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PENCIRIAN DAN PROSES PEROLEHAN PELAKURAN 

ALKALI TERHADAP UNSUR-UNSUR NADIR BUMI DAN 

TORIUM DARIPADA MONAZIT MALAYSIA   

ABSTRAK 

Perolehan unsur-unsur nadir bumi (REE) dan Torium (Th) daripada monazit 

Malaysia melalui kaedah pelakuran alkali dan pelarutlesapan asid yang mesra alam 

telah dikaji dalam penyelidikan ini. Sebelum pemprosesan monazit beralkali, 

pencirian kimia dan mineralogi yang mendalam terhadap monazit Malaysia telah 

dijalankan dalam kajian ini. Kajian pencirian konsentrat yang sistematik telah 

dikendalikan menggunakan teknik-teknik seperti Mikroskopi Optikal (OM), 

Mikroskopi Elektron Penskanan (SEM) yang dilengkapi dengan Spektroskopi 

Penyebar Tenaga Sinar-X (EDS) dan Spektroskopi Inframerah Transformasian 

Fourier (FTIR). Teknik-teknik ini menganalisis morfologi permukaan yang teripinci, 

analisis unsur, penilaian persekutuan mineral dan identifikasi permukaan kumpulan 

berfungsi. Analisis XRF bagi komposisi pukal mengesahkan kehadiran Ce, La, Nd, 

Pr dan Y (~ 70 % berat REE) manakala torium menyumbang sebanyak 7 % daripada 

berat komposisi total.  Keputusan analisis XRD telah mengesahkan konsentrat itu 

terdiri terutamanya daripada monazit (Ce, La, Nd, Th (PO4)) berserta fasa-fasa kuarza 

yang minimum. Kajian penyahfosforus karboterma bersuhu tinggi (HTCTD) telah 

dijalankan bagi menilai tingkah laku penguraian mineral fosfat di bawah pengaruh 

suhu, saiz partikel dan nisbah molar monazit kepada karbon yang berbeza. Tanpa 

mengambil kira perbezaan keadaan bagi penurunan karboterma, 97 % penyahfosforus 

telah berjaya dicapai dalam kajian ini. Keadaan optimal bagi penyahfosforus telah 

dirumuskan pada suhu penurunan 1350 °C, saiz partikel 75 µm dan nisbah molar 

monazit kepada karbon sebanyak 0.3. Kaedah baru dalam pemprosesan beralkali telah 
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diuji dalam penyelidikan.Melalui kaedah ini, kesan  suhu lakuran (350 - 450 °C), masa 

(2 - 4 jam), nisbah berat monazit kepada alkali (NaOH) (2 - 4), dan saiz partikel (-50, 

-100, -150 µm) terhadap penguraian monazit telah dikaji menggunakan pecahan reka 

bentuk faktor eksperimen di peringkat pelakuran alkali. Peratus penyingkiran tertinggi 

bagi fosforus (Xp) dan silikon (XSi) telah diperolehi pada suhu lakuran 350 °C, masa 

lakuran 4 jam, nisbah berat monazit kepada natrium hidroksida sebanyak 4, dan saiz 

partikel terendah yang diuji dalam kajian ini, iaitu -50 µm. Pencernaan asid bagi 

oksida berhidrat yang diperolehi daripada peringkat pelarutlesapan air berlakur 

dengan kondisi yang terbaik telah dijalankan menggunakan asid hidroklorik bermolar 

6 bagi memperoleh REE dan Th dalam larutan nadir bumi berklorida (RECl3). 

Berdasarkan parameter-parameter yang telah dikaji seperti suhu pelarutlesapan (70 – 

90 °C), masa pelarutlesapan (30 – 90 minit), nisbah pepejal kepada cecair (20 – 40 

g/L) dan kelajuan adukan (300 – 700 rpm), perolehan yang rendah sebanyak 12% dan 

kurang telah dicapai disebabkan ciri-ciri termodinamik REO dan Th yang stabil. Oleh 

itu, pengubahsuaian kaedah pelarutlesapan asid menggunakan hidrogen peroksida 

(H2O2) telah dicadangkan untuk meningkatkan kadar perolehan. Tanpa penggunaan 

H2O2, perolehan REOs telah dicapai sebanyak 18.14 %  manakala dengan penggunaan 

H2O2, perolehan berjaya ditingkatkan kepada 63.78 %. 
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CHARACTERIZATION AND ALKALINE FUSION RECOVERY 

PROCESS OF RARE EARTHS AND THORIUM FROM 

MALAYSIAN MONAZITE 

ABSTRACT 

 The recovery of rare earth elements (REEs) and thorium (Th) from Malaysian 

monazite through an environmental-friendly alkali-fused and acid leached method was 

investigated in this research. Prior to the alkaline processing of monazite, an in-depth 

chemical and mineralogical characterization of Malaysian monazite, from Ipoh, Perak, 

Malaysia was conducted in the study. A systematic characterization study of the 

concentrate was conducted using Optical Microscopy (OM), Scanning Electron 

Microscopy (SEM) equipped with Energy Dispersive X-ray Spectroscopy (EDS) and 

Fourier Transform Infrared Spectroscopy (FTIR). These techniques analyzed the 

morphological details on the surface, elemental analysis, mineral association 

assessment and identification of the surface functionalization groups. The XRF 

analysis for bulk composition confirmed the presence of Ce, La, Nd, Pr and Y (REE’s 

~70 wt. %) while Th accounted for 7 wt. % of the total composition. The XRD results 

confirmed that the concentrate was primarily composed of monazite (Ce, La, Nd, Th 

