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KAWALAN BEBAS-MODEL SUAI DAN PENYETEMPATAN UNTUK AGEN

TUNGGAL DAN SISTEM DINAMIK TIDAK LURUS AGEN-PELBAGAI

ABSTRAK

Dalam tesis ini, penyelesaian bersepadu yang terdiri daripada kawalan

bebas-model dan algoritma penyetempatan model dibentangkan untuk menangani

masalah pengesanan dalam sistem dinamik bukan lelurus yang sepenuhnya tidak

diketahui, masalah pengesanan-pembentukan dalam sistem dinamik bukan lelurus

yang sepenuhnya tidak diketahui dan masalah penyetempatan kerjasama untuk

pasukan ajen mudah alih. Algoritma kawalan bebas-model yang dirumuskan, tidak

bergantung pada ciri penghampiran sejagat rangkaian saraf tiruan atau pengiraan

berdasarkan regresi. Dengan penyesuaian dalam talian unsur-unsur dalam matriks

sistem, persamaan Riccati perbezaan digunakan untuk mengemaskini keuntungan

pengawal utama dalam talian. Berdasarkan hasil keputusan simulasi untuk sistem

ejen tunggal, dipamerkan bahawa isyarat kawalan yang lancar dihasilkan dengan

menggunakan pengawal bebas adaptif yang dicadangkan (memaparkan bilangan

undang-undang adaptif yang lebih sedikit) berbanding pengawal PI pintar dan

pengawal mod gelongsor. Nilai 49% yang lebih rendah daripada fungsi kos dicapai

menggunakan pengawal yang dicadangkan terhadap pengawal dalam literasi yang

menggunakan rangkaian saraf buatan. Algoritma kawalan bebas-model kerjasama

yang dibentangkan untuk sistem berbilang-agen menggunakan kaedah yang teragih.

Salah satu pengendali kerjasama yang dibentangkan bergantung pada pengukuran

mutlak tempatannya, sementara pengawal kerjasama kedua memerlukan pengukuran

nisbi antara agen dalam rangkaian. Berdasarkan keputusan simulasi pada sistem

berbilang-agen, secara nisbahnya 5.5% dan 51.5% nilai-nilai yang lebih rendah untuk

xxx



fungsi kos dicapai untuk pengawal bebas model penyesuaian koperatif yang

dicadangkan berbanding dua kaedah canggih yang lain dalam literasi. Selain itu,

algoritma penganggar kedudukan nisbi penyesuaian dibangunkan untuk

menganggarkan kedudukan nisbi di antara setiap pasangan agen mudah alih, tanpa

mengukur sudut galas. Jarak nisbi dan halaju nisbi harus diukur antara agen mudah

alih. Berdasarkan keputusan simulasi untuk anggaran kedudukan nisbi antara dua

ejen mudah alih, ralat pengiraan secara nisbahnya 34% lebih rendah dicapai dalam

senario kes terburuk, berbanding dua penganggar posisi nisbi yang lain. Algoritma

pengiraan kedudukan nisbi dibangunkan dalam pemerhati kerjasama yang diagihkan

untuk menghasilkan algoritma penyetempatan kerjasama penyesuaian untuk

menentukan kedudukan nisbi dan mutlak setiap ejen mudah alih dalam rangkaian

dengan hanya satu ejen matarah, dan mempunyai minimum kemungkinan bilangan

perhubungan komunikasi di kalangan ejen. Ralat lebih daripada 93% penyetempatan

diperoleh pada semua ejen dalam rangkaian menggunakan algoritma penyesuaian

penyesuaian yang dicadangkan dengan kaedah penyetempatan cembung lelurus.
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ADAPTIVE MODEL-FREE CONTROL AND LOCALIZATION FOR

SINGLE-AGENT AND MULTI-AGENT NONLINEAR DYNAMIC SYSTEMS

ABSTRACT

In this thesis, a unified solution comprising model-free control and localization

algorithms is presented to address the tracking problem in single-agent completely

unknown nonlinear dynamic systems, the formation-tracking problem in multi-agent

completely unknown nonlinear dynamic system, and the cooperative localization

problem for a team of mobile agents. The formulated model-free control algorithms,

neither rely on the universal approximation characteristic of the artificial neural

networks nor regressor-based approximation. By online adaptation of the elements in

a system matrix, the differential Riccati equation is employed for online updating of

the main controller gains. Based on the simulation results for single-agent systems, it

is shown that smoother control signals are generated using the proposed adaptive

model-free controller (featuring fewer number of adaptive laws) compared to an

intelligent PI controller and a sliding-mode controller. A relatively 49% lower value

of a cost function is achieved using the proposed controller against the controllers in

the literature utilizing the artificial neural networks. The cooperative model-free

control algorithms presented for multi-agent systems employ distributed methods.

