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Abstract

Purpose Small-scale runoff and soil redistribution processes are important factors in rainfall simulation studies. Therefore, the
main objective of this study is to examine the feasibility of rare earth oxide (REO) tracking combined with 3D surface modelling
and soil crust analysis by scanning electron microscopy.

Materials and methods Four 40 mmh ' rainfall simulations (divided into two blocks) were conducted on a Luvisol sample at 9%
slope steepness. In a block, two successive simulations were run on a tilled, and then, on a crusted surface. Before the first rainfall
simulation of a block, the tilled surface was prepared by hoeing and application of four REO tracers (PrgO;; Sm,05, Ho,O5 and
Yb,03) to the freshly tilled surface. REOs divided the parcel into two back, and two front sub-parcels. The REO runoff content
was measured by XRF, while the redistributed REOs were measured by SEM on polished crust samples taken after the second
experiment in each block. Additionally, before and after 3D models of the surface were created for determining runoff direction
and redistribution pattern.

Results and discussion According to the REO content of the soil loss samples, the soil washed down from the front sub-parcels,
while back parcels started contributing to soil loss only during the second block experiments. The surface microtopography
changed between the experiments. The runoff path from the back sub-parcels headed to one side of the parcel. This strong, cross-
side runoff pattern explained the lack of the back sub-parcel REOs in the soil loss. Meanwhile, in the crust samples, several forms
of the redistribution were identified. The REOs of the back sub-parcels were found in the samples that were collected in runoff
paths, and the leaching pattern became traceable with REOs. Moreover, we were able to reconstruct the original surface easily on
SEM images.

Conclusions Small-scale redistribution and the role of the microtopography of the surface should be considered as an erosional
factor in erosion studies in a more detailed way. Behaviour of the REO as a soil sediment tracer has great potential, although
questions remain. REO tracing applied with runoff direction modelling and SEM analysis of soil crust samples was suitable to
monitor the runoff path, and explain the soil redistribution pattern horizontally and vertically.
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59 Tudit Alexandra Szabé The organic matter and nutrient-rich topsoil loss and redistribu-
szabo judit@csfk.mta.hu tion are serious issues for agricultural fields. During the process

of inter-rill erosion, aggregates break down due to raindrop
impact, and detached soil material is transported and deposited
according to the energy of the overland flow (Hairsine and Rose
1991; Kinnell 2005; Balacco 2013; Zhang and Wang 2017).
The volume of the total soil loss on the field or watershed scale
has been one of the main questions of past decades. Hence,
) ] _ T _ several models and equations were evaluated (Wischmeier
gﬁ;ﬁgﬁ Olglif;a%;aphy and Geoinformatics, University of Miskolc, and Smith 1978; Morgan et al. 1998; Flanagan and Nearing
' 1995) to quantify current understanding. Nevertheless, these
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spatially and temporally averaged soil loss values are unable to
provide information about the main source areas and are not
capable of tracking the redistribution of sediment through a
field or a watershed. For example, according to Polyakov
et al. (2004), the sediment leaves the watershed mostly during
short-duration, high-intensity storms.

During soil transportation and redistribution, surface rough-
ness conditions determine drainage network development on
the surface. Flow concentrates into a decreasing number of flow
paths with deeper incisions on the smooth surface, while on
rough surfaces the number of flow paths increase compared to
the initial conditions (Rémkens et al. 2002). This morphologi-
cal development of the surface is the visible evidence of the soil
redistribution; in general, previously detached particles move to
lower areas and accumulate in microdepressions. As Szalai
et al. (2016) reported, soil loss and sedimentation often occur
on the same geomorphological (slope) position simultaneously,
even during the same precipitation event. However, the average
sediment travelling distances or other redistribution processes
within a watershed are still under studied. Change in the char-
acteristics of runoff and decreasing infiltration rates (Le
Bissonnais et al. 1989) are consequences of the surface evolu-
tion and soil redistribution, including the process of soil sealing
(Assouline and Ben-Hur 2006). Additionally, smooth, crusted
surfaces increase the runoff velocity, and rough surfaces result
in higher water-storage capacity, which delays runoff (Goémez
and Nearing 2005).

