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Abstract

Low molecular weight selenium containing metabolites in the leaves of the selenium
hyperaccumulator Cardamine violifolia (261 mg total Se / kg d.w.) were targeted in this study. One
dimensional cation exchange chromatography coupled to ICP-MS was used for purification and
fractionation purposes prior to LC-Unispray-QTOF-MS analysis. Seeking for selenium species in full scan
spectra was assisted with an automated mass defect based filtering approach. Besides
selenocystathionine, selenohomocystine and its polyselenide derivative, a total number of 35 water
soluble selenium metabolites other than selenolanthionine were encountered, including 30 previously
unreported compounds. High occurrence of selenium containing hexoses was observed, together with
the first assignment of N-glycoside derivatives of selenolanthionine. Quantification of the most
abundant selenium species, selenolanthionine, was carried out with an ion pairing LC — post column
isotope dilution ICP-MS setup, which revealed that this selenoamino acid accounted for 30% of the
total selenium content of the leaf (78 mg (as Se) /kg d.w.).

Keywords
selenosugar, speciation, structure elucidation, IDA
Introduction

Exploration of the largest possible set of selenium species in a sample has not been an evident goal for
decades. One of the main driving forces has been to identify one or only a few selenium species that
had been adequately separated with chromatography from matrix constituents and the intensity of
which had been high enough to be monitored during purification and identification. Clearly, such
species could be obtained after following a given sample preparation protocol and a given (often
orthogonal) chromatographic set-up (if there was any), which might have disclosed different species
or might have undisclosed the same species even from highly similar matrices. Also, as identification
has been mostly based on electrospray mass spectrometry, spotting the target compound in the
spectra has been a prerequisite that considerably depends on personal experience and related
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software features 3. Finally, the ultimate characterization could be mostly achieved in case the
structure of the novel compound was to be elucidated without NMR data, that is, the obtained MS/MS
fragments, accurate mass, elemental composition and chromatographic information were adequate
to support a presumed molecule 4.

Studies on selenised yeast mirror all the options listed above. For example, selenodiglutathione was
detected in Se-yeast in 2002 as one out of only two, relatively abundant selenium species ° and it was
re-found as a minor compound out of dozens &7 or almost 200 of selenocompounds & — but it wasn’t
included in the list of >100 species detected in Se-yeast by Gilbert-Lépez et al.?, though water-soluble
Se species were studied in all cases and selenodiglutathione is a common metabolite in Se metabolism.
However, thioredoxin reductases bypass selenodiglutathione by directly reducing selenite into
selenide, and the activity of these enzymes are highly depending on oxidative stress in yeast (Pinson
2002, Moreno 2012). Therefore, fermentation parameters indirectly influence the abundance of
selenodiglutathione in Se yeast batches, as demonstrated by Casal et al. 1° by the comparison of
selenometabolomes of Se yeast products of six suppliers: in their study, selenodiglutathione was found
in two out of seven samples.

Description of selenometabolome of Se yeast has already covered yeast strains other than
Saccharomyces cerevisiae (e.g., Candida utilis * 12) and has practically reached its quasi-industrial
application through the characterization of dietary supplements. On the other hand, the actual state-
of-the-art knowledge gained on Se yeast samples offered an almost ready-to-use instrumental
approach and a database of potential selenium species for plant selenometabolome oriented studies
that had been conducted parallel to yeast analysis. While both low and high selenium plant samples
became addressed 3 % and the list of identified Se species has been still increasing dramatically, it is
to mention that the expansion of this metabolite list was not always the function of already
characterized Se yeast metabolites. Indeed, several compounds including y-glutamyl-Se-methyl-
selenocysteine 1%, y-glutamyl-selenocystathionine ¢ and selenohomolanthionine 17 were first identified
in plants before their observation in yeast samples. This indicates a kind of interaction that clearly
advances both fields to narrow the “selenium gap”, that is, the amount of undetected and/or
unidentified selenium compounds .

Description of large sets of selenometabolites can help to reveal new metabolic pathways in plants -
21 and also calls attention to the careful selection of sample preparation protocols 22 in order to avoid
artefacts that are often formed in selenium speciation analysis 232>, Additionally, the more selenium
species are accounted for, the more compounds must be assigned with adequate chromatographic
and mass spectrometric resolution. As an example, one-dimensional HPLC separation is hardly enough
for unambiguous identification in case only ICP-MS is used with retention time matching as a single
tool for compound assignment. This is especially important to consider when a sample is described as
bearing one main or only a few characteristic selenium species. Actually, this has been the case with
the first selenium hyperaccumulator plant species of the genus Cardamine, C. violifolia. After facing
controversial studies on its main water soluble selenometabolite, i.e., selenocystine vs.
selenolanthionine, it has been proven that selenocystine cannot account for a considerable part of its
selenium content 262°,

Accordingly, C. violifolia possesses a unique metabolism of selenium that ends up in the accumulation
of selenolanthionine, the synthesis and metabolic pathway of which haven’t been elucidated yet. Such
missing information might be at least partially filled up by discovering the surrogating selenium species
that might refer both to the enzymes involved and to important intermediates that serve as precursors
or act as landmarks towards selenolanthionine accumulation. As an example, the discovery of Se-
methyl-selenomethionine was an important contribution to explain the formation of dimethyl-
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selenide in Brassica plants 3°. More recently, in the case of another selenium hyperaccumulator,
monkeypot nut (Lecythis minor), the appearance of polyselenides could be attributed to the high
abundance of selenohomocysteine and its derivatives 3!, which opened up a novel direction in
selenium depletion.

Basic goal of our study was to map the water soluble selenometabolome of C. violifolia with the help
of a cation exchange liquid chromatography-ICP-MS based purification protocol and LC-Unispray-MS
derived identification. Additionally, as even semi-quantitative determination of the main selenium
species can considerably contribute to the assighment of metabolic pathways ¢, post-column species-
unspecific isotope dilution (ID) LC-ICP-MS was also applied. However, this technique was first
optimised for selenium species with commercially available standards (e.g., for wheat samples by
Huerta et al. 3?), it is still theoretically the most suited method to quantify unknown33 or standardless
species, including artefacts, such as oxidised selenomethionine 34,

Materials and methods
Plant sample

Leaves of Cardamine violifolia (registered by the Wuhan Botanical Garden, Chinese Academy of
Sciences; Wuhan, China) were collected in the springtime of 2017 in the natural seleniferous region
Yutangba, Enshi (Hubei Province, China), cleaned with deionised water, lyophilised and milled (total Se
content: 261 mg Se /kg d.w.).

Reagents and standards

Certified 82Se isotopic abundance solution (10 ug/ml 82Se in 5% nitric acid) was bought from Inorganic
Ventures (Christiansburg, VA, USA). Heptafluorobutyric acid (HFBA; 2>99%) and Se-
(methyl)selenocysteine hydrochloride (295%) were supplied by the Merck-Sigma group (Schnelldorf,
Germany). Deionised water (18.2 MQ cm) was obtained from a Millipore purification system (Merck-
Millipore; Darmstadt, Germany). Acetonitrile (UPLC-MS grade) and formic acid (~98% for LC-MS) were
supplied by VWR (Radnor, Pennsylvania, USA), while nitric acid (a.r., 65> m/m%) and formic acid
(puriss; 98—100%) were purchased from Scharlau (Barcelona, Spain). Pyridine (99.5%) was obtained
from Carlo Elba (Peypin, France), and methanol (HPLC Gradient Grade) was a Fisher Scientific product
(Loughborough, UK).

Water extraction

0.5 g of the C. violifolia leaf sample was extracted with an ultrasonic probe (UP100H, Hielscher
Ultrasound Technology, Teltow, Germany) at ambient temperature with 10.0 ml deionised water for 1
min. Supernatant was recovered by centrifugation (10 min at 4000g), filtered (0.45 um, cellulose
acetate syringe filter) and lyophilised in four aliquots.

LC-ICP-MS setups

Both (strong cation exchange /SCX/ and ion-pairing reversed phase /IP-RP/) chromatographic set-ups
were achieved by using an Agilent 1200 HPLC system connected to an Agilent 7500cs ICP-MS for the
element-specific detection of 7°Se, 7’Se, 78Se, 7°Br, #Se, 8!Br, #2Se and #Kr. H, was used as
collision/reaction gas in the flow rate of 2.5 ml/min. In the case of IP-RP hyphenation, oxygen
(40 ml/min) was used as optional gas.
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SCX-ICP-MS chromatography

A Zorbax 300-SCX column (150 mm x 4.6 mm x 5 um; Agilent Technologies, Santa Clara, CA, USA)
equipped with a matching guard column was used. Gradient elution was done with pyridine formate
(pH 2.2; buffer A: 1 mM; buffer B: 40 mM) delivered at 1.2 ml/min. The program was as follows: 0-
2 min, 100% A; 2—15 min, up to 30% B; 15—16 min, up to 100% B; 16—20 min, 100% B; 20—21 min, 100%
A. First aliquot of the lyophilized water extract was dissolved in 2 ml deionised water, diluted 15x with
eluent buffer. The injection volume was 5 ul (for mapping purposes) or 10 ul (for fraction collection).
Selected peaks with high selenium abundance were repeatedly (15x) collected, frozen and lyophilized,
then dissolved in the starting eluent of either the IP-RP-ICP-MS or the LC-Unispray-QTOF-MS setups
for further analyses.