(PO4)) along with minor impurity phases of quartz. High temperature carbothermal 

dephosphorization (HTCTD) was performed to assess the decomposition behavior of 

the phosphate mineral under different conditions of temperature, particle size and 

monazite to carbon ratio. At all the conditions investigated for carbothermal reduction, 

up to 97 % dephosphorization was achieved in the study.  The optimal condition 

attained 97.85 %  dephosphorization for a reduction temperature of 1350°C, particle 

size fraction of -75 µm and monazite to carbon molar ratio of 0.3. A new alkaline 

fusion method was explored in this research. In this method, the effects of fusion 
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temperature (350-450 °C), fusion time (2-4 hrs), weight ratio of monazite to alkali 

(NaOH) (2-4), and particle size fractions (-50 to -150 µm) on the decomposition of 

monazite were investigated using fractional factorial design (FFD) of experiments for 

the alkaline fusion stage. The highest percent removal of phosphorous (Xp) i.e., 95.02 

% and silicon (Xsi) i.e., 75.82 % was obtained for a fusion temperature of 350°C, fusion 

time of 4 hours, weight ratio of monazite to NaOH of 4, and the lowest particle size 

studied in this work i.e, 50 µm. Acid digestion of the hydrous oxides obtained from 

the best condition for fused-water leaching stage was conducted using 6M HCl for 

recovering the REE and Th in form of soluble rare earth chlorides (RECl3). Of the 

parameters investigated, such as leaching temperature (70-90°C), leaching time (30-

90 minutes), solid to liquid ratio (20-40 g/L) and stirring speed (300-700 rpm), low 

recovery i.e., 12 % and below, was achieved due to the stable thermodynamic behavior 

of the REOs and Th. Therefore, a modification of the acid leaching method with the 

use of hydrogen peroxide (H2O2) was proposed to enhance recovery. Without H2O2, 

the recovery of REOs was 18.14 % whereas with H2O2 assisted leaching, the recovery 

improved to 63.78 %. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background of study 

The fifteen lanthanide elements in the periodic table along with scandium and 

yttrium distributed over 250 different minerals are designated as rare earth elements 

(REE’s), i.e., with atomic numbers, Z = 57 (lanthanum, La) to 71 (lutetium, Lu), 

together with yttrium (Y, Z= 39) and scandium (Sc, Z= 21). Generally, scandium (Sc) 

and yttrium (Y) are also included in this category as their occurrence is associated with 

the same ore deposits as the lanthanides and they exhibit similar chemical properties 

(Castor and Hedrick, 2006). This particular group of elements has been recognized as 

critical and rare, as the natural occurrence of these elements is greatly dependent on 

the geological conditions, wherein they are only found in sufficient concentrations and 

amounts in few regions, in economically viable and exploitable forms (Kanazawa and 

Kamitani, 2006; Balaram, 2019). The conventional manner of distinguishing the rare 

earth elements (REE) is by means of their atomic numbers, where lower atomic weight 

elements from lanthanum to samarium (Sm) are referred to as the light rare earth 

elements (LREE); while europium (Eu) to lutetium, are the heavy rare earth elements 

(HREE). Yttrium is grouped with the heavy rare earth elements due to their chemical 

similarities (Jones et al., 1995). 

Most of the REEs are not as rare in nature as the name implies. It is mostly 

treated as a historical misnomer because the term ‘rare earths’ reflect unfamiliarity 

rather than truly rare nature of their existence. On the contrary, the REE’s are 

considerably ample in the Earth’s crust with an overall abundance of 9.2 ppm in the 

Earth’s crust. On an average, with respect to the proportion of the Earth’s continental 
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crust, the most abundant REE is Cerium (Ce) at 43 parts per million (ppm) and the 

rarest REE is thulium (Tm, 0.28 ppm), excepting promethium (Pm) which is virtually 

absent, because of the short half-life due to its radioactivity. Lanthanum (La) and 

neodymium (Nd) followed cerium amounting to about 20 ppm while, yttrium occurs 

at 19 ppm (Wedepohl, 1995; Rudnick and Gao, 2003). Thus, their overall abundances 

are not disparate from many other important elements such as lithium (17 ppm), 

germanium (1.3 ppm), copper (27 ppm), lead (11 ppm), tin (1.7 ppm), and uranium 

(1.3 ppm) (Taylor and McLennan, 1985). Due to the larger ionic radii of the lighter 

REEs, they tend to occur more concentrated in the continental crust than the larger 

atomic number REEs. The resemblances in the chemical nature (oxidation states and 

ionic radii) of the REEs permit them to substitute for one another in crystal structures 

as a result of which multiple REEs occur within a single mineral and a wide 

distribution in the Earth’s crust. Furthermore, the slight chemical and physical 

dissimilarities within the REEs are due to the small differences in ionic radius which 

results in segregation of REEs into deposits enriched in either light lanthanides or 

heavy lanthanides plus yttrium (Castor et al., 2006; Steurer, 2017). 

1.1.1 Occurrence of REE minerals 

Geologically occurring compounds of REEs are in form of oxides, halides, 

carbonates, phosphates and silicates, but not sulfides. Although many minerals 

comprise of significant amount of REEs, their production has come from very few 

sources. This is because extraction and separation from a potentially economic REE 

resource is very much reliant on their nature of mineralogy. The major resources are 

primarily in four geologic environments: carbonatites, alkaline igneous systems, ion-

adsorption clay deposits, and monazite-xenotime-bearing placer deposits (Jones et al., 

1995; Kanazawa et al., 2006). While carbonatites and placer deposits are the sources 
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of producing light rare-earth elements, ion-adsorption clays are prospective sources 

for heavy rare earths (Voncken, 2016). The mineral deposits of REEs occur in a wide 

range of igneous, sedimentary and metamorphic rocks, wherein the concentration and 

distribution of the REEs in the minerals is influenced by numerous factors such as rock 

forming and hydrothermal processes (Habashi, 2013). Usually, the environments in 

which REEs are enriched are classified into primary deposits, associated with igneous 

and hydrothermal processes and secondary deposits, that are concentrated by 

sedimentary processes and weathering (Gupta and Krishnamurthy, 1992; 

Krishnamurthy and Gupta, 2015). The distribution of REE occurrences, deposits and 

mines in different parts of the world is shown in Figure 1.1. 