The development of GIS systems and computer vision
techniques allowed easier, faster and more accurate surface
3D modelling. By the comparison of before- and after precip-
itation stages, high-resolution (~ vertical 0.5 < mm, horizontal
1 < mm) surface digital elevation models (DEMs) of the mor-
phological development are accurately measurable (Shi et al.
2017). The close range digital photogrammetry applied with
the structure from motion (SfM) method (Snavely et al. 2008)
is a widespread technique for soil-surface modelling (Castillo
et al. 2012; Eltner et al. 2013). The SfM method differs from
‘classical’ stereo pair-based processing, since in the case of
StM, several images are needed, and the camera parameters
such as location, geometry and orientation are computed from
the images themselves. For small plots (< 1 m?), cheaper stan-
dard cameras, or mobile phones could be enough to generate a
high-resolution DEM.

Not only is the surface change detectable but also the sed-
iment movement is traceable with different methods.
According to Knaus and van Gent (1989) and Zhang et al.
(2001), the ideal tracer would have the following characteris-
tics: (a) form strong bonds and good integration with soil
particles or be easily incorporated into soil aggregates, (b) be
insoluble or low-soluble in water, (c) have high analytical
sensitivity, (d) be easy and inexpensive to quantify, (e) have
low background concentration in soils, (f) have no interfer-
ence with sediment transport, (g) have low plant uptake and
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no harm to the eco-environment and (h) be available for mul-
tiple tracking. Determining the most suitable tracer is often
affected by the scale of the experiment. Different tracers are
preferentially used at different scales (Guzman et al. 2013): in
large catchments (> 100 ha), natural tracers (fingerprinting
methods) (Juracek and Ziegler 2009; Schoonover et al.
2007), and fallout radionuclides (Li et al. 2010; Porto et al.
2011), are dominantly used. Falling radionuclides are also
popular in small catchments (di Stefano et al. 1999) and
hillslopes (Walling et al. 2009), whereas at the plot scale, rare
carth elements (Michaelides et al. 2010; Polyakov and
Nearing 2004) and soil magnetism are widely applied
(Armstrong et al. 2010; Guzman et al. 2010). Nevertheless,
rare earth oxide (REO) tracking is successfully used in all
scales (Deasy and Quinton 2010; Polyakov et al. 2009,
2004; Wei et al. 2003).

REO tracing at the plot scale has many advantages. Rare
earth elements are natural elements between 57 and 71 of the
periodic table, and they provide multiple tracer opportunities
because they have similar geochemical properties with low
background concentration in the soil, while also binding strong-
ly to the soil (Zhu et al. 2011). Additionally, they are measur-
able with different spectroscopic techniques such as inductively
coupled plasma-optical emission spectrometry (ICP-OES), in-
ductively coupled plasma mass spectrometry (ICP-MS), energy
dispersive X-ray fluorescence (EDXRF), infra-red spectrosco-
py and neutron activation analysis (NAA) (Zawisza et al. 2011).
Disadvantages of REO tracking is that some of the measure-
ment techniques are expensive, destructive, large amounts of
REO are needed and the REO leaching into the soil has not
been studied. In theory, scanning electron microscopy is also
suitable for REO redistribution measurements to survey sedi-
ment redistribution. Usually, SEM is used to study soil crust
formation (Chen et al. 1980) or the interaction of clay particles
(Metzger and Robert 1985) but it has not been employed for
REO tracing surface development studies.

The application of REO tracers in soil science mainly fo-
cuses on the sediment balance calculation among different
landscape positions to identify sediment source and deposi-
tional areas. The investigated scale is generally the field scale
including small watersheds (Deasy and Quinton 2010;
Polyakov et al. 2004) or agricultural hillslopes (Zhu et al.
2011). In these field experiments, the REO tracer is placed
on highlighted points of the surface or dispersed homoge-
neously. In order to calculate the redistributed soil amount,
REO is needed to be homogenized in the uppermost soil layer
using various mixing procedures (Zhang et al. 2001; Polyakov
etal. 2004). Beside the field experiments, plot scale laboratory
flume experiments are also carried out to study the erosion
dynamic of slope positions (Zhang et al. 2003). Moreover,
REO is suitable to track soil aggregate dynamics (Peng et al.
2017), or to trace pedogenic processes in general (Laveuf and
Cornu 2009).
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The objectives of this study are to examine the feasibility of
using REO tracking combined with 3D surface modelling and
crust sampling to explore the potential of using this technique
for studying small-scale redistribution. The main questions are:

+ Is the path of the runoff and sediment traceable?