IP-RP-ICP-MS chromatography and post-column isotope dilution analysis (IDA)

XTerra MS-Cyg (250 mm x 4.6 mm x 5 um; Waters, Milford, MA, USA) column was used. The mobile
phase consisted of deionised water (eluent A) and methanol (eluent B) both containing 0.05 v/v% HFBA
for the analysis of SCX fractions and 0.1 v/v% HFBA in case of IDA. The flow rate was 0.6 ml/min and
the gradient elution program was: 0-2 min, 5% B; 2—10 min, up to 65% B; 10-15 min, 65% B; 15—
16 min, down to 5% B; 16—19 min 5% B. Injection volume was 40 pl.

For the IDA experiment, the outlet of the RP column was connected through a T-piece where the #Se
standard solution was continuously added in the concentration of 20 ng/g in 0.1% nitric acid with a
flow rate of 0.1 mL/min with the help of a peristaltic pump. Mass bias was determined with the
repeated injections of 20 pl of Se-methylselenocysteine standard solution (0.5 mg L as Se). Second
aliquot of the lyophilized water extract of C. violifolia leaf sample was dissolved in 2 ml deionised water,
diluted 15x with deionised water containing 0.1 v/v% HFBA. Sample injection volume was 40 pl. IDA
calculations were based on the equations published by Rodriguez-Gonzdlez et al. and Koellensperger
et al. 35 3¢,

LC-Unispray-QTOF-MS set-up

A Vion ion mobility quadrupole time-of-flight mass spectrometer (Waters) equipped with a UniSpray
(Waters) ion spray source was applied. Chromatographic elution was provided by an Acquity UPLC I-
Class system (Waters) using a BEH-C,5 reversed phase (RP) UPLC column (100 mm x 2.1 mm x 1.7 um;
Waters). Gradient elution with eluent A (deionised water with 0.1 v/v% formic acid) and eluent B
(acetonitrile with 0.1 v/v% formic acid) was carried out at 0.4 ml/min as follows: 0-1 min 10% B, 1-4
min up to 80% B, 4-4.5 min 80% B, 4.5-5 min down to 10% B, 5-7 min 10% B. The UniSpray ion source
was used both in positive and negative ionisation modes either in MSE or MSt — MSMS /DDA/
functions. The related instrumental parameters are described in the Supplementary material (SM
Table S1). Data evaluation was carried out with the help of the Unifi software (version 1.9.4; Waters).

Mass defect based Se species filtering was carried out in the frame of an iterative approach. Default
settings (mass padding: 15 Da; defect padding: 40 mDa; isotope defect: 8°Se-"8Se; minimal compound
response: 2000 counts) were tested whether they allowed for the detection of known Se species
(selenolanthionine and selenocystathionine among others) that had been detected in the fractions by
database derived searching. Afterwards, the list of Se species was step-by-step completed with newly
detected species resulting from the in-source selenohomocysteine fragment search (m/z 135.9660
/CsHgNSe*/ and 181.9715 /C,H3O,NSe*/) and from the manual Se isotopologue pattern search
processes; with this, the mass padding and defect padding settings were recursively tuned to include
the newly introduced species in the result list. After each tuning step, the updated mass defect based
Se species filtering was run on the LC-QTOFMS data of the four fractions to look for still undiscovered

Page 4 of 68



Page 5 of 68

oNOYTULT D WN =

Metallomics

selenium species that met the actual search settings. All positive hits were manually checked and
individually validated to remove false positives.

Results and discussion

Characterization of the water extract of C. violifolia with SCX- and IP-RP-ICP-MS chromatographic
set-ups

As the water soluble part (approximately 60% of total selenium content) is dominated by compounds
with cationic properties at physiological pH, SCX-ICP-MS is the most suited and robust method for the
separation of extracted selenium species of C. violifolia %6. It has also been proven that the main species
is selenolanthionine, accounting for about 68% of water soluble selenium content, determined with
the help of an in-house synthesised selenolanthionine standard ?’. In Fig. 1a, selenolanthionine elutes
at 3.04 min as the most intense peak from the SCX column, and it is surrounded by several less intense
peaks containing unknown selenium compounds. These peaks (indicated with Frl to Fr4) were
fraction-collected for further characterization.

Generally, an orthogonal chromatographic approach is addressed when the complexity of a given
chromatographic peak should be assessed 37 38, For cationic compounds, ion pairing reversed phase
(IP-RP) setups used with anionic ion pairing agents, especially HFBA, have been proven a suitable
technique 3 %9, Fig. 1b presents the overlaid IP-RP-ICP-MS chromatograms of the four fractions.
However, the original peaks were slightly separated on SCX, three fractions out of four (Fr1, 2 and 3)
could not be clearly differentiated by IP-RP and were eluted in the range of 4.8-6.6 min. These overlaps
might be also explained by the overcharged SCX system that could not provide adequate (baseline)
separation for the first three fractions that were anyway eluted close to the void volume (k<2). Only
one fraction (Fr4) showed a well retained and distinct peak at 6.9 min that had no considerable overlap
with any of the other fractions. It is also to note that each fraction consisted of a few abundant and
several less abundant peaks, which indicated that numerous selenium species should be
expected/discovered in the LC-Unispray-MS acquisitions.

In the case of complex mixtures of selenium species three-dimensional orthogonal chromatographic
purification/acquisition can even be successfully addressed to achieve adequate analyte purity for
organic mass spectrometry based identification, mostly by (Q)TOF-MS or Orbitrap MS. Although such
an approach multiplies the number of fractions to be individually analysed, there is usually a higher
chance to assign selenized species out of the sample matrix. In our case, the most intense peaks eluting
between 4.5-10.5 min in each fraction in the second dimension (IP-RP) were repeatedly collected,
concentrated by lyophilisation and subjected to LC-Unispray-QTOF-MS. Contrary to previous results,
no selenium species could be discovered this case after the two dimensional (SCX+IP-RP) purification,
which might be explained by unstable retention time parameters on IP-RP (i.e., hampering a precise
fraction collection procedure). Accordingly, LC-Unispray-QTOF-MS acquisitions were finally carried out
from the SCX-ICP-MS derived four fractions.

Screening for selenium species in the LC-Unispray-QTOF-MS acquisitions

Localising unprecedented selenium compounds in full scan mass spectrometric data can be basically
achieved by manual pattern exploration, extracting diagnostic ion source fragments and matching
retention time data through complementary LC-ICP-MS acquisitions (if available), as summarized by
Németh et al. 31. Manufacturer dependent possibility for the automated data screening of selenium
species in LC-ESI-MS analyses was first presented by Preud’homme et al. 7 for the Mass Frontier
software (Thermo Fisher Scientific) on the basis of isotopic ratio and intra-isotope mass defect. For
Waters-Vion applications, the Unifi software offers the possibility also to introduce an intra-isotope
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mass defect based extraction of compounds containing multi-isotopic elements, e.g., chlorine or
selenium.

As an effective approach, these techniques must complete the database dependent search, i.e., when
previously reported selenium species are individually extracted within a compromised mass accuracy
range (generally up to 20 ppm) to end up in extracted ion chromatograms (EICs). Finally, each arising
peak in the EICs of all the result lists, that is, those of diagnostic ion source fragments, automated data
screening and known selenium species, must be individually and manually checked by verifying at least
the selenium specific isotopologue pattern and the mass defect values, in order to avoid false positive
hits.

Table 1 presents the list of all detected selenium compounds in the four fractions collected from SCX
chromatographic runs. However the first three fractions were evidently co-eluting during fraction
collection, their selenium species could be assorted on the basis of intensities, therefore they are
positioned into the fraction where they showed the highest abundance. Although most of the species
were localised/discovered by more than one search methods, the most contributing technique to
provide the first positive hit on the given species is indicated in Table 1. Clearly, manual pattern
exploration was crucial for discovering the relatively high (m/z > 370) molecular mass species, while
the other methods could successfully localise the lower molecular mass species. As full scan spectra
under m/z 300 are of relatively high density (“crowded”), the most visible mass spectral features of
selenium containing molecules (i.e., characteristic /7-12 isotopologue wide/ base, unique isotope ratio
of 8Se and 78Se, high /0.1-0.2 m/z/ absolute mass defect compared to neighbouring ions) can usually
be spotted only in the less crowded parts of the spectra. In other words, any method that helps to
localise lower molecular mass selenium species without time consuming manual pattern exploration
is evidently useful to provide a lower miss ratio of selenium species.

Definitely, the four methods must be harmonized as they complete and amend each other: as
presented for the example of selenocystathionine in FigS1 in the Supplementary Material, one species
can provide several selenium patterns in full scan spectra that might be detected independently by the
different search methods. Moreover, the individual extraction of all discovered selenium species and
compounds must be carried out: EICs must be matched for correct in-source fragment/adduct
alignment (see FigS2 in the Supplementary Material for SeHCys in-source fragments) and the presence
of isomers should be carefully verified. Also, matching an in-source fragment with its hypothetic
mother molecule on the basis of chromatographic data (that is, through retention time and peak shape
matching) must be always completed with MS/MS acquisition as closely eluting non-related selenium
species might be undiscovered without correctly assigning which in-source fragment belongs to a given
parent molecule.

Extracting another characteristic (diagnostic) ion source fragment at m/z 183.9871 (C,H,,0,NSe* ) did
not reveal any novel hit, which indicates no derivatives of selenohomolanthionine were present in
these fractions in high concentration. Although, any missing hit of a diagnostic ion doesn’t
automatically exclude the presence of related selenium species, as in-source and MSE fragmentation
events usually run under lower fragmentation energy settings compared to directed MS/MS (DDA)
analyses. Indeed, this might be a reason why the selenocysteinyl moiety (CsHgO,NSe*; m/z 167.9558)
could only be found in MS/MS datasets.