 
Figure 1.1 : Distribution of primary and secondary REE deposits across the globe 

(Walters et al., 2011). Based upon Mineral profiles on Rare Earth Elements, with the 

permission of the British Geological Survey 
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Most of the REEs are primarily found in carbonatites, which are igneous rocks 

composed of calcite (calcium carbonate), magnesium bearing carbonates (dolomite, 

magnesite) or siderites. Some of the alkaline igneous rocks, usually characterized by 

the high content of alkali metals. Apart from these, secondary deposits of REE, such 

as weathered primary sources subsequently concentrated by physical or chemical 

means i.e., placers or laterites are also a rich source of economically extractable REEs 

(Henderson, 1984; Migaszewski and Gałuszka, 2015). The proportions of different 

REEs vary between different deposits of the same mineral (Henderson et al., 2013). 

Some of the selected REE minerals and their corresponding approximate percent of 

rare earth oxides is given in Table 1.1. 

Table 1.1: Selected major REE bearing minerals in the world (Estimates based on 

Web mineral composition (Barthelmy, 2007 ; Castor et al., 2006) 

Mineral Formula Approximate REO % 

Allanite-(Ce) (Ce,Ca,Y)2(Al,Fe3+)3(SiO4)3OH 32 

Apatite Ca5(PO4)3(F,Cl,OH) 19 

Bastnasite-(Ce) (Ce, La)(CO3)F 75 

Britholite-(Ce) (Ce,Ca)5(SiO4, PO4)3(OH,F) 32 

Aeschynite-(Y) (Ce,Ca,Fe,Th)(Ti, Nb)2  

(O, OH)6 

32 

Fergusonite (Ce,La,Nd)(NbO4) 53 

Gadolinite (Ce, La, Nd, Y)2 FeBe2Si2O10 60 

Loparite (Ce, La, Na, Ca, Sr)(Ti, Nb)O3 30 

Monazite-(Ce) (Ce, La, Nd, Th)(P,Si)O4 65 

Xenotime YPO4 61 

Florencite-(Ce) CeAl3(PO4)2(OH)6 32 

Samarskite-(Y) (Y, Ce,U, Fe3+)3(Nb,Ti,Ta)5O16 24 

 

Thorium, one of the constituents of monazite, occurs in +4 state, together with 

uranium (IV), zirconium (IV), cerium (IV) as also with scandium (Sc), yttrium (Y) and 

other trivalent lanthanides that share similar ionic radii (Kizilyalli and Welch, 1976; 

Gupta et al., 1992) . The naturally radioactive nature of thorium makes the minerals 



 

5 

 

containing it metamict i.e., amorphous because the mineral structure is continuously 

subjected to damage by the alpha radiation produced by the radioactive element 

(Farges and Calas, 1991). Unlike uranium, thorium is fertile and not fissile by itself 

which makes it a safer replacement for U-238, which is fissile in nature (AL-Areqi et 

al., 2015; Lainetti, 2016). Thorium is a prominent member of several mineral groups 

such as monazite, allanite (Ce,Ca,Y,La,Th)2(Al,Fe+3)3(SiO4)3(OH), and ekenite 

(Ca,Fe,Pb)2(Th,U)Si8O20. It occurs as thorium dioxide (ThO2) in the rare mineral, 

Thorianite and as thorite (ThSiO4) (Cuthbert, 1958). The concentration of Th in 

different minerals is shown in Table 1.2.  

 

Table 1.2: Thorium concentration ppm of various minerals (Wickleder et al., 2011) 

Mineral Th (ppm) range 

Allanite-(Ce) 1000-20000 

Monazite-(Ce) 25000-2×105 

Xenotime low 

Zircon 50-4000 

Titanite 100-600 

Epidote 50-500 

Apatite 20-150 

Magnetite 0.3-20 

 

A reasonable concentration of REE bearing minerals that are economic to mine 

and with a profitable extraction process of REEs determine the exploitability of any 

particular mineral. A majority of minerals tend to be rich in both light and heavy 

REE’s, including most of the REEs but in trace quantities. The deposits that are 

considered to be reserves will depend not only on fixed aspects like geographical 

distribution and concentration; mineral type, but also on variable factors such as 

commodity prices; regulatory regimes including environmental protection; improved 

technology for extraction and processing (Henderson et al., 2013; Balaram, 2019).  
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1.1.2 Principal REE minerals 

The REE bearing minerals that have been extracted on a commercial scale are 

bastnaesite, monazite, and xenotime. Of all the minerals that contain the Naturally 

Occurring Radioactive Elements (NORE’s), monazite and xenotime have gained 

widespread attention in the recent times (Krishnamurthy et al., 2015; Voncken, 2016). 

The two ubiquitous phosphate minerals, xenotime and monazite, can occur together, 

but crystallize in different temperature and pressure regimes from a similar igneous 

environment (Spear and Pyle, 2002). While monazite commonly occurs in placer 

deposits; xenotime can occur along with monazite, but generally occurs as a more 

minor constituent of these types of deposits (Overstreet, 1967). The mineral monazite 

is generally enriched with the REEs especially, lighter ones such as cerium, lanthanum, 

and neodymium, samarium, europium and gadolinium but can also contain HREEs, 

particularly yttrium (Ni et al., 1995; Zhu and O'Nions, 1999). Both the phosphate 

minerals usually also contain Th and/or U, but the amounts in monazite are subjective 

to be extracted as a valuable by-product based on their geological setting and 

concentration grade. Generally, studies revealed that REE ores of monazite are 

enriched with higher concentrations of thorium, and the heavy REEs in particular tend 

to concentrate in the same geological environments as thorium. Uranium also occurs 

in or with ore deposits that contain REE-bearing minerals. The concentrations of 

radioactive elements in the ore is not explicitly reliant on upon the mineral type, but 

more on the petrogenesis of the deposit containing the ore (Long et al., 2012). The 

disparity of xenotime to monazite and bastnaesite is that, the mineral generally 

contains, besides yttrium (Y), significant amounts of the HREE (Y, Tb, Dy, Ho, Er, 

