening Friction-Hardening
SFRS	Steel fibre reinforced shotcrete
2D	Two dimensional
3D	Three dimensional
WSM	The World Stress Map
Di	Damage index
URL	Underground research laboratory
SF	Safety factor
SWFS	Cohesion Weakening and Frictional Strengthening
UCS	Uniaxial compressive strength
HME	Hypothetical Modulus of Elasticity
ACI	American concrete institute
NATM	New Austrian tunnelling method
RQD	Rock Quality Designation
JH	Japan Highway Public Corporation
SCC	Self compacting concrete
J1, J2 and J3	Early shotcrete strength classes
GSI	Geological Strength Index

LIST OF SYMBOLS

<i>m</i> , <i>s</i>	Hoek-Brown parameters
m _r	Residual friction
<i>S</i> ₇	Residual cohesion
σ_v	Vertical stress
σ_{h1}	Maximum horizontal stress
σ_{h2}	Minimum horizontal stress
σ_1	Major principal stress
σ_2	Medium principal stress
σ_3	Minimum principal stress
Н	Tunnel depth
γ	Unit weight
k_0	Coefficient of lateral stress
σ'_1	Maximum effective stresses
$\sigma'_{\scriptscriptstyle 3}$	Minimum effective stresses at failure
$\sigma_{_{ci}}$	Uniaxial compressive strength of the intact rock
m_b	Material constant

m _i	Material constant for the intact rock
D	Degree of disturbance
С	Cohesive strength
Ø	Angle of friction
τ	Shear strength
σ'_n	Normal stress
σ_t	Rock tensile strength
σ_{max}	Maximum tangential stress
3	Total strain
\mathcal{E}^{e}	Elastic strain
\mathcal{E}^p	Plastic strain
\mathcal{E}^{cr}	Creep strain
$arepsilon^{shr}$	Shrinkage strain
F _C	Mohr-Coulomb yield surface
Ft	Rankine yield surface in the tensile zone
f_{cy}	Uniaxial compressive yield stress
f_t	Tensile strength yield stress
H _C	Normalised strain hardening/softening parameter
${\cal E}^{p}_{cp}$	Plastic peak strain in uniaxial compression