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EDITORIAL

Plant cell compartments
Katalin Solymosi and Benoît Schoefs

Department of Plant Anatomy, ELTE Eötvös Loránd University, Budapest, Hungary; Metabolism, Bioengineering of Microalgal Molecules
and Applications (MIMMA), Mer Molécules Santé, IUML – FR 3473 CNRS, Le Mans University, Le Mans, France

The formation of different intracellular compartments is
necessary for the physical separation of various biochem-
ical reactions, their products as well as different ions by
barriers made up by membranes. This kind of compart-
mentalization of different metabolic activities into orga-
nelles played a crucial role during the evolution of life on
earth (e.g. Matsumura et al. 2016) and also during the
subsequent tremendous diversification of prokaryotic
and eukaryotic organisms (Diekmann and Pereira-Leal
2013). Spatial separation of toxic metabolites or protein
degradation pathways is of vital importance for the nor-
mal functioning of the cells. Because membranes are
mostly nonpermeable to water and ions, they host several
structural and functional proteins, including water chan-
nels (e.g. Beebo et al. 2013) and ion transporters (e.g.
Marchand et al. 2018). Similarly, the possibility to build
up a proton motive force across membranes separating
two aqueous phases drives the ATP synthesis in bioener-
getic processes and thus provides energy for all living
organisms (Lane and Martin 2012).

Three major types of organelles are in general distin-
guished, i.e. membrane-based, protein-based or endo-
symbiotic compartments (Diekmann and Pereira-Leal
2013). Recent literature data showed that examples for
such compartments can be found in both prokaryotes
and eukaryotes, but are more complex in eukaryotes
which have several lineage- or even tissue- or cell-
specific organelles (Diekmann and Pereira-Leal 2013).
Several compartments and biochemical pathways are
unique to photosynthetic eukaryotes (Schoefs 2008).
The evolution of the incredible diversity of plant second-
ary metabolites is thought to be related to the sessile
lifestyle of plants which forced them to develop chemical
weapons against herbivores and unfavourable environ-
mental conditions (Knudsen et al. 2018).

Such examples include the strictly controlled and
compartmentalized production of some specific toxic
intermediates or endproducts as well as compounds
antagonist to other reactions (reviewed by Gabaldón
and Pittis 2015) like for example condensed tannins
(Brillouet et al. 2013), essential oils (Dong et al. 2016)
or some apocarotenoid glycosides (Demurtas et al. 2018).
In general, the formation of highly complex organic
compounds necessitates the precisely regulated

cooperation and communication between different orga-
nelles (for instance through the generation of reactive
oxygen species or retrograde and anterograde signals – e.
g. Lemoine and Schoefs 2010; Solymosi and Schoefs
2010) as well as various intra- or extracellular transport
processes (e.g. Lindquist, Solymosi, and Aronsson 2016).
The biosynthetic pathway leading to red crocins, the
well-known apocarotenoid glycosides of saffron (Crocus
sativus), the most expensive spice in the world, starts
with zeaxanthin in the chloroplast, but the endoplasmic
reticulum and cytoplasm function as transit centers for
its transport along the cytoskeleton towards the vacuole
(Demurtas et al. 2018). Similarly, the highly toxic and
protein denaturing condensed tannins are formed from
their monomeric building blocks synthesized in the
endoplasmic reticulum inside the recently described,
strictly membrane surrounded thylakoid-derived plastid
organelles, the tannosomes, which are then encapsulated
into tannosome shuttles which transport them from the
plastid through the cytoplasm towards their final storage
site, the vacuole (Brillouet et al. 2013).

Since the pioneering observations of Antonie van
Leeuwenhoek during the 17th century, the progress
made in microscopic and (micro)analytical methods
has been tremendous, providing novel insights into
cellular processes, including the observations of novel
cellular compartments or activities related to them.
Recently, new suborganellar functional units termed
microcompartments have been described also in
plants which are protein assemblies formed by pro-
tein–protein interactions and are involved in several
intracellular processes including redox signaling
(Zachgo, Hanke, and Scheibe 2013).

A better understanding of the functioning of plant
cell compartments, their regulation, and the interac-
tions of the various organelles with each-other and
their environment both under non-stressed and
stressed conditions is important for plant productivity,
thus agriculture, food industry, medicine, but also from
the ecological point of view. In addition, a deeper
knowledge about the organization of the cells opens
avenues for synthetic biology, a developing field in
which compartmentalized protocells or artificial cells
are promising for the production of interesting
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molecules, including energy-rich ones, under more and
more controlled conditions (Xu et al. 2017; Yewdall,
Mason, and van Hest 2018) or also for the genetic
engineering of complex plant-specific biosynthetic
pathways with valuable final products (e.g. monoter-
pene essential oils) into Escherichia coli or yeast cells
(Zebec et al. 2016).