Tm, Yb, and Lu). With respect to the actinides, monazite tends to concentrate thorium, 

whereas xenotime tends to concentrate uranium, but can also take up appreciable 
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amounts of thorium. Bastnaesite is another major REE ore mineral containing mostly 

the LREEs cerium, lanthanum, praseodymium, and neodymium and only Y, of the 

HREEs. Owing to the relatively lower concentrations of Th and U or absence of the 

two radioactive elements, the mineral has replaced monazite as a better source of 

LREEs. The mineral is primarily a carbonatite, with related minerals arising from 

substitution of the fluorine and carbonate ions (Krishnamurthy et al., 2015).  

 Monazite placer deposits, is an important source of REEs, used to be mostly 

abandoned because of its high thorium content. The environmental concerns related to 

radioactive elements and the association of REEs with thorium and uranium has 

demanded radiometric exploration techniques in REE exploration (Castor et al., 2006). 

Thorium and uranium represent the heaviest naturally occurring elements on Earth 

however, thorium is more abundant in nature than uranium. The inherent properties of 

Th has established  the element to substitute U to be used to fuel a nuclear chain 

reaction that can run a power plant and make electricity however, thorium itself will 

not split and release energy which makes it fertile, whereas U-233 is called fissile 

(Lainetti, 2016). The huge energy needed by the nations, the advantages of thorium 

based fuel over uranium such as thorium resources which are several times larger than 

depleting uranium resources, and advantageous thermal and chemical properties and 

low actinide production in thorium based reactors are promoting thorium as a potential 

and relatively safe alternative for nuclear fuel (IAEA, 2005). The use of thorium as a 

new primary energy source has been a tantalizing prospect for many years yet 

extracting its latent energy value in a cost-effective manner remains a challenge and 

will require considerable research and development investment. 
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1.1.3 Malaysian monazite – Potential source of REEs and Thorium 

The rare earth production in Malaysia is usually from two REE- bearing 

minerals, monazite and xenotime.  The abundant cassiterites present in the alluvial tin 

deposits in Malaysia occur with several other minerals such as ilmenite, monazite, 

xenotime, and zircon. The cassiterite and other associated minerals usually occur as 

free grains liberated from the primary ore body. Malaysia has several minerals (e.g. 

monazite, zircon, xenotime and ilmenite) which are categorized as strategic minerals 

because they contain an amount of thorium and uranium with the total concentrations 

of uranium and thorium above 500 ppm which requires a regulatory control (Lainetti, 

2016). The average range of thorium content in Malaysian monazite and xenotime 

minerals was found about 70,000 and 15,000 ppm respectively (Omar, 2010) . Studies 

revealed that, from the year 2006 until 2010, about 2,636 tonnes of Malaysian 

monazite was produced. Based on this data, it can be estimated that Malaysian 

monazite contains about 184.5 tonnes of thorium. Although thorium can become a 

major radiological problem to our environment, but with the significant deposit of 

thorium in Malaysian monazite, it has a prospect as a future alternative fuel in nuclear 

technology (AL-Areqi et al., 2015). 

 Monazite, being a more common mineral of occurrence in this region, is 

separated as a byproduct from cassiterite ores along with silica, magnetite, ilmenite, 

zircon and garnet. The concentration of monazite is accomplished by using washing 

and electromagnetic separation, which separate monazite from other minerals by their 

different magnetic permeabilities. Thorium is mainly obtained from monazite sands as 

a by-product of extracting rare earth metals (Sulaiman, 1991). Nevertheless, in the case 

of thorium, the rare earths will be mined anyway and the tails containing thorium can 

be used without the generation of additional wastes. Then, it was not necessary mining 
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thorium, since it will be available anyway as a side product of the rare earth industry. 

This avoids big problems related to the mining industry, mainly from the 

environmental point of view. With an estimated reserve of 30,000 tons of rare earth 

mineral reserves by Sanusi et al. (2017), Malaysian monazite was composed of 6.5-

7.5 wt. % of Th and 55.5-75.5 wt. % of REOs (ASM, 2013; AL-Areqi et al., 2015) . 

Significant amounts of Th can also be separated from rare earth residue of rare earth 

elements industries as it causes considerable concern on their proper management to 

avoid radioactive pollution and contamination of rare earth products (IAEA, 2005). 

1.2 Problem statement 

For the past ten years, much effort has been expended by several research teams 

to develop an economic process for recovering thorium, rare earths and uranium from 

monazite sands (Omar, 2010; Al-Areqi et al., 2014; AL-Areqi et al., 2015). In 

Malaysia, it was possible to produce thorium from two main sources: Monazite and 

old RE residues, containing 36 wt. % of ThO2, generated from monazite processing 

after extracting rare earth elements. Separation of thorium from the residue using the 

multi-stage process will reduce the hazard of radioactivity and obtain thorium oxide 

for future use in nuclear energy. Despite consistent efforts and attempts by the 

scientific community to establish a safe, economic and reliable concept of separation 

of the naturally occurring radioactive elements (NORE) like thorium and uranium 

there are a lot of practical issues in executing process as such. This is because of the 

need for more caution and care in handling the experimental residues, elements and 

the surroundings (Sulaiman, 1991). From literature review, researchers have briefly 

classified monazite and described their variations with respect to the composition and 

physical characteristics for different geological environments (Bashir, 1988; Abdel-

Rehim, 2002; Panda et al., 2014; Sadri et al., 2017; Udayakumar et al., 2018). 
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However, there is sparse information or lack of inclusive evidence on the 

mineralogical and chemical characteristics of monazite, particularly originated from 

peninsular Malaysia, despite Malaysia bearing rich deposits of the rare earth phosphate 

mineral.  