In order to assess the capability of software-based discovery of selenium species, all the 35 compounds
detected in the C. violifolia water extract were used to optimise the intra-isotope mass defect filter
settings. Any increase in the mass padding or in the defect padding parameters helps to increase the
lists of both the true positive and the false positive hits, hitherto a trade-off must be set between high
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species recovery and the labour need for selenium pattern/species validation. As presented in Tables
S2-S4 in the supplementary material, the setting of 80 Da of mass padding and 200 mDa for defect
padding helped to recover 16 selenium species out of 35 involved in the optimization process at the
detector response level of 2000 counts, the intensity which is enough to provide adequately high
signals for MS/MS acquisition. At these settings, the total number of compounds assigned for pattern
validation as potentially selenium carrying molecules ranged between 206-457, which represented 4.5-
6.3% of the total number of detected compounds. However these data still seem to indicate too many
high false positive hits with only 6-8 true hits per chromatographic fractions, the practical
implementation is reasonable: indeed, the outcome of some hundreds of compounds (out of several
thousands) can be easily shortlisted on the basis of absolute mass defect and isotopologue
redundancy. Moreover, as presented in Table S4, the most frequent reason of species exclusion was
low intensity, which anyhow hampers species identification because of the lack of MS/MS data. Also,
a considerable part of the species detected by mass defect filtering eluted further from the
chromatographic void volume, where the generally hydrophilic selenium species are less evidently
occurring (e.g., m/z 197 and m/z 282), which indicates an additional benefit of this search method.

Consequently, the mass defect based species filtering can be regarded as a useful tool for the discovery
of previously unknown selenium compounds. This is especially true when no hint on retention time
parameters is available, e.g., when no parallel LC-ICP-MS runs can be conducted to decrease the width
of the searching window 13 or when HILIC separation is chosen where selenium species are not usually
distributed close to the void volume as it is observed in unmodified (that is, non ion-pairing assisted)
reversed phase separations.

Although six accurate mass values out of the 35 analytes matched those of previously detected
selenium species, only four species could be finally marked as known in Table 1. In two cases, at m/z
254.02899 and m/z 313.02972, the MS/MS fragments of neither of the formerly reported selenium
species with the same elemental compositions (that is, N-acetyl-Se-methylselenomethionine 3! and
gamma-Glu-Se-methylselenocysteine *! or N-acetyl-selenocystathionine #?, respectively) matched the
fragments detected in our study. This event calls the attention to the fact that accurate mass
information in itself is a necessary but not sufficient condition for the unambiguous identification of a
selenium species. Moreover, the detection of two selenium species bearing the same accurate mass
(m/z 241.99261) but possessing highly different MS/MS spectra also highlights this warning.

No elemental composition could be provided for eleven analytes, including even abundant species
with MS/MS spectra rich in fragments. Indeed, unravelling the most possible elemental composition
not only requires high mass accuracy (< 2.0 ppm) but the presence of characteristic fragments the
composition of which can help to limit the number and kind of contributing elements.

Structural elucidation of novel selenium species

A considerable part of the species listed in Table 1 were either detected in too low abundancy, exposed
to isobaric interferences, or featuring low quality MS/MS spectra, which hampered their structural
elucidation. For example, the species with the elemental composition of C9H18NO3Se* (as [M+H]*)
showed only one, low intense selenium containing fragment at m/z 133.00 even at low collision energy
settings (see the Supplementary Material).

Out of the 35 selenium species detected in C. violifolia water extracts, 13 species were proven with
MS/MS analysis to contain the selenohomocysteine moiety. Among these, selenocystathionine #3 is a
compound that is a subsequent metabolite with selenohomocysteine in selenium metabolism through
the action of cystathionine beta lyase, while selenohomocystine #* and its polyselenide derivatives 3!
might be formed due to oxidation. These three species have been reported to act as non-



oNOYTULT D WN =

Metallomics

proteinaceous storage (deposit) molecules that contribute to the elimination of selenium beside
selenolanthionine, the most abundant selenium species in C. violifolia. However not all the other,
previously undetected selenohomocysteine derived species could be structurally elucidated, five
analytes might be at least tentatively assigned — even if the unambiguous identification does require
more elaborative (NMR based) approaches.

(i)

(ii)

(iii)

(iv)

the compound detected in Fraction #3 at the theoretical m/z 241.99261 possesses a
C2H302 moiety with one double bond over the selenohomocysteine fragment. Two -OH
groups in vicinal positions should present a considerable neutral loss of -18 Da in the
MS/MS spectrum, but no fragment is seen at m/z 224. Accordingly, an end-chain carboxylic
group can be regarded more possible, to propose the structure of Se-carboxymethyl-
selenohomocysteine (Fig. 2 and Fig. S3). This species has already been hypothetically
foreseen in a selenium accumulating plant 4%, but it is presented first here with ESI-MS
data.

the compound detected in Fraction #4 at the theoretical m/z 254.02899 has got a C4H70
moiety with one double bond over the selenohomocysteine fragment. The most
characteristic features in the relevant MS/MS spectrum are the high intense fragments,
namely, m/z 132.96 and 134.97, before the m/z 135.97 (selenohomocysteine with a formic
acid loss) fragment that cannot be all assigned as its isotopologues. Accordingly, these
fragments must arrive from the other part of the molecule, through the loss of an oxygen,
which can only happen in case an —OH group goes during the neutral loss of 18 Da (H,0).
The different ways of rearrangement (differing in two hydrogen atoms) of the leftover
moiety can be similar to the case of selenohomocysteine (C4H8NO2Se+ vs. C4AH10NO2Se+,
with the latter one from the fragmentation of selenohomolanthionine 7. A tentative
structure is therefore presented in Fig. 3 and Fig. S4; definitely, the position of the —OH
group might differ.

the compound detected in Fraction #4 at the theoretical m/z 282.06029 belongs to the
relatively hydrophobic species. It shows a C6H110 moiety with one double bond over the
selenohomocysteine fragment and the molecule has got a characteristic MS/MS fragment
at m/z 163.00 that can only be determined as C6H11Se*. The most feasible way to arrive
at a fragment without any oxygen would presume an —OH group that might leave during
fragmentation in the form of a neutral loss (18 Da; H,0). Accordingly, one possible
structure is presented in Fig. 4 and Fig. S5.

in Fraction #4, there was a pair of molecules detected at the theoretical m/z 284.03956
(C9H18NO4Se*). The MS/MS spectra of the two molecules differed in the relative
intensities of the m/z 146.97 and 164.98 fragment and the non-selenised m/z 102.05 and
124.04 fragments. None of the spectra showed the sign of a 46 Da loss; this observation
might indicate there might not be an end-chain carboxylic group over the
selenohomocysteine fragment, therefore this moiety (C5H902) contains either a ketone
group or two —OH groups with a double bond. However, there are no fragments that would
refer to a ketone (serving for a spot of fragmentation). On the other hand, the fragments
m/z 146.97 and 164.98 might arrive from subsequent neutral losses of H,0, which
supports the theory that two —OH groups take place in these reactions. The origin of the
non-selenised, nitrogen containing fragment at m/z 102.05 (C4H8NO2+) should be
connected to the selenohomocysteine moiety, and it may denote to the close (non end-
chain) position of the —OH groups which may weaken the C-S-C bonds through the
electrophilicity of oxygens in at least one of the isomers. Taking into account all these
observations, two possible structures are presented in Fig. 5 and Fig. S6. It must be noted
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that the origin of the m/z 124.04 fragment (possibly C6H6NO2+) can be explained only
with a post-fragmentation rearrangement, as the abundant intensity of
selenohomocysteine derived fragments excludes the possibility of other options.

in Fraction #4, there was a pair of molecules detected at the theoretical m/z 312.03447
(C10H18NO5Se*). Apart from the selenohomocysteine related fragments, the m/z 146.97,
164.98 and 192.97 should be taken into account that all originate from the other side of
the molecule, possessing C6H903 elemental composition. None of the three latter
fragments possesses more than two oxygens which indicates there should be an —OH
group in the structure to give rise a water loss event; also, two out of the three fragments
have only five carbon atoms, which might refer to a formic acid loss (-46 Da). Accordingly,
an end-chain carboxylic group, a C=C bond and an —OH group should be featured in the
isomer molecules; two possible structures are drawn in Fig. 6 and Fig. S7.

In case there is no selenohomocysteine (or other established, selenium containing) moiety in the
molecule, the assignment of species becomes more problematic as the position of the Se atom cannot
be evidently localised in the structure. In such cases, fragment affiliation should follow an indirect way;
clearly, any proposed structure can only be regarded as one of the possibilities.