+ Isthere any correlation between the changing contribution
area and changing soil loss?

» s slope steepness or surface morphology the more domi-
nant factor during the runoff path development?

» Is SEM suitable for surface development and soil redistri-
bution studies?

2 Material and methods
2.1 Experimental setup

The rainfall simulator experiments were carried out in the
Eo6tvos Lorand University, Budapest. The laboratory scale
simulator has a 0.5 x 1 m flume equipped with parallel runoff
collector outlets. The flume was filled with a haplic Luvisol
collected from the cultivated layer of the Szentgyorgyvar ex-
perimental plot of the Geographical Research Institute,
Research Centre for Astronomy and Earth Sciences
(Madarasz et al. 2011), modelling a recently cultivated soil
structure. The flume was set at 9% slope steepness. Then,
the soil sample was compacted with two successive 20-min
(27 mm) rainfall simulations. For raindrop construction, a
Lechler 460.788 full-cone nozzle at 21 kPa pressure was used,
which provided a constant 40 mm h ' (KE=18Jm ?mm )
intensity (Salles et al. 1999).

Fig. 1 Block experiment flow

Four REO tracers, namely PrsO;;, Sm,03, Ho,O5; and
Yb,05, were selected for the study. Most REO tracking stud-
ies used PrgOq;, Nd>,O3, Sm,05, La,O3 and Gd,O3 (Deasy
and Quinton 2010; Polyakov and Nearing 2004; Zhang et al.
2001, 2003); however, our choice to use Ho,O5 and Yb,0O5 in
addition to PrgO;; and Sm,O; was based on pre-tested sepa-
rability of the X-ray fluorescence (XRF) curves of the REOs.
Moreover, Ho,O53 and Yb,O5 have the lowest concentrations
(<1 mg kg ") in natural soils (Kabata-Pendias and Pendias
2001). The particle-size distribution of the REO powders
(Treibacher Industrie) were measured with a Fritch Laser
Particle Sizer Analysette 22 Microtech Plus using
Fraunhofer theory for calculation. Median diameters of the
tracers were 5.16, 2.41, 3.98 and 1.82 um for PrsOy,
Ho,03, Yb,O3 and Sm,O3, respectively.

The experimental design was compiled into two blocks,
and in each block two rainfall simulations were performed
(Fig. 1). Before the first rainfall simulation of a block, the
tilled surface was prepared by hoeing and the four REO tracers
were applied to the freshly tilled surface. To determine the
limit of detection (X-ray fluorescence), various concentrations
were tested on soil samples previously. Consequently, 5 g
REO were mixed with 20 ml distilled water and spread on a
subplot (0.125 m?) surface applying the spraying technique of
Deasy and Quinton (2010) to tag the surface with REO. This
method caused minimal surface disturbance and ensured full
coverage. The plot area was divided to four sub-parcels (left
back (LB)—PrsOq; right back (RB)—Sm,O5; left front
(LF)>—Ho,05 and right front (RF)»—Yb,05) (Fig. 2a).

During the first rainfall, the surface roughness decreased
and the crust evolved. After 24 h drying, the second rainfall
simulation of the block was conducted on the crusted surface.
Four crust samples were collected after the second two

chart . - Full surface coverage
Spilling REO -4 REOs
1t rainfall - Tilled surface
_ _ - Sampling in every 3"
_simulation minutes of the runoff
2nd rainfall | - Crusted surface
, _ - Sampling in every 3"
simulation

minutes of the runoff

Crust sample
collection |
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Fig. 2 Sketch of initial REO a

distribution on the surface (a) and
the location of the presented crust
samples of block 2 (b). Pr—
PrsO11; Sm—Sm,03; Ho—Ho,03; Pr
Yb—Yb,0s; LB left back sub-
parcel, RB right back sub-parcel, LB
LF left front sub-parcel, RF right
front sub-parcel

Sm
RB

Fig. 6 Fig. 9/

simulations. Those surface spots were selected for crust sam-
pling within the front sub-parcels where both flow route and
crust formation were evident, such as in microdepressions.
Figure 2b shows the location of the crust samples after the
block 2, which is presented in the results. After the first block,
the uppermost 5 cm of soil layer was changed to fresh soil, and
the experiment was repeated.