One of the presented cooperative controllers rely on its local absolute measurements,

while the second cooperative controller needs inter-agent relative measurements in

the network. Based on the simulation results on multi-agent systems, relatively 5.5%

and 51.5% lower values for a cost function are achieved for the proposed cooperative

adaptive model-free controller comparing with two state-of-the-art methods in the

literature. Furthermore, an adaptive relative position estimating algorithm is
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developed to estimate the relative position among each pair of mobile agents, without

the requirement for bearing angle measurements. The relative distance and relative

velocity should be measured between the mobile agents. Based on the simulation

results for the relative position estimation between two mobile agents, relatively 34%

lower estimation error is achieved in the worst case scenario, comparing to two other

relative position estimators. The developed relative position estimation algorithm is

incorporated within a distributed cooperative observer to generate an adaptive

cooperative localization algorithm for determining the relative and absolute positions

of each mobile agent in a network with only one beacon agent, and having the

minimum possible number of communication links among the agents. Relatively

more than 93% localization error is provided at all of the agents in the network

utilizing the proposed adaptive localization algorithm with respect to a linear convex

localization method. Throughout the thesis, the simulation results for application of

the proposed control and localization algorithms on autonomous mobile robots with

especial concern on quadrotors are presented.
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CHAPTER 1

INTRODUCTION

1.1 Background and motivation

The dream of mechanical devices that can perform the works which a human is

capable of, has much older history than a person can expect. One of the earliest

samples of mechanical devices that would be described as a robot dated back to

400BC, when the Greek philosopher Archytas invented a steam-powered pigeon. In

the year 1960, the first actual device called the Computerized Numerical Control

machines, was invented to automate manufacturing tasks. After that, the Unimate as

one of the first products in the category of industrial robots, was implemented on a

General Motors plant in 1961 (Heintschel-von-Heinegg et al., 2018). The Robotic

Industrial Association defined the term industrial robot as an automatically controlled,

reprogrammable, multi purpose manipulator which is programmable in three or more

axes for use in the industrial automation applications (Kumar et al., 2008). In the past

decades, robot arms or manipulators delivered a high growth-rate industry. Normally,

they are fixed to a specific location in the assembly line and perform repetitive tasks

such as spot welding and painting. Despite all of their success and benefits, these

industrial robots suffer from a fundamental disadvantage which is lack of mobility

(Siegwart & Nourbakhsh, 2004).

Around the year 1990, a demand for robots which can handle the missions in

hazardous environments as well as everyday routine tasks, causes further

developments into field and service mobile robots. Furthermore, some manufacturers
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provide autonomous functions such as keeping fixed distance and automatic parking

to the mobile robots (Heintschel-von-Heinegg et al., 2018).

These days by superb enhancements in performance of microprocessors, sensor

modules and the technology of battery as the main source of energy for mobile robots,

the autonomous mobile robots (AMRs) are considered among the most essential tools

in different parts of industry, from the manufacturing companies and agriculture to

health care and the media (Siegwart & Nourbakhsh, 2004). Autonomous quadrotors,

wheeled mobile robots and underwater autonomous vehicles are among the

well-known AMRs. Several applications such as rescue and survival missions,

underwater and space expeditions, aerial capturing and photography, intelligent

agriculture management, transportation of the goods in the warehouses, carrying the

medical assets to remote areas and also the air show entertainment, are good examples

of the importance of AMRs in our today society (Siegwart & Nourbakhsh, 2004).

The emerging applications of AMRs rely on autonomy, as the main distinctive

feature. The term autonomy is referring to decisional autonomy, meaning that an

entity can decide what to do by itself (Heintschel-von-Heinegg et al., 2018). An

autonomous mobile robot, for example, is able to accomplish the assigned task with

the least possible human intervention/supervision. To provide AMRs with the proper

level of autonomy, a range of problems from automatic control and state observations

to localization, path planning and obstacle avoidance, needs to be resolved.

Navigation and path tracking is one of the main objectives for designing an AMR.

At the lowest level in a conceptual paradigm presented in Fig. 1.1, AMRs require the
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capability of automatic control (Kelly, 2013). In fact, the control algorithms ensure

that the AMRs are able to reach its navigation or follow the path tracking objective.

