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a b s t r a c t 

Silica-gelatin hybrid aerogels of varying gelatin content (from 4 wt.% to 24 wt.%) can be conveniently 

impregnated with hydrophobic active agents (e.g. ibuprofen, ketoprofen) in supercritical CO 2 and used 

as drug delivery systems. Contrast variation neutron scattering (SANS) experiments show the molecular 

level hybridization of the silica and the gelatin components of the aerogel carriers. The active agents are 

amorphous, and homogeneously dispersed in these porous, hybrid matrices. Importantly, both fast and 

retarded drug release can be achieved with silica-gelatin hybrid aerogels, and the kinetics of drug re- 

lease is governed by the gelatin content of the carrier. In this paper, for the first time, a molecular level 

explanation is given for the strong correlation between the composition and the functionality of a fam- 

ily of aerogel based drug delivery systems. Characterization of the wet aerogels by SANS and by NMR 

diffusiometry, cryoporometry and relaxometry revealed that the different hydration mechanisms of the 

aerogels are responsible for the broad spectrum of release kinetics. Low-gelatin (4–11 wt.%) aerogels re- 

tain their open-porous structure in water, thus rapid matrix erosion dictates fast drug release from these 

carriers. In contrast to this, wet aerogels of high gelatin content (18–24 wt.%) show well pronounced 

hydrogel-like characteristics, and a wide gradual transition zone forms in the solid-liquid interface. The 

extensive swelling of the high-gelatin hybrid backbone results in the collapse of the open porous struc- 

ture, that limits mass transport towards the release medium, resulting in slower, diffusion controlled drug 

release. 

Statement of Significance 

Developing new drug delivery systems is a key aspect of pharmaceutical research. Supercritically dried 

mesoporous aerogels are ideal carriers for small molecular weight drugs due to their open porous struc- 

tures and large specific surface areas. Hybrid silica-gelatin aerogels can display both fast and retarded 

drug release properties based on the gelatin contents of their backbones. The structural characterization 

of the aerogels by SANS and by NMR diffusiometry, cryoporometry and relaxometry revealed that the dif- 

ferent hydration mechanisms of the hybrid backbones are responsible for the broad spectrum of release 

kinetics. The molecular level understanding of the functionality of these hybrid inorganic-biopolymer 

drug delivery systems facilitates the realization of quality-by-design in this research field. 

© 2020 Acta Materialia Inc. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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1. Introduction 

There are only a handful of studies published in the litera-

ture that report the molecular-level investigation of the physico-

chemical factors that govern the drug delivery properties of

advanced materials [1–6] . Evidently, none of the available papers

deal with the physico-chemical investigation of a promising plat-

form of drug delivery devices: mesoporous aerogels. 

A variety of novel mesoporous inorganic (silica) and biopolymer

(polysaccharide and protein) aerogels have recently been prepared

[7–12] . Aerogels dried under supercritical conditions are promis-

ing platforms for oral and pulmonary drug delivery applications

[13–15] . Novel administration routes and other biomedical appli-

cations are also investigated [16–21] . Biocompatible aerogels are

emerging vessels for musculoskeletal drug delivery [22] . 

It is well-established that these open mesoporous materials

can efficiently be impregnated with active ingredients by adsorp-

tive precipitation using supercritical CO 2 . This technique yields the

highest possible loadings, and also ensures that the active ingredi-

ents are conserved in their amorphous forms inside the porous car-

rier matrices [23–26] . Adsorptive precipitation also ensures the ho-

mogeneous distribution of the active ingredients inside the porous

matrices, that is cooperatively dictated by the thermodynamics

of the multilayer adsorption of the drug molecules on the inner

pore walls, and the intimate conditions of the pressure-drop in-

duced precipitation of the drugs from supercritical CO 2 [24 , 27 , 28] .

In general, the rate of the release of the amorphous active ingre-

dient from the carrier is significantly faster than the dissolution

of the (micro)crystalline forms of the same drug. Furthermore, the

total drug concentration is also elevated, because the solution is

in equilibrium with the amorphous solid, and recrystallization is

slow. Thus, this carrier strategy increases both the rate and the

thermodynamic driving force of drug dissolution, which enhances

bioavailability [18–20 , 24] . Remarkable solubility increase has also

been achieved with fat soluble vitamins when loaded into aerogels

[25 , 29] . 

In order to optimize the functionality of an aerogel based drug

delivery system, it is necessary to develop feasible strategies for

fine-tuning its release properties. One possibility is to modify the

surface of the carrier and tune its hydrophilicity and/or hydropho-

bicity, which directly sets the strength of interaction of the drug

with the backbone of the aerogel [21 , 30] . Preparing core-shell or

coated aerogel carriers has been proved to be a straightforward

strategy to achieve retarded release in the case of otherwise rapid

release aerogel systems [20 , 31–33] . Coating silica-alginate hybrid

aerogel with hydroxypropyl methylcellulose (HPMC) and Ca(II)-

alginate results in ca. 3-times slower drug release compared to the

uncoated aerogel [31] . The coating of silica aerogel with Eudragit

introduces pH control. Compared to the uncoated silica aerogel car-

rier, the rate of drug release from the coated aerogel is ca. 5-times

slower in pH = 1.0 HCl solution, but it is intact in pH = 7.2 PBS

[20 , 33] . Another strategy for the optimization of carrier function-

ality is to implement aerogels of hybrid inorganic-organic back-

bones. The physico-chemical properties of these hybrids, and thus,

their release properties can easily be tuned by changing the ratio

of their constituents [14 , 32 , 34–37] . 

In our previous publications we have shown, that silica-gelatin

hybrid aerogels of varying silica-gelatin ratios are versatile drug

delivery systems [38–41] . These aerogels can be loaded with

small molecular weight hydrophobic drugs (ibuprofen, ketoprofen,

triflusal) up to 20 wt.% by adsorptive deposition from supercrit-

ical CO 2 . The silica-gelatin platform can provide both rapid and

sustained (retarded) release of active ingredients depending on

the inorganic/organic ratio of the hybrid carrier matrix [40–42] .