The total amount of runoff and sediment were collected at
the two outlets separately applying 3-min periods, altogether 12
times after the runoff commenced. A total of 96 runoff (includ-
ing sediment) samples and 8 crust samples were collected.

The runoff volumes were measured and then dried out in
order to identify the sediment volume. Then the changing
sediment volumes were compared with measured REO con-
centrations to test whether they are in direct linkage.

2.2 REO concentration of the soil loss

XRF spectroscopy measurements were performed on soil loss
samples. The elemental composition was determined with a
portable energy dispersive X-ray fluorescence spectrometer
(Spectro XSort XHHO03, Collimator size 3 mm, Tube type:
Rh anode tube, max voltage: 50 kV, maximum output:
2.5 W), stabilized with a docking station. The instrument
was operated in Environment Method mode, and the total
measurement time was 100 s/measurement. The measurement
was non-destructive but the samples were drilled under 63 um
to measure the pressed powder. The spectrums were analysed
with Analyzer Pro software.

X-ray fluorescence spectroscopy is a non-destructive tool
to analyse element compositions of different materials. When
a material is exposed to x-ray radiation, the X-ray photons can
eject electrons from the shells. If an electron escapes from the
shell, vacancies are created and are filled with an electron from
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a higher energy shell. During this process, the electron re-
leases excess energy in the form of a secondary photon. In
the energy-dispersive spectroscopy (EDS-XRF) technique,
the instrument detects these secondary photons. The count
number of the secondary photons is proportional to the con-
centration of the elements. The REE elements count number
was calculated in the Pr LBetal (5.48 KeV), Sm LAlphal
(5.63 KeV), Yb LBetal (8.4 KeV) and Ho LAlphal
(6.72 KeV) lines, and these lines were selected to not overlap
with each other. The net count number is one of the best
choices to differentiate REE signals (net count = total count
number-background count number) since it is proportional to
REE mass. (No factory fundamental parameter calibrations
include REE information at this scale.)

2.3 Spatial redistribution of the REO tracers

SEM was the second spectroscopy technique used in the
study, and it was chosen because REOs are brighter in grey-
scale electron microscope images since elements with higher
atomic numbers are brighter than the elements with lower
atomic numbers. The atomic number of the selected REOs
were 59, 62, 67 and 70 for PrsO;;, Sm,O3 Ho,0;5 and
Yb,03, respectively, which are higher than the atomic number
of Si (14), O (8), Mg (12), C (6) or Ca (20), which represent
the majority of soil elements.

Soil crust samples were prepared using Epoxy Heat,
followed by surface polishing. Then, the texture of soil and
REO dispersion was observed by a Hitachi TM4000 Plus
scanning electron microscope with EDS detector. During the
analysis, the accelerating voltage was 15 kV, and the back-
scattered electron image was used to determine the texture.
Approximately 1-2 cm?® per sample was analysed, with 20—
30 spectrums generated.
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2.4 Digital elevation model and flow direction
modelling

Photogrammetry and the SfM (Snavely et al. 2008) algorithm
were used to create high resolution digital elevation models
(DEMs) of surface changes during the subsequent rainfalls.
Three DEMs per block were created modelling the actual
surface stages as the initial stage and the surface after the first
and second rainfalls. Following the consideration of image
acquisition of (Gilliot et al. 2017), the images were taken at
the resolution of 4160 x 3120 pixels. Multiple (20-25) over-
lapping images from 1 m height and from different angles
covering the whole surface of the flume were applied as inputs
for DEM construction. These settings were suitable to create
reliably dense point cloud and digital elevation model from
the surface and flume with Agisoft PhotoScan. Before the
image acquisition, the flume was adjusted to 0° to avoid hor-
izontal foreshortening, and the corners of the flume could
serve as ground control points. Local coordinate system was
used, where the front left corner was considered as the pole
point. The common pole point also ensured the comparability
of the 3D models reflecting various surface conditions. The
root mean square etror values of the generated point clouds
varied between 0.4 and 0.8 mm, and the derivated 3D models
had I mm horizontal resolution.

The hydrological tool in ArcGIS 10.3 was used to calculate
flow directions, flow accumulation, and small-scale basins of
the surfaces based on the DEMs. Before the hydrological
modelling, the slope angle of the surface was restored using
a plain, 9° surface.