To achieve that, an AMR requires to have some methods for state estimation (i.e

observers), in accomplishing the objective of locating the AMR, its corresponding

speed and acceleration. The state estimation methods incorporate the robot internal

data brought by some on-board proprioceptive sensors. Measuring the AMR position,

velocity or acceleration are among the proprioceptive sensory data. Localization as

the capability to locate the AMR in its local or global indoor/outdoor environment is

categorized as a state estimation method. In general, the accurate position information

of static and dynamic objects with reference to a fixed origin point has been an

interesting ongoing discussion and academic debate (Mao & Fidan, 2009; Safavi &

Khan, 2017). The localization problem can be addressed in the sea, air or on the

ground and each of the environments has its own challenges and constraints to be

tackled.

Besides the internal states, the AMRs need to be aware about their environment.

This feature which is named as perception can be provided by the data gathered using

the on-board exteroceptive sensors. Ranging from the objects in the environment as

well as generating a map from the immediate surroundings are fallen in the category

of exteroceptive observations (Kelly, 2013). Another aspect of autonomous mobility

for AMRs is path planning. Path planning is a capability to predict the consequences

of the possible alternative series of actions, so as to choose the most appropriate action

at the current situation (Kelly, 2013). Obstacle avoidance is a feature that can be

provided for an AMR by a suitable path planning generated based on awareness of the

static and dynamic objects in the environment utilizing the exteroceptive sensory data.
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Figure 1.1: The structure of all problems that should be tackled to provide autonomy
in AMRs
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The above challenges need to be resolved for every individual AMRs. Although a

single AMR is capable of completing diverse range of autonomous missions, there are

some limitations that prevent the full potential usage of AMRs. The main constraint is

the limited amount of energy provided by the batteries to the AMRs. This leads to the

limited time of operation for a single AMR (Li & Duan, 2015). The battery technology

is still emerging and several improvements are predicted in future (Rao & Shivakumar,

2018). In addition, since the remote wireless systems have a limited range of operation

(Wanasinghe et al., 2015), a single AMR mobility is limited by the short distance from

the central control station. This would limit the operational board of the AMRs.

Concerning by the above limitations, a multi-agent system constructed by several

AMRs can be a reasonable short-term solution in order to utilize the AMRs toward

their maximum potential extent (Li & Duan, 2015). A multi-agent system of AMRs

can be considered as a network or a team of multiple (more than one) AMRs having a

mutual objective and operating in a cooperative manner. The cooperative operation

utilizes the inter-agent communication links within the network. Utilizing a team of

AMRs instead of using an individual AMR, one can expect an increased number of

operations during a fixed time window, as well as extended range of operation.

Moreover, some specific missions can be performed only by using a team of AMRs.

Carrying large cargos, satellite formation flying, and providing a night show to a large

number of audiences with the purpose of entertainment are among these specific tasks

that require a team of AMRs rather than only a single AMR (Li & Duan, 2015).

Considering a multi-agent system of AMRs, the capabilities listed in Fig. 1.1

should be brought to any individual robot included in the team. In this regard, the
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concepts of cooperative control, cooperative observer and cooperative localization

are proposed for a team of AMRs. It is shown that, it would be more beneficial to

have the above problems be solved by designing some decentralized algorithms

which are implemented locally at each agent, without any need for

receiving/transmitting signals at every AMR in the team from/to a centralized control

station (Li & Duan, 2015);(Lewis et al., 2014).

1.2 Problem statement

Among the features presented in Fig. 1.1, tracking control and localization

problems are stated as the main problems to be investigated in this thesis. They are

considered as the main subjects, since they are the core and basic problems for

providing high level of autonomy in AMRs. Other features can be resolved by

designing the appropriate algorithms providing the solutions to the tracking control

and localization problems.

1.2.1 Tracking control problem in single-agent dynamic systems

Generally in a tracking control problem, the control signals are designed based on

the dynamic system of the AMR. However, the exact dynamical system structure and

its parameters are often unknown. The assumption derived thereafter may not be

suitable all the time (Wang et al., 2011; Younes et al., 2016). For the nonlinear

dynamic system of the AMRs, the values for mass, moment of inertia and even

physical dimensions can change during the operation in different working conditions.

These parameters can be considered as the unknown parameters in the internal

dynamics of AMRs. Moreover, the unknown external disturbances such as a force
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imposed by human or an external object and forces generated by wind and other

severe environmental conditions, can change the structure of the nonlinear dynamic

systems (Wang et al., 2011). In addition, if there are several classes for our AMRs

(corresponding to the different sizes and the applications) and the existing tracking

controller depends on the AMR internal dynamics and its related parameters, then one

should design different control signals with different controller gains for each class.