In general, the rate and mechanism of drug release from aerogels

is governed by the following factors in aqueous media [1 , 3 , 42] .
) Erosion and degradation of the carrier matrix. 2) Strength of

he interaction between the drug molecules and the backbone

f the carrier. 3) Hydration of the aerogel and the drug [43] . 4)

ydration induced deformation and/or swelling of the carrier

atrix [3 , 40 , 44–46] . 

In a previous publication we reported the systematic investi-

ation of the mechanism of release of ibuprofen and ketoprofen

rom silica aerogel and from silica-gelatin hybrid aerogel of mi-

or (4 wt.%) gelatin content [40] . It has been established that the

elease of the drugs is about one order of magnitude faster from

he hybrid aerogel of 4 wt.% content than from the parent silica

erogel. The goal of this preceding project was to understand the

olecular mechanism of this effect. That study has revealed that i )

he interaction of the drugs with the aerogel carriers is governed

y their respective protonation states; ii ) the aerogels degrade into

 = 20–50 μm particles in water; iii ) the porosity of the well-

ydrated silica particles remains intact with open pores; and iv )

he silica-gelatin hybrid aerogel of minor (4 wt.%) gelatin content

ehaves similarly to the parent silica aerogel under release condi-

ions in all but one aspect, i.e. the hydration of the backbone is

uch more feasible due to the presence of gelatin. Thus, the re-

arkable increase in the drug release rate has been attributed to

he more pronounced hydration of the hybrid silica-gelatin back-

one compared to silica [40 , 47 , 48] . 

The biocompatibility of silica-gelatin aerogels has been tested in

itro against multiple cell lines by using the MTT assay and time-

apse vide-microscopy imaging. The hybrid aerogels proved to be

on-cytotoxic in nature. Detailed results are given in our previous

ublications [38 , 39] . 

The present study systematically investigates and compares

he mechanisms of drug release from a series of hybrid silica-

elatin aerogels of a wide range of gelatin content from 4 wt.%

o 24 wt.%. Importantly, the carriers with low gelatin contents

re rapid release systems, while aerogels with high gelatin con-

ent show sustained release properties. Dry aerogels are charac-

erized by scanning electron microscopy (SEM), N 2 adsorption-

esorption porosimetry and small-angle neutron scattering (SANS).

he mechanism of wetting and hydration is investigated by non-

onventional nuclear magnetic resonance (NMR) methods, such

s cryoporometry, diffusiometry and relaxometry, complemented

ith SANS measurements. The structural information is correlated

ith high time-resolution release experiments, that are evaluated

y appropriate mathematical models. Finally, clear conclusions are

rawn between the compositions, structures and hydration prop-

rties of the aerogels and the kinetics and mechanism of drug re-

ease. A mechanism is established for the in-depth interpretation

f the functionality of a systematically designed aerogel based drug

elivery platform. 

. Experimental 

.1. Materials and solutions 

Tetramethoxysilane (TMOS) was used as the silica precursor

nd it was obtained from Fluka. Food grade gelatin (Type A,

50 kDa) was purchased from Dr. Oetker, offering high purity and

ssured quality products. Methanol, acetone and ammonium car-

onate ((NH 4 ) 2 CO 3 ) were purchased from Fluka. Ibuprofen (IBU)

(RS) −2-(4-isobutylphenyl) propanoic acid] and ketoprofen (KET)

2-(3-benzoylphenyl) propanoic acid] were purchased from Sigma-

ldrich. Supercritical CO 2 was produced from 99.95% pure gas (Car-

uros Metalicos SA). All aqueous solutions were prepared with

illi-Q water (Millipore). Other chemicals (HCl, NaOH, NaH 2 PO 4 ,

yclohexane and hexane) were ACS reagent grade (Sigma-Aldrich). 
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.2. Preparation of aerogels 

Silica-gelatin hybrid aerogel monoliths of varying gelatin con-

ent were synthesized by using a sol-gel process, as described pre-

iously [39–41] . Hybrid alcogels were produced by the co-gelation

f gelatin and TMOS. After gelation, a multiple step solvent ex-

hange protocol was carried out using pure acetone in the end. The

els were dried with supercritical CO 2 at 14 MPa and 80 °C using

he medium pressure technique [49] . 

Previous results with silica-gelatin aerogels verified, that the to-

al amount of gelatin is homogeneously incorporated into the aero-

el backbone, forming a hybrid in each case [39–41] . The gelatin

ontent of the hybrid aerogels was measured by thermal analysis

o be 3.7, 11, 18 and 24 wt.%, respectively [39–41] . 

Hybrid aerogels of gelatin contents higher than ca. 25 wt.%

ere excluded from this study, because we experienced an ele-

ated risk of formation of local inhomogeneities in the backbones,

nd such inhomogeneities often yield inconclusive materials prop-

rties. 

.3. Characterization of dry aerogels 

Scanning electron microscopy (SEM) images were recorded on

 Hitachi S-4300 instrument (Hitachi Ltd., Tokyo, Japan). Aerogel

hards, freshly split from the monoliths were immobilized with su-

erglue and Wood’s metal, and covered by 5–6 atomic layer thick

puttered gold conductive layers. Typically, 15 kV accelerating volt-

ge was used. 

The specific surface area, the pore size distribution and the spe-

ific pore volume of the aerogels were measured by N 2 adsorption-

esorption porosimetry (Quantachrome Nova 20 0 0e). All samples

ere degassed at 80 °C for 24 h before the measurements. Spe-

ific surface area and pore size distribution were calculated using

he standard protocols of multipoint BET and BJH methods, respec-

ively. 

.4. Particle size of wet aerogels 

The size distribution of aerogel particles was measured by using

 hemocytometer and image analysis after wet grinding the sam-

les by a Potter-Elvehjem tissue grinder (10 min) and sonication

5 min) [40 , 47] . Images were taken from c = 0.5 mg/mL suspen-

ions with a 1.3 MP USB microscope camera. The ImageJ software

as used for calculating the size distribution of the particles. 

Additionally, the size distribution of aerogel particles was mea-

ured by laser diffraction light scattering (LDLS, MALVERN Master-

izer 20 0 0) using conventional instrument setup and operation. 