In the results—in accordance with the presented crust
samples—the surface development of the block 2 is presented.

3 Results
3.1 Changes in runoff volume

The runoff volume was higher on the crusted than on the tilled
surface in both blocks and both sides of the flume (Fig. 3). At

300 4

Runoff (ml)
G
o

100 { “Y— e Tilled-Left
Tilled-Right

504+ -+ Crusted-Left
—e— Crusted-Right

1 2 3 4 5 6 7 8 9 10 11 12

Sampling time (3 min intervals)

block 1, the difference between the two sides was greater than
at block 2, where no difference was found, especially on the
tilled surface. The increase in the runoff volume with time was
higher on the tilled surface compared to the crusted ones. The
maximum runoff was 262 ml in 3 min, while the minimum
was 83 ml runoff in 3 min.

3.2 Soil loss and REO in the runoff

The amount of soil loss per parcel side was varied with time;
however, it generally increased. By contrast, the REO content
was decreasing or remained on the same order of magnitude
with time in both block and surface, especially in case of the
tilled surface (Fig. 4).

No cross-side runoff was detected in block 1, and the sed-
iment from the back-sub parcel (Pr) reached the collector only
during a short period at the end period of the second experi-
ment, when the surface was crusted. In the first experiment,
the soil loss of the two sides was equilibrated, and increased
more strongly on the right side during the second experiment.

In contrast with the results of block 1, both cross-side run-
off and REO from the back sub-parcels were detected in block
2 (Fig. 4c, d). As a “flush effect’, the pure REOs (without soil
interaction) of the front parcels were washed down in the first
9 (right side)—15 min (left side) of the first rainfall of block 2
(Fig. 4a, c). At the end of the first rainfall, the REO concen-
tration from the front parcels reached a constant level of the
runoff of the second rainfall (Fig. 4b, d). In spite of the low
concentration of Yb in the runoff from the left side and Ho in
the runoff from the right side, this is an evidence of the cross-
side runoff (Fig. 4¢). In the second half of the second exper-
iment, Sm also appeared in the runoff (Fig. 4d), transferred
from the RB sub-parcel, and the soil loss profile began oscil-
lating. The soil loss and its REO content showed no correla-
tion (R*=0.1338).

3.3 Flow direction

The changes in soil surface owing to the rainfalls are barely
detectable in the 3D surface models (Fig. 5a—c) even
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Fig. 3 Runoff volume changes during the experiments in block 1 (a) and block 2 (b). The runoff volume was higher from crusted than tilled surface
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Fig.4 Sediment and REO dynamics during the experiments. Block 1 (a, b) and block 2 (¢, d). g: gram Pr—PrsO;; Sm—Sm,03; Ho-H0,03; Yb-Yb,05
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Fig.5 Surface, flow direction and
runoff contribution area changes
in block 2 before the first
simulation (a, d, g), between the
two simulations (b, e, h) and after
the second simulation (e, f, i).
Both the flow direction and
contribution area explain the
cross-runoff of Ho

Slope direction

DDM

s 9.28cm
4

-2.08¢cm

though the changes in the runoff pattern are obvious
(Fig. 5d-i) in block 2. The prediction of runoff directions
based on the initial surface showed a cross-side pattern
with a strong leakage on the right side (Fig. 5d) of the
parcel supplied by the large ‘basin’ located in the middle
of the parcel (Fig. 5g). This pattern was changed due to the
first rainfall (Fig. Se, h), as the basins were fragmented and
the main flow paths emerged. Finally, the rainfall resulted
in a moderate union of fragmented parts on the crusted
surface. In this case, the main runoff direction (LB to RF)
did not change, but the flow became less concentrated
(Fig. 5f, 1). Close to the sample collector, many pouring

Ho|Yb

Contribution area

1 | \
y

\
i

points were working, and the largest contribution area
coming from one directly on the border of the two sides.

3.4 Results of scanning electron microscopy

The crust samples revealed the structure, morphology and
compounds of the crust layer as well as provided information
about parcel-scale redistribution directions. Structure of the
upper 3—4 mm layer, the REO redistribution pattern on the
surface (Figs. 6 and 7) and compounds in deeper areas
(Figs. 8 and 9) were measured with scanning electron micros-
copy. Composite-images mosaics using 3—4 images
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Fig. 6 Crust sample parts from
the upper part of block 2, LF sub-
parcel. Blue arrows point to the
location of the original surface,
which is visible due to the
brightness of REOs in SEM
images. Pr washed down from the
LB sub-parcel to the LF sub-
parcel

In situ soij_ :

M4000 15kV x120 BSE L

(Appendix 1 and 2) were created to better understand the REO
distribution by depth.