(i)

(ii)

the lowest molecular mass selenized compound was detected at the theoretical mass of
m/z 197.00753 in Fraction #3. As presented in Fig. 7 and Fig. S8, this molecule was
surrogated by a lower intense + 18 Da analyte at m/z 215.01720. As the fragmentation of
the m/z 215 molecule hardly provided MS/MS fragments, it can be taken as the in-source
water adduct ([M+H,0+H]*) of the m/z 197 molecule. The two main MS/MS fragments of
this molecule have the SeCH3 and the SeC2H5 compositions (m/z 94.94 and 108.95,
respectively), which supports the theory that a ketone borders the SeC2H5 moiety,
providing a spot of fragmentation. Taking into account that the composition of
C6H1302Se+ allows for only one double bond, and an ester or ether bound would result
in other fragments too, a structure with an —OH group might be suggested, as shown in
Fig. 7.

in Fraction #2, there was a pair of molecules detected at the theoretical m/z 285.05996
(C10H2104Se*) with similar MS/MS spectra, differing in fragment ion ratios especially in
terms of the m/z 85.06, 134.97, 164.98, 182.99 and 239.06 fragments (Fig. 8 and Fig. S9).
This latter fragment refers to a formic acid loss, which usually arrives from an end-chain
carboxylic group. The most intense, oxygen free and selenium containing fragments at m/z
134.97 (C4H7Se+) and m/z 132.96 (C4H5Se+) might refer to a structure where these
fragment can be created from the end of the molecule, through a formic acid loss. Both
isomers show the m/z 106.94 (C2H3Se+) fragment as well. The other main selenium
containing fragment has got one oxygen and one double bond in its structure (m/z 164.98;
C5H90Se+), which practically excludes the presence of a ketone, and limits the structure
to a C=C double bond and an —OH group; the double bond, in turn, might originate in the
neutral loss of a H,O molecule. This fragment can be affiliated to the fragment at m/z 85.06
(C5H90+) after the loss of the Se atom and can be also linked to the fragment at m/z
182.99 (C5H1102Se+), which still contains two oxygen atoms. The fact that the most
intense fragments contain either four or five carbon atoms might indicate that the Se atom
is localised in the middle of the molecule. The difference in the intensities of the m/z
164.98 fragment can be the result of the different position of two —OH groups, e.g., vicinal
vs. non-vicinal position. Accordingly, two possible structures are presented in Fig. 8.
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Eleven species out of 35 showed the evident characteristic loss of hexoses (162.05 Da) during MS/MS
fragmentation and three of them could be analogously ([M-H]") detected in negative ion mode as well.
These molecules, accounting one-third of all selenium species detected in C. violifolia and containing
highly abundant ones too, are presumed selenium containing sugars: this group of selenium species in
plants was presented first in 2012 46, One of them (at m/z 407.04510) might already be considered a
ubiquitous selenium species, still without a structural elucidation, as it has been detected in several
samples including crops and vegetables 4647,

Identification of selenosugars cannot be carried out without possessing at least mg-sized amount of
their purified form for NMR studies. However, some features can be noted on the basis of their
characteristic MS/MS fragments:

(i)

(i)

(iii)

Selenosugars often share the same specific fragments, creating groups with the
assumption of common core structures; that is, the species with m/z 419 and m/z 581,
share the selenium containing fragments of 167.95, 257.00, 401.04 and non-selenized
fragments of 214.07 and 232.08 as well. The fragment at m/z 401.04 appears as an ion-
source fragment too. The MS/MS spectra of the two species feature a series of -18 Da
losses that is also characteristic to hexoses. Indeed, the appearance of the m/z 167.95
fragment is in itself is a specific reference to a selenocysteinyl moiety, which — together
with the m/z 257.00 fragment — indicates these molecules can be assigned as the mono-
or di-N-glycosides of selenolanthionine (Fig. 9, Fig. S10 and S11). Such N-glycosyl
conjugates of (seleno)amino acids and carbohydrates can be formed by their direct
reactions, or at alkaline pH, and through condensation in the Maillard reaction scheme
when exposed to elevated temperature %. It is unclear whether these selenium species
were formed ex vivo during the freeze-drying process or spontaneously in vivo; however,
due to the high availability of non-proteinaceous selenolanthionine, their appearance calls
the attention to this new class of selenium species as other non-proteinaceous
selenoamino acids, especially Se-methlyselenocysteine, might be involved in such
reactions in many selenium accumulator plants.

Beside the hexose loss (162.05 Da), the loss of a deoxyhexose moiety (146.06 Da) is also a
characteristic event in the fragmentation of oligosaccharides. In Table 1, there are two
unknown selenohexoses at m/z 377.07 and m/z 391.09 that can be linked to a couple of
molecules sharing the core molecules together with an additional + 146.06 Da sized moiety
(atm/z523.13 and m/z 537.15, respectively). Both selenohexoses and both selenohexose-
deoxyhexose molecules were found to possess several isomers, which also reinforces their
affiliation. However the neither the core molecules, nor the aglycones can be
unambiguously assigned, the discovery of selenium-containing disaccharides opens a new
class of molecules that can serve as selenium depository in the exclusion of excess
selenium.

Additionally, in order to propose elemental composition data for unknown selenium
compounds, all detected species possessing either selenohomocysteine or selenocysteine
moieties (or, in other words, a free primary amine group) were checked for an N-glycated
hexose couple, analogously to N-glycosyl selenolanthionine. Practically, this process
involved the accurate mass matching between the unassigned selenium species and the
assigned species completed with the C6H1005 conjugated hexose composition (i.e.,
C6H1206-H20). Finally, taking into account extra water addition on unsaturated
sidechains, three molecules (indicated with ‘(x)’ in Table 1) could be selected and
presented with a hypothetical elemental composition (m/z 416 /254+162/, 434
/254+18+162/ and 446 /284+162/). None of the three species showed the evident loss of
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162.05 Da in their MS/MS spectra, therefore their selenosugar property can only be
presumed. However the MS/MS fragments of these compounds were of low or medium
abundance, two out of the three species might be featured with a possible structure
according to the hypothetical N-glycosylation and due to the matching of some of the
fragments (Fig. S12, S13 and S14).

Quantification of selenolanthionine with post-column IP-RP-IDA-ICP-MS technique

Apart from the main species, selenolanthionine, the water extract of C. violifolia contained more than
30 selenium species with highly different intensities and concentration. Facing that none of the species
are available commercially as standards, no direct quantification with LC-Unispray-QTOF or other
(triple quadrupole) MS setup could be carried out. Also, for LC-ICP-MS, the baseline separation of all
the compounds could not be done with the available chromatographic methods; moreover, some of
the moderately abundant species showed highly similar retention characteristics both on SCX and RP
columns, which would have resulted in a biased quantification even if isocratic elution method would
have been addressed #°. In such cases, dilution helps to clean up the chromatogram from low(er)
intensity selenium species, which finally ends up in only a few species whose purity can be regarded
adequate for quantification through post-column isotope dilution analysis (IDA).

Taking into account the dilution steps, the final dilution ratio of the water extract was 300 ml for 1.0 g
lyophilised sample to achieve adequate resolution on the IP-RP setup (Fig. S15). The first abundant
peak was not quantified as peaks eluting in the void may contain several unresolved species. Although
the peak eluting at 9.4 min was found to contain mostly selenocystathionine, several SeHCys-derived
compounds were also detected (Fig. S16). Therefore, only the selenolanthionine peak eluting at 6.8
min was evaluated. The concentration of this species as Se was 77.6 mg/kg that accounts for
approximately 30% of the total selenium content of the leaf. This value can be slightly biased by minor
selenium species that still remained unresolved/undiscovered in the chromatographic peak. This
contribution from selenolanthionine to total Se content is 25% less than the value determined in a
highly selenised 2’ pooled (stem + leaves) C. violifolia biomass with the help of an in-house synthesised
selenolanthionine standard, which might indicate that the relative concentration of this non-
proteinaceous selenoamino acid increases by the higher selenium accumulation rate. This behaviour
—together with the higher complexity of selenium speciation with dozens of selenium species — might
indicate that C. violifolia selenium biotransformation capacity cannot be exhausted even at high
(several grams of Se kg' plant biomass, d.w.) selenium load. The transcriptomical — biochemical
background of this feature is still to be revealed *°.

Conclusions

This study focused on a plant sample that accumulated selenium under natural conditions, without
reaching extreme (> 1 g Se kg™ d.w.) selenium concentration, and apart from possible oxidation, the
plant biomass was not exposed to any sample preparation step (e.g., drying at high temperature,
alkaline extraction, etc.) that would result in considerably altered speciation. Still, dozens of novel
selenium species could be detected beside the major (selenolanthionine) and previously described
compounds (i.e., selenocystathionine, selenohomocystine). The high abundance of hexose and
deoxyhexose containing selenium species reflects this group of selenium compounds should be moved
into the focus of selenium speciation as they might represent a significant part of total selenium
content in selenised plant biomass.
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Definitely, as Cardamine genus is not a highly studied family in the Brassicaceae family in terms of
selenium speciation, there is hardly enough information to declare whether the higher reactivity of
selenium (compared to sulphur) is solely responsible for the formation of these species, or there is a
dedicated route in the selenium detoxification pathway, or a modified scheme (e.g., Cx-sulphonate
biosynthesis, where X=3 or higher) contributes to such a complex selenium speciation. It is however
important to highlight that overall and comprehensive description of selenium compounds in plant
species can be provided only through the combination of inorganic (LC-ICP-MS) and high resolution
organic mass spectrometry set-ups. Moreover, the list of selenium species to expect in any plant
sample is far from complete, which can be considered a call for analysts to be prepared for
unprecedented species at definitely non-minor abundancies.
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Table caption
Table 1

Summary of selenium species detected in the water soluble selenometabolome of C. violifolia. ‘n.p.’
denotes to ‘not provided’; ‘n.a.” denotes to ‘not available’. Relative intensity scaling indicate high
abundance with good quality MS/MS spectrum obtained (‘+++’), moderate abundance with moderate
quality MS/MS spectrum (‘++’) and low abundance with missing or low quality MS/MS spectrum (‘+').
The signs ‘(x)’ indicate hypothetical selenosugar species.