.5. Zeta potential of aerogel particles 

Aerogels were wet ground by a tissue grinder (see above), and

he zeta potential was measured at a final aerogel concentration

f 0.1 mg/mL on a MALVERN Zetasizer Nano ZS instrument using

onventional instrument setup and operation. Zeta potential was

easured between pH = 3.0 and pH = 7.4. The lower pH-limit of

he Zeta cell is specified to be pH = 3.0 by the manufacturer. The

H = 7.4 medium used here was the same PBS buffer that was

sed in the drug release experiments. 

.6. Nuclear Magnetic Resonance (NMR) methods 

.6.1. NMR cryoporometry 

Water and cyclohexane were used as probe liquids. In each ex-

eriment ca. 70 mg dry, powdered aerogel was measured into a

 mm wide glass NMR tube. The amount of the probe liquid was

et to ca. 500 μL in order to fully saturate the pores of the aerogel,
lus introduce a minor bulk phase. After homogenization, the wet

amples were stored for 24 h at room temperature before NMR

easurements. 

Melting and freezing experiments were performed on a

60 MHz NMR instrument equipped with a 5 mm direct QNP

robe head and on a 400 MHz NMR instrument with an in-

erse broadband probe head, both of which were cooled with

ried air and BCU-05 and BSCU-05 cooling units. The Carr–Purcell–

eiboom–Gill (CPMG) spin-echo pulse sequence was applied to

liminate the broad signal of the solid phase during the echo time

1.5 ms for water and 10 ms for cyclohexane). Temperature was

alibrated on glycol and methanol [50] . Experiments were always

tarted with melting, and subsequent freezing and melting cy-

les were performed in the given temperature range. Spin-echo 1 H

pectra were recorded in 0.2–0.3 K steps keeping the sample at

onstant temperature for 5 min before measurement. MestReNova

.0 software was used for spectra post processing. 

The melting and freezing point depressions of a liquid confined

n a small space, and the shape of the corresponding melting-

reezing hysteresis loop (determined by pore geometry) are given

y the modified Gibbs _ Thomson equations [51–53] . Model-free

ryoporometry constants were applied ( K c = 30 nmK for water, 96

mK for cyclohexane). Further details on data evaluation are given

n the Supporting Information. 

.6.2. NMR diffusiometry 

In each experiment ca. 70 mg dry, powdered aerogel was mea-

ured into a 5 mm wide glass NMR tube. The volume of added

ater was 10 0, 20 0 and 30 0 μL in different experiments, resulting

n water / aerogel mass ratios of 1.3–4.3 g/g. The suspensions were

ixed, sonicated, compacted by hand and stored for 24 h at room

emperature before NMR measurements. 

The self-diffusion coefficient of water in wet aerogel samples

ere measured with a stimulated spin echo pulse sequence using

ipolar gradient pulses (BIPLED) to avoid eddy currents [54] . The

xperiments were performed on a Bruker Avance II 400 NMR spec-

rometer using the standard pulse program at 298 K. The length of

he gradient pulse ( δ) was set to 2–3 ms, while diffusion time ( �)

as varied between 10 and 120 ms in order to study its effect on

he observed diffusion coefficient ( D obs ). The gradient strength ( G )

as increased from 0 to 50 cm 

–1 Gauss in 32 square-equidistant

teps. Spectra were transformed and evaluated with MestReNova

.0. Diffusion data were evaluated according to the expression:

55–58] 

 = I 0 exp 

{
−D obs γ

2 ( � − δ/ 3 ) δ2 G 

2 
}

(1) 

When multiple diffusion domains are present in the sample

ach domain is represented by a different single-exponential func-

ion of a given D obs value, and the observed decay is the sum of

hese functions [59 , 60] . In order to determine the number of diffu-

ion domains, data were processed by inverse Laplace transforma-

ion (Multi-Exponential Relaxation Analysis, MERA) on the basis of

he CONTIN method. Data were also fitted with single- and multi-

xponential functions by using the Levenberg–Marquardt least-

quares algorithm (OriginPro 8.6). The gradient was calibrated for

 2 O to obtain the real diffusion coefficients [61] . 

.6.3. NMR relaxometry 

In the relaxometry experiments, the water / dry aerogel mass

atio was increased from 0 to 3.8 g/g in 12–15 steps. In each ex-

eriment ca. 100 mg dry, powdered aerogel was introduced into

 10 mm glass tube and an aliquot of water was added. The

et aerogel samples were mixed and sonicated. All samples were

tored for 48 h at room temperature in sealed vessels to achieve

omplete equilibration before NMR measurements. Experiments 

ere performed with the same sample wetted in multiple steps,
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and with multiple samples wetted with different amounts of wa-

ter. The results were identical within experimental error. 

The measurement of T 2 transverse relaxation times was carried

out on a 20 MHz Minispec Bruker mq20 relaxometer using the

classical CPMG spin-echo pulse sequence. The echo time was var-

ied between 80 and 300 μs, and the number of echoes was set

to reach the total exponential decay of the signal. The relaxation

delay was optimized according to the longitudinal relaxation time

( T 1 ), determined previously using the inversion-recovery sequence.

The lengths of the 90 ° pulse was determined for each sample, and

varied between 1.6–2.1 μs with a pulse attenuation of 6 dB. 

Water can be found in different relaxation domains in a sam-

ple. Each relaxation domain contributes to the measured signal by

a single exponential decay, and the observed signal is the sum of

these decays [55 , 62–66] . In order to determine the number of re-

laxation domains, data were transformed by inverse Laplace trans-

formation (Multi-Exponential Relaxation Analysis, MERA) on the

basis of the CONTIN method [67] . In line with the number of relax-

ation domains determined by MERA, primary data were fitted with

a single- or a multi-exponential function by using the Levenberg–

Marquardt least-squares algorithm (OriginPro 8.6). The T 2 trans-

verse relaxation time and the amplitude were estimated for each

domain. 

2.7. Small Angle Neutron Scattering (SANS) 

Dry, powdered aerogel samples were introduced into 2 mm-

thick quartz cuvettes and measured without any pre-treatment.

