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Abstract

Matrices or operators in two-by-two block form with square blocks arise in nu-
merous important applications, such as in optimal control problems for PDE’s. The
problems are normally of very large scale so iterative solution methods must be used.
Thereby the choice of an efficient and robust preconditioner is of crucial importance.

Since some time a very efficient preconditioner, the Preconditioned Square Block,
PRESB method has been used by the authors and coauthors in various applications,
in particular for optimal control problems for PDEs. It has been shown to have excel-
lent properties, such as a very fast and robust rate of convergence that outperforms
other methods. In this paper the fundamental and most important properties of the
method are stressed and presented with new and extended proofs. Under certain
conditions, the condition number of the preconditioned matrix is bounded by 2 or
even smaller. Furthermore, under certain assumptions the rate of convergence is
superlinear.

Keywords: Square block operators, preconditioners, spectral properties, robustness, su-
perlinear rate of convergence.

1 Introduction

Iterative solution methods are widely used for the solution of linear and linearized systems
of equations. For early references, see [1, 2, 3]. A key aspect is then to use a proper
preconditioning, that is a matrix that approximates the given matrix accurately but is

1



still much cheaper to solve systems with and which results in tight eigenvalue bounds of
the preconditioned matrix, see e.g. [4, 5, 6]. This should hold irrespective of the dimension
of the system and thus allow a fast large scale modelling. Thereby preconditioners that
exploit matrix structures can have considerate advantage.

Differential operators or matrices on coupled two-by-two block form with square
blocks, or which have been reduced to such a form from a more general block form,
arise in various applications. The simplest example is a complex valued system,

(A+ iB)(x+ iy) = f + ig,

where A,B, x, y, f and g are real valued, which in order to avoid complex arithmetics, is
rewritten in the real valued form,[

A −B
B A

] [
x
y

]
=

[
f
g

]
,

that is, where no complex arithmetics is needed for its solution. For examples of use of
iterative solution methods in this context, see e.g. [7, 8, 9, 10].

As we shall see, much more important examples arise for instance when solving optimal
control problems for partial differential equations. After discretization of the operators,
matrices of normally very large scale arise which implies that iterative solution methods
must be used with a proper preconditioner.

The methods used are frequently of a coupled, inner-outer iteration type which, since
the inner systems are normally solved with variable accuracy, implies that a variable
iteration outer acceleration method such as in [11], or the flexible GMRES method [12]
must be used. However as we shall see, for many applications sharp eigenvalue bounds
for the preconditioned operator can be derived, which are only influenced to a minor
extent by the inner solver so one can then even use a Chebyshev iterative acceleration
method. This implies that there are no global inner products to be computed which can
save much computer time since computations of such inner products are mostly costly in
data communication and other overhead, in particular when the method is implemented
on parallel computers.

During the years numerous preconditioners of various types have been constructed.
For instance, in a Google Scholar search of a class of matrices based on Hermitian or
Skew Hermitian splittings, one encounters over 10 000 published items. Some of them
have been tested, analysed and compared in [13]. It was found that the square block
matrix, PRESB preconditioning method has superior properties compared to them and
also to most other methods. It is most robust, it leads to a small condition number
of the preconditioned matrix which holds uniformly with respect to both problem and
method parameters, and sharp eigenvalue bounds can be derived. The methods can be
seen as a further development of an early method used in [14], and also of the method in
[15]. The method has been applied earlier for the solution of more involved problems, see
e.g. [16, 17, 18]. We consider here only methods which can be reduced to a form with
square blocks. Some illustrative examples of optimal control of parabolic problems with
time-harmonic control can be found in [19, 20, 21, 22].

In this paper we present the major properties of the PRESB preconditioner on opera-
tor level, with short derivations. This includes presentation of a typical class of optimal
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control problems in Section 3 with an efficient implementation of the method, deriva-
tions of spectral properties with sharp eigenvalue bounds in Section 4 an inner product
free implementation of the method in Section 5 and conditions for a superlinear rate of
convergence properties in Section 6.

To shorten the presentation, we use the shorthands r.h.s and w.r.t. for ”right hand
side” and ”with respect to”, respectively. The shorthands for symmetric and positive
definite and symmetric and positive semidefinite are denoted spd and spsd, respectively.
The nullspace of an operator A is denoted N (A).

2 A basic class of optimal control problems

For various iterative solution methods used for optimal control problems, see [23]-[35].
For a comparison of PRESB with some of the methods referred to above, see [13]. Some
methods are based on the saddle point structure of the arising system and use the MINRES

method [36], [28] as acceleration method, see e.g. [37],[38],[39],[40]. Other methods use
the GMRES method as acceleration method, [12, 6]. In this paper we present methods
based on the PRESB preconditioner. This method has been used for optimal control
problems, see e.g. [13, 19, 21]. For other preconditioning methods used for optimal
control problems, see [41]-[45]. For comparisons with some of the other methods referred
to above, see [13, 7, 46]. A particularly important class of problems concern inverse
problems, where an optimal control framework can be used. Examples include parameter
estimation, [47] and finding inaccessible boundary conditions, [48], where a PRESB type
preconditioner has been used.

As an illustration, we consider a time-independent control problem, first using H1-
regularization and then the L2-regularization, with control function u and target solution
y as described in [49], see also [46, 50] for more details.

For the H1-regularization, let Ω ⊂ Rd be a bounded connected domain, such that an
observation region Ω1 and a control region Ω2 are given subsets of Ω. It is assumed that
Ω1 ∩ Ω2 is nonempty. The problem is to minimize

J(y, u) :=
1

2
‖y − y‖2

L2(Ω1) +
β

2
‖u‖2

H1(Ω2) (2.1)

subject to a PDE constraint Ly = f with given boundary conditions, where Ly := −∆y + c · ∇y + dy =
{u on Ω2

0 on Ω \ Ω2

y
∣∣
∂Ω = g.

(2.2)

where c is differentable and d − 1
2
∇ · c ≥ 0. Here the fixed boundary term g admits a

Dirichlet lift g̃ ∈ H1(Ω), and β > 0 is a proper regularization constant. For notational
simplicity we assume now that c = 0 and d = 0. Then the corresponding Lagrange
functional takes the form

L(y, u, λ) = J(y, u)−
∫

Ω

∇y · ∇λ dΩ +

∫
Ω

uλ dΩ,
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where y ∈ g̃+H1
0 (Ω), u ∈ H1(Ω2) and λ is the Lagrange multiplier, whose inf-sup solution

equals the solution of (2.1), (2.2). (In the following we delete the integral incremental
factor dΩ.)

The stationary solution of the minimization problem, i.e. where∇L(y, u, λ) = 0, fulfils
the following system of PDEs in weak form for the state and control variables and for the
Lagrange multiplier:

find y ∈ g̃ +H1
0 (Ω), u ∈ H1(Ω2), λ ∈ H1

0 (Ω) such that∫
Ω1

yµ−
∫

Ω

∇λ · ∇µ =

∫
Ω1

yµ (∀µ ∈ H1
0 (Ω)),

β

∫
Ω2

(∇u · ∇v + uv) +

∫
Ω2

λv = 0 (∀v ∈ H1(Ω2)),∫
Ω

∇y · ∇z −
∫

Ω2

uz = 0 (∀z ∈ H1
0 (Ω)).

(2.3)

Using the splitting y = y0 + g̃ where y0 ∈ H1
0 (Ω) the system can be homogenized. In what

follows, we may therefore assume that g = 0, and hence y ∈ H1
0 (Ω).