Figure captions

Figure 1: (a) Strong cation exchange (SCX) — ICP-MS chromatogram of water soluble extract of C.
violifolia, recorded on the 8%Se isotope. Fractions labelled #1 - #4 were collected for further
characterization on LC-Unispray-QTOFMS. (b) lon-pairing reversed phase (IP-RP) — ICP-MS
chromatograms of the fractions #1 - #4 collected from SCX — ICP-MS, recorded on the 7’Se isotope.

Figure 2: Full scan spectrum (a), zoomed full scan spectrum (b) and MS/MS spectrum (c) of the
compound with the experimental m/z 241.99302, presented and putatively identified as Se-
carboxymethyl-selenohomocysteine in the inset.

Figure 3: Full scan spectrum (a), zoomed full scan spectrum (b) and MS/MS spectrum (c) of the
selenohomocysteine-derived compound with the experimental m/z 254.02883, presented with a
putative structure in the inset.

Figure 4: Full scan spectrum (a), zoomed full scan spectrum (b) and MS/MS spectrum (c) of the
selenohomocysteine-derived compound with the experimental m/z 282.06027, presented with a
putative structure in the inset.

Figure 5: Full scan spectrum (a), zoomed full scan spectrum (b), MS/MS spectrum of the more
hydrophobic isomer (c) and MS/MS spectrum of the less hydrophobic isomer (d) of the
selenohomocysteine-derived compounds with the experimental m/z 284.03997, presented with
putative structures in the inset.

Figure 6: Full scan spectrum (a), zoomed full scan spectrum (b), and MS/MS spectrum of the less
hydrophobic isomer (c) of the selenohomocysteine-derived compounds with the experimental m/z
312.03454, presented with putative structures in the inset. MS/MS spectrum of the more hydrophobic
isomer couldn’t be recorded because of low abundance.

Figure 7: Full scan spectrum (a), zoomed full scan spectrum (b), low fragmentation energy MS/MS
spectrum (c) and high fragmentation energy MS/MS spectrum (d) of the compound with the
experimental m/z 197.00725, presented with a putative structure in the inset.

Figure 8: Full scan spectrum (a), zoomed full scan spectrum (b), MS/MS spectrum of the less
hydrophobic isomer (c) and MS/MS spectrum of the more hydrophobic isomer (d) of the compounds
with the experimental m/z 285.05998, presented with putative structures in the inset.

Figure 9: Putative mono- and di-N-glycosides of selenolanthionine. Full scan spectrum (a), zoomed full
scan spectrum (b), MS/MS spectrum (c) and structure of selenolanthionine-di-N-glycoside (d). Full
scan spectrum (e), zoomed full scan spectrum (f), MS/MS spectrum (g) and structure of
selenolanthionine-N-glycoside (h). Additional MS/MS spectrum of selenolanthionine-di-N-glycoside
can be found in the Supplementary Material.
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crementa Detected in fraction Detected Contains one Detected first on the basis of
Experimental jemental Theoretical Difference Isomers. alsoin or two SeHCys SeHCys Characteristic non-SeHCys Characteristic non-Se Relative
composition, Rt, min . manual mass database ’ Retaty Reference
m/z m/z ppm # ) 0 # detected negative (deoxy)hexose in-source derivative fragment on Se fragment intensity
[M+H]* h ° screening defect search
ion mode moiety(ies) fragments
197.00725 CoH13025e+ 197.00753 2.13 x X , 94.94, 108.95 , ot
24199302 CoHI2NO4Ser 241.99261 074 X X X 108.95 - =
241.99296 C6H12NO4Se+ 241.99261 145 148 x x - 10895, 138.98, 15254 130.05 +
254.02883 CBHI6NO3Ser 254.02899 0,63 093,104 X X X x 106.94, 134.97 - -
268.04482 COHIBNO3Ser 268.04464 0.67 136 x X B 133.00 86.06 -
270.02341 C8H16NO4Ser 270.02391 185 073 X X na. - . T
271.02005 C7H15N204Se+ 271.01916 3.28 0.60 x x X - 109.08 ++ Vit
282.06027 C10H20NO35e+ 282.06029 0,07 234 X x x 163.00 8107 o
284.03997 COH18NO4Ser 284.03956 144 0.66,0.79 x x x x - 85.06, 102.06, 124.04 ot
285.05998 C10H21045ex 285.05996 0.07 163, 1.69 X X X - 132.96, 134.97, 168.98 -
301.09063 Cl11H25045e+ 301.09126 2.09 2.95,3.09 x x x na. 2 na. -
312.03454 C10H18NO5Ser 312.03447 022 117,136 X X X x 146.97, 164.98, 192.98 102.10 -
313.02949 COH17N2055e+ 313.02972 073 076 x X X - 108.05, 154.09 o
364.95162 C8H17N204Se2+ 364.95133 079 070 x x x - , - Hamilton*
377.07037 C12H25085e+ 377.07092 146 76, 22‘“394’ x x x x - 215.02 85.06,103.07 -
391.08672 C13H27085e+ 391.08657 038 233,242 x X X X - 229.03 85.03,99.08 -
405.06603 CI3H25095e+ 405.06583 049 0.60 X x X p 243.01 97,03, 145.05 o
407.04499 C12H230105e+ 407.04510 027 104 x x x X - 244.99 89.02 . Aureli et
416.08051 C14H26NO8Se+ 416.08182 315 085 x 0 x x 13497, 16838, 1557, 114.05 +
96.05, 104.11, 196.06,
419.05681 C12H23N2095e+ 419.05633 115 059 x x x x - 167.95, 257.00, 401.04 210,07, 299,08, 25611 o
134.97, 168.98, 293.98,
434.09228 C14H28NOGSe+ 434.09238 023 076 X 0 x - 312,00, 416,06 130,05 +
435.04004 Cl3H230115e+ 43504001 0.07 201 X X X - 244.99 108.05 T
444.86739 CBH17N2045e3+ 444.86785 103 103 x X x 244.86,347.84 8005 + Ne:‘fﬁ:‘ e
446.09233 C15H28NOgSe+ 446.09238 011 065,072 x x 0 x x 193.97,326.02 114.05,152.06, 127123’%55' ++
44711604 np. np. np. 150,154 X X X na. na. na. -
448.10670 np. np. np. 076,132 x x x X 32602 - -
460.10880 np. np. np. 0.84,0.90 x x x x 32602 99,08 -
196.91, 211.92, 30097,
463.02100 np. np. np. 060 x x x - o400 160.03 ++
482.99120 np. np. np. 102 X X na. na. na. -
76,02, 116.01, 162.02,
489.05794 np. np. np. orn x x x - 179,06, 235,06, 306,09 +
52312784 C18H350125e+ 523.12883 189 208,218 X X X X - 215.02,377.07 . T
537.14451 C19H370125e+ 537.14448 0.06 233,239 X x x x B 229.03, 391.08 95,08 -
552.06109 np. np. np. 1.02 X X - 284.97 153.06, 177.05 -
58110958 C18H33N20145e+ SBL10915 073 060 X X x x - 167.95, 257.00, 296.00, 110.06, 166.05, 170.08, e
314.01, 332.03, 401.04, 214.07,232.08
545.08
614.14680 np. np. np. 077 x x x B 434.08, 59.14 116,04, 235.11 -
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Table S1. UPLC-Unispray-QTOFMS instrumental setup parameters

Acquity I-Class UPLC

Vion IMS Unispray (+/-) -QTOF-MS

Acquity BEH Cyg,

UPLC column 2.1*100 mm; 1.7 um Source temperature 120°C
- P -
Eluent “A” water with g.:idv/m formic Desolvation temperature 550°C
— 5
Eluent “B” acetonitrile \.Nlth.O.l v/v% Capillary voltage 300V
formic acid
Flow rate 0.4 ml/min Desolvation gas 1000 L/h
Column temperature 25°C Cone gas 100 L/h
0-1.0 min 10% ,,B” IMS OFF
1.0 - 4.0 min T 80% ,B” MS scan 100 - 1000 m/z
Gradient 4.0 - 4.5 min 80% ,,B” MS scan time 0.2s
4.5-5.0min{ 10% ,B” Lock mass ON
5.0 - 7.0 min 10% ,,B” MS/MS scan 50 -1000 m/z
Injection volume 3.0 pl Low mass ramp 20—-30eV
Sample temperature 8°C High mass ramp 30-80eV

Table S2. Effect of defect padding settings on the efficiency of automatic selenium pattern recognition.