This issue entitled Plant Cell Compartments gath-
ers together contributions on various fields of cell
biology in photosynthetic organisms. Due to space
and other limitations, this compilation is of course
not covering all aspects of compartments but dis-
cusses only few selected topics. Our major focus was
on specific key compartments of plant cells such as
the cell wall, vacuole and plastids, as well as on the
specific features of plant peroxisomes.

The neighboring cells of plant tissues are separated
by their cell walls but are indeed in connection with
each other thanks to cytoplasmic channels called plas-
modesmata through which various molecules and
molecular signals (e.g. hormones) can be transported
and exchanged between cells (Sager and Lee 2014,
2018). Plasmodesmata thus represent an important cell-
to-cell communication pathway in plants (and recently
it has been shown that also in animals and bacteria) that
facilitate processes related to the perception of environ-
mental stimuli, stress signaling and response at the
organ- and even the whole organism level (Lee 2014).
In this context, it is clear that compartmentalization is
not only restricted to intracellular separation of various
processes but is at the extracellular level also important
for the strict spatial separation of specific cells from
surrounding tissues during certain phases of their
development when they need to be fully isolated from
their environment. Such a situation is the meiotic divi-
sion, prior to which some reproductive cells (i.e. micro-
spore and macrospore mother cells) of angiosperms
produce a callose layer in their cell wall, which is isolat-
ing them from somatic cells during meiosis, but is later
degraded or dynamically changed in order to control
traffic at the cell periphery during the development of
the reproductive cells (Tucker and Koltunow 2014).
However, it is still not very well understood whether
callose deposition is present in apomictic (e.g. diplos-
poric, asexually reproducing) species during the devel-
opment of the gametophyte or not. The research paper
byMusiał and Kościńska-Pająk (2019) published in this
Special Issue presents clear evidence on the temporary
presence of callose in the cell walls of Chondrilla brevir-
ostris (Asteraceae) during meiotic diplospory. This
example further outlines another important role of the
cell wall compartment in the regulation of reproduction
and signal transduction in plants.

The cell wall is often considered as an important
molecular barrier both for ion and water transport
and also during pathogen attack, but cellular integrity
is more importantly determined by the plasma

membrane. This membrane that limits the cell is a key
structure regulating nutrient and signal exchange with
the cell exterior. These roles are ensured by a myriad of
structural and functional proteins that are able to
receive and transmit environmental signals such as the
presence of pathogens. In this sense, they are key players
in the development of adaptive responses to
a continuously fluctuating environment. Plasma mem-
brane lipidomics allowed the complete and detailed
characterization of the main classes of lipids present in
the plant plasma membrane (phospholipids, phosphoi-
nositides, sphingolipids and sterols) (Wenk 2010; Yu
et al. 2018). The three-dimensional structure of most
plasma membrane lipids favors their spontaneous orga-
nization into lamellar phase in the presence of water
(Mamode Cassim et al. 2019). However, perturbations
of their arrangement or membrane composition may
result in the formation of nonlamellar membrane orga-
nization such as cubic phase (Almsherqi, Landh, and
Kohlwein 2009). These latter consist of a three-
dimensional network of membrane tubules and were
observed in various cell compartments (e.g. endoplas-
mic reticulum, perinuclear space, mitochondria and
plastids) and organisms (amoeba, animal, human and
plant cells) (Almsherqi, Landh, and Kohlwein 2009;
Solymosi and Schoefs 2010). In this issue, Absolonova,
Foissner, and Sommer (2019) reported cubic phase
organization of certain regions of the plasma mem-
branes of Chara internodal cells termed charasomes.

Charasomes are enriched in H+-ATPases involved in
the acidification of the immediate environment of the
charasome (Schmölzer, Höftberger, and Foissner 2011;
Absolonova, Foissner, and Sommer 2019). The exact
role of this local acidification is still not completely clear
but may be related to carbon import processes for
photosynthesis. Actually, the acidification is thought
to shift the carbon dioxide – carbonic acid equilibrium
toward CO2, the most diffusive carbon form.

Peculiar organization of the plasma membranes ana-
logous to charasomes (Absolonova, Foissner, and
Sommer 2019) can be also observed in angiosperm
plant cells for instance during the formation of the so-
called plasmalemmasomes (Keresztes and Bóka 2019).
These structures are omega-shaped small engulfings of
the plasma membrane first into the cytoplasm and
finally into the vacuolar compartment. In this Special
Issue, the research paper by Keresztes and Bóka (2019)
presents evidence for plasmalemmasome formation
and discusses the factors inducing this process as well
as the potential role of these organelles in facilitating
water transport between the apoplast and the vacuole.