We consider a finite element discretization of problem (2.3) in a standard way. Let us
introduce suitable finite element subspaces

Yh ⊂ H1
0 (Ω), Uh ⊂ H1(Ω2), Λh ⊂ H1

0 (Ω)

and replace the solution and test functions in (2.3) with functions in the above subspaces.
We fix given bases in the subspaces, and denote by y, u and λ the corresponding coefficient
vectors of the finite element solutions. This leads to a system of equations in the following
form:

M1y −Kλ = M1y

β(M2 + K2)u + MTλ = 0

Ky −Mu = 0,

(2.4)

where M1 and M2 are the mass matrices used to approximate y and u, i.e. corresponding
to the subdomains Ω1 and Ω2. In the same way, K and K2 are the stiffness matrices
corresponding to Ω and Ω2, respectively, and the rectangular mass matrix M corresponds
to function pairs from Ω × Ω2. Here λ and y have the same dimension, as they both
represent functions on Ω, whereas u only corresponds to nodepoints in Ω2. We also note
that the last r.h.s is 0 due to g = 0. In the general case where g 6= 0 we would have
some g 6= 0 in the last r.h.s, i.e. non-homogenity would only affect the r.h.s. and our
results would remain valid. Problem (2.3), as well as system (2.4) has a unique solution.
Properly rearranging the equations, we obtain the matrix form K −M 0

0 β(M2 + K2) MT

−M1 0 K

y
u
λ

 =

 0
0

M1y

 . (2.5)

We note that M2 + K2 is symmetric and positive definite so we can eliminate the
control variable u in (2.5):

u = − 1

β
(M2 + K2)−1MTλ.
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Hence we are lead to a reduced system in a two-by-two block form:[
K 1

β
M(M2 + K2)−1MT

−M1 K

] [
y
λ

]
=

[
0

−M1y

]
. (2.6)

Here one introduces the scaled vector λ̂ := 1√
β
λ and multiplies the second equation in

(2.6) with − 1√
β

. Using the notation

Â(1)
h :=

[
K M̂0

M̂1 −K

]
(2.7)

where , M̂i = 1√
β
Mi, i = 0, 1, M0 = M(M2 +K2)−1MT and ŷ := 1√

β
M1y, we thus obtain

the system

Â(1)
h

[
y

λ̂

]
=

[
0
ŷ

]
.

For this method we assume that K is spd. Similarly, after reordering and change of
sign we obtain [

M1 −K
K 1

β
M(M2 + K2)−1MT

] [
y
λ

]
=

[
M1y

0

]
, (2.8)

that is, [
M1 −K̂

K̂ M0

][
y

λ̂

]
=

[
M1y

0

]
after scaling, where K̂ =

√
βK. In this method K can be nonsymmetric in which case

the matrix block in position (1, 2) is replaced by K>.
For the L2-regularization method, where the term 1

2
β‖u‖2

H1(Ω) is replaced by 1
2
β‖u‖2

L2(Ω),
we get the matrix

A(2)
h =

[
M1 −K̂

K̂ M0

]
. (2.9)

where M0 = MM−1
2 MT . Our aim is to construct an efficient preconditioned iterative

solution method for this linear system and to derive its spectral properties and mesh
independent superlinear convergence rate.

3 Construction and implementational details of the

PRESB preconditioner

Consider an operator or matrix in a general block form,

A =

[
A B
C −A

]
, (3.1)

where A and the symmetric parts of B and C are spsd and the nullspaces N (A) and
N (B) and N (A) and N (C) are disjoint. Hence A+B and A+ C are nonsingular.
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If B = C, a common solution method (see e.g. [40]) is based on the block diagonal
matrix,

PD =

[
A+B 0

0 A+B

]
.

A spectral analysis shows that the eigenvalues of P−1
D A are contained in the intervals

[−1,− 1√
2
]∪ [ 1√

2
, 1]. This preconditioning method can be accelerated by the familiar MIN-

RES method ([36]). Due to the symmetry of the spectrum, its convergence can be based
on the square of the optimal polynomial for the interval [ 1√

2
, 1], which has spectral con-

dition number
√

2 and corresponds to a convergence factor (21/4 − 1)
/

(21/4 + 1) ' 1
12

.
But note that the indefiniteness of the spectrum requires a double computational effort
compared to the single interval.

To avoid the indefinite spectrum and enable use of the GMRES method as acceleration
method we now consider the following, PRESB preconditioner

PA =

[
A+B + C B

C −A

]
. (3.2)

Its spectral properties will be shown in the next section.
In particular, when B = C, the matrix PA simply becomes

PA =

[
A+ 2B B
B −A

]
. (3.3)

In the case of the system matrix (2.7) of the control problem, the PRESB preconditioner
has the form

P̂(1)
h :=

[
K̂ + M0 + M1 M0

M1 −K̂

]
. (3.4)

We show now that there exists an efficient implementation of the preconditioner (3.2).
It can be factorized as

PA =

[
I 0
I −(A+B)

] [
I B
0 I

] [
A+ C 0
I I

]
=

=

[
I 0
I I

] [
I 0
0 −(A+B)

] [
I B
0 I

] [
(A+ C) 0

0 I

] [
I 0
I I

]
.

Hence its inverse equals

P−1
A =

[
I 0
−I I

] [
(A+ C)−1 0

0 I

] [
I −B
0 I

] [
I 0
0 −(A+B)−1

] [
I 0
−I I

]
. (3.5)

Therefore, besides some vector operations and a operator or matrix vector multiplication
with B, an action of the inverse involves a solution with operator or matrix A+B and one
with A+C. In some applications A is symmetric and positive definite and the symmetric
parts of B,C are also positive definite, which can enable particularly efficient solutions of
these inner systems. The above forms have appeared earlier in [13].
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Remark 3.1. A system with PA,

PA
[
x
y

]
=

[
ξ
η

]
can alternatively be solved via its Schur complement system as

Sx = ξ +BA−1η, Ay = Cx− η,

where S = A+B + C +BA−1C = (A+B)A−1(A+ C).

Clearly one can also use S as a preconditioner to the exact Schur complement Ŝ =
A + BA−1C for A, which gives the same spectral bounds as the PRESB method. For
further information about use of approximations of Schur complements, see [23], [5].

However this method requires the stronger property that A is nonsingular, and besides
solutions with A + B and A + C, it involves also a solution with A to obtain the corre-
sponding iterative residual. In addition, when the solution vector x has been found, it
needs one more solution with matrix A to find vector y. Furthermore, in many important
applications A is singular. Therefore the method based on Schur complements is less
competitive with a direct application of (3.5).

4 Spectral properties

We consider now various aspects of spectral properties of the PRESB preconditioner under
different conditions.

4.1 Spectral analysis based on a general form of the precondi-
tioning matrix

Consider matrix A, of order 2n × 2n and its preconditioner PA in (3.1) and (3.2). Here
we change the sign of the second row. To find the spectral properties of P−1

A A, consider
the generalized eigenvalue problem

λPA
[
x
y

]
= A

[
x
y

]
, (x, y) 6= (0, 0)

It holds

(1− λ)

[
A+B + C B
−C A

] [
x
y

]
= (PA −A)

[
x
y

]
=

[
(B + C)x

0

]
. (4.1)

It follows that λ = 1 for eigenvectors (x,y) such that {x ∈ N (B+C),y ∈ Cn arbitrary}.
Hence, the dimension of the eigenvector space corresponding to the unit eigenvalue λ = 1
is n+ n0, where n0 is the dimension of the nontrivial nullspace of B + C.