Currently, the prevailing state of the art processes for REE and Th extraction 

from monazite follows complicated and resource and energy-intensive technologies 

for production of REE and Th rich concentrate (Peelman et al., 2015). The extraction 

and recovery process of the REEs and thorium commenced from the physical 

beneficiation followed by leaching, purification and separation into individual 

compounds and refining to produce high purity RE metals (Jordens et al., 2013; Kumar 

et al., 2014; Kumari et al., 2015; Verbaan et al., 2015; Zhu et al., 2015; Sadri et al., 

2017). The extractive metallurgy of REEs from monazite involves decomposition of 

rare earth mineral, and the subsequent leaching of the rare earth elements from the 

minerals. Usually the beneficiated concentrate was decomposed, for example, by acid 

roasting, caustic cracking, and mechanical methods and the REEs can be selectively 

extracted (Bahri et al., 2016; Borai et al., 2018; McNeice and Ghahreman, 2018). The 

nature of the rare earth extraction process depends on the type of minerals in the 

concentrate, the grade of the concentrate and the targeted products (Zhu et al., 2015).  

Various hydrometallurgical processing routes using sulfuric, nitric and 

hydrochloric acid and alkaline reagents have been investigated and established by 

researchers for recovering rare earths from monazite and xenotime (Bridger et al., 

1951; Moore et al., 1957; Abreu and Morais, 2010; Amaral and Morais, 2010; Kim et 

al., 2014; Stone et al., 2016). A comprehensive review of the preliminary cracking and 

leaching methods applied to produce REE concentrates have been presented elsewhere 

(Sadri et al., 2017). Apart from the above mentioned industrially practiced methods, 
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the literature has also proposed methods like high temperature reduction (Merritt, 

1990a; Merritt, 1990b; Pengfei et al., 2010; Xing et al., 2010) and roasting (Zheng et 

al., 2017a; Zheng et al., 2017b), mechano-chemical decomposition (Kim et al., 2009) 

and other independent methods (Ha, 1979; Zhang and Lincoln, 1994; Yanhui et al., 

2012; Huang et al., 2016; Berry et al., 2017) 

The processing of monazite imposes a lot of challenges to extractive 

metallurgist as the mineral is a complex system of several light rare earths in a solid 

solution of orthophosphates. In case of monazite in the current study, which has a rare 

earth composition of ~60 wt.%, during the extractive metallurgical process, there are 

possibilities of phosphide formation which may permeate into the end products 

affecting their functionality. The nature of decomposition is decided based on the 

characteristics of the mineral concentrate including their mineralogical composition 

and chemical reactivity.  In order to cater to all aspects of the technical and 

environmental concerns, it is essential to engage in a sustainable method of extractive 

metallurgy based on the mineralogy.  From this perspective, there exists a definite need 

to understand the kinetics and thermodynamics of the processing system which suits 

the mineralogy of the monazite concentrate in hand. The development of a leaching 

model that can predict both recovery and reagent consumption using available 

mineralogical data will help reduce the costs and time of processing. The envisaged 

model will be used as a tool for predicting hydrometallurgical routes.  

Several leaching methods were studied and industrially applied for the 

breakdown of the principal REE minerals. However, there was a need to shed some 

light on the kinetics of the leaching reactions which is essential for the industrial 

reliance for sustainable production of REEs to cater diverse applications.  Since 

Malaysia has a rich source of REE’s and thorium, and a significant number of REE 
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industries and a national nuclear research institute (Malaysian Nuclear Agency), there 

is an opportunity for Malaysia to exploit the abundant thorium from monazite for 

establishing a safe and consistent energy generation system. By pursuing the thorium 

fuel cycle, Malaysia will be able to create cleaner REE industries (free of thorium 

waste) and a sustainable energy system for the near and far future. The current research 

will also be a basis to develop thermodynamic models for separating the rare earths 

and thorium obtained by leaching the ore. This research, in particular, will serve as the 

forerunner in the separation of the REE elements from their Malaysian monazite ores 

through an innovative alkaline fused acid-leach method. This approach is expected to 

directly impact on product and process performance, and ultimately bring about 

corporate profitability. 

1.3 Objectives of the study 

The main objective of this research was to develop a sustainable and 

environmental-friendly method for recovering the rare earth elements and thorium 

from Malaysian monazite. The specific objectives of this research are: 

(i) To examine the mineralogy, chemical composition, morphology, size 

distribution, phase analysis, and thermal behavior of Malaysian monazite 

concentrate by using different characterization methods. 

(ii)  To evaluate the thermodynamics of decomposition and dephosphorization 

behavior of Malaysian monazite and study the effects of different carbothermal 

reduction parameters such as temperature, reduction time, particle size in the 

formation of the rare earth and thorium oxides using statistical design of 

experiments (DOE) i.e.,Taguchi method. 
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(iii) To investigate the thermodynamics of alkaline fusion and acid leaching 

reactions for monazite and to determine the best conditions for the alkaline 

fused-water leaching of monazite and the acid leaching of the RE and Th 

hydroxides and oxides for high-efficient recovery of the constituent rare earths 

and thorium using fractional factorial design of experiments (FFD). 

1.4 Scope of the research 

In-spite of the development of diverse techniques to recover REE’s and Th 

from monazite, there was a need to select the most appropriate beneficiation and 

leaching method based on the unique mineralogy of the ore. Each rare earth deposit is 

unique depending on their source and geography of formation; thus, the composition 

of monazite varies among different locations.  It is not efficient in terms of recovery 

and effective in terms of the process to apply similar recovery process established for 

minerals with varying characteristics and complexities of mineralogy. Furthermore, 

the detailed analysis of the composition of Malaysian monazite will be useful to be 

compared with global trends to evaluate the viability for commercial exploitation of 

the mineral. For an efficient recovery of the REE’s from Malaysian monazite, the 

current study’s aim was to understand the mineralogy, chemical composition, surface 

functional groups, particle size, morphology and thermal stability through in-depth 

characterization. The knowledge gained on the mineralogy, associated impurity 

phases, liberation analysis and decomposition behavior will be a prerequisite to 

understand and predict the behavior of the mineral constituents to different 

beneficiation routes.  