Minimally required mass padding (Da) for successful detection
Fraction m/z at 20 mDa at 40 mDa at 60 mDa at 80 mDa

defect padding defect padding defect padding defect padding

282 >1000 17 11 10

284 89 12 11 11

41 407 >1000 121 106 71
242 27 21 21 21

391 >1000 >1000 191 116

391 >1000 >1000 190 116

419 >1000 130 115 86

581 >1000 >1000 >1000 437

419 >1000 173 125 115

#2 401 >1000 120 103 67
285 >1000 21 13 12

405 106 98 85 41

285 >1000 21 13 12

441 391 138 128 100

419 >1000 175 125 115

3 446 >1000 >1000 457 180
268 >1000 2 2 2

197 53 52 52 52

215 40 40 40 39

254 15 12 12 12

312 53 33 31 31

#4 271 1 1 1 1
282 >1000 17 11 10

284 89 12 11 11
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1
2
3
4
5 Table S3. Efficiency of automatic selenium pattern recognition. It is to note that the compounds with detected
6 theoretical selenium mass defect include false positive hits and the different isotopologues of the same
7 compound as well.
8
9
10 - -
11 Number of compounds Relative amount of Number of compounds Relative amount of
. . compounds detected . . compounds detected
12 Number of with detected theoretical with theoretical with detected theoretical with theoretical
. selenium mass defect ) selenium mass defect .
13 Fraction | compounds selenium mass defect selenium mass defect
14 detected Settings: Settings:
15 defect paddig, 60 mDa; mass padding, defect paddig, 80 mDa; mass padding,
200 Da; minimum intensity, 2000 cps 200 Da; minimum intensity, 2000 cps
16 #1 7293 350 4.8% 457 6.3%
17 #2 5062 227 4.5% 277 5.5%
18 #3 4838 229 4.7% 269 5.6%
19 #4 4572 178 3.9% 206 4.5%
20
21
22
23
24
25 Table S4. Efficiency of automatic selenium pattern recognition at optimised settings (mass padding: 200 Da;
;? defect padding: 80 mDa). Values in bold indicate successful detection.
28
29
30 FR1 FR2 FR3 FR4
background of background of background of

31 m/z unsuccessful m/z unsuccessful m/z m/z unsuccessful
32 automatic detection automatic detection automatic detection
33 241.99302 - 285.05998 - 197.00725 | 254.02883 -
34 377.07037 | isobaric interference | 301.09063 | isobaric interference | 241.99302 | 271.02005 -
35 391.08672 | isobaric interference | 405.06603 low intensity 268.04482 | 282.06027 -
36 407.04499 - 416.08220 low intensity 270.02341 | 284.03997 -

435.04004 low intensity 419.05681 - 446.09233 | 312.03454 -
37 447.11604 low intensity 434.09228 low intensity 463.02100 | 313.02949 low intensity
38 448.10670 low intensity 537.14451 low intensity 364.95162 -
39 460.10880 low intensity 581.10958 | low mass padding aaag6739 | oW intensity +
40 triple selenium
41 482.99120 low intensity 489.05794 low intensity
42 523.12784 low intensity

552.06109 low intensity
43 614.14680 low intensity
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
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Fig. S1: Full scan spectrum from Fr4, showing the selenocystathionine related selenium patterns
(in-source fragments, parent molecule and sodium adduct). Stars indicate the 78Se-80Se
isotopologues.
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Fig. S2: Extracted ion chromatogram of selenohomocysteine ion-source fragment (m/z 181.97).
Arrows and values indicate the corresponding and detected selenium species (see Table 1 for
further information).
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COOH

| H, H, H,
CH——C —C —Se—C — COOH

Experimental | Elemental composition, Theoretical Difference,
m/z [M+H]+ m/z ppm

Chemical Formula: C6H12NO4Se+ 181.97069 C4H8NO2Se+ 181.97150 -4.45

Exact Mass: 241.9926 135.96558 C3H6NSe+ 135.96600 -3.09
108.95336 C2H5Se+ 108.95510 -15.97
COOH 94.93872 CH3Se+ 94.93940 -7.16

NH;

| H, H ®
CH—C —C —Se

oNOYTULT D WN =

9 NH, . .
Chemical Formula: C4HgNO,Se

10 Exact Mass: 181.9715

H, @ Hy @
13 ® CH=—=C——C —Se HsC—C —Se
HsC—Se '
14 NH, Chemical Formula:
15 Chemical Formula: CH;Se" C,HsSe”

16 Exact Mass: 94.9394 Chemical Formula: C3H6NSe+ Exact Mass: 108.9551
17 Exact Mass: 135.9660

20 Fig. S3: Proposed structures of the m/z 241.9926 compound and its MS/MS fragments, together
21 with mass accuracy data of the fragments (see Fig. 2).

27 Experimental Elemental composition, Theoretical Difference,
COOH m/z [M+H]+ m/z ppm
28 | Hy Hy 181.97047 C4H8NO2Se+ 181.9715 -5.66
29 GHT—C —C —Sem—C —C==0""ChHs 135.96649 C3H6NSe+ 135.966 3.60
30 134.96881 C4H7Se+ 134.97070 -14.00

NH3 OH
31 132.95525 C4H5Se+ 132.95510 113

Chemical Formula: CgH;(NO;Se”
106.93961 C2H3Se+ 106.93940 1.96
Exact Mass: 254.0290

35 COOH ®
Se—— C——CH3
H H @ H
36 CH—C —C —Se
37 | Chemical Formula: C,H5Se™
38 NH, Exact Mass: 106.9394

Chemical Formula: C4HgNO,Se™

40 Exact Mass: 181.9715

41 @ H

Se—~C _ﬁ:C:CHQ
Hp (€] ) .
43 CH:(HJ—C —Se Chemical Formula: C4HsSe
44 Exact Mass: 132.9551

45 NH,

Chemical Formula: C;HgNSe*

47 .
48 Exact Mass: 135.9660 Chemical Formula: C4;H,Se”

Exact Mass: 134.9707

@ H
H,Se—C —ﬁzcch2

Fig. S4: Proposed structures of the m/z 254.0289 compound and its MS/MS fragments, together
with mass accuracy data of the fragments (see Fig. 3).
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COOH OH

H  H H H H
CH—C —C —Se—C —C —C _ﬁ_C_CH3

NH3
Chemical Formula: C;yHNO3Se”
Exact Mass: 282.0603
COOH Hy @
| Hy Hs, @ CH:E—C —Se

CH—C —C —Se
NH;
NH;

Chemical Formula: C;HgNO,Se™

Exact Mass: 181.9715 Exact Mass: 135.9660

Page 32 of 68

Chemical Formula: C;HgNSe”

Experimental Elemental composition, Theoretical Difference,
m/z [M+H]+ m/z ppm
181.97079 C4H8NO2Se+ 181.97150 -3.90
163.00156 C6H11Se+ 163.00200 -2.70
135.96549 C3H6NSe+ 135.96600 -3.75
@ Hy Hy Hp

H;Se—C —C —C —('_3|=0=CH2

Chemical Formula: CgHy; Se”
Exact Mass: 163.0020

Fig. S5: Proposed structures of the m/z 282.0603 compound and its MS/MS fragments, together
with mass accuracy data of the fragments (see Fig. 4).

COOH

H,Se— C—C—C —C—
LSe G G CH, |

CH—CG=—=CH
OH H 2

Chemical Formula: CsHyOSe* NH3
Exact Mass: 164.9813

Chemical Formula: C4HgNO, "
Exact Mass: 102.0550

H;Se——G=—G—G=—C=—CH,
H H H

Chemical Formula: CsH,Se*

Exact Mass: 146.9707

NH3 OH OH
Chemical Formula: CoH sNO,Se”
COOH Exact Mass: 284.0396
| H  H H H
CH—C —C —Se—C —(|3—C—C—CH2
NH3 OH OH Experimental Elemental composition, Theoretical Difference,
m/z [M+H]+ m/z ppm
181.97079 C4H8NO2Se+ 181.97150 -3.90
COOH ® 164.98097 C5H90Se+ 164.98130 -2.00
H H ® CH_C_EZ_SG 146.97314 C5H7Se+ 146.97070 16.60
b > —
CH—C —C —Se H 135.96549 C3H6NSe+ 135.96600 -3.75
NH, 102.05505 C4H8NO2+ 102.05500 0.49
NH
. Chemical Formula: C;HgNSe™
Chemical Formula: C4HgNO,Se* E M " 135 ;6660
t : .
Exact Mass: 181.9715 xact Mass
@ He COOH ®

Fig. S6: Proposed structures of the m/z 284.0396 compounds and their MS/MS fragments, together
with mass accuracy data of the fragments (see Fig. 5).
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COOH

H H H H Hy
CH—C —C —Se—C —C —Czﬁ—C — COOH

Experimental | Elemental composition, Theoretical Difference,
m/z [M+H]+ m/z ppm
192.98019 C6H902Se+ 192.97620 20.68
Chemical Formula: C;oH;gNOsSe” 181.97047 C4H8NO2Se+ 181.97150 -5.66
COOH Exact Mass: 312.0345 164.98220 C5H90Se+ 164.98130 5.46
146.97114 C5H7Se+ 146.97070 2.99

Hy Hp Hy  Hp Hy
CH—C —C —Se—C —C —C——=C——C — COOH 135.96501 C3H6NSe+ 135.96600 -7.28
H

NH3 OH

NH3 OH

oNOYTULT D WN =

9 ® H, H
10 H;Se——C —C — G=—C=—=G——COOH )
H H HSe——C —C==C==C==CH,

12 . . Chemical Formula: CsH,Se"
Chemical Formula: CgHgO,Se Exact Mass: 146.9707

13 Exact Mass: 192.9762

® H, H, COOH
16 H,Se——C — C — C——=C=——CH, H ©
17 Hs, H, @ CH—C—C —Se
CH—C —C —Se H
18 OH

. + NH;
19 Chemical Formula: CsHgOSe NH,

2 Exact Mass: 164.9813 : . +
0 Chemical Formula: C4HgNO,Se" Chemical Formula: C3HeNSe
21 Exact Mass: 135.9660

Exact Mass: 181.9715
23 Fig. S7: Proposed structures of the m/z 312.0345 compounds and their MS/MS fragments, together
24 with mass accuracy data of the fragments (see Fig. 6).