In this regard, it would be great if one can design a controller that handles the

tracking control problem by adapting itself in an online manner with the changes in

internal dynamics structure of the nonlinear plant (including the unknown parameters)

and the unknown external disturbances (Ioannou & Fidan, 2006). This is the place

where the classic adaptive control algorithms, data-driven control algorithms and the

recently-proposed model-free control (MFC) algorithms come into considerations.

The model-free algorithms are control methods in which the structure of dynamic

system is supposed to be completely unknown (Hou & Jin, 2014). This is the major

difference between the MFC with the classic adaptive control algorithms including

the model-reference adaptive controllers and the adaptive pole-placement controllers

presented by Ioannou and Fidan (2006). The later algorithms assume the structure of

the dynamic system is completely known and only some unknown parameters need to

be adapted online. Instead, the MFC algorithms consider a general structure for any

unknown dynamic system (either linear or nonlinear) and use the measured

input-output data from the system to estimate the unknown dynamic system in online

manner and then generate the control policy for handling the tracking control

problem. According to different methods used for estimating the unknown dynamics,
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different MFC algorithms are proposed in the literature, which are discussed in

Section 2.2. Most of these solutions use regressor-based estimators which incorporate

artificial neural networks or fuzzy inference systems for parameter estimation.

1.2.2 Formation-tracking control problem in multi-agent dynamic systems

Recalling the benefits provided by a multi-agent system of AMRs over a single

AMR as presented in Section 1.1, a great attention in the literature has been paid to

the problems of controlling a multi-agent network of AMRs ranging from consensus

to flocking movements, formation control and leader-following (Lewis et al., 2014; Li

& Duan, 2015). The formation control problem is an interesting issue in diverse fields

of technology including biology, automatic control and robotics, which requires each

agent in the network to track a reference trajectory, while building a desired formation

topology in cooperation with the other agents (Li & Duan, 2015).

Similar to the case of a single dynamic system, the issues of having unknown

internal dynamics and unknown external disturbances exist for formation-tracking

problem in a multi-agent dynamic system including a team of AMRs, as well. Further

details can be found in Section 2.3. Hence, an extended synthesis for the MFC

algorithms is vital for formation-tracking control problem in a team of AMRs. In this

synthesis, the impact of inter-agent communications on the design of the cooperative

control protocol should be taken into account. This impact can be further understood

by the use of graph theory to represent the interactions among the agents (Jadbabaie

et al., 2003).

In addition, the relative position information of each agent to some of the agents in
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the network needs to be determined for computing the control signals in most of the

cooperative MFC algorithms. This challenge may lead to the localization problem for

a single dynamic system and also the cooperative localization problem in a multi-agent

dynamic system.

1.2.3 Localization problem in multi-agent dynamic systems

As mentioned before in Section 1.1, estimating the position of stationary or

mobile agents in a local or global frames is named as localization problem. One of the

easy and cost-effective solution to the localization problem is to use Geographical

Positioning System (GPS). It is shown that the position data provided by the

commercial GPS modules in open sky conditions has the mean accuracy of 4.9 meters

in radius (Diggelen & Enge, 2015). This level of accuracy can be acceptable in the

localization task involving large dynamic systems like airplane, ship, car and

landmark. For a small dynamic systems like AMRs, this amount of error adversely

affects the localization and consequently the control tasks. In addition, GPS signals

are not available inside buildings and also in jammed areas, due to non-line of sight

condition (Safavi & Khan, 2017).

Hence, several solutions in the literature are provided to improve the accuracy of

the positioning results in the localization problems. The solutions can be categorized

as the methods based on GPS data and the methods which do not use the GPS data.

Detailed list of solutions in this area is provided in Section 2.4. Among them, the

cooperative localization algorithms are proposed to improve the positioning accuracy

using the available information in a network of agents.
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In a cooperative localization problem, the relative position (or absolute position in

some solutions) of each agent in a multi-agent system is computed online in a two

dimensional (i.e. 2D) or three dimensional (i.e. 3D) environments. Since the

inter-agent communications are required for implementing the cooperative

localization algorithms, these types of algorithms are interesting when we are dealing

with a network of agents. Specifically, the cooperative localization algorithms are

meaningful for a team of AMRs, where the information about the inter-agent relative

distances and velocities in the network can be provided using the on-board sensors at

each of the agents.

1.3 Research objectives

Recalling the problems stated in Section 1.2, the research objectives of this thesis

are listed as follows;

• developing an adaptive MFC algorithm for tracking control problem in

single-agent dynamic systems with completely unknown nonlinear dynamics,

including single AMRs; a method is required to update the main controller

gains in the adaptive MFC algorithm, utilizing the online estimated values for

unknown dynamics, which in turn should be estimated online by regressor-free

adaptive laws;

• developing decentralized cooperative adaptive MFC algorithms with and without

accessing to inter-agent relative state measurements (or estimations), so as to

achieve formation-tracking and consensus objectives in unknown multi-agent

nonlinear dynamic systems, including a team of AMRs;
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• developing an adaptive cooperative localization algorithm for real-time local and

global positioning within a network of mobile agents with one beacon agent and

minimum number of communication links among the agents, including a team of

AMRs; the method should operate without requiring the relative bearing angles,

utilizing only the measurements on relative distance and relative velocity vector.