The ultimate goal was to characterize chemically and mineralogically, 

investigate the decomposition behavior of Malaysian monazite under the proposed 

carbothermal and pyro-hydrometallurgical route. It is worthwhile to note that 
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efficiency of the recovery process is influenced by several factors- essentially the 

thermodynamic and kinetic factors apart from the chemical process employed in the 

process. Therefore, the thermodynamic analysis of the reaction system (Sections 4.3.1, 

4.4.1 and 4.7) was performed which served as a basis for prediction of the reaction 

routes of the individual components (rare earths and thorium) in the system. The 

alkaline fusion of Malaysian monazite and acid leaching of the RE and Th hydroxides 

and oxides were comprehensively studied using statistical design of experiments 

(DOE) in this research. The current study will be an eye-opener in the domain 

highlighting the need to investigate, better operating conditions to optimize REEs and 

thorium extraction, and to develop suitable modeling tools to assess and diagnose the 

leaching performance.  

1.5 Organization of thesis 

The thesis was organized in five chapters. The brief summary on the chapters 

are described as follows:  

i) Chapter One includes a short introduction on rare earth elements and thorium 

production, world reserves of monazite and a summary of the different 

metallurgical processes currently in use for recovering the constituent elements 

from monazite is included. Also, the objectives, scope of the research study and 

the key challenges of the thesis is presented in Chapter One.  

ii) Chapter Two contains a survey of the research background and relevant literature 

review on hydrometallurgical and pyrometallurgical processing of monazite.  

iii) Chapter Three describes the experimental procedure, set-up and the equipment 

employed, and the information on the design of experiments used to conduct this 

research.  



 

15 

 

iv) Chapter Four presents the results and discussion on the characterization of 

Malaysian monazite. The characterization study was followed by the results of the 

proposed pyrometallurgical process. The effect of different factors of the 

carbothermal reduction on the dephosphorization efficiency of the mineral was 

statistically investigated supported by chemical and microstructural analyses. The 

results of the alkaline fused acid-leached process have also been narrated in detail 

with calculation of recovery of the constituent REEs and Th in monazite. The 

research also proposes and successfully examined a method of modified acidic 

leaching for improving the low recovery obtained during acid leaching.  

v) In Chapter Five, conclusions of the research work, recommendations and 

suggestions for future work on this field of processing monazite for recovering of 

REEs and Th are presented. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Introduction 

This chapter provides an exhaustive and chronological information on different 

processing routes of monazite for recovering their constituent REEs, Th and U. Firstly, 

the occurrence and association of the mineral monazite in different environments is 

elucidated. The different sources of monazite in the world, their production statistics 

in Malaysia and other parts of the world is narrated. The next section of this chapter 

briefs on the various applications catered by the REEs and Th, particularly the 

constituent elements of monazite. The second part of this chapter concentrates on the 

decomposition methods that have been used in the past, at present in laboratory and 

commercial scale. The pyrometallurgical and other non-conventional methods of 

processing monazite are reviewed. The current available methods of separation and 

purification of the rare earth elements and Th, U from their aqueous solutions have 

been briefly outlined.  The rare earth ore beneficiation, mineral concentrate 

decomposition, and rare earth leaching are introduced briefly. An overview on the 

various hydrometallurgical flowsheets of monazite processing i.e., acidic and alkaline 

leaching is provided. The literature in various databases and websites have been 

compiled and analyzed critically. The key literatures were identified, and data were 

compiled from these openly available materials. Then, the kinetic factors affecting the 

leaching process that have been studied so far by various researchers are compared, 

and peculiar attributes of the factor are discussed in detail in relation to the current 

work. The final part of the chapter details on the Design of Experiments (DOE) 

methods employed for conducting experiments. The advantages and disadvantages of 

the Taguchi, Factorial and Fractional design of experiments have been reviewed.  
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2.2 Geological occurrence of monazite 

Monazite is widely distributed throughout the world as a minor accessory 

mineral in intermediate- and high-rank metamorphic rocks derived from argillaceous 

sediments (Bashir, 1988). Monazite is less commonly present in metamorphic rocks 

of like facies formed from arenaceous sediments and is rarely present in 

metamorphosed calcareous sedimentary rocks (Overstreet, 1967). The mineral is 

especially common in argillaceous schists, gneisses, and migmatites of the upper sub-

facies of the amphibolite facies and of the granulite facies. Monazite occurs in 

magmatic rocks ranging in composition from diorite to muscovite granite, and in 

associated pegmatite, greisen, and vein quartz (Gillson, 1960). 

Carbonatite, a rare igneous rock, contains the highest REE concentrations of any 

of the igneous rocks, and is especially enriched in LREE. The three most important 

REE minerals in carbonatite related deposits are bastnasite, monazite, and xenotime 

(Chen et al., 2017), and are also the only REE bearing minerals that have been 

extracted on a commercial scale. Monazite is similar to bastnasite as a LREE ore 

mineral, but with slightly more HREE (Spear et al., 2002). Monazite, together with 

niobate, fluorocarbonate and apatite, serve as the most useful carbonatite indicator 

minerals for specialty metal exploration. The secondary monazite commonly shares 

mineral associations with apatite, barite, fluorite, hematite, quartz, sulfide, bastnasite, 

xenotime, feldspar, titanite, synchysite, goyazite, and strontianite (Migaszewski et al., 

2015). 
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2.3 Distribution of monazite sources in the world 

The mineral monazite is a thorium-bearing anhydrous phosphate of the cerium 

earths. The mineral is a major source for thorium, with an average 6 wt. % in most of 

the sources. Monazite and bastnaesite, a fluorocarbonate of the lanthanide earths, are 

the main ores for the cerium group of the rare earths. Monazite is distributed 

throughout the world in a wide variety of geologic environments. Most commonly it 

occurs as an accessory mineral in Precambrian gneisses, schists, and migmatites. 