An addition of the equations in (4.1) shows that

(1− λ)(A+B)(x+ y) = (B + C)x (4.2)
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and hence, from the first equation in (4.1), it follows

(1− λ)(A+ C)x = (I −B(A+B)−1)(B + C)x, (4.3)

which can be rewritten as

(1− λ)(A+ C)x = A(A+B)−1(B + C)x. (4.4)

4.1.1 Spectrum for a symmetric and nonsingular matrix B

Proposition 4.1. Assume that B = C and that A and B are symmetric and positive
semidefinite. Then the eigenvalues λ of P−1

A A are real and bounded by

1 ≥ λ ≥ 1

2

(
1 + min

µ
|1− 2µ|2

)
,

where µ is an eigenvalue of the generalized eigenvalue problem µ(A+B)z = Bz, ‖z‖ 6= 0,
i.e. 0 ≤ µ ≤ 1. In particular, 1 ≥ λ ≥ 1

2
, and if max µ < 1

2
, then λmin >

1
2
.

Proof. With B = C, it follows from (4.3) that

(1− λ)x = 2
(
I − (A+B)−1B

)
(A+B)−1Bx.

Hence,

1− λ = 2(1− µ)µ = 2

(
1

2
+

(
1

2
− µ

))(
1

2
−
(

1

2
− µ

))
= (4.5)

=
1

2

(
1− (1− 2µ)2

)
≤ 1

2

(
1−min

µ
|1− 2µ|2

)
,

where 0 ≤ µ ≤ 1, so

1 ≥ λ ≥ 1

2

(
1 + min

µ
(1− 2µ)2

)
.

We extend now this proposition to the case of complex eigenvalues µ but still under
the condition that B = C.

Proposition 4.2. Let A be spsd, B = C and let the eigenvalues of µ(A + B)z = Bz,
‖z‖ 6= 0 satisfy 1− 2µ = ξ + iη where 0 < ξ < 1 and |η| < (2/(

√
2 + 1))1/2. Then

|1− λ| = 1

2

√
(1− ξ2)2 + η4 + 2η2 + 2ξ2η2 < 1,

that is, the eigenvalues are contained in a circle around unity with radius < 1.

Proof. It follows from (4.5) that

1− λ =
1

2
(1 + (1− 2µ))(1− (1− 2µ)) =

1

2
(1 + ξ + iη)(1− ξ− iη) =

1

2
(1− ξ2 + η2− 2iξη)

so

|1− λ|2 =
1

4

[
(1− ξ2 + η2)2 + 4ξ2η2

]
=

1

4

(
(1− ξ2)2 + η4 + 2η2 + 2ξ2η2

)
=

1

4

(
(1− ξ2)(1− ξ2 − 2η2) + η4 + 4η2

)
< 1,

since 0 < ξ < 1 and η2 < 2(
√

2− 1), i.e., η4 + 4η2 < 4.
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For small values of the imaginary part η, the above bound becomes close to the bounds
found in Proposition 4.1.

4.1.2 Spectrum for complex conjugate matrices where C = B∗

Consider now the matrix in (3.1) where C = B∗, i.e. it can be complex-valued. This
statement has already been shown in [19] but with a slightly different proof.

Proposition 4.3. Let A be spd, B+B∗ positive semidefinite and assume that B is related
to A by µAz = Bz, ‖z‖ 6= 0 where Re(µ) ≥ 0. Then the eigenvalues of P−1

A A satisfy

1 ≥ λ ≥ 1

1 + α
≥ 1

2
, where α = max

µ
{Re(µ)/|µ|}.

Proof. It follows from (4.5) that

(1− λ)(A+B)x = A(A+B)−1(B + C)x.

Let B̃ = A−1/2BA−1/2, C̃ = B̃∗ and x̃ = A1/2x. Then

(1− λ)(I + B̃)(I + B̃∗)x̃ = (B̃ + B̃∗)x̃

so
(1− λ)x̃∗(I + B̃B̃∗ + B̃ + B̃∗)x̃ = x̃∗(B̃ + B̃∗)x̃, (4.6)

where x̃∗ denotes the complex conjugate vector.
It suffices to consider λ 6= 1, i.e. (B̃ + B̃∗)x 6= 0. From (4.6) follows

(1− λ)x̃∗
(

(I − B̃)(I − B̃∗) + 2(B̃ + B̃∗)
)
x̃ = x̃∗(B̃ + B̃∗)x̃.

Since B̃z̃ = µz̃, z̃ = A1/2z, where |µ| 6= 0, it follows that

(1− λ) ((1− µ)(1− µ) + 4Re(µ)) = 2Re(µ)

or
(1− λ)

(
1 + |µ|2 + 2Re(µ)

)
= 2Re(µ),

i.e.

1− λ =
2Re(µ)

1 + |µ|2 + 2Re(µ)
≤ 2α|µ|

1 + |µ|2 + 2α|µ|
=

α

1
2

(
1
|µ| + |µ|

)
+ α
≤ α

1 + α
,

that is, λ ≥ 1
1+α

. Further, since by assumption, B̃ + B̃∗ is positive semidefinite, it follows
from (4.6) that λ ≤ 1.

The above shows that the relative size, Re(µ)/|µ| of the real part of the spectrum of

B̃ = A−1/2BA−1/2 determines the lower eigenvalue bound of P−1
A A and, hence, the rate

of convergence of the preconditioned iterative solution method. For a small such relative
part the convergence of the iterative solution method will be exceptionally rapid. As we
will show later, such small parts can occur for time-harmonic problems with a large value
of the angular frequency.

We present now a proof of rate of convergence under the weaker assumption that A is
spsd.
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Proposition 4.4. Let A and B +B∗ be spsd. Then 1 ≥ λ(P−1
A A) ≥ 1

2
.

Proof. The generalized eigenvalue problem takes here the form

λ

[
A+B +B∗ B∗

−B A

] [
x
y

]
=

[
A B∗

−B A

] [
x
y

]
, ‖x‖+ ‖y‖ 6= 0.

Hence

(1− λ)

[
A+B +B∗ B∗

−B A

] [
x
y

]
=

[
(B +B∗)x

0

]
,

and it follows from (4.4) that

(1− λ)x = (A+B)−1A(A+B∗)−1(B +B∗)x.

Clearly, any vector x ∈ N (B + B∗) corresponds to an eigenvalue λ = 1. It follows from
(4.2) that (1−λ)(x+y) = (A+B∗)−1(B+B∗)x. Hence, if A(A+B∗)−1(B+B∗)x = 0 for
some x 6= 0 and λ 6= 1, then, since Ay = Bx, it follows 0 = A(x+y) = (A+B)x, which
implies x = 0. Hence, λ = 1 in this case also. To estimate the eigenvalues λ 6= 1, we can
consider subspaces orthogonal to the space for which λ = 1. We denote the corresponding
inverse of A as a generalized inverse, A†. It holds then

(1− λ)x = [(A+B∗)A†(A+B)]−1(B +B∗)x

or
(1− λ)x = [A+B∗A†B +B∗ +B]−1(B +B∗)x

that is,

(1− λ)x̃ = (I + B̃∗B̃ + B̃∗ + B̃)−1(B̃ + B̃∗)x̃ =

=
(

(I − B̃∗)(I − B̃) + 2(B̃∗ + B̃)
)−1

(B̃∗ + B̃)x̃,

where B̃ = A†
1/2
BA†

1/2
and x̃ =

(
A†
)1/2

x. It follows that 0 ≤ 1 − λ ≤ 1
2
, i.e. λ ≥ 1

2
.

Hence, 1 ≥ λ ≥ 1
2
.

4.2 Spectral properties of the preconditioned matrix, P (1)
h for

the basic optimal control problem

We recall that the preconditioner P(1)
h is applicable only if K is spd.

To find the spectral properties of the preconditioned matrix P(1)−1

h Ah in (3.4), we can
use an intermediate matrix,

B =

[
K + 2M̂1 M̂1

M̂1 −K

]
,

and first find the spectral values for B−1P(1)
h and then for B−1Ah.
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Since P(1)−1

h Ah = P(1)−1

h BB−1Ah, this gives the wanted properties . Let then µ denote
an eigenvalue of the generalized eigenvalue problem,

µB
[
ξ
η

]
= P(1)

h

[
ξ
η

]
, ξ,η 6∈ (0, 0).