All of the above objectives are requested for generic nonlinear dynamic systems

with special applications to AMRs.

1.4 Research scopes

Based on the stated problems and the provided research objectives, the major

scope of the current research is to use the adaptive methods to design the control and

localization algorithms for unknown nonlinear dynamic systems including AMRs.

Here, nonlinear dynamic systems are concerned, since almost all of the AMRs can be

modeled in nonlinear dynamic systems, in general point of view. In addition, the

proposed solutions are subject to this constraint that the external disturbances on the

dynamic systems are bounded.

This thesis focuses on the solutions for continuous-time dynamic systems.

Although discrete-time dynamic systems are beyond the scope of this thesis,

proliferation of the presented solutions on a discrete-time setup can be made in the

future work.

In this research, the adaptive methods utilize gradient descent update laws and

provide a rate for online changing of some variables to construct online estimations for
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the corresponding unknown terms. The input-output data of the dynamic systems are

incorporated in the adaptive methods to form the adaptation process.

Moreover, Lyapunov and LaSalle-Yoshizawa stability theorems are used

throughout the thesis in order to provide the proofs for stability and convergence of

the algorithms. Incorporating the LaSalle-Yoshizawa theorem in the proofs, leads to

uniformly ultimately bounded (UUB) convergence of the algorithms. UUB is

relatively, a less conservative convergence property as compared to asymptotic,

exponential and finite-time convergence property. However, the condition does not

require to know about the system dynamics and disturbance other than its relative

upper bounds. This characteristic offers convenience in particular when tracking

performance is desired over the estimation performance. Moreover, hardware

implementation of the algorithm with limited computational resources may benefit

from this paradigm.

In addition, the adaptive methods are designed so as to include leakage and signum

terms to confirm the robustness of the algorithms. Robustness is an interesting property

that adaptive algorithms might have when dealing with the unknown terms.

For the solutions proposed to the cooperative network of dynamic agents (such as

a team of AMRs), the concept of communication graph is adopted from the graph

theory to incorporate the properties of the existing communications in the network

into the design procedure. The focus of the current thesis is on the homogeneous

networks with fixed communication graph, while the results can be extended with few

modifications for the heterogenous multi-agent systems and the networks with
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time-varying communication graph. This is due to the fact that the dynamics of all

agents are assumed to be completely unknown throughout the thesis. Furthermore, all

of the proposed algorithms in the thesis are accompanied with application results in

AMRs.

Disclaimer. It should be noted that, in the current thesis, the simulation results

(including the results from the hardware-in-the-loop test) of the proposed algorithms

on a robotic manipulator, a wheeled mobile robot, a quadrotor and a network of four

quadrotors are presented to show that the algorithms can be applied on the real

platforms. Implementation of the proposed algorithm on a hardware-in-the-loop

approach is not to validate, but rather to illustrate the efficacy of its practical

feasibility.

13



1.5 Thesis outline

Recalling the problem statements and the research objectives of the thesis, an in-

depth literature review is presented in Chapter 2. The literature review is presented in

three different subsections corresponding to the three problems stated in Section 1.2.

At the end of Chapter 2, research gaps are defined and the motivation for the designing

of the algorithms are presented.

Chapter 3 of the thesis is dedicated to the design process and proofs for the

algorithms. The chapter includes all the required definitions, propositions and

assumptions for designing and presenting the algorithms. In this regard, a novel

adaptive MFC algorithm is developed for the tracking control problem of a generic

completely unknown continuous-time single-agent nonlinear dynamic system in

Section 3.2 and Section 3.3, for single-input single-output and multi-input

multi-output cases, respectively. Later in Section 3.4 and Section 3.5, the adaptive

MFC algorithm has been extended for deriving the decentralized cooperative

algorithms to solve the formation-tracking and consensus problems in multi-agent

dynamic systems with unknown internal dynamics and unknown bounded external

disturbances. The proposed adaptive cooperative algorithms are distinct from each

other, based on the availability of the inter-agent relative state measurements in the

network. At last in Section 3.6, an adaptive cooperative localization algorithm is

developed for both relative and absolute positioning of the agents inside a network of

mobile dynamic agents. Throughout Chapter 3, all the algorithms are provided with

the adequate mathematical proofs.