Some samples were wetted either with D 2 O or with a 1:2 H 2 O–

D 2 O mixture to a water / dry aerogel mass ratio of 3.3 g/g. After

homogenization, the wet samples were stored overnight at room

temperature before SANS measurements. 

SANS experiments were performed on the Yellow Submarine in-

strument at Budapest Neutron centre. This is a pin-hole type in-

strument with a two dimensional neutron detector. Two sample-

to-detector distances (1.2 m and 5.4 m) and two wavelengths

(4.38 Å and 10.23 Å) were used. The beam diameter was 8 mm.

Samples were measured for 60–180 min at room temperature. By

modification of the wavelength and sample detector distance, a Q

range of 0.008–0.4 Å 

–1 was covered. The momentum transfer ( Q )

is defined by the following equation: 

Q = 

4 π

λ
sin 

θ

2 

(2)

where λ is the wavelength of the monochromatic neutron beam

and ϴ is the scattering angle. The definition of the scattering in-

tensity ( I ) is as follows: 

I ( λ, θ ) = I 0 ( λ) ��η( λ) T V 

d


d�
( Q ) (3)

where λ is the wavelength of the monochromatic neutron beam,

ϴ is the scattering angle, I 0 is the incoming neutron flux, �� is

the unit solid angle, η( λ) is the detector efficiency, T and V are the

transmission and volume of the sample and 

d

d�

(Q ) is the macro-

scopic differential cross section. The macroscopic differential cross

section conveys structural information on the studied system. The

measured scattering intensity was corrected for sample transmis-

sion, empty cell scattering, solvent scattering, detector sensitivity

and background scattering. The nano- and microstructural param-

eters of the scattering objects are determined from the mathemat-

ical analysis of the corrected I(Q) curves. 

For a wide Q range where both, the Guinier and the Porod ap-

proximations can be used for different parts of the SANS curve, the

combination of both is valid. This is referred to as the Beaucage
 o  
odel, and it covers the whole Q range [68 , 69] . 

 ( Q ) ∼= 

A exp 

(
−Q 

2 R g 2 

3 

)
+ B 

⎧ ⎪ ⎨ 

⎪ ⎩ 

[ 
erf 

(
QR g √ 

6 

)] 3 
Q 

⎫ ⎪ ⎬ 

⎪ ⎭ 

−p 

(4)

R g is the average gyration radius, p is the Porod exponent, and

 and B are coefficients related to the volume and number density

f the scattering objects and to their contrast. Parameters A and B

an be treated as adjustable scaling parameters. 

Data fitting was performed by using least-squares algorithms in

gor Pro 6.1 software. Further details on the evaluation of SANS

ata are given in the Supporting Information. 

.8. Impregnation of aerogels 

Dry, milled and sieved ( d particle < 125 μm) aerogel powders

ere impregnated with ibuprofen and ketoprofen. The process was

ealized in an autoclave in supercritical CO 2 by utilizing the tech-

ique of adsorptive precipitation. Impregnation was performed at

5 °C and 20 MPa in a stirred reactor for 6 h. The depressur-

zation rate was 0.2 MPa in order to avoid the crystallization of

he drugs, as described previously [40 , 41] . Drug content was deter-

ined with RP-HPLC after soaking 5.0 mg loaded aerogel sample

n 10.0 mL methanol for 2 h. The ibuprofen content of the loaded

erogels varies between 19 and 24 wt.%, and the ketoprofen con-

ent varies between 11 and 15 wt.%, as given in Tables S1 and S2 in

he Supporting Information. The process of impregnation has been

iscussed previously [40 , 41] . 

The impregnated aerogel samples were characterized by X-ray

iffraction (XRD) and infrared (FT-IR) spectroscopy methods. The

esults are in-line with previous, well-established observations,

hat the drugs are amorphous inside the hybrid aerogel carrier ma-

rices [16 , 23 , 24 , 41] . 

.9. Drug release tests 

A custom built fiber optic UV–Vis spectrophotometer equipped

ith a fast CCD detector (AvaSpec-ULS-RS-TEC, Avantes) was used

o monitor the dissolution of the active agents from the loaded

erogels [70] . Dry, loaded aerogel milled, and sieved to uniform

ize ( d particle < 125 μm) was used in order to avoid any parti-

le size-related effects. Loaded aerogel powder was weighted with

.01 mg precision into a carefully dried spectrophotometric cu-

ette. The cuvette was thermostated at 37.0 ± 0.1 °C. On-line de-

ection was started, and 3.0 mL pre-heated release medium (pH

.0 HCl solution or pH 7.4 PBS) was introduced into the cuvette.

he suspension was stirred at 300 rpm by a 2 × 8 mm PTFE

oated magnetic stir-bar. The detector was typically operated with

0 ms integration time and 20 subsequent spectra were averaged.

bsorbance change was followed in the 20 0–80 0 nm wavelength

ange in 1.0 nm steps for at least 10 0 0s with a minimum time res-

lution of 1.0 s. As the drug dissolved from the aerogel, the charac-

eristic absorbance signal of either IBU or KET was detected in the

uspension [9 , 40] . It is important to note, that the light scattering

f the aerogel suspension was taken into correction by subtract-

ng it from each recorded spectrum using the “dual-wavelength

ethod” developed by Liu and Zhu [71 , 72] . The published proto-

ols were implemented without any alterations. As a verification

ethod, drug release was also followed by HPLC for sustained re-

ease systems. The final concentration of the drug was addition-

lly measured in every experiment by HPLC by using a method

escribed in our previous publication [41] . For each sample, cumu-

ative drug release is given as the percentage of the total amount

f loaded drug in the aerogel. The detailed conditions of the drug
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Fig. 1. Scanning electron micrographs (SEM) of a pristine silica aerogel (A) and silica-gelatin hybrid aerogels of 4 wt.% (B), 11 wt.% (C) and 24 wt.% (D) gelatin content. All 

scale bars represent 1.0 μm. 
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Table 1 

Textural properties of silica and silica-gelatin hybrid aerogels derived from N 2 gas 

adsorption-desorption porosimetry data (cf. Fig. 2 ). Mean ± SD values represent 3 

replicate measurements. 