It holds

(1− µ)B
[
ξ
η

]
= (B − P(1)

h )

[
ξ
η

]
=

[
M̂1 − M̂0 M̂1 − M̂0

0 0

] [
ξ
η

]
.

Here µ = 1 if ξ+η ∈ N (M̂1− M̂0). For µ 6= 1, the second equation becomes M̂1ξ = Kη
which, after a substitution in the first equation, gives

(1− µ)(K(ξ + η) + M̂1(ξ + η)) = (M̂1 − M̂0)(ξ + η)

or
µ(K− M̂1)(ξ + η) = (K + M̂0)(ξ + η).

We note that if ξ = 0, then η = 0, since K is spd. Since ξ+η ∈ N (M̂1−M̂0)⊥, it follows
then that both ξ 6= 0 and η 6= 0 and

µ =
(ξ + η)>(

√
βK + M0)(ξ + η)

(ξ + η)>(
√
βK + M1)(ξ + η)

.

Hence µ is contained in an interval bounded independently of the parameters h and β.
Consider now the eigenvalue problem

µB
[
ξ
η

]
= Ah

[
ξ
η

]
, (ξ,η) 6= (0, 0).

The second row yields again M̂1ξ = Kη. Substituting this in the first equation, leads to

(1− λ)
(
Kξ + (2K + M̂1)η

)
= (2K + M̂1)η − M̂0η.

Taking the inner product with η, and using (Kξ)Tη = (Kη)Tξ = (M̂1ξ)Tξ, we obtain

(1− λ)
(
(M̂1ξ)Tξ + ((2K + M̂1)η)Tη

)
= ((2K + M̂1)η)Tη − (M̂0η)Tη,

i.e.
(M̂1ξ)Tξ + (M̂0η)Tη = λ

(
(M̂1ξ)Tξ + ((2K + M̂1)η)Tη

)
or

λ =
(M̂1ξ)Tξ + (M̂0η)Tη

(M̂1ξ)Tξ + ((2K + M̂1)η)Tη
.

Let

R(η) :=
(M̂0η)Tη

((2K + M̂1)η)Tη
, θmin := min

η 6=0
R(η), θmax := max

η 6=0
R(η), (4.7)

then we readily obtain:
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Proposition 4.5. The eigenvalues of P̂−1
h Âh are real and satisfy

min{1, θmin} ≤ λ
(
P̂−1
h Âh

)
≤ max{1, θmax}

where θmin and θmax are defined in (4.7).

In order to study the uniform behaviour of θmin and θmax as β → 0, note that the
definition of M̂1 and M̂0 implies

R(η) :=
(M(M2 + K2)−1MTη)Tη

((2
√
βK + M1)η)Tη

≈ (M(M2 + K2)−1MTη)Tη

(M1η)Tη
as β → 0.

More precisely, we can make the estimate as follows. We have ((2
√
βK + M1)η)Tη ≥

M1η · η in the denominator, hence R(η) is bounded above uniformly in β. On the other

hand, the previously seen equality M̂1ξ = Kη implies that Kη has zero coordinates where
M̂1ξ has, i.e. in the nodes outside Ω1, hence (Kη)Tη =

∫
Ω1
|∇zh|2 and (M1η)Tη =

∫
Ω1
z2
h

(where zh ∈ Yh has coordinate vector η). Thus the standard condition number estimates
yield (Kη)Tη ≤ O(h−2)((M1η)Tη). If we choose β = O(h4), then the denominator
satisfies ((2

√
βK + M1)η)Tη = O(h2)((Kη)Tη) + (M1η)Tη ≤ const. (M1η)Tη, hence

R(η) is bounded below uniformly in β. Hence, altogether, θmin, θmax and ultimately the

spectrum of P̂−1
h Âh are bounded uniformly w.r.t β ≤ c h4.

4.3 Spectral analyses for the preconditioner P (2)
h

The analyses of the preconditioning matrix C = P(2)
h in (2.9) of A = A(2)

h will take place
in two steps. We introduce then an intermediate matrix B for which the preconditioning
of C follows from Section 4.1. We assume here that the observation domain is a subset of
the control domain.

Hence P(2)
h = BB−1C will be considered as the preconditioner to A and using the

already described eigenvalue bounds for B−1C, we only have to derive eigenvalue bounds
for B−1A. Let then

A =

[
M1 −K̂T

K̂ M0

]
and B =

[
M̃ −K̂T

K̂ M̃

]
,

where M̃ is a weighted average,

M̃ = αM0 + (1− α)M1, 0 < α < 1,

of M0 and M1. Since
M̃ = M1 − αE = M0 + (1− α)E,

where E = M1 −M0, it holds

µB
[
ξ
η

]
= A

[
ξ
η

]
= B

[
ξ
η

]
+

[
αEξ

(α− 1)Eη

]
. (4.8)
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Note that since Ω0 ⊂ Ω1, E is symmetric and positive semidefinite. Hence from

(1− µ)B
[
ξ
η

]
=

[
−αEξ

(1− α)Eη

]
,

and (ξ, η)>B
[
ξ
η

]
= ξ>M̃ξ + η>M̃η, it follows that

−α sup
ξ

ξTEξ

ξTM̃ξ
≤ 1− µ ≤ (1− α) sup

η

ηTEη

ηTM̃η
. (4.9)

Here

(1− α)
ηTEη

ηTM̃η
=

(1− α)ηT (M1 −M0)η

(1− α)ηT (M1 −M0)η + ηTM0η
≤ 1− α
γ0 + 1− α

,

where

γ0 = inf
η

ηTM0η

ηT (M1 −M0)η
.

We note that the upper bound in (4.9) is taken for ξ = 0. Then it follows from (4.8)

that K̂Tη = 0. Hence

γ0 = inf
η∈{(K̂T )⊥}

ηT (M0 + K̂T + K̂)η

ηT (M1 −M0)η

and γ0 > 0, since M0 + K̂T + K̂ is nonsingular. Similarly,

αξTEξ

ξTM̃ξ
=

αξT (M1 −M0)ξ

−αξT (M1 −M0)ξ + ξTM1ξ
≤ α

γ1 − α
,

where

γ1 = inf
ξ∈{K⊥}

ξTM1ξ

ξT (M1 −M0)ξ
= inf

ξ

ξT (M1 + K + KT )ξ

ξT (M1 −M0)ξ
.

Clearly γ1 > 1. It follows that

− α

γ1 − α
≤ 1− µ ≤ 1− α

γ0 + 1− α

so
γ0

γ0 + 1− α
= 1− 1− α

γ0 + 1− α
≤ µ ≤ 1 +

α

γ1 − α
=

γ1

γ1 − α
.

Hence the spectral condition number of B−1A is bounded by

κ(B−1A) ≤ γ1

γ0

γ0 + 1− α
γ1 − α

.

As we have seen, it holds that the condition number of

κ(C−1A) ≤ 2κ(B−1A).
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Since γ0 and γ1 are not known in general a proper value of the parameter α can be
α = 1/2. Then

κ(B−1A) ≤ γ1

γ0

2γ0 + 1

2γ1 − 1
≤ 2γ0 + 1

γ0

.

However, if γ0 is small, but γ1 sufficiently larger than unity, then it is better to let α = 1−ε,
where ε is small. Then

κ(B−1A) ≤ γ1

γ1 − 1 + ε
· γ0 + ε

γ0

≈ γ1

γ1 − 1 + ε
.

On the other hand, if γ0 is large, that is if the observation domain Ω0 nearly equals
the control domain, we note that γ0 →∞ and

κ(B−1A)→ 1/(1− ε) if α = ε,

that is, κ(C−1A) → 2/(1 − ε). In fact, if M0 = M1, then E = 0, and we can let α = 0

i.e. M̃ = M0 = M1. In all cases, the considered bounds hold uniformly with respect to
regularization parameter β and in principle also w.r.t. the mesh parameter h.