o]
Hy Hy || Hy |-(|"3
28 HO——C —CH;—C —C—C —Se—CH3

Experimental Elemental composition, Theoretical Difference,

29 Chemical Formula: CgH/30,Se” m/z [M+H]+ m/z ppm

30 Exact Mass: 197.0075 108.95479 C2H5Se+ 108.9551 -2.85

31 94.93865 CH3Se+ 94.9394 -7.90
@

32 Se—CH3

®
H,C—Se— CH3
33 Chemical Formula: CH3Se”  Chemical Formula: C,HsSe"
34 Exact Mass: 94.9394 Exact Mass: 108.9551

37 Fig. S8: Proposed structures of the m/z 197.0075 compound and its MS/MS fragments, together with
38 mass accuracy data of the fragments (see Fig. 7).
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OH OH

@/\)\)
Se
H

HOOC\/\/\

Chemical Formula: C1gH,;04S¢*

Exact Mass: 285.0600 H
HOOC\/v\ ® Experrrl]r;wzental Element[al\lllic;riposmon, Theronr/eztlcal lef:;:ce,
ae 239.05915 C9H1902Se+ 239.05450 19.45
OH 182.99294 C5H1102Se+ 182.99190 5.68
164.98200 C5H90Se+ 164.98130 4.24
H 134.96998 C4H7Se+ 134.97070 -5.33
132.95493 C4H5Se+ 132.95510 -1.28
/\/\ @ 106.93922 C2H3Se+ 106.93940 -1.68
ae 85.06494 C5H90+ 85.06480 1.65
OH

Chemical Formula: CoH;90,Se™
Exact Mass: 239.0545

NN s?/\/\’/

OH
Chemical Formula: C4HsSe*

. ) +
Exact Mass: 132.9551 Chemical Formula: CsHyOSe

Exact Mass: 164.9813

@
@ (€] /\/\
Se @/\ se
Se . +
Chemical Formula: C4H;Se
OH OH Exact Mass: 134.9707

Chemical Formula: C;H3Se”™  Chemical Formula: CsHoO*

Chemical Formula: CsH;;0,Se”
Exact Mass: 106.9394 Exact Mass: 85.0648

Exact Mass: 182.9919

Fig. S9: Proposed structures of the m/z 285.0600 compounds and their MS/MS fragments, together
with mass accuracy data of the fragments (see Fig. 8).
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Fig. $10: Additional (zoomed) MS/MS spectrum of the m/z 581.1092 compound (see Fig. 9 and S11).
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TOOH TOOH TOOH Se
H2 @ H2 H2 ‘ +
1 TH—C Se CH—C —Se C —CH HG Chemical Formula: C,H4NSe
2 l “ Exact Mass: 121.9503
NH.
3 2 NH2 <l)gHs CH—NH,
4 .
5 Chemical Formula: C3HgNO,Se”  Chemical Formula: CeH3N,048¢” ' .
Exact Mass: 167.9558 Exact Mass: 257.0035 oH Chemical Formula: CsH,NO;
6 ” 2 Exact Mass: 170.0812
7 v N
é"a Chemical Formula: CoH;,NOs CH—N OH
2
8 Exact Mass: 214.0710 \
9 HO—C——CH—N oH G l— l CH0H
10 \ |
R H
1 ° c— = CHOH H OH
12 " l l l Chemical Formula: CoH;4,NOg"
H OH H @ :
13 ch, Exact Mass: 232.0816
14 SeH
. ) +
15 Chemical Formula: CoH;sNOgSe HO— C——CH—N OH H oH O
o Exact Mass: 314.0137 I \ l l | l
16 2 I
Ho o c CH,OH
17 HO——G——CH—N OH H OH OH | l
18 \ l l | l SeH H H
19 0o c — CH,OH
H | | Chemical Formula: CoH;gNO;Se*
20 CH,
21 H H Exact Mass: 332.0243
SeH H@
22 ) . HO——G——CH—N OH H OH OH
Chemical Formula: CoH4NOsSe \ l l l l
;2 C|JH2 Exact Mass: 296.0032 o] ﬁ CH,0H
H® | l | l
25 HO——C——CH—N \ OH H OH H H
26 ” \
o — H2OH
27 H =1 ] o
28 Experimental | Elemental composition, Theoretical Difference,
H OH H m/z [M+H]+ m/z ppm
29 545.08614 C18H29N2012Se+ 545.08800 -3.41
30 CH;OH 401.04552 C12H21N208Se+ 401.04580 -0.70
31 332.03000 COH18NO7Se+ 332.02430 17.17
32 HO H 314.00981 C9H16NO6Se+ 314.01370 -12.39
33 H 296.00129 C9H14NO5Se+ 296.00320 -6.45
34 257.0079 C6H13N204Se+ 257.00350 17.12
 OoH 232.08104 C9H14NO6+ 232.08160 241
35 214.07215 COH12NO5+ 214.07100 5.37
36 HO H 170.07906 C8H12NO3+ 170.08120 -12.58
37 167.95415 C3H6NO2Se+ 167.95580 -9.82
38 HC \ 121.94893 C2H4NSe+ 121.95030 -11.23
39 \ @ H H
HN——CH—COOH l |
40 HOH,C — C\ 0
CH
41 z LT N\
42 OH OH H OH HN—TH—C—OH
Se
43 ‘ CH
44 CH, |
45 Chemical Formula: C,gH,oN,0,Se™ Se
46 HOOC——CH—NH; Exact Mass: 545.0880 ‘
47 CHy
48 Chemical Formula: C,H,;N,OgSe” I
49 Exact Mass: 401.0458 HO ﬁ CH N\ OH (l)H
50 o c l — CH,OH
51 S
52 H OH H H
53
54 Fig. S11: Proposed structures of the MS/MS fragments of the m/z 419.0568 and 581.1092 compounds,
55 together with mass accuracy data of the fragments (see Fig. 9).
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Channel name: 2: RT=0.8477 mins : DDA TOF MSe [50-1000) 6eV ESI+
S35
12206702 Loz
1de5 (a ) T e o wend™
1.7e5
[0
100000 _
il i * LiL}
% i s
& 80000 e
X 31408568
60000
40000+ et i vl Seamerd et
OH
20000
3261254 H o
Hl -342,11516 HO
NN HO H
200 400 500 800 1000 H OH o
Obsenved mass [myz] .
Ho H Ho,N— CH—COOH
N\
CHz0H N—— CH— COOH |
CHzOH
CH,
——H CH, |
HO——H
Se
HO— CHy |
HO—T—H
@ CH,
H——OH Se |
H——OH
CH
HO H ||
HO——H ) .
Chemical Formula: CsHgNO,Se HO—C
HC, Exact Mass: 193.9715 |
\\ HC
\\ CH3
N——CH—COOH
N—CH N
CH, H ® h Chemical Formula: C4H,sNOgSe
CH H,Se——C —ﬁ:C:CHZ Exact Mass: 416.0818
CH, | .
® CHy Chemical Formula: C4H-Se
Se |@ Exact Mass: 134.9707
Se

Chemical Formula: C;oH;¢NOgSe™

Chemical Formula: CoHgNOsS¢"

Experimental Elemental composition, Theoretical Difference,
Exact Mass: 326.0137 Exact Mass: 298.0188 m/z [M+H]+ m/z ppm
COOH H ® 326.01314 C10H16NO6Se+ 326.01370 -1.72
Hy ® CH—C—C —Se 298.01716 C9H16NOSSe+ 298.01880 -5.50
CH—C —C —Se H 193.97314 C5H8NO2Se+ 193.97150 8.45
NH, 181.97515 C4H8NO2Se+ 181.97150 20.06
NHz 135.96461 C3HENSe+ 135.96600 -10.2
Chemical Formula: C4HgNO,Se" Chemical Formula: C;H¢NSe* 134.97133 C4H7Se+ 134.97070 4.67

Exact Mass: 181.9715 Exact Mass: 135.9660

Fig. S12: Compound at the experimental m/z 416.08051 (for details, see Table 1); (a) full scan
spectrum; (b) full scan spectrum /zoomed/; (c) MS/MS spectrum, together with the proposed
structures and the mass accuracy data of the MS/MS fragments.
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M5 retention time (min): 0.7166
Channel name: 2: RT=0.7166 mins : DDA TOF MS5e (50-1000) GeV ESI+
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27614429
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52 Fig. S13: Compound at the experimental m/z 446.09233 (for details, see Table 1); (a) full scan
53  spectrum; (b) full scan spectrum /zoomed/; (c) MS/MS spectrum, together with the proposed
54  structures and the mass accuracy data of the MS/MS fragments.
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HO—
H—]
HO—]
HC

N\

N——CH—COOH

Chemical Formula: C;oH;sNOsSe”
Exact Mass: 308.0032

CH20H
—H
HO—
H——OH
HO——H
HC,

N\

N——CH—COOH

CHa

CH,

o
Se

Chemical Formula: C;oH sNOgSe™
Exact Mass: 326.0137

COOH

| H H @
CH—C —C —Se

NH;

Metallomics
CH,OH
—H
HO—
H—T—OH
HO——H
HC,

HC

HO
HO

N——CH—COOH

CH,

OH

Chemical Formula: C;gH;¢NOg"

CH,
CH2
o
Se
CH20H
HO—T1—H
HO——H
H——T——OH
HO—T —H
HC\\
N—CH
|
TH
CH,
o
Se

Chemical Formula: C4HgNO,Se™

Exact Mass: 181.9715

Chemical Formula: CoH;gNOsS¢”
Exact Mass: 298.0188

Hz @
CH:E—C —Se

NH;