In Chapter 4, several numerical simulation results, including the comparative
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studies to the previously published solutions and also applications to real platforms,

are provided for the developed algorithms. The results for the adaptive MFC in

single-agent systems are presented in Section 4.2 and Section 4.3. Furthermore,

Section 4.4 and Section 4.5 consist of the simulation results for cooperative adaptive

MFC on multi-agent dynamic systems. The simulation results for the adaptive

cooperative localization algorithms are presented in 4.6. In addition, the results for

performing the hardware-in-the-loop test for application of the proposed adaptive

MFC algorithm on a wheeled mobile robot and a quadrotor are presented in Section

4.8.

The thesis is concluded in Chapter 5 and some suggestions for the future

investigations are made. The solutions presented in this thesis might be seen as an

integrated package to provide basis of high level of autonomy for any types of AMRs

with unknown internal dynamics, working under unknown external bounded

disturbances.

15



CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

In this chapter, a review over the MFC algorithms investigated for single-agent

and multi-agent dynamic systems is presented. Moreover, the proposed solutions in

the literature to the localization problem are reviewed and a history of the cooperative

localization algorithms is presented. Firstly, the MFC algorithms which are designed

based on the generic ultra-local structure for the dynamics of unknown nonlinear

systems are presented in Section 2.2. It is mentioned that the ultra-local model can be

considered as the linearly-parameterized model for alternative representation of the

nonlinear plants. This section also includes all of the modifications provided recently

to the original MFC algorithm, including the fuzzy and sliding-mode extensions of

the algorithm. Furthermore in that section, it is followed by introduction of the

reinforcement learning algorithms as online optimal adaptive solutions for tracking

control problem in unknown single-agent nonlinear dynamic systems. The use of

reinforcement learning in context of MFC algorithms provides the optimality feature

to the algorithm.

In Section 2.3, this is followed by a review on the history of the cooperative

control algorithms on multi-agent nonlinear dynamic systems and the development of

the distributed cooperative model-free control algorithms for multi-agent systems

with unknown nonlinear dynamics is presented. The importance of the

communication graph in the design process of the cooperative control algorithms is
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declared and the recently-proposed solutions to address the unknown nonlinear terms

in the agents dynamics are presented. Moreover, it is mentioned that the most of the

state-of-the-art cooperative control algorithms in the literature rely on the artificial

neural networks to provide the online estimations for unknown nonlinear terms or the

control signals directly.

Later in Section 2.4, all of the available solutions for the localization problems in

both outdoor and indoor environments are reviewed. It is shown that the cooperative

localization algorithms are among the most emerging solutions. Different cooperative

localization algorithms are presented and reviewed with more details.

Finally, according to the reviewed literature, the research gaps in the three stated

problems of this thesis are provided in Section 2.5.

2.2 Model-free control for single-agent nonlinear dynamic systems

For the tracking control problem in a system with partially or completely unknown

dynamics, one can design a model-based or model-free control algorithms. In a model-

based control or estimation algorithm, the unknown dynamic model is represented in

linearly parameterized (LP) format as follows (Na et al., 2015)

fl p(x) = φl p(x)θl p , (2.1)

where fl p ∈RNe×1 is the unknown dynamic system which is going to be represented by

LP, φl p ∈ RNe×p includes the known basis functions (or simply regressors) and θl p ∈

Rp×1 is the vector of unknown parameters needs to be estimated. Here, x∈Rn×1 is the
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vector of system’s states, and n is the number of states, p is the number of unknown

parameters and Ne is the number of dynamic equations in the system. According to the

persistently excitation (PE) requirement (refer to Appendix D for more information),

convergence of the adaptive laws in all model-based estimation algorithms would be

achieved, if and only if the input signal is sufficiently rich (SR) (Ioannou & Fidan,

2006).

There are several investigations among the adaptive data-driven control algorithms

in the literature, which are designed based on an LP model for the unknown dynamics

and using the model-based estimation methods for online adaptation (Wang et al.,

2018, 2017; Yu et al., 2016; Zhao et al., 2017). These work adopt the use of artificial

neural network (ANN) to represent the nonlinear term, assumed to be LP. The weights

to the corresponding basis functions in ANN are then estimated online. Although

ANN approach does not require parametric information about a system model to be

known, the adaptive laws are model-based estimation algorithms and the predefined

regressor parameters need to be persistently excited. In addition, the parameter

estimation error and its rate depend on the proper selection of the number of neurons

(or neural nodes) used in the ANN; such that the error of parameter estimation

converges to zero, if the numbers of neurons reach to infinity (Lewis et al., 2014).