3.4.1 REO on the surface

REO redistribution among the sub-parcels occurred in two
main directions. The LB sub-parcel contribution to runoff
was identified as Pr powder and was measured at different
parts in the crust sample of the LF sub-parcel 3—400 pum above
the initial surface indicated by a high concentration of contin-
uous Ho presence (Fig. 6a, b). Cross-side runoff identified as
Ho particles was measured above the Yb of the RF sub-parcel
(Fig. 7).

In both Fig. 6a and b, the crust and in situ soil fraction can
be separated visually. In Fig. 6a, the line of the initial surface
can be followed (blue arrow) because a quasi-high concentra-
tion of Ho had been ejected and remained there, concentrated
in microdepressions. The width of the evolved crust and hence
the redistribution depth was around 500 um. Another visual
observation is that the particle distribution in the crust layer
was less dense than in the in situ soil, where the organic matter
and clay content formed a denser, aggregated structure. The
third evidence of LB parcel sediment loading is that some Pr
was measured among the quartz and feldspar soil particles. In

&
TM4000 15kV x80 BSE L

Fig. 7 Crust sample from block 2, RF sub-parcel. The Ho washed down
in a cross sub-parcel direction during the runoff

@ Springer
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TM4000 15kV x80 BSE L

other parts of the crust, Ho was more visible (Fig. 6b) and the
leaching pattern was observable.

Yb powder fragmented more than Ho; however, the line of
the initial surface was still visible (Fig. 7). In Fig. 7, the struc-
ture of the crust and in situ soil is less contrasting than
Fig. 6a, b; however, the Ho measured above the Yb layer
was evidence of the cross-side runoff between the front sub-
parcels. The sample was collected close to the border of the
two front parcels.

3.4.2 REO distribution under the surface

Tracers were also leached into the soil >2 mm (Fig. 8) deep.
The crust sample in Fig. 8 was collected in a micro depression
in the LF sub-parcel. The Ho leached into deeper sections
along the macro pore system. The REO concentration de-
creased gradually with distance from the surface (Appendix
1). In Appendix 1, the full area of the examined crust part and
leaching direction pattern is also traceable.

The result containing the most interesting redistribution
was found at 4 mm crust depth of the upper part of the RF
sub-parcel (Fig. 9, Appendix 2). Here, in addition to Ho, Pr
and Sm particles were also measured. The location of the
sample is close to both sub-parcels (Fig. 2b) and hence the

2 mm

Fig. 8 Leaching pattern marked with Ho particles under a
microdepression of the LF sub-parcel on an SEM image
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Fig. 9 In situ soil segment at 4 mm depth on an SEM image. Pr and Sm
were found beside the leached Ho

Pr and Sm among the Ho particles probably leached out from
the surface.

4 Discussion

The microtopography of the surface influences the runoff rate,
as the crusted surface reduces infiltration usually induces a
higher runoff rate (Assouline and Ben-Hur 2006; GOMEZ
AND NEARING 2005; SzaBO et al. 2015). In block 1, there
was a minimal difference between the two sides, while in
block 2 there was no difference between the sides. This dif-
ference can also be attributed surface micromorphology. The
micromorphology determined the cross-side directional flow
on the surface, and a runoff contribution area (Fig. 5) in the
nearby sub-parcel border zone made possible the contribution
from the neighbouring REO in the soil loss (Fig. 4).

The 3D model and flow direction modelling concentrate on
main flow directions and flow paths, providing only gradual
stages of the surface development. In this approach, the role of
sheet flow is underrepresented, therefore the reliability of the
model is the direct function of the resolution and quality of the
DDM. Accordingly, comparing the GIS predicted results with
analytically measured data is necessary to improve the effi-
ciency of modelling (Florinsky 2016).