Remark 4.1. Other well-known preconditioning strategies for general two-by-two block
matrices, such as block-triangular preconditioners, are also applicable, cf., e.g. [24, 55,
56]. We do not discuss them here any further. Although robust with respect to the involved
parameters, in [46, 50, 13] some of them have been shown to be computationally less
efficient than PRESB on a benchmark suite of problems.

4.4 Inner-outer iterations

The use of inner iterations to some limited accuracy perturbs the eigenvalue bounds for
the outer iteration method. As pointed out in [51], see also [5], one must then in general
stabilize the Krylov iteration method. However, it has been found that for the applications
we are concerned with the perturbations are quite small and, even if they can give rise to
complex eigenvalues, one can ignore them as the outer iterations are hardly influenced by
them.

5 Inner product free methods

Krylov subspace type acceleration methods require computations of global inner products,
which can be costly, in particular in parallel computer environments, where the inner
products need global communication of data and start up times. It can therefore be of
interest to consider iterative solution methods where there is no need to compute such
global inner products. Such methods have been considered in [52] but here we present a
shorter proof and some new contributions.

As we have seen, the PRESB method results mostly in sharp eigenvalue bounds. This
implies that it can be very efficient to use a Chebyshev polynomial based acceleration
method instead of a Krylov based method, since in this method there arise no global
inner products. As shown e.g. in [52, 57], the method takes the form presented in the
next section. Numerical tests in [52, 58] show that it can outperform other methods even
on sequential processors.
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5.1 A modified Chebyshev iteration method

Given eigenvalue bounds [a, b], the Chebyshev iteration method, see e.g. [1, 2, 3, 4, 5] can
be defined by the recursion

x(k+1) = αk

(
x(k) − x(k−1) − 2

a+ b
r(k)
)

+ x(k−1), k = 0, 1, 2, · · · .

where x(−1) = 0, α−1
k = 1 −

(
b−a

2(b+a)

)2

αk−1, k = 1, 2, · · · , α0 = 1. Note that lim
k→∞

αk =

2(a+b)

(
√
a+
√
b)2 .

For problems with outlier eigenvalues on can first eliminate, i.e. ’kill’ them, here
illustrated for the maximal eigenvalue, by use of a corrected right hand side vector,

b̃ =
(
I − 1

λmax

AB−1
)
b.

The so reduced right hand side vector equals

B−1b̃ =
(
I − 1

λmax

B−1A
)
B−1b

and one solves
B−1Ax̃ = B−1b̃,

by use of the Chebyshev method for the remaining eigenvalue bounds. Then one can
compute the full solution,

x = x̃+
1

λmax

B−1b.

However, due to rounding and small errors in the approximate eigenvalues used, the
Chebyshev method makes the dominating eigenvalue component ’awake’ again, so only
very few steps should be taken. This can be compensated for by repetition of the iteration
method, but then for the new residual. The resulting Algorithm is:

Algorithm; Reduced condition number Chebyshev method:
For a current approximate solution vector x, until convergence, do:

1. Compute r = b−Ax

2. Compute r̂ = B−1r

3. Compute q = B−1r̃ = (I − 1
λmax
B−1A)r̂

4. Solve B−1Ax̃ = q, by the Chebyshev method with reduced condition number.

5. Compute x = x̃+ 1
λmax

q

6. Repeat
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In some problems a large number of outlier eigenvalues larger than unity appear.
Normally they are well separated. One can then add the to the unit value closer ones to
the interval [1/2, 1], to form a new interval [1/2, λ0], where λ0 > 1 but not very large and
let the remaining eigenvalues, say [λ1, λmax] form a separate interval. After scaling the
intervals one get then two intervals,

[λ̃1, λ̃2] =

[
1

2λmax

,
1

λmax

]
and [λ3, 1] =

[
λ1

λmax

, 1

]
.

for which a polynomial preconditioner with the polynomial λ(2− λ) can be used.
It is also possible to use a combination of the Chebyshev and Krylov method, that is

start with a Chebyshev iteration step and continue with a Krylov iteration method. This
has the advantage that the eigenvalues can be better clustered after the first Chebyshev
iteration step, so the Krylov iteration method will converge superlinearly fast from the
start.

If the eigenvalues of the preconditioned matrix are contained in the interval [1
2
, 1], we

use then a corresponding polynomial preconditioner,

P(B−1A) = B−1A(3I − 2B−1A).

Let µ be the eigenvalues of P(B−1A). Then µ(λ) = λ(3 − 2λ) so minµ(λ) = µ(1
2
) =

µ(1) = 1 and max
λ

µ(λ) = 9
8
, which is taken for λ = 3/4.

Hence the convergence rate factor for a corresponding Krylov subspace iteration method
(see e.g. [3]) becomes bounded above by√

9/8− 1√
9/8 + 1

=
1

17 + 2
√

2
≈ 1

34
,

which leads to a very fast convergence and which is further improved by the effect of
clustering of the eigenvalues.

6 Superlinear rate of convergence for the precondi-

tioned control problem

As we have seen, the condition number can be small but not in all applications. Even if it
is small it can be of interest to examine the apperance of a superlinear rate of convergence.

Under certain conditions one observes a superlinear rate of convergence of the pre-
conditioned GMRES method. Below we first recall well-known general conditions for the
occurrence of this, and then derive this property in applications for control problems.

6.1 Preliminaries: superlinear convergence estimates of the GM-

RES method

Consider a general linear system
Au = b (6.1)
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with a given nonsingular matrix A ∈ Rn×n. A Krylov type iterative method typically
shows a first phase of linear convergence and then gradually exhibits a second phase of
superlinear convergence [5]. When the singular values properly cluster around 1, the
superlinear behaviour can be characteristic for nearly the whole iteration. We recall some
known estimates of superlinear convergence, also valid for an invertible operator A in a
Hilbert space.

When A is symmetric positive-definite, a well-known superlinear estimate of the stan-
dard conjugate gradient, CG method is as follows, see e.g. [5]. Let us assume that the
decomposition

A = I + E (6.2)

holds, where I is the identity matrix. Let λj(E) denote the jth eigenvalue of E in
decreasing order. Then(

‖ek‖A
‖e0‖A

)1/k

≤ 2‖A−1‖
k

k∑
j=1

∣∣λj(E)
∣∣ (k = 1, 2, ...). (6.3)

In our case the matrix is nonsymmetric, for which also several Krylov algorithms
exist. In particular, the GMRES and its variants are most widely used. Similar efficient
superlinear convergence estimates exist for the GMRES in case of the decomposition
(6.2). The sharpest estimate has been proved in [59] on the Hilbert space level for an
invertible operator A ∈ B(H), using products of singular values and the residual error
vectors rk := Auk − b:

‖rk‖
‖r0‖

≤
k∏
j=1

sj(E)sj(A
−1) (k = 1, 2, ...). (6.4)

Here the singular values of a general bounded operator are defined as the distances from
the best approximations with rank less than j. Hence sj(A

−1) ≤ ‖A−1‖ for all j and

the right hand side (r.h.s.) above is bounded by
( k∏
j=1

sj(E)
)
‖A−1‖k. The inequality

between the geometric and arithmetic means then implies the following estimate, which
is analogous to the symmetric case (6.3):(

‖rk‖
‖r0‖

)1/k

≤ ‖A
−1‖
k

k∑
j=1

sj(E) (k = 1, 2, ...), (6.5)

whose r.h.s. is a sequence decresing towards zero.