S BET (m 

2 /g) a V p (cm 

3 /g) b d pore (nm) c C -constant 

silica 812 ± 61 6.20 (198 nm) 32 89 

4 wt.% gelatin 799 ± 72 4.95 (161 nm) 25 73 

11 wt.% gelatin 627 ± 60 4.48 (205 nm) 32 92 

18 wt.% gelatin 416 ± 46 2.31 (213 nm) 17 87 

24 wt.% gelatin 285 ± 32 1.69 (194 nm) 20 85 

a BET specific surface area. 
b Total specific pore volume (upper threshold of pore diameter included in the 

calculation). 
c Mean pore diameter: estimated at the maximum of the distribution curve. 
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elease tests are listed in Tables S1 and S2 in the Supporting Infor-

ation. For comparison, the solubilities of the amorphous forms

f IBU and KET are also given in Tables S1 and S2. All experiments

ere performed in 3 replicates. 

Kinetic model fitting was performed based on well-established

heories by using a robust non-linear Levenberg-Marquardt least-

quares algorithm, as described earlier [73] . 

. Results and discussion 

.1. Morphology and pore structure of dry aerogels 

.1.1. Scanning electron microscopy 

Micrographs of silica and silica-gelatin aerogels are shown in

ig. 1 in 25k × magnification. All studied aerogels are built from

rimary spherical blocks, that is archetypical to silica aerogels. The

ize of these blocks is in the range of d sphere = 50 – 100 nm,

nd this size is independent of the gelatin content of the network.

he fundamental morphology of the hybrids is uniform, and it is

imilar to that of pure silica aerogels. However, both the number

nd the size of macrospores increase systematically with increas-

ng gelatin content. Thread-like motifs are also visible for aerogels

ith 24 wt.% gelatin. These findings suggest systematic structural

hanges in the hybrids due to the incorporation of gelatin into the

ilica network. 

.1.2. N 2 adsorption-desorption porosimetry 

Representative N 2 adsorption-desorption isotherms are shown

n Fig. 2 A for dry silica and silica-gelatin aerogels. All of the exper-

mental hysteresis curves are IUPAC type IV (H2), which is charac-

eristic for mesoporous materials. The steep rise of the isotherms

t p / p 0 = 1 indicates the presence of macropores [74] . The specific

urface area ( S BET ) of the hybrid aerogels is between 799 m 

2 g –1 

nd 285 m 

2 g –1 and it systematically decreases with increasing
elatin content ( Table 1 ). The pore size distribution curves of

he aerogels calculated by the BJH method are shown in Fig. 2 B.

n order to highlight the differences between the distribution

urves, the x-axis is shown on the normal scale, and not on the

ogarithmic scale. The pore size distribution is wider and the con-

ribution of the larger pores is more significant at higher gelatin

ontent. The total specific pore volume ( V p ) corresponding to d pore 

 200 nm systematically decreases with increasing gelatin content

 Table 1 ). Unfortunately, pores larger than 200 nm are excluded

rom the N 2 porosimetry analysis, as a consequence of the working

rinciple of the technique. Thus, the V p value is representative

nly when the macropore contribution is small. This is further

iscussed in connection with NMR cryoporometry in Section 3.2.3 .

According to the combined SEM and N 2 porosimetry results,

he contribution of macropores is significant at high (18–24 wt.%)

elatin contents. The increasing amount of incorporated gelatin in

he backbone results in the opening and loosening of the dry aero-

el matrix. The contribution of micropores was estimated for each

erogel by using the t -plot method, based on the de Boer model
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Fig. 2. Nitrogen adsorption-desorption isotherms (A) and BJH pore size distribution curves (B) of silica and silica-gelatin hybrid aerogels of different gelatin content (given 

in the legend as wt.%). 

Fig. 3. Small angle neutron scattering (SANS) curves of silica and silica-gelatin hybrid aerogels measured in their dry states (A) and when completely hydrated (B) by 1:2 

H 2 O:D 2 O mixture (3.3 g liquid / g dry aerogel). Solid lines represent data fitting to the Beaucage model ( Eq. (4) ). Estimated structural parameters for the dry aerogels are 

given in Table 2 . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Values of the Gyration radius ( R g ) and the Porod exponent ( p ) of dry and hydrated 

silica and silica-gelatin aerogel samples. Structural parameters were estimated by 

fitting small angle neutron scattering (SANS) curves (cf. Figs. 3 A and 9 ) with the 

Beaucage model ( Eq. (4) ). 

dry hydrated (D 2 O) 

silica R g = 36.8 Å R g = 31.9 Å 

p = 3.28 p = 3.87 

4 wt.% 

gelatin 

R g = 37.3 Å R g = 30.3 Å 

p = 3.44 p = 3.97 

11 wt.% 

gelatin 

R g = 36.4 Å R g = 28.2 Å 

p = 3.98 p = 5.15 

24 wt.% 

gelatin 

R g = 54.0 Å R g : N/A 

p = 4.22 p = 2.71 

t  

t  

m  

N

3

 

c  

t  

h  

t  

g  
of statistical thickness [75] . The results indicate that there are no

pores present below d pore = 2 nm in any of the aerogels. 

3.1.3. Morphology of dry aerogels by SANS 

Nanometer sized material inhomogeneities (scattering objects)

that have neutron scattering length densities different from their

surroundings yield meaningful SANS curves. These scattering

curves carry information on the size, spatial distribution, shape

and surface morphology of the scattering objects. The primary dif-

ference in neutron scattering length densities in dry mesoporous

aerogels, i.e. the contrast, is between the solid backbone and the

air filled pores [52 , 76 , 77] . In the case of hybrid materials, the dif-

ferent components of the backbone can also give distinct contrasts.