Moreover, in the aforementioned algorithms, the main controller gains should be

determined off-line; posing limitations to the development of achieving fully

autonomous dynamic systems. Recently, model-free control approaches have become

interesting methods in academic and industrial points of view for tracking problems

in dynamic systems (Madadi & Söffker, 2015).
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2.2.1 Model-free control for single-agent systems based on ultra-local model

In 2013, Fliess proposed the MFC technique for single-input single-output (SISO)

nonlinear dynamic systems for the first time (Fliess & Join, 2013). The model-free

techniques proposed by Fliess, include the intelligent P (iP), the intelligent PI (iPI), the

intelligent PD (iPD) and the intelligent PID (iPID) controllers. Presenting a general

dynamic system in form of an ultra-local model as

y = F +αu , (2.2)

where y ∈ R is the system output, u ∈ R is the system controller and F ∈ R is the

unknown nonlinear dynamics of the system; the iPID controller can be expressed as

follows

u =−
F̂− ÿd−Kpe−Ki

∫
e−Kd ė

α
,

F̂ =
1
τ0

∫ t

t−τ0

(ÿd−αu+Kpe+Ki

∫
e+Kd ė)dτ .

(2.3a)

(2.3b)

Here, F̂ is the estimated value for unknown nonlinear term, α > 0 is the constant

parameter as the gain for relation between the magnitude of y and u (assumed to be

known), τ0 > 0 is a constant number of previous steps used in estimation of F̂ and

yd ∈ R is the desired trajectory for the system output, while e = yd − y. In addition,

Kp, Ki and Kd are the constant positive gains for the proportional, integral and

derivative parts of the iPID controller, which should be determined manually. The

controllers iP, iPI and iPD are defined similarly (Fliess & Join, 2013). Note that these

controllers are considered as the model-free controllers, since the corresponding

control signals are defined free from the unknown nonlinear dynamics of the system

(i.e. F). Consequently, the model-free algorithm does not require nonlinear term to be
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LP, since the estimation of F is achieved by merely the use of readily available

information such as tracking error, past control input and ÿd . In a generic point of

view, the ultra-local model in (2.2), which is an affine dynamic model with regards to

the control input variable (refer to Appendix A for more information), includes a

lumped unknown nonlinear function and a priori-known constant input gain.

Estimation of the unknown nonlinear term is performed by a simple algebraic

equation utilizing the past input-output data, as in (2.3b).

In (Thabet et al., 2014), the ultra-local model in (2.2) is transformed to a linear

time-invariant (LTI) state-space dynamic system, and then an adaptive observer is

proposed for estimating the system states and the system’s unknown nonlinear term

(i.e. F). In that work, since the online estimation process is performed by a

model-based estimation algorithm, there is a requirement of PE condition for the

regressor parameters. In a similar approach, a method is presented by Carrill and

Rotella (2015) for estimating the unknown nonlinear term and the unknown input

gain utilizing a parametric model, where the PE condition is required for confirming

the convergence.

Later, several applications of the MFC are provided in practical systems (Cao et

al., 2016; Lafont et al., 2015; Younes et al., 2016; Zhou et al., 2016). The applications

include the fault accommodation in a greenhouse, AC/DC converter for on-board

battery charger, permanent magnet drive systems and autonomous quadrotors. In

these applications, the MFC algorithm is modified accordingly so as to comply with

the requirements and constraints of the corresponding dynamic system. Latest

applications of the MFC algorithms include an acute inflammation process (Bara et
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al., 2018) and a vapour-compression refrigeration process (Yu et al., 2018).

In 2016, Roman et al. compared the performance of the model-free controller with

the virtual reference feedback tuning technique. Then, (Roman et al., 2017, 2018)

presented a fuzzy version of the MFC algorithm with application to a twin-rotor set-

up. The formulation of the fuzzy MFC algorithm based on an iPD is proposed as

follows

u =−
F̂− ẏd−φ f uzz

α
,

F̂ =
1
τ0

∫ t

t−τ0

(ẏd−αu)dτ ,

(2.4a)

(2.4b)

where φ f uzz ∈ R is the fuzzy control signal generated based on the fuzzy membership

functions defined for the tracking error e and its derivative signal. Note that in this

algorithm, the parameters in the fuzzy membership functions need to be defined

manually, where an off-line optimization process is used for this purpose (Roman et

al., 2017). This approach was further extended by incorporating a sliding-mode MFC

algorithm and its experimental validation (Percup et al., 2017). Similar to (2.4a), an

additional term including the sliding-mode term is added in the sliding-mode MFC

algorithm.