We note that the above Hilbert space setting is particularly useful for the study of
convergence under operator preconditioning, when the preconditioner arises from the dis-
cretization of a proper auxiliary operator. Such results have been derived by the authors in
various settings, based on coercive and inf-sup-stable problems, with applications to var-
ious test problems such as convection-diffusion equations, transport problems, Hemholtz
equations and diagonally preconditioned optimization problems, see, e.g., [62, 63, 64].
This approach will be used in the present chapter as well.
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6.2 Operators of the control problem in weak form

Let us consider the control problem (2.3). We introduce the inner products

〈y, z〉H1
0 (Ω) :=

∫
Ω

∇y · ∇z, 〈u, v〉H1(Ω2) := β

∫
Ω2

(∇u · ∇v + uv)

with β > 0 defined in (2.3). Define the bounded linear operators Q1 : H1
0 (Ω) → H1

0 (Ω)
and Q2 : H1(Ω2)→ H1

0 (Ω) by Riesz representation via

〈Q1y, µ〉H1
0 (Ω) :=

∫
Ω1

yµ (y, µ ∈ H1
0 (Ω)), 〈Q2u, z〉H1

0 (Ω) :=

∫
Ω2

uz (u ∈ H1(Ω2), z ∈ H1
0 (Ω)),

and also, similarly, b ∈ H1
0 (Ω) by

〈b, µ〉H1
0 (Ω) := −

∫
Ω1

yµ (∀µ ∈ H1
0 (Ω)).

Then system (2.3) can be rewritten as follows:

〈y, z〉H1
0 (Ω) − 〈Q2u, z〉H1

0 (Ω) = 0 (∀z ∈ H1
0 (Ω)),

〈u, v〉H1(Ω2) + 〈λ,Q2v〉H1
0 (Ω) = 0 (∀v ∈ H1(Ω2)),

〈λ, µ〉H1
0 (Ω) − 〈Q1y, µ〉H1

0 (Ω) = 〈b, µ〉H1
0 (Ω) (∀µ ∈ H1

0 (Ω)),

(6.6)

that is,
y −Q2u = 0

u+Q∗2λ = 0

λ−Q1y = b

(6.7)

where we stress that these quations correspond to the weak form and are obtained by
Riesz representation. This can be written in an operator matrix form I −Q2 0

0 I Q∗2
−Q1 0 I

yu
λ

 =

0
0
b

 . (6.8)

6.3 Well-posedness and PRESB preconditioning in a Hilbert space
setting

The uniqueness of the solution of system (6.7) can be seen as follows: if b = 0, then setting
the third and first equations into the second one, respectively, we obtain u+Q∗2Q1Q2u = 0,
whence, multiplying by u, we have

‖u‖2 + 〈Q1Q2u,Q2u〉 = 0.

Since Q1 is a positive operator, we obtain ‖u‖2 ≤ 0, that is, u = 0, which readily implies
y = 0 and λ = 0.
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Now, since the 3 by 3 operator matrix in (6.8) is a compact perturbation of the identity,
uniqueness implies well-posedness (i.e. if 0 is not an eigenvalue then it is a regular value,
as stated by Fredholm theory, see, e.g., [60]). Hence for any b ∈ H1

0 (Ω) there exists a
unique solution (y, u, λ) of system (6.7), moreover, this solution depends continuously on
b.

System (6.7) can be reduced to a system in a two-by-two block form by eliminating u
using the second equation u = −Q∗2λ, in analogy with (2.6):(

I Q2Q
∗
2

Q1 −I

)(
y
λ

)
=

(
0
−b

)
. (6.9)

Now let us introduce the product Hilbert space

H := H1
0 (Ω)×H1

0 (Ω)

with inner product〈(
y
λ

)
,

(
z
µ

)〉
H

:= 〈y, z〉H1
0 (Ω) + 〈λ, µ〉H1

0 (Ω) ≡
∫

Ω

∇y · ∇z +

∫
Ω

∇λ · ∇µ (6.10)

and corresponding norm∥∥∥∥(yλ
)∥∥∥∥2

H
= ‖y‖2

H1
0 (Ω) + ‖λ‖2

H1
0 (Ω) ≡

∫
Ω

|∇y|2 +

∫
Ω

|∇λ|2.

Further, we define the bounded linear operator

L :=

(
I Q2Q

∗
2

Q1 −I

)
(6.11)

on H. Denoting

x :=

(
y
λ

)
and b :=

(
0
b

)
(6.12)

in H, system (6.9) is equivalent to just

Lx = b. (6.13)

As seen above, for any b ∈ H, after eliminating u, system (6.9) has a unique solution
(y, λ), which depends continuously on b. This means well-posedness, in other words, L is
invertible, hence the inf-sup condition holds:

inf
x∈H
x6=0

sup
w∈H
w 6=0

〈Lx, w〉H
‖x‖H‖w‖H

=: m > 0. (6.14)

According to (3.4), we define the PRESB preconditioning operator as

P :=

(
I +Q1 +Q2Q

∗
2 Q2Q

∗
2

Q1 −I

)
. (6.15)
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Further, letting

Q :=

(
−(Q1 +Q2Q

∗
2) 0

0 0

)
(6.16)

(that is, the remainder term), we have the decomposition

L = P +Q. (6.17)

Now one can see similarly to the case of L that P is also invertible: first, uniqueness of
solutions for systems with P follows just as in the algebraic case described in section 3,
using that Q1 and Q2Q

∗
2 are positive operators, and then the well-posedness follows again

from Fredholm theory. Consequently, we can write (6.17) in the preconditioned form

P−1L = I + P−1Q. (6.18)

6.4 The finite element discretization

Recall the system matrix (2.7) and the preconditioner (3.4), where, for simplicity, we will
omit the upper index ”(1)” in what follows:

Âh ≡ Â(1)
h :=

[
K M̂0

M̂1 −K

]
, P̂h ≡ P̂(1)

h :=

[
K + M̂0 + M̂1 M̂0

M̂1 −K

]
. (6.19)

These matrices are the discrete counterparts of the operators L and P in (6.11) and

(6.15). Recall the definitions M̂1 := 1√
β
M1, M̂0 := 1√

β
M0(M2 + K2)−1MT

0 . Further, let
us define the matrices

Ŝh :=

[
K 0
0 K

]
, Q̂h := Âh − P̂h =

[
−(M̂0 + M̂1) 0

0 0

]
. (6.20)

Here the ”energy matrix” Ŝh corresponds to the energy inner product (6.10), and Q̂h is
the discrete counterpart of the operator Q. Then the decomposition

Âh = P̂h + Q̂h (6.21)

can be written in the preconditioned form

P̂−1
h Âh = Ih + P̂−1

h Q̂h (6.22)

where Ih denotes the identity matrix (of size corresponding to the DOFs of the FE
system).

Using the definition of the stiffness matrix, a useful relation holds between Ŝh and the
underlying inner product 〈., .〉H in the product FEM subspace

Vh := Yh × Λh.

Namely, if x,w ∈ Vh are given functions and c, d are their coefficient vectors, then

〈x, w〉H = Ŝhc · d (6.23)

where · denotes the ordinary inner product on Rn.
In the sequel we will be interested in estimates that are independent of the used family

of subspaces. Accordingly, we will always assume the following standard approximation
property: for a family of subspaces (Vh) ⊂ H,

for any u ∈ H, dist(u, Vn) := min{‖u− vn‖H : vn ∈ Vn} → 0 (as n→∞). (6.24)
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6.5 Superlinear convergence for the control problem

Our goal is to study the preconditioned GMRES first on the operator level and then for
the FE system.