Small angle neutron scattering curves measured for dry silica

and silica-gelatin aerogels are shown in Fig. 3 A. All of these curves

can be adequately fitted with the Beaucage model ( Eq. (4) ). The

average gyration radius ( R g ) and the Porod exponent ( p ) were es-

timated for all dry aerogels ( Table 2 ). The value of the Porod ex-

ponents are between 3 and 4 for silica aerogel and for hybrids

of low gelatin content (4 wt.%). Such Porod exponents are char-

acteristic for surface fractals. The value of the Porod exponent is

ca. 4 for hybrid aerogels with moderate and high gelatin content

(11 wt.%–24 wt.%), meaning that the boundary between objects of

different contrasts is sharp and smooth [69] . This can be attributed

to the high number of macropores. For macropores, the area of the

pore walls is high and their apparent curvature is low compared

to micropores and small mesopores. In line with this explanation,
he gyration radius is the highest in the case of the aerogel with

he highest gelatin content. Thus, the results of the SANS measure-

ents are in excellent agreement with those of the SEM and the

 2 porosimetry. 

.1.4. Homogeneity of the hybrid backbone by SANS 

The primary experimental observation is that the scattering

urves of the dry silica and silica-gelatin aerogels do not show dis-

inct features, i.e. there is no secondary contrast in the case of the

ybrid materials. The simplest explanation for this phenomenon is

o assume that there is no spatial heterogeneity in the solid silica-

elatin backbones [78] . In other words, the hybrid backbones scat-
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Fig. 4. Particle size distribution of wet silica and silica-gelatin hybrid aerogel parti- 

cles measured by laser diffraction light scattering (LDLS). (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version 

of this article.) 

Fig. 5. Zeta potential ( E Z ) of silica and silica-gelatin aerogel microparticles as func- 

tion of pH. 
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er as homogeneous materials, and contrast is the sole result of

orosity. 

In order to verify this theory, contrast-variation SANS experi-

ents were performed. Silica and silica-gelatin aerogels were hy-

rated (3.3 g liquid / g aerogel) with 1:2 H 2 O:D 2 O mixture. The

cattering length density of this mixture is ca. equivalent with that

f silica [77] . Thus, the resulting scattering curve of hydrated silica

erogel is practically equivalent to the background. Interestingly,

lmost identical, uninformative scattering was measured for the

ydrated hybrid aerogels as well, regardless of their gelatin con-

ent ( Fig. 3 B). The most feasible explanation is that the contrast

f the silica-gelatin matrix approximately matches that of the pure

ilica. This is a strong indication that the hybridization of the silica-

elatin backbone is homogeneous at the molecular level, i.e. gelatin

oes not form a “layer” on pure silica, or shows any spatial prefer-

nce [78] . 

.2. Pore structure and morphology of hydrated aerogels 

Water readily interacts with both silica and silica-gelatin aero-

els. Two concerted processes take place. The solid backbone is hy-

rated, and in the same time, the monolithic structure partially

isintegrates to yield microparticles [40 , 47] . Hydration can take

ifferent extents based on the composition of the aerogel back-

one, which can lead to the alteration of the morphology and the

ore structure of the wet aerogel. The disintegration of the aerogel

onoliths is the result of breaking the bonds between the primary

uilding blocks in the solid network due to the surface tension of

ater and minor hydrolytic reactions. As a result of the two cou-

led processes, aerogel microparticles form in water. The pore net-

ork of these wet particles either retains the original structure of

he dry solids, or gets distorted due to the extensive hydration of

he backbone. 

The kinetics of hydration of the silica and silica-gelatin aerogels

s fast, and complete in a few seconds when the solid matrices are

ooded with water. 

.2.1. Particle size of hydrated aerogels 

Particle size distribution of silica and silica-gelatin aerogels

ere measured after wet grinding the samples using a standard-

zed protocol (cf. Section 2.4 .). This protocol ensures that the differ-

nce in particle size is exclusively due to the different composition

f the aerogels, which in turn governs their hydration and degrada-

ion. Size distribution curves measured by image analysis of micro-

raphs and by laser diffraction light scattering (LDLS) agree well;

he maximum difference in peak position is 12% among parallel

easurements. 

Both the position of the maximum and the width of the par-

icle size distribution curve decrease systematically by increasing

elatin content ( Fig. 4 ). In hybrid aerogels, the covalent silica net-

ork is disrupted by the incorporation of gelatin protein molecules

hat are bound to each other only by weak secondary forces. These

econdary bonds easily break upon the hydration of the backbone.

hus, high gelatin content facilitates the degradation of the aerogel

onoliths as a consequence of the facile hydration of the protein

olecules. 

.2.2. Zeta potential of aerogel particles 

Besides the size of the hydrated aerogel microparticles, their

harge has a fundamental influence on the drug delivery proper-

ies, as well, because it controls the strength of the interactions

etween the aerogel backbone and the drug molecules. 

The zeta potential ( E Z ) of hybrid aerogel particles was measured

etween pH = 3.0 and pH = 7.4 ( Fig. 5 ). The zeta potential of sil-

ca aerogel is + 6 ± 1 mV at pH = 3.0, and −28 ± 2 at pH = 7.4.

he isoelectric point of silica is at ca. pH = 3.5, which is in good
greement with previously reported values [79] . The zeta potential

f the hybrid aerogels systematically increases with their increas-

ng gelatin content at all pH values. The proportionality between

 Z and gelatin content is well-expressed at acidic pH (positive E Z 
alues), but not at neutral pH (negative E Z values). The hybrid of

4 wt.% gelatin has a maximum E Z of + 22 ± 3 mV at pH = 3.0

nd −22 ± 2 mV at pH = 7.4. The isoelectric point of aqueous Type

 gelatin is reported to be at ca. pH = 5.5 [80] , that is consistent

ith the present results. 

.2.3. NMR cryoporometry 

The theory and application of NMR cryoporometry are dis-

ussed in detail by Strange et al., Petrov and Furó [51 , 52] . The

rimary information in NMR cryoporometry is the melting and

reezing point depressions of probe liquid droplets confined inside

icro-, meso– and/or macroporous solid networks. This informa- 

ion can be translated to droplet size distribution, which is equiv-

lent to pore size distribution when the liquid completely fills the

ores of the network [53] . In this case, the dominating shape of the

ores is also reflected in the primary melting – freezing hysteresis

urves. 