2.2.2 Reinforcement learning as a model-free control algorithm

Optimality is another feature which has been already brought to the MFC

algorithms. In work by Roman et al. (2015), the MFC is formulated in a LTI system

and an optimal MFC is proposed for a multi-input multi-output (MIMO) dynamic

system. Utilizing the linear quadratic regulator (LQR) technique, an optimal term is

included in the proposed solution by Roman et al. (2015). Since the optimal control
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problem is solved off-line, the main controller gains need to be tuned by the control

designer manually, before deploying the algorithm.

Incorporation of the optimal control theory into the area of MFC algorithms for

dynamic systems, has led to proposing the reinforcement learning (RL) techniques for

tracking control problem (Lewis et al., 2012; Song et al., 2017). Several RL

algorithms have been used for solving the optimal tracking control problem in

discrete and continuous-time systems with partially or completely unknown linear

and nonlinear dynamics (Kiumarsi et al., 2018; Zhang et al., 2017; Zhu & Zhao,

2018). The optimal control policy for a linear continuous-time system can be

designed by the solution of a Hamilton-Jacobi-Bellman (HJB) equation. Based on the

HJB equation (Lewis et al., 2012), the optimal control signal uop for a dynamic

system should satisfy

0 = min
u=uop

{r(e,u)+ d
dt

J(e)} , (2.5)

where r(.) ∈ R and J(.) ∈ R are value (cost-to-go) and utility functions, respectively.

It is shown that the value function for a linear dynamic system can be represented by

a quadratic function of the system’s states. This property leads to a straight-forward

formulation of the optimal controller for linear systems, i.e. the LQR technique

(Lewis et al., 2012). In contrary, since it is not possible to express the value function

of a nonlinear dynamic system in form of a general quadratic function of the states,

the solution of HJB equation in nonlinear systems is not as straight-forward as in the

case of linear systems (Lewis & Vrabie, 2009). It is observed that the HJB equation

for a nonlinear dynamic system is quadratic in gradient of the value function. In other

words, the corresponding HJB equation is a nonlinear differential equation. The
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iterative algorithms should be utilized for solving the HJB equation in nonlinear

dynamic systems (Lewis & Vrabie, 2009). Suppose a generic nonlinear dynamic

system with n states and m control inputs can be defined as

ẋ = f (x)+g(x)u , (2.6)

where x ∈ Rn×1 is the system’s states, u ∈ Rm×1 is the control inputs, f (x) ∈ Rn×1

is a vector including the unknown nonlinear functions in the system dynamics and

g(x) ∈ Rn×m is the input matrix. Then, the policy iteration method for the nonlinear

dynamic system defined in (2.6), is an iterative method utilized for solving the HJB

equation. The method consists of two steps, as policy evaluation (Lewis & Vrabie,

2009; Vamvoudakis & Lewis, 2010),

0 = r(x,ui)+(∇Ji(x))T ( f (x)+g(x)ui(x)) ; (2.7)

and policy improvement

ui+1(x) =−
1
2

R−1gT (x)∇Ji(x) , (2.8)

where R ∈ Rm×m is a positive definite matrix and (∇Ji(x)) ∈ Rn×1 is the gradient of

the value function at the ith iteration. As can be seen in Fig. 2.1, the policy iteration

method has an actor/critic RL structure, where the policy evaluation is handled by

a critic agent and the policy improvement is performed by an actor agent. Usually,

the actor and critic agents are generated by two separate ANNs or fuzzy inference

systems (FISs). Note that the policy iteration algorithm in (2.7) and (2.8) are presented
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for continuous-time systems. The similar approaches have been used for discrete-

time systems and approximate dynamic programming and Q-learning algorithms are

proposed (Lewis & Vrabie, 2009; Luo et al., 2016).

Besides the policy iteration algorithm, value iteration algorithms are also

investigated as the second type of the RL solutions for optimal tracking control

problem (Xiao et al., 2017; Zhang et al., 2017). But, most of the proposed RL

solutions in the literature for optimal tracking control problem are categorized in

policy iteration group (Kiumarsi et al., 2018). For value iteration algorithms, only the

final converged optimal control law can be utilized to control the nonlinear dynamic

system and all the controllers during the iteration procedure might be invalid.

Therefore, the computational efficiency of the value iteration algorithm is low and

requires infinite time to obtain the optimal control law. On the other hand, it is proven

that the policy iteration algorithm converges in finite time and each of the iterative

controllers achieved during the iteration process can stabilize the nonlinear dynamic

system (Liu & Wei, 2014; Wei et al., 2016).

Figure 2.1: The structure of policy iteration method (Kiumarsi et al., 2018)
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