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Tiwari VK and Shewry P (2020)
Editorial: Aegilops: Promising

Genesources to Improve Agronomical
and Quality Traits of Wheat.
Front. Plant Sci. 11:1060.

doi: 10.3389/fpls.2020.01060

EDITORIAL
published: 14 July 2020

doi: 10.3389/fpls.2020.01060

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the Academy's Library
Editorial: Aegilops: Promising
Genesources to Improve
Agronomical and Quality Traits of
Wheat
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Editorial on the Research Topic

Aegilops: Promising Genesources to Improve Agronomical and Quality Traits of Wheat

INTRODUCTION OF AEGILOPS

Aegilops species have contributed significantly to wheat improvement despite the challenges in
exploiting wild species, such as crossability and incompatibility (Börner et al., 2015; Fedak, 2015).
They have been used in particular as sources of genes conferring resistance to biotic stresses, but also
for more complex traits such as abiotic stress and yield.

The genus Aegilops consists of 22 species with the C, D, M, N, S, T and U genomes, which have
high allelic diversity relative to wheat. Aegilops tauschii, the D-genome donor of bread wheat, has
been most widely used for wheat breeding, followed by A. speltoides and A. ventricosa. However,
because most Aegilops species are in the secondary and tertiary gene pools of wheat they are difficult
to utilize due to recombination barriers and useful variation from these species is only available in
the form of translocation/introgression lines.
IDENTIFICATION OF DIVERSITY IN TRAITS FOR WHEAT
IMPROVEMENT

As sources of tolerance to biotic stresses, 20% of the total number (over 75) resistance gene loci
identified in cereals are present in Aegilops species (Ponce-Molina et al., 2018). These include two
thirds of the 54 loci for resistance to powdery mildew (Tang et al., 2018), and the 12 resistance loci
for Cereal Cyst Nematodes (Ali et al., 2019). In the present topic, the addition of A.markgrafii
chromosomes to wheat increased the resistance to 19 of 20 powdery mildew isolates in addition line
AV(E) (Niu et al.).

New stem rust resistance genes have also been identified in Aegilops, such as Sr46, Sr47, Sr51 and
Sr53 (in A. tauschii, A. triuncialis, A. searsii and A. geniculata respectively; Liu et al., 2011a; Liu et al.,
2011b; Klindworth et al., 2012; Yu et al., 2015) and three additional genes in A. tauschii (Rouse et al.,
2011), three genes in Ae. sharonensis (Singh et al., 2015; Yu et al., 2017) and one gene in A.
umbellulata (Edae et al., 2016). In addition, it has been reported that 81% of accessions of A.
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longissima, 94% of A. neglecta and 88% of A. cylindrica (DDCC)
and A. peregrina (SSUU) were resistant to the Ug99 race group of
the stem rust pathogen (Puccinia graminis f. sp. tritici) (Huang
et al., 2018; Olivera et al., 2018) (Kishii). In this topic Niu et al.
reported that wheat/A.markgrafii addition lines AII(C) and AIII
(D) were resistant to Ug99. Furthermore, A. biuncialis, A.
caudata, A. comosa, A. cylindrica, A. geniculata, A. neglecta, A.
peregrina, A. triuncialis, and A. umbellulata were evaluated for
resistance to three highly virulent races (TTKSK, TRTTF and
TTTTF) of P. graminis f. sp. tritici with 60–70% exhibiting low
infection types. Association analyses showed that for a given
species, the resistance genes are effective against multiple races
(Olivera et al., 2018).

Brisco et al. (2017) identified several A. tauschii accessions
showing resistance to Fusarium Head Blight and studies reported
in this topic (Szabo-Hever et al.) have shown that A. tauschii
accessions decreased disease severities by 18.3%, suggesting that
either the D genome or the increased ploidy level could
contribute to resistance in synthetic hexaploid lines.

Aegilops species are also a resource for novel genes and alleles
providing tolerance to abiotic stresses. In this topic Suneja et al.
provide a good example of the identification of several A. tauschii
accessions as potential donors of adaptive plasticity to stress.

Aegilops species also serve as a resource for introducing useful
genetic variation in grain processing and nutritional quality in
wheat (Triticum aestivum). Seed storage proteins are the major
determinants of end product quality and mainly consist of
glutenins and gliadins. A large number of allelic forms of these
proteins have been identified in Aegilops species and in some
Aegilops species such as A. searsii, A. geniculata and A.
longissima this variation have been linked with improved
breadmaking quality. Aegilops species has also been explored
for diversity in the grain texture-related proteins, called
puroindolins (Pins) and grain softness proteins (GSP). In
particular, studies carried out in a number of countries have
identified almost 100 alleles of Pin a, Pin b and GSP across 200
lines/accessions. This allelic variation could be utilized in
breeding programs to extend the textural characteristics of
wheat (Kumar et al.).