The sediment dynamic was altered more than runoff rate.
The observed short-term oscillating sediment amounts is, ac-
cording to Wang and Shi (2015), probably part of the long-
term constant trend, and not connected to the evolved runoff
area. The sediment dynamic and the REO dynamic had no
similarities under the tilled surface, as at runoff initiation the
unbound REO powder washed down. Zhang et al. (2001)
reported that REO powders mixed with soil were uniformly
incorporated with aggregates, and were bound with soil
particles while Deasy and Quinton (2010) also published that
the calibrated sprayer technique had allowed the solution to
bind to the surface. By contrast, Polyakov and Nearing (2004)
reported sediment overestimation due to REO enrichment at
the beginning of the runoff appearance, which was explained

by initial flushing of the poorly incorporated traces as was also
found in the present study. This contradiction underlines that
more REO tracer studies are needed to test the binding behav-
iour of this promising tracing method in various topsoils. REO
is believed to be attached to the colloid size particles (organic
matter, sesquioxides and clay) of the soil (Laveuf and Cornu
2009) even though in practice the relationship is not as simple
(Xing and Dudas 1993). The role of aggregation, organic mat-
ter composition, tillage and moisture dynamics has also a con-
siderable effect on the method applicability (Peng et al. 2017).

The leaching experiment of Stevens and Quinton (2008)
showed no significant REO losses due to leaching, and REO
interacted mainly with the soil surface. In our experiments, the
crust samples suggest the same behaviour of the REO tracer,
and additionally, the REO leached into the soil dominantly in
the macro pore system. In Fig. 9, three different REOs were
found at 4 mm depth. This finding also shows that the
redistributed material was able to leach into the soil after it
was carried by the runoff.

The original surface line reconstructions were straight-
forward in most crust samples; the spayed REO powder
remained on the surface indicating the border between the
in situ soil and crust. The average 500-um-thick crust
structure and redistributed REO from the back-parcel is
evidence of redistribution. In each block, only one sub-
parcel REO was measured in the soil loss, but both REOs
were identified in the crust samples taken from the front
sub-parcel. These findings enhance the impact of the sur-
face or micromorphology on the runoff directions and soil
loss as well as the calculation with small-scale redistribu-
tion in larger scale models. The structureless, displaced,
freely removable particles (Fig. 6a) in the long term (or
with the more frequent big storms) will be mobilized eas-
ier over longer distances. Currently, their amount is un-
predictable. This phenomenon will also intensify size-
selective erosion processes (Wang and Shi 2015) and or-
ganic carbon redistribution (Jakab et al. 2018).

Applying the spraying technique of Deasy and Quinton
(2010) revealed a new perspective of tracing with REO
powders in surface processes in both horizontal
(redistribution among sub-parcel) and vertical (crust thick-
ness and leaching) directions. Creating thin sections from
the surface is a time-consuming but inexpensive method
whose results can be analysed many ways, including tradi-
tionally optical microscope (Norton 1987; Valentin and
Bresson 1992; Pires et al. 2013), and morphologically di-
rected Raman spectroscopy (Kiraly et al. 2019a, b).
Additionally, we found SEM to be a suitable measurement
technique for thin section analysis when REO was sprayed
on the soil surface. However, this method depends on the
sampling design. Since the thin section represents only a
small part of the surface, multiple repetitions are needed to
adequately describe the redistribution.

@ Springer



2414

J Soils Sediments (2020) 20:2405-2417

5 Conclusions

REO tracing applied with surface modelling and runoff direc-
tion modelling, and SEM analysis of crust samples was suit-
able to follow the path of water runoff, and explain the soil
redistribution pattern horizontally and vertically. Intensive
erosion and sedimentation were detected parallel, whereas
the REOs were useful for soil redistribution estimation, and
promising for soil loss value estimation and tracking infiltra-
tion in the soil. Small-scale redistribution seems to be inde-
pendent from the overall slope length and incline emphasizing
the role of microtopography. Most of the delivered particles
were deposited within decimetres resulting small changes in

Appendix 1

2 mm

the original REO pattern. However, the investigation was car-
ried out under unique topographical and soil conditions the
sensitivity of this method under various environmental cir-
cumstances is not known yet.
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SEM image mosaic. In the uppermost image—based on the measured particles (23 Ho spectrum/ 28 total number of measurement)—we assumed that the
unmeasured light particles were Ho particles. In a deeper section, all the potential Ho particles were measured. The reconstructed water movement

direction indicates a clear leaching pattern.
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Appendix 2

SEM image mosaic of the upper 3
and 5 mm of the surface.
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