Monazite deposits in Asia include the world's largest known reserves, which are in the 

coastal deposits of India, and the world's most thorium-rich monazite deposit, which 

is mined in Ceylon. The resources of monazite in stream and beach placers of India, 

southeast Asia, and Korea seem to be immense. The commercial exploitation hinges 

on beneficiation of multimineral concentrates in which monazite is associated with 

ilmenite, rutile, cassiterite, wolframite, and gold. Although abundant in the tin and 

tungsten placers of eastern Australia, monazite has been commercially unacceptable 

because it generally contains less than 2 wt. % of ThO2. Large resources of monazite 

have been discovered in fossil placers that range in age from Precambrian to Late 

Cretaceous. Very large low-grade resources of monazite doubtless exist with ilmenite 

in the sedimentary rocks of the Atlantic and Gulf Coastal Plains and in offshore 

deposits of the Southeastern United States and the gulf coast of Mexico. Marine 

beaches and elevated bars along the southern coast of Brazil were the world's main 

source of commercial monazite during the 1960-80’s (Overstreet, 1967; 

Krishnamurthy et al., 2015).  

Thorium can usually be present as anhydrous phosphates or oxides in monazite 

and the amount was variable (4-12 wt. %) depending on the mineralogical origin of 

the ore (Habashi, 2013). Majority of monazite mining is concentrated on placer 
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deposits because of the ease of mining and their higher concentrations than in hard 

rock deposits. Other heavy minerals that accumulate with monazite include magnetite 

(Fe3O4), ilmenite (FeTiO3), rutile (TiO2), zircon (ZrSiO4), cassiterite (SnO2), 

wolframite ((Fe,Mn)WO4) and a variety of gemstones. The combined occurrence of 

the heavy elements in rare earth minerals like monazite and xenotime can be attributed 

to their high specific gravity (4.5-5.5) and resistance to weathering and erosion as a 

result of which they concentrate along the coast by tidal waves and coastal winds to 

form onshore and offshore placer deposits (Overstreet, 1967; Bashir, 1988). 

2.3.1 Monazite: Global production 

Rare earth minerals like monazite, xenotime and bastnaesite have become a 

valuable source for variety of REE’s, especially in the field of advanced materials, 

green energy technology and electronics. Although the distribution of REE’s is not 

homogenous, yet globally widespread, the production is largely monopolized by 

China. Monazite, being an important REE mineral source in the world is concentrated 

in several countries: China, India, Malaysia, Sri Lanka and Australia (Ober, 2018). 

Other countries that mine and produce REE’s are USA, Australia, Canada, South 

Africa and Brazil (Hedrick, 2004; Castor and Hedrick, 2006). Table 2.1 provides a 

comparison of the distribution of REOs in monazite from the tailings of Ipoh, Malaysia 

with mines in the world.  
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Table 2.1: Comparison of rare earth fraction and thorium concentration in monazite 

from different locations 

Source of monazite 

Average 

content of 

REEs (wt. 

%) 

Average 

content of 

Th 

(wt. %) 

Reference 

Alinci, Yugoslavia 65 3.5 Bermanec et al., 1988. 

Siberia (Tomtor) 10.2 - Kuzmin et al., 2012. 

Siberia (Chuktukon) 7.1 - Kuzmin et al., 2012. 

Iran 24.7 0.2 Sadri et al., 2017. 

Egypt 62.41 6-6.5 
Abdel-Rehim, 2002; El-

Nadi et al., 2005. 

India (Chavara, 

Manavalankurichi) 
55-60 5-7 

Bashir, 1988; Lal et al., 

1989. 

Western Australia 55-58 6-7.5 Jaireth et al., 2014. 

China (Beihai 

Processing plant) 
60-63 6.3 

Krishnamurthy et al., 

2015. 

Korea 60-70 - Panda et al., 2014. 

South Africa 48-50 6.8 Kemp, 2017. 

 

The reasonable concentration of thorium associated with the REE’s has 

increased the interest of mineralogists worldwide to engage in geological surveys to 

fulfill the anticipated global demands for thorium in the upcoming years. The 

similarities in the crystal structure of Th and U with rare earths are the reason they 

occur as lattice substitutions in the mineral monazite thus, raising concerns of waste 

management in rare earth processing of these minerals (Kanazawa et al., 2006; Haque 

et al., 2014). A high global demand and strained supply was resulted due to the 

reduction in the supply quotas of REE minerals, thus creating opportunities for other 

countries with reasonable amounts of the minerals to look into self-sufficient sources 

(Moila et al., 2017).  
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2.3.2 Monazite production in Malaysia 

Malaysia has several minerals (e.g. monazite, zircon, xenotime and ilmenite) 

which are categorized as strategic minerals because they contain an amount of thorium 

and uranium with the total concentrations of uranium and thorium is above 500 ppm 

which requires a regulatory control (Omar, 2010). Usually, thorium exists in minerals 

and rare earth elements production residue. The average range of thorium content in 

Malaysian monazite and xenotime minerals was found about 70,000 and 15,000 ppm 

respectively (Sulaiman, 1991; AL-Areqi et al., 2015). About 2,636 tonnes of 

Malaysian monazite was produced for a period of 5 years (2006-2010) and based on 

this data, it can be estimated that Malaysian monazite contains about 184.5 tonnes of 

thorium. Although thorium can become a major radiological problem to our 

environment, but with the significant deposit of thorium in Malaysian monazite, it has 

a prospect as a future alternative fuel in nuclear technology (Sulaiman, 1991; Omar, 

2010; AL-Areqi et al., 2015).  