Peroxisomeswere one of the lastmajor andubiquitous
eukaryotic organelles discovered (De Duve and
Baudhuin 1966) and they still representmysterious single
membrane-bound compartments involved primarily in
cellular lipid metabolism and in the regulation of the
cellular redox balance. This way they play crucial roles
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in cellmetabolismand thus theirmalfunctioning is linked
to several human metabolic disorders (Castro,
Schuldiner, and Zalckvar 2018; Islinger et al. 2018;
Schrader, Kamoshita, and Islinger 2019). They also play
amajor role in plant primary and secondarymetabolism,
development and stress responses (Hu et al. 2012; Corpas
2019). Their morphology and metabolism are highly
versatile and dynamically changing (Hu et al. 2012;
Corpas 2019) and peroxisomes are strongly interrelated
with other subcellular compartments (Castro,
Schuldiner, and Zalckvar 2018; Schrader, Kamoshita,
and Islinger 2019; Corpas 2019). Their proteome and
metabolic networks are very large and strictly regulated.
An increased knowledge on them may allow us to engi-
neer plants with higher biotic (e.g. pathogen) and abiotic
stress tolerance or increased biomass and/or improved
metabolism. The review by Corpas (2019) in this Special
Issue provides a general overview of peroxisomes and is
focused primarily on their tremendous metabolic
diversity.

One of the key steps of evolutionwas the acquisition of
the capacity for autotrophic energy production via photo-
synthesis by various prokaryotes including cyanobacteria
(Martin, Bryant, and Beatty 2018). Mitochondriate
eukaryotes acquired photosynthesis by engulfing ancient
cyanobacteria and a subsequent co-habitation and co-
evolution with their (primary) endosymbionts. During
this process, the cyanobacterial endosymbiont gradually
lost its genetic independence and became the strictly
controlled “tiny green slave” of the host cell. Most genes
of the original endosymbiont have been transferred to the
host nucleus or were lost, only few of them remained
encoded by the plastid DNA. In this Special Issue, De
Marchis et al. (2019) provide a critical and comparative
overview on the plastid translational machinery and its
regulation in land plants and in the green alga
Chlamydomonas reinhardtii. Their major conclusion is
that the expression of the few genes that are still encoded
by the chloroplast genome is in general regulated at the
post-transcriptional or translational levels.

Through plastid translational regulation and also
other processes, the host cell and its metabolism strictly
control plastid differentiation and activity. This constitu-
tes a crucial point during the diversification of plastid
structure and function that accompanies the increased
complexity of algal and plant life cycles and organization
(Solymosi 2012; Solymosi and Keresztes 2012; Solymosi,
Lethin, and Aronsson 2018). Chloroplasts are responsi-
ble for photosynthesis using the energy of sunlight. On
the other hand, chloroplast differentiation is inhibited
and so-called etioplasts develop in some algal cells or
plant tissues when they are fully deprived of light
(Solymosi and Schoefs 2010; Solymosi 2012; Solymosi
and Keresztes 2012). Etioplasts contain low amounts of
a chlorophyll precursor, protochlorophyllide and
a peculiar, three-dimensional tubuloreticular membrane
structure called prolamellar body (Solymosi and Schoefs

2010; Kowalewska, Bykowski, and Mostowska 2019).
Several data indicate that prolamellar bodies serve as
a membrane reservoir for the fast formation of the
photosynthetic apparatus and play a key role in greening
under low light or other specific conditions also in the
nature (Solymosi and Schoefs 2010). Electron tomogra-
phy is a promising tool to investigate cell organization,
including the structure of the subcompartments. In this
Special Issue, Kowalewska, Bykowski, and Mostowska
(2019) provided an overview on its uses to elucidate the
exact structure and structural alterations of prolamellar
body membranes during greening and transformation
into the normal thylakoid network of the chloroplasts.

The papers published in this Special Issue clearly
demonstrate the fast evolution of plant cell biology.
Despite all the progress made during the last decades, it
is still an emerging field. In addition, the continuous
methodological and technological progress that we are
witnessing – including the fast development of various
cryo-electron microscopic methods – will allow in the
near future to unravel further molecular and structural
details to better understand the organization and the
functioning of plant cells as well as the interactions of
the various compartments with each other, their
response to external stimuli and the regulation of their
metabolism.
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