Chemical Formula: C;HgNSe™
Exact Mass: 135.9660

Exact Mass: 246.0972

CH,OH
—H
HO—]
H——OH
HO——H
HC,
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@
Ho;N——CH—COOH

CH,

CH,

CH,

HO—CH
CH,

HO—C

CH,

Chemical Formula: C;sHygNOgSe™
Exact Mass: 446.0924

Ne_

N——CH—COOH

Chemical Formula: CgH ,NOg"

Exact Mass: 218.0659

Experimental Elemental composition, Theoretical Difference,

m/z [M+H]+ m/z ppm
326.01314 C10H16NO6Se+ 326.01370 -1.72
308.00975 C10H14NO5Se+ 308.00320 21.27
298.01787 C9H16NO5Se+ 298.01880 -3.12
246.09392 C10H16NO6+ 246.09720 -13.33
218.06235 C8H12NO6+ 218.06590 -16.28
181.97116 C4H8NO2Se+ 181.97150 -1.87
135.96724 C3H6NSe+ 135.96600 9.12

Fig. S14: Compound at the experimental m/z 446.09233 (for details, see Table 1); proposed structures
and the mass accuracy data of the MS/MS fragments.
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Fig. S15: IP-RP-IDA-ICP-MS based quantification of selenolanthionine (eluting at 6.8 min) extracted
from C. violifolia leaves. (a) LC-ICP-MS chromatogram recorded on 8%Se; (b) LC-ICP-MS chromatogram
recorded on 82Se used for isotope dilution; (c) selenium mass flow calculated from the 8Se/82Se data.
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0,

Counts vs. Acquisition Time (min)

Fig. S16: In-source selenohomocysteine fragment (m/z 181.971) of selenocystathionine from Fraction
#4, together with several other minor appearance of this fragment (indicated with '*’). Data were
recorded on an Agilent 6530 ESI-QTOFMS instrument.

18
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35 spectrum.
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03 Unknown selenium species detected in the water soluble
selenometabolome of C. violifolia without structure
16 assignment (in the order of m/z values; see Table 1)
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(for details, see Table 1); (a) full scan spectrum; (b) full scan
spectrum /zoomed/; (c) MS/MS spectrum.
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32 (for details, see Table 1); (a) full scan spectrum; (b) full scan
34 spectrum /zoomed/; (c) MS/MS spectrum.
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(for details, see Table 1); (a) full scan spectrum; (b) full scan
spectrum /zoomed/. MS/MS spectrum couldn’t be recorded

because of low abundance.
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33 (for details, see Table 1); (a) full scan spectrum; (b) full scan
35 spectrum /zoomed/. MS/MS spectrum couldn’t be recorded
37 because of spectral interference.
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(for details, see Table 1); (a) full scan spectrum; (b) full scan

spectrum /zoomed/; (c) MS/MS spectrum.
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oNOYTULT D WN =

M5 retention time (min): 23154
Channed name: 2: RT=2.3154 mins : DDA TOF MSe (50-1000) eV ESI+

Metallomics

30019509
44518044
40000 F5. peieniion time fmink 23158
Chanrel s 2 AT=23054 wrins | DOA TOF M [30-1000) BV E51 .
108872 a2
35000
S50
S000-
o (b)
45313604 e
¥
200
= 25000
H F w0
3 i
= 56038015 T
] £
§ 20000 i
5
- X0
E00EED
2000
15000
1%0
28206001
0 1000
300,
100004 300.70021 IETOREES 03067
43227939 500 e | aspoest WML
. 'm0 cEELs ERtE]
150.12683 | e |
46511060 bala
278.13487 ! = 336 1D m e oy m £
001 -600.39229 Dioaricd mass ]
47630599
1 B35 36865
!
0 Il._J I l - : J.I .
100 200 300 400 500 G600 00 800 00 1000
Observed mass [myz]
PS5 peieniion tee jmink 231360
Cilksion esergy Vi 136
555 0TS s
= | (c)
%0
00
352
-
0o
i
F FrCTITEY]
200
155
e LUk 4]
08l
51
L1730 ——_—
| L DT HaiarM |
N | YU IR 7 TR RYTHTS I T S

A0} 15 150 ars 0

] =0 ik 300 ils 50 rs

Otererved os [e'z]

Compound at the experimental m/z 391.08672

Page 52 of 68

(for details, see Table 1); (a) full scan spectrum; (b) full scan

spectrum /zoomed/; (c) MS/MS spectrum.
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30 Compound at the experimental m/z 405.06603
3 (for details, see Table 1); (a) full scan spectrum; (b) full scan
33 spectrum /zoomed/; (c) MS/MS spectrum.
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Channel name: 2; RT=0.7504 mins : DDA TOF MSe [50-10004 6V ESI+
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Compound at the experimental m/z 434.09228
(for details, see Table 1); (a) full scan spectrum; (b) full scan
spectrum /zoomed/; (c) MS/MS spectrum.
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M5 retention time (min): 20086
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42 Compound at the experimental m/z 435.04004
4 (for details, see Table 1); (a) full scan spectrum; (b) and (b’) full
46 scan spectra /zoomed/; (c) MS/MS spectrum.
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MS retention time (man): 1.5291
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Compound at the experimental m/z 447.11604

(for details, see Table 1); (a) full scan spectrum; (b) full scan
spectrum /zoomed/. MS/MS spectrum couldn’t be recorded

because of low abundance.
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M5 retention time [min): 0.7496
Channel name: 2: RT=0,7495 mins : DDA TOF MSe [50-1000) 62V EST+
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Compound at the experimental m/z 448.10674
(for details, see Table 1); (a) full scan spectrum; (b) full scan
spectrum /zoomed/; (c) MS/MS spectrum.
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M5 retention time (min): QLB549
Channed name 2: RT=0.8948 mins : DDA TOF MSe (50-1000) eV ES1+
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Compound at the experimental m/z 460.10880
(for details, see Table 1); (a) full scan spectrum; (b) full scan
spectrum /zoomed/; (c) MS/MS spectrum.
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Compound at the experimental m/z 463.02100

1

(for details, see Table 1); (a) full scan spectrum; (b) full scan

spectrum /zoomed/; (c) MS/MS spectrum.
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Compound at the experimental m/z 482.9912

(for details, see Table 1). MS/MS spectrum couldn’t be recorded because of
low abundance. Data obtained with an Agilent 6530 ESI-QTOFMS system.
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24 Compound at the experimental m/z 489.05747
e (for details, see Table 1); (a) full scan spectrum; (b) full scan
27 spectrum /zoomed/; (c) MS/MS spectrum.
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(for details, see Table 1); (a) full scan spectrum; (b) full scan
spectrum /zoomed/; (c) MS/MS spectrum.
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Compound at the experimental m/z 537.14451
(for details, see Table 1); (a) full scan spectrum; (b) full scan
spectrum /zoomed/; (c) MS/MS spectrum.
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(for details, see Table 1); (a) full scan spectrum; (b) full scan
spectrum /zoomed/; (c) MS/MS spectrum.
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4 Compound at the experimental m/z 614.1468

43 (for details, see Table 1); (a) full scan spectrum; (b) full scan spectrum
44 /zoomed/; (c) MS/MS spectrum. Data obtained with an Agilent 6530 ESI-
46 QTOFMS system.
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Centre for Agricultural Research

From Agricultural Institute
2462 Martonvasar, Brunszvik u.2.
Hungary

e-mail dernovics.mihaly@atk.hu

Subject “Significance to Metallomics” statement

AT K Date 16/09/2020

A completely novel class of selenium species, namely, N-glycoside derivatives of selenoamino acids are
presented in the manuscript on the basis of LC-Unispray-QTOF-MS datasets.

This is the most comprehensive selenometabolome study up to now not only in the genus Cardamine but
in the whole Brassicaceae family, including structure elucidation and a detailed and stepwise method

development for software based metabolite filtering.
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N-glycosides of
selenoamino acids

21 Appearance of selenium

23 containing sugars, including N-
glycosylated selenoamino

26 acids, has been observed in a
28 selenium hyperaccumulator

30 plant from the Cardamine

32 genus.
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Centre for Agricultural Research
From Agricultural Institute

2462 Martonvasar, Brunszvik u.2.

Hungary

e-mail dernovics.mihaly@atk.hu

Subject Cover letter/Letter to referees

AT K Date 16/09/2020

To whom it concerns

Dear Referees,

Please find enclosed our manuscript that presents the study on the selenometabolome of the
hyperaccumulator plant Cardamine species, C. violifolia. This study has been carried out in the
cooperation of five institutes from three countries, namely, France, China and Hungary. We believe this
manuscript contains significant novelties in the field of selenium speciation studies:

- this is the most comprehensive selenometabolome study up to now not only in the genus Cardamine
but in the whole Brassicaceae family, including the overall characterization of water soluble selenium
species, method development for software based metabolite filtering, precise (isotope dilution assisted)
quantification of the main selenium metabolite, etc.;

- a completely novel class of selenium species, namely, N-glycoside derivatives of selenoamino acids are
presented in the manuscript;

- structural identification section has been completed with an extensive and detailed dataset on high
resolution MS and MS/MS information and a stepwise protocol about selenium metabolite detection.

We hope you will find our revised manuscript of high quality enough to be considered for publication.

Yours sincerely,
Martonvéasar (Hungary), 16/09/2020

Mihaly Dernovics, PhD, dr. habil.

Page 68 of 68