Malaysia has been producing monazite and xenotime for the last few decades 

but, the amounts of production have been fluctuating yearly, as can be seen in Table 

2.2 (Malaysian Minerals Yearbook, 2017). A major portion of monazite is produced 

with xenotime as byproducts of tin mine processing (Amang plant) in Malaysia 

(Sulaiman, 1991; Omar, 2010). With an estimated reserve of 30,000 tons of rare earth 

mineral reserves (Sanusi et al., 2017), Malaysian monazite is composed of 6.5-7.5 wt. 

% of Th and 55.5-75.5 wt. % of REOs (IAEA, 2005; 2013). Significant amounts of Th 

can also be separated from rare earth residue of rare earth elements industries as it 

causes considerable concern on their proper management to avoid radioactive 

pollution and contamination of rare earth products (Al-Areqi et al., 2014; 2015). 
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Table 2.2: Production of rare earth minerals in Malaysia from 2014-17 (in metric 

tons) (Malaysian Minerals Yearbook, 2017) 

Commodity produced 2013 2014 2015 2016 2017 

Industrial minerals: 

Rare earths, monazite and 

xenotime, gross weight 

358 946 565 1880 302 

 

2.3.1 World reserves and production of REEs 

An accurate figure for quantifying the global rare earth resources has not been 

possible owing to the quality and availability of accessible data. Based on the mineral 

commodity summaries annual report published by USGS in early 2019, the estimated 

total world reserves of rare earth oxides are about 120 million tonnes (USGS, 2019).  

Table 2.3 : Estimated world mine production of rare earth oxides and reserves 

(USGS, 2019) 

World Mine production and reserves (in tonnes) 

Country 
Estimated mine production 

Reserves 
2017 2018 

Unites States - 15,000 140,000 

Australia 19,000 20,000 340,000 

Brazil 1,700 1,000 22,000,000 

Burma Not available 5,000 NA 

Burundi - 1,000 NA 

China 105,000 120,000 44,000,000 

India 1,800 1,800 6,900,000 

Malaysia 180 200 30,000 

Russia 2,600 2,600 12,000,000 

Thailand 1,300 1,000 NA 

Vietnam 200 400 22,000,000 

Other countries - - 4,400,000 

World total (rounded) 132,000 170,000 120,000,000 

 

Table 2.3 gives the estimated world mine production of rare earth oxides. China 

dominates the world reserves with 36 percent, followed by Brazil and Vietnam with 

18 percent, Commonwealth of Independent states (CIS) with 10 percent, India with 6 

percent, Australia with 3 percent, United states with 1.5 percent and remaining divided 
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among Canada, Malaysia, Sweden, Finland South Africa, Namibia, and Thailand., 

REEs have been marketed in a variety of products ever since their first venture of 

capitalization. Industries and mineral processing companies are also taking a renewed 

interest in REE commercialization, as increased prices (and in some cases government 

incentives) make exploitation of resources potentially more profitable. Also, the 

advances in the processing flowsheets have brought the possibilities of bringing the 

applicability and availability of REEs closer. In recent years, the novel properties of 

rare earth elements have attracted burgeoning interests from the research community 

towards diversifying the range of applications, especially in low-carbon technologies, 

high-strength permanent magnets, catalysts for petroleum refining, metal and glass 

additives and phosphors used in electronic displays (Zhou et al., 2017).  

In recent decades, rare earths have become an indispensable aspect to a wealth 

of advanced materials and technologies including alloys, optics and lasers, 

rechargeable hydride batteries, electronics, economical lighting, wind- and solar-

energy conversion, bio-analyses and imaging and have been termed as “jewels for 

functional materials of the future”. From Figure 2.1, it can be seen that REEs have 

been exploited in potentially dedicated applications telecommunications, lasers, 

photovoltaics (solar-energy conversion), lighting (fluorescent lamps and OLEDs), 

luminescent probes for bio-analyses and bio-imaging, as well as magnetism and 

magnetic refrigeration (Eliseeva and Bünzli, 2011). The REEs are used in two forms 

in most of the applications namely; "Mischmetall", a mixture of rare earth oxides and 

"high purity" compounds containing at least 90% of an individual rare earth element 

(Preinfalk and Morteani, 1989). The prospects to broaden the applications of REEs 

will continue to be of extensive interest for the foreseeable future, with more demand 

likely to grow. 
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Figure 2.1: Diversity of applications of Rare Earth Elements. Image courtesy of 

Mercedez-Benz, Matthey Plc and Ingrey Publishing 

 

2.4 Mineralogical variations of monazite 

Several researchers have reported on the mineralogical characteristics of monazite 

from various sources prior to the physical or physiochemical processing of the ore. 

Studies on Iranian monazite showed that the concentrates accumulated in the fine size 

fraction (< 2mm) and the major mineral phases identified were monazite (consisting 

of La, Ce and Nd compounds), quartz and augelite (Al2(PO)4(OH)3) (Sadri et al., 

2017). The liberation analysis confirmed the existence of liberated grains of hematite, 

gray monazite and rarely magnetite and quartz. The Rosetta monazite concentrate from 

Egypt was characterized by high rare earth phosphate content about 57 wt. % and 

relatively low Fe2O3, SiO2 and TiO2 contents reaching about 3.00, 2.80 and 2.80 wt. 

% respectively (Amer et al., 2013). On the other hand, the studies on the mineral 

chemistry of monazite from black sands of northern Sinai, Egypt revealed two distinct 

types of the mineral namely, monazite-(Ce) and Th-rich monazite. While the study 

indicated that monazite-(Ce) was more enriched in REE and P, Th-rich monazite was 

more enriched in Th, Ca, Si, Y, U and Fe (Dawood and El-Naby, 2007). A study by 
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