6.5.1 Convergence estimates in the Sobolev space

Our goal is to prove superlinear convergence for the preconditioned form of (6.13):

P−1Lx = P−1b. (6.25)

First, the desired estimates will involve compact operators, hence we recall the follow-
ing notions in an arbitrary real Hilbert space H:

Definition 6.1. (i) We call λj(F ) (j = 1, 2, . . . ) the ordered eigenvalues of a compact
self-adjoint linear operator F in H if each of them is repeated as many times as its
multiplicity and |λ1(F )| ≥ |λ2(F )| ≥ ...

(ii) The singular values of a compact operator C in H are

sj(C) := λj(C
∗C)1/2 (j = 1, 2, . . . ),

where λj(C
∗C) are the ordered eigenvalues of C∗C.

As is well-known (see, e.g., [60]), sj(C)→ 0 as j →∞.

Proposition 6.1. The operators Q1 and Q2 in (6.6) are compact.

Proof. The L2 inner product in a Sobolev space generates a compact operator, see,
e.g., [61]. The operators Q1 and Q2 correspond to L2 inner products on Ω1 and Ω2, hence
they arise as the composition of a compact operator with a restriction operator from Ω to
Ω1 or Ω2 in L2(Ω). Altogether, Q1 and Q2 are compositions of a compact operator with
a bounded operator, hence they are also compact themselves.

Corollary 6.1. The operator Q in (6.16) is compact.

Proposition 6.2. The operator P−1Q is compact.

Proof. We have seen that P is invertible, i.e. it has a bounded inverse P−1, further,
Q is compact. Hence their composition is compact.

Now we can readily derive the main result of this section:

Theorem 6.1. The GMRES iteration for the preconditioned system (6.25) provides the
superlinear convergence estimate(

‖rk‖H
‖r0‖H

)1/k

≤ εk (k = 1, 2, ...), (6.26)

where εk =
‖L−1P‖H

k

k∑
j=1

sj(P
−1Q) → 0. (6.27)
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Proof. Using the invertibility of P and L, the compactness of P−1Q and the decom-
position (6.18), we may apply estimate (6.5) with operators A := P−1L and E := P−1Q.
The fact that sj(P

−1Q)→ 0 implies that εk → 0.

Later on, we will be interested in estimates in families of subspaces. In this context
the following statements involving compact operators will be useful, related to inf-sup
conditions and singular values:

Proposition 6.3. [62, 64] Let L ∈ B(H) be an invertible operator in a Hilbert space H,
that is,

m := inf
u∈H
u6=0

sup
v∈H
v 6=0

|〈Lu, v〉H|
‖u‖H‖v‖H

> 0, (6.28)

and let the decomposition L = I + E hold for some compact operator E. Let (Vn)n∈N+

be a sequence of closed subspaces of H such that the approximation property (6.24) holds.
Then the sequence of real numbers

mn := inf
un∈Vn
un 6=0

sup
vn∈Vn
vn 6=0

|〈Lun, vn〉H|
‖un‖H‖vn‖H

(n ∈ N+)

satisfies lim inf mn ≥ m.

Proposition 6.4. [60, Chap. VI] Let C be a compact operator in H.

(a) If B is a bounded linear operator in H, then

sj(BC) ≤ ‖B‖ sj(C) (j = 1, 2, . . . ).

(b) If P is an orthogonal projection in H with range ImP , then

sj(PC|ImP ) ≤ sj(C) (j = 1, 2, . . . ).

6.5.2 Convergence estimates and mesh independence for the discretized prob-
lems

Our goal is to prove mesh independent superlinear convergence when applying the GMRES

algorithm for the preconditioned system

P̂−1
h Âhc = P̂−1

h b. (6.29)

Here the system matrix is A = P̂−1
h Âh, and we use the inner product 〈c,d〉Ŝh := Ŝh c · d

corresponding to the underlying Sobolev inner product via (6.23). Owing to (6.22), the
preconditioned matrix is of the type (6.2), hence estimate (6.5) holds in the following
form: (

‖rk‖Ŝh
‖r0‖Ŝh

)1/k

≤
‖Â−1

h P̂h‖Ŝh
k

k∑
i=1

si(P̂−1
h Q̂h) (k = 1, 2, ..., n). (6.30)
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In order to obtain a mesh independent rate of convergence from this, we have to give
a bound on (6.30) that is uniform, i.e. independent of the subspaces Yh and Λh. This
will be achieved via some propositions on uniform bounds. An important role is played
by the matrix

Ŝ−1
h P̂h =

[
I + K−1M̂0 + K−1M̂1 K−1M̂0

K−1M̂1 −I

]
. (6.31)

In accordance with Proposition 6.3, we consider fine enough meshes such that the
following inf-sup property can be imposed: there exists m̂ > 0 independent of h such that

inf
c∈Rn

c 6=0

sup
d∈Rn

d6=0

Âh c · d
‖c‖Ŝh‖d‖Ŝh

≥ m̂ > 0. (6.32)

Proposition 6.5. The matrices K−1M̂1 and K−1M̂0 are bounded in K-norm indepen-
dently of h.

Proof. Both matrices are self-adjoint w.r.t. the K-inner product since M1 and M0

are symmetric. Hence, first,

‖K−1M̂1‖K = sup
y 6=0

〈K−1M̂1y,y〉K
|y|2K

= sup
y 6=0

M̂1y · y
Ky · y

=
1√
β

sup
y 6=0

M1y · y
Ky · y

=
1√
β

sup
y∈Yh
y 6≡0

∫
Ω
y2∫

Ω
|∇y|2

≤ 1√
β

sup
y∈H1

0(Ω)

y 6≡0

∫
Ω
y2∫

Ω
|∇y|2

=
C2

Ω√
β

independently of h, where CΩ is the Poincaré–Friedrichs embedding constant and y stands
for the function in the subspace Yh whose coefficient vector is y. Further,

‖K−1M̂0‖K = sup
λ 6=0

〈K−1M̂0λ,λ〉K
|λ|2K

= sup
λ6=0

M̂0λ · λ
Kλ · λ

=
1√
β

sup
λ 6=0

M0(M2 + K2)−1MT
0λ · λ

Kλ · λ
.

Here, for a fixed vector λ, denote v := (M2 + K2)−1MT
0λ. Then

(M2 + K2)v · v = MT
0λ · v,

that is,

‖v‖2
H1(Ω2) :=

∫
Ω2

(|∇v|2 + v2) =

∫
Ω2

λv (6.33)

for the functions v and λ in the subspaces Uh and Λh, whose coefficient vectors are v and
λ, respectively. Hence, from the Cauchy–Schwarz inequality,

‖v‖2
H1(Ω2) ≤ ‖λ‖L2(Ω2)‖v‖L2(Ω2) ≤ CΩ‖λ‖H1

0 (Ω)‖v‖H1(Ω2)

where we have used ‖λ‖L2(Ω2) ≤ ‖λ‖L2(Ω) ≤ CΩ‖λ‖H1
0 (Ω) and ‖v‖L2(Ω2) ≤ ‖v‖H1(Ω2). Con-

sequently,
‖v‖H1(Ω2) ≤ CΩ‖λ‖H1

0 (Ω) . (6.34)
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Now, the definition of v, (6.33) and (6.34) yield

‖K−1M̂0‖K =
1√
β

sup
λ6=0

M0v · λ
Kλ · λ

=
1√
β

sup
λ 6=0

∫
Ω2
vλ∫

Ω
|∇λ|2

=
1√
β

‖v‖2
H1(Ω2)

‖λ‖2
H1

0 (Ω)

≤ C2
Ω√
β

independently of h.

Now, since by (6.20) the Ŝh-norm is just a product K-norm, formula (6.31) readily
yields

Corollary 6.2. The matrices Ŝ−1
h P̂h are bounded in Ŝh-norm independently of h.

Next we estimate the inverse of the above:

Proposition 6.6. The matrices P̂−1
h Ŝh are bounded in Ŝh-norm independently of h.

Proof. We have P̂−1
h Ŝh =

(
Ŝ−1
h P̂h

)−1
. By (6.31), the original matrix Ŝ−1

h P̂h has

the form (3.2) with A := I, B := K−1M̂0, C := K−1M̂1, hence its inverse has a block
decomposition as in (3.5):

P̂−1
h Ŝh =

[
I 0
−I I

] [
(I + K−1M̂1)−1 0

0 I

] [
I −K−1M̂0

0 I

] [
I 0

0 −(I + K−1M̂0)−1

] [
I 0
−I I

]
.

(6.35)
Clearly, it suffices to prove that the three arising blocks that do not contain only 0 or I
are bounded in K-norm independently of h.

Firstly, let N := (I + K−1M̂1)−1. Then N = (K + M̂1)−1K, where M̂1 is positive
semidefinite. Hence for any vector y 6= 0, denoting z := N−1y, we have

|Nz|2K = |y|2K := Ky · y ≤ (K + M̂1)y · y = 〈K−1(K + M̂1)y,y〉K = 〈N−1y,y〉K
= 〈z,Nz〉K ≤ |z|K|Nz|K,

hence |Nz|K ≤ |z|K, i.e. ‖N‖K ≤ 1, which is independent of h.

Secondly, since M̂0 is also positive semidefinite, the same proof applies to (I+K−1M̂0)−1

as well.

Finally, the independence property for K−1M̂0 has already been proved in Proposition
6.5. Altogether, our proposition is thus also proved.

Now we can derive our final result:

Theorem 6.2. Let our family of FEM subspaces satisfy properties (6.24) and (6.32).
Then the GMRES iteration for the n × n preconditioned system (6.29), using PRESB
preconditioning (6.19), provides the mesh independent superlinear convergence estimate(

‖rk‖Ŝh
‖r0‖Ŝh

)1/k

≤ εk (k = 1, 2, ..., n), (6.36)

where εk =
C0C1

m0 k

k∑
i=1

si(Q) → 0 (as k →∞) (6.37)

and (εk)k∈N+ is a sequence independent of h.
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Proof. Owing to Corollary 6.2 and Proposition 6.6, there exist constants C0, C1 > 0
such that

‖P̂−1
h Ŝh‖Ŝh ≤ C0, ‖Ŝ−1

h P̂h‖Ŝh ≤ C1 (6.38)

independently of h. We can easily see that the matrices Â−1
h Ŝh are also uniformly bounded

in Ŝh-norm. Namely, inequality (6.32) yields

inf
c∈Rn

c6=0

‖Ŝ−1
h Âhc‖Sh
‖c‖Ŝh

= inf
c∈Rn

c6=0

sup
d∈Rn

d 6=0

〈Ŝ−1
h Âhc,d〉Ŝh
‖c‖Ŝh‖d‖Ŝh

= inf
c∈Rn

c6=0

sup
d∈Rn

d 6=0

Âh c · d
‖c‖Ŝh‖d‖Ŝh

≥ m0 > 0 ,

hence

‖Â−1
h Ŝh‖Ŝh = ‖(Ŝ−1

h Âh)
−1‖Ŝh = sup

c∈Rn

c6=0

‖c‖Ŝh
‖Ŝ−1

h Âhc‖Ŝh
≤ 1

m0

.

From the above, we obtain

‖Â−1
h P̂h‖Ŝh = ‖Â−1

h Ŝh Ŝ
−1
h P̂h‖Ŝh ≤ ‖Â

−1
h Ŝh‖Ŝh‖Ŝ

−1
h P̂h‖Ŝh ≤

C1

m0

. (6.39)

Finally, the singular values of P̂−1
h Q̂h can be bounded as follows. First, we have

si(Ŝ−1
h Qh) ≤ si(Q) (i = 1, 2, ..., n).

This has been proved in [64] for another compact operator and energy matrix, and the
argument is analogous to our case: in fact, it directly follows from Proposition 6.4 (b)
if P is the projection to our product FEM subspace Vh. Then, combining this estimate
with (6.38) and using Proposition 6.4 (a), we obtain

si(P̂−1
h Qh) = si(P̂−1

h Ŝh Ŝ
−1
h Qh) ≤ ‖P̂

−1
h Ŝh‖Ŝh si(Ŝ

−1
h Qh) ≤ C0 si(Q) . (6.40)

Altogether, using (6.39) and (6.40), the desired statements (6.36)–(6.37) readily follow
from (6.30).

6.6 Extended problems

The distributed control problem (2.1)-(2.2) has proper variants, see also [49]. The fi-
nite element solution of these problems leads to similar systems as in (2.5), such that
the mass matrix block M0 is replaced by some other blocks, corresponding again to
proper discretized compact operators. Based on this, one can repeat the arguments of the
previous subsections and similarly obtain mesh independent superlinear convergence of
the preconditioned GMRES iteration under the PRESB preconditioner. These analogous
derivations are not detailed here, we just mention the problems themselves based on [49]
and indicate the full analogy of their structures.
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6.6.1 Boundary control of PDEs

The boundary control problem involves the minimization of the same functional (2.1)
subject to the PDE constraint {

−∆y = f in Ω

∂y
∂n

∣∣
∂Ω = u

where the control function u is applied on the boundary, but f is a fixed forcing term.
The FE solution of this problem leads to a similar system as in (2.5), where the mass
matrix M0 is replaced by a matrix N connecting interior and boundary basis functions.
The mass and stiffness matrices for u now act on the boundary: they are denoted by Mu,b

and Ku,b. Altogether, the matrix analogue of (2.5) takes the form K −N 0
0 β(Mu,b + Ku,b) NT

−My 0 K

 , (6.41)

and thus the matrices in (6.19) are now replaced by

Âh ≡ Â(1)
h :=

[
K N̂

N̂1 −K

]
, P̂h ≡ P̂(1)

h :=

[
K + N̂ + N̂1 N̂

N̂1 −K

]

where N̂1 := 1√
β
Ny, N̂ := 1√

β
N(Mu,b + Ku,b)

−1NT . The matrix N corresponds to the

compact embedding of the boundary space L2(∂Ω) into H1(Ω).

6.6.2 Control under box constraints

In real problems one often has to take box constraints into account, in which the functions
y and/or u are assumed to satisfy additional pointwise constraints. For the state variable
y, this prescribes ya ≤ y ≤ yb for some given constants ya and yb, and similarly, for u we
prescribe ua ≤ u ≤ ub. An efficient way to handle such problems includes penalty terms
in the objective function and semi-smooth Newton iterations for their minimization, see
[49, 30]. See also [65, 66]. To this paper further related references, see [67]-[76]. The
arising linear systems (after proper rearrangement) have a form similar to (2.5). For the
state constrained case the matrix is K −M0 0

0 β(Mu + Ku) MT
0

−(My + 1
ε
GAMyGA) 0 K

 , (6.42)

where ε > 0 is a small penalty parameter and GA is a diagonal matrix with values 0 or 1
indicating whether y satisfies the box constraint in that coordinate. The reduced matrix
and the PRESB preconditioner are derived again analogously to (6.19). The new factors
GA at the mass matrix My do not change the fact that the term GAMyGA corresponds
to a discretized compact operator, hence the structure of this problem is again analogous
to the previous ones.
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7 Concluding remarks

It has been shown that the PRESB preconditioning method applied for two-by-two block
matrix systems with square blocks can outperform other methods, such as the block
diagonally preconditioned MINRES method. The PRESB method can be accelerated by
the GMRES method, which results in a superlinear rate of convergence.

Since in some problems the eigenvalue bounds are known and often tight, one can
as an alternative method use a Chebyshev acceleration which doesn’t give a superlinear
convergence but saves computational vector inner products and therefore saves wasted
elapsed computer times for global communications between processors.
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