Aegilops has attracted further attention in relation to
increasing the grain mineral content of wheat. In particular, to
produce biofortified wheat with higher the contents of iron and
zinc in order to alleviate deficiencies in these minerals which
currently affect more than 2 billion people worldwide (Cakmak,
2017; Black et al., 2013; Velu et al., 2018b). Some Aegilops species
have been reported to contain three to four-fold higher
concentrations of Zn and Fe grain content than wheat,
including A. longissima (Sl), A. kotschyi (US), A. peregrina
(US), A. cylindrica (CD), A. ventricosa (DN) and A. geniculata
(UM) (Rawat et al., 2009). Amphiploid lines of durum wheat
with A. longissima, partial amphiploids of bread wheat with Ae.
kotschyi and addition/substitution lines of bread wheat with A.
kotschyi also showed two to three times higher concentrations of
Zn and Fe in grain than the wheat checks (Tiwari et al., 2008;
Tiwari et al., 2010; Rawat et al., 2011), indicating that they are
promising resources to improve wheat composition. Velu et al.
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developed translocation lines with rye and different Aegilops
species in a wheat genetic background to increase the Zn content.
Although the potential health benefits of Aegilops species by
increased minerals in wheat have not yet been realized, they
should have an impact in the future (Kishii).
ESTABLISHMENT AND EXPLOITATION
OF GENOMIC RESOURCES IN
AEGILOPS SPP.

A high-throughput genotyping platform has been specifically
designed for screening species related to wheat and used to screen
multiple accessions representing all species in the genus Aegilops.
This application was useful for identifying diversity and
determining the relationships within and between Aegilops species
(Przewieslik-Allen et al.). Genome adaptability to environmental
changes, especially to rapid climatic fluctuations, underlies the
survival and evolution of species. In wild species, genetic and
epigenetic changes are accompanied by significant alterations in the
complex nuclear repetitive DNA fraction. Perpetual intra-
organismal reshuffling of repetitive DNA mirrors the structural
plasticity of the A. speltoides genome, which is related to genetic
diversity through the distribution of the species in contrasting
ecogeographical environments (Pollak et al.). Ruban and Badaeva
proposed a model for the evolution of the S-genome of A.
speltoides. The genomes of allopolyploid wheats have evolved by
different species-specific chromosome translocations, sequence
amplification, and elimination and re-patterning of repetitive
DNA sequences. These events occurred independently in different
wheat species and in A. speltoides. The 5S rDNA locus of
chromosome 1S was probably lost in ancient A. speltoides prior to
formation of cultivated Triticum timopheevi (AAGG genomes), but
after the emergence of ancient emmer (AABB genomes). rDNA
profiling and distribution was used to divide diploidAegilops species
into two groups corresponding to the Emarginata and Truncata
sub-sections. It was found that the evolution of Emarginata species
was associated with an increase of C-banding and heterochromatin,
amplification of Spelt-52, re-pattering of the pAesp_SAT86, and a
gradual decrease in the amount of the D-genome-specific repeats
pAs1, pTa-535, and pTa-s53.

A. tauschii (2n = 2x = 14, genome DD), also known as
Tausch’s goatgrass, is the D genome donor of hexaploid bread
wheat (T. aestivum, 2n = 2x = 42, AABBDD genome). It is a rich
source for tolerance to biotic and abiotic stresses. A TILLING
(Targeting Induced Local Lesions In Genomes) population of A.
tauschii (TILL-D) was developed using ethyl methanesulphonate
(EMS) as a mutagen which, together with the newly published A.
tauschii reference genome sequence, will facilitate the discovery
and validation of genes for agronomically important traits and
their transfer into bread wheat (Rawat et al.). Population
structure analysis based on high quality SNPs confirmed the
differentiation of A. tauschii into two lineages (L1 and L2). A
MiniCore collection consisting of 29 L1 and 11 L2 accessions
was identified based on genotypic, phenotypic and geographical
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data. This captures 84% of the total allelic diversity in the whole
collection, showing that it is possible to reduce the number of
accessions which need to be screened by 90% (Singh et al.). A
genome wide association study (GWAS) of the grain Fe, Zn, Cu
and Mn contents also indicated that A. tauschii lineage 2 had
higher Fe and Cu concentration than lineage 1 (Arora et al.). The
associations were related to genes encoding transcription factor
regulators, mineral transporters and phytosiderophore synthesis.

The stability of translocation or alien introgression lines is
always of concern. King et al. developed homozygous wheat/A.
muticum dihaploid introgression lines and characterized their
stability using genomic in situ hybridization and SNP analysis
(King et al.). Zhang et al. studied the efficiency of transferring A.
tauschii segments to wheat using a synthetic octaploid
(AABBDDDD, 2n = 8x = 56) and used bridge crosses to
mapped QTL for agronomically important traits.

Wheat/A. markgrafii disomic addition lines carrying the
chromosomes B, C, D, E, F and G, respectively, were screened with
SSRmarkersshowingthattheycorrespondedtowheathomoeologous
groups 2, 5, 6, 7, 3, and 4, respectively. Useful markers were also
identified for chromosome engineering of wheat (Niu et al.).

The papers brought together in this topic therefore illustrate
the range of current research on the charcterisation of Aegilops
Frontiers in Plant Science | www.frontiersin.org 3
species and identification of important traits for exploitation in
wheat improvement.
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