First, NMR cryoporometry measurements were conducted with

et silica and silica-gelatin aerogels containing enough water to

ompletely fill their pores. In the case of the silica aerogel, the

ryoporometry curves indicate that the pore structure of the hy-

rated aerogel is nearly identical to that of the dry gel. The calcu-

ated pore size distribution is almost in complete agreement with
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Fig. 6. NMR cryoporometry of silica-gelatin hybrid aerogels in cyclohexane. The filling of the pores is complete, and the amount of the bulk-liquid and the pore-liquid is 

ca. equivalent. Panel A: melting – freezing hysteresis curves. Panel B: Volume equivalent pore size-distribution curves calculated from the data in panel A. The calculation is 

based on the modified Gibbs-Thomson equations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

Structural parameters of silica-gelatin hybrid aerogels estimated from primary and 

derived NMR cryoporometry data (cf. Fig. 6 ). 

V p 
NMR (cm 

3 /g) a %mesopore b %macropore b 

4 wt.% gelatin 3.4 ± 0.5 38 62 

11 wt.% gelatin 4.5 ± 0.5 < 10 > 90 

24 wt.% gelatin 4.3 ± 0.5 < 10 > 90 

a Total specific pore volume. 
b Cumulative volume equivalent mesopore and macropore contributions derived 

from pore size distribution. 
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the one measured by N 2 porosimetry in the dry state [40 , 47] . The

general conclusion is that during the hydration of silica aerogels,

the monoliths disintegrate into microparticles (cf. Fig. 4 ), but the

silica network and the pore structure of the microparticles remain

intact, at the same time they are filled with water [40 , 47] . 

Interestingly, no meaningful NMR cryoporometry curves could

be recorded for fully hydrated silica-gelatin hybrid aerogels, re-

gardless of their gelatin content. A melting – freezing hystere-

sis loop was present in the case of the aerogel with the low-

est (4 wt.%) gelatin content, but well-expressed steps were absent

[40 , 47] . In the case of the hybrids with higher gelatin content,

practically no melting and freezing point depressions were de-

tected. This can be attributed to the strong hydration of the hybrid

backbone which alters the pore structure and yields a hydrogel-

like matrix [81] . Unfortunately, the extent of the alteration of the

pore network compared to the dry state cannot be deduced from

these cryoporometry measurements. 

In order to prove that the observed collapse of the pore net-

work can be exclusively attributed to the hydration of the hybrid

aerogels, another probe liquid was implemented for cryoporome-

try [81] . Cyclohexane is a liquid that well solvates both silica and

gelatin, and it is a widely used probe for cryoporometry. Repre-

sentative melting – freezing curves and corresponding pore size

distribution plots are shown in Fig. 6 . The 1:2 ratio appearance

of the melting – freezing hysteresis suggests the dominating pres-

ence of spherical pores in all aerogels [51] . The pore size distribu-

tion curves calculated from cyclohexane NMR cryoporometry are in

excellent agreement with those measured by N 2 porosimetry for

the dry aerogels (cf. Figs. 2 B and 6 B). This means that the pore

structures of the dry aerogels are preserved upon solvation by cy-

clohexane. The mesopore and the macropore contributions were

calculated from the size distribution curves in Fig. 6 B. Total spe-

cific pore volume ( V p 
NMR ) was calculated from the primary NMR

cryoporometry data, specifically from the height of the step as-

sociated with the freezing/melting process (see integral values in

Fig. 6 A). The ratio of the height of this step and the maximum in-

tegral value measured at the complete melting of the probe liquid

is directly proportional to the ratio of the liquid filling the pores

and the total liquid content of the sample. This calculation method

is described in our earlier publication [40] . The estimated struc-

tural parameters are given in Table 3 for each silica-gelatin aero-

gel. The results support the conclusions drawn from the evaluation

of the SEM pictures and the N 2 porosimetry data for the dry aero-

gels, i.e. macropore contribution significantly increases with the in-

(  
reasing gelatin content of the hybrid aerogels. Importantly, the es-

imated specific pore volumes ( V p 
NMR ) of the silica-gelatin aerogels

re approximately the same regardless of their gelatin content. This

s only an apparent contradiction with the N 2 porosimetry data,

here V p decreases with increasing gelatin content (cf. Table 1 ).

nfortunately, the V p value is not representative when the macrop-

re contribution is high, because pores larger than 200 nm are ex-

luded from the N 2 porosimetry analysis. Thus, it is more realistic

o accept the V p 
NMR values measured in cyclohexane to represent

he specific pore volumes of the pristine silica-gelatin aerogels. 

As a summary, NMR cryoporometry measurements verify the

resence of a strong, specific interaction between water and silica-

elatin hybrid aerogels. This interaction results in such alterations

nd distortions of the pore networks that do not take place in

ther solvents. 

.2.4. NMR diffusiometry 

The observed self-diffusion coefficient ( D obs ) of a liquid is al-

ered compared to the bulk phase, when the liquid is confined in

he pores of a solid network. The apparent self-diffusion coefficient

s not independent of the length of the observation time of the dif-

usion experiment ( �) in confinement. At limiting-short observa-

ion times, the molecules travel shorter distances than the size of

he pores and do not collide with walls. In this case, the observed

elf-diffusion coefficient is equivalent to that of measured in the

ulk phase [59 , 60] . At longer observation times, collisions with the

alls reduce the effective distance covered by the molecules, and

he apparent self-diffusion coefficient is lowered. Therefore, a suffi-

iently high observation time should be chosen if the goal of diffu-

iometry is to obtain information on the confinement of the liquid

nd on the permeability of the solid network [55–58 , 60] . 

It is possible that water is found in multiple diffusion domains

e.g. in the primary hydration sphere and as a bulk phase) in the
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Fig. 7. NMR diffusiometry of hydrated silica-gelatin hybrid aerogels. Two diffusion 

domains are present in aerogels of lower gelatin content (4–11 wt.%) at low water 

content ( < 2.0 g/g), and this is reduced to 1 diffusion domain at high water con- 

tent. Only one diffusion domain is present in the hydrated 24 wt.% gelatin aerogel, 

regardless of its water content. (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 
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ame sample. If water molecules in the different domains exchange

lowly with each other on the timescale of diffusiometry, more

han one apparent self-diffusion coefficients are measured for the

ame sample [55–58] . 

When the pores of silica aerogel are completely filled with wa-

er, only one characteristic diffusion domain is present [47] . The

alue of the single observed self-diffusion coefficient is set by the

atio of confined water in the pores and bulk water. This indicates

hat i ) the primary hydration sphere of the silica network is not

arge enough to form an independent diffusion domain in the sam-

le, and ii ) the interchange of water in the pores and in the bulk

hase is facile. Accordingly, the pore network of hydrated silica

erogel is open and permeable [47] . 

The apparent self-diffusion coefficient of water ( D obs ) in hy-

rated silica-gelatin aerogels was measured by PGSE NMR exper-

ments. The effect of 2 variables was tested: i ) the water content

f the hybrid aerogel samples, and ii ) the observation time of the

iffusion experiments [82 , 83] . First, it was established that the D obs 

alues are independent of the observation time at � ≥ 40 ms in all

ydrated silica-gelatin aerogels (cf. Fig. S1 in the Supporting Infor-

ation). Thereafter, the water content of each sample was varied

nd its effect on D obs was deduced by using high observation times

or the measurements. 

Two diffusion domains were detected for aerogels of lower

elatin content (4–11 wt.%) at water contents below 2.0 g/g

 Figs. 7 and S1). The slower diffusion domain is characteristic for

ater molecules in the primary hydration sphere of the hybrid

ackbone, [48] while the faster domain represents water molecules

oving more freely inside the pores. The 2 domains are in slow

xchange with each other, and the slower diffusion domain van-

shes when the water content of the sample is increased. After the

aturation of the hydration sphere, most of the water diffuses in

he pores and this phase dominates the NMR signal. Interestingly,

nly 1 diffusion domain is present in the hydrated 24 wt.% gelatin

erogel, regardless of the water content of the sample ( Figs. 7

nd S1). This single D obs value systematically increases with in-

reasing water content, corresponding to a less and less compact

on-porous structure. Hydrogels typically show this behavior [84] .

inally, at high water content, all hydrated silica-gelatin aerogels

isplay approximately the same, single apparent self-diffusion

oefficient for water, independently of the gelatin content of the

atrix ( Fig. 7 ). The highest observed self-diffusion coefficient of

ater is ca. 2.0 × 10 –5 cm 

2 s –1 in the aerogel samples, while that

s 2.3 × 10 –5 cm 

2 s –1 in the pure bulk phase at 25 °C [61] . 
These results indicate, that hybrid aerogels with lower gelatin

ontent retain a more or less permeable pore structure when

reated with water, but hydrated 24 wt.% gelatin aerogel attains

ydrogel-like characteristics even at low water content. 

.2.5. NMR relaxometry 

The theory for interpreting 1 H NMR relaxation data used to

escribe the wetting mechanisms of porous solids is adopted

rom prior literature [62 , 63 , 65 , 67] . The relaxation rates of pro-

ons in water molecules heavily depend on the localization and

he environment of the molecules in the sample. Generally, water

olecules in the hydration sphere (adsorption layer) of a solid ma-

rix and molecules confined in small pores relax faster than water

olecules in the bulk liquid. The wetting mechanism of a porous

olid can be deduced by titrating it with water and measuring the

 2 relaxation time as function of the water content of the sample

55 , 62 , 63 , 65] . 

In the case of hydrophilic porous solids, water molecules first

dsorb on the surface forming mono- and multilayers. Water ad-

orbed on a hydrophilic surface is characterized by a short trans-

erse relaxation time ( T 2s ) compared to bulk water ( T 2b ). When

olecules in these 2 domains exchange on the timescale of relax-

metry, the observed T 2 relaxation time can be given as the com-

ination of the 2 limiting relaxation times: 

1 

T 2 
= 

V s 

V 0 

× 1 

T 2s 

+ 

V b 

V 0 

× 1 

T 2b 

(5) 

here V 0 is the total volume of water in the sample, V s and V b are

he volumes of water on the surface and in the bulk phase, respec-

ively ( V 0 = V s + V b ), and T 2 is the observed transverse relaxation

ime. 

When the amount of water is increased in the solid sample, the

lling ratio of the pores is higher. At higher filling ratios, multi-

le quasi-bulk regions (puddles) can form atop the primary wa-

er layer, e.g. in the corners of concave pores. If these puddles

re large, the exchange of water molecules between the quasi-

ulk phase and the primary layer can be slow enough for the ob-

ervation of multiple T 2 relaxation times [67] . Multiple relaxation

imes can also be observed when water is located in spatially sep-

rated spots in the porous matrix. An example is a mixed micro-

nd mesoporous matrix that has well separated micropores. These

icropores can be filled before the mesopores, and small bottle-

ecks can hinder the exchange of water among different pores at

oderate filling ratios. However, the spatial separation of water is

ncommon in highly hydrophilic porous solids, because thermo-

ynamic preferences dictate the formation of a thick, continuous

ater layer throughout the network [85] . 

In the present study, relaxometry was performed with hydrated

ilica and silica-gelatin aerogels of different water content (i.e. at

ifferent filling ratios). Inverse Laplace transformation of primary

ata shows the presence of only one water relaxation domain in

oth the silica and the hybrid samples until a mass ratio of 0.5 g

ater / g dry aerogel. At higher water contents, 2 relaxation do-

ains are present in all samples, as seen in Fig 8 . (Inverse Laplace

lots are shown Fig. S2 in the Supporting Information). In accor-

ance with the classical theory, we propose that the faster relax-

tion domain represents the hydration sphere of the aerogel back-

one, and the slower relaxation domain represents water situated

arther from the pore walls, e.g. in puddles forming in focal points

f the aerogel network. 

For the quantitative evaluation of the relaxometry data of wet

erogels, first, the measured T 2 relaxation times are plotted as

unction of water content ( Fig. 8 A), and second, the reciprocal

alue of T 2 is plotted as function of the reciprocal value of fill-

ng factor f ( Fig. 8 B). The total specific pore volumes of the wet

erogels, representing the unity filling factor ( f = 1), were esti-
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Fig. 8. NMR relaxometry of hydrated silica and silica-gelatin hybrid aerogels. Two relaxation domains are present for each aerogel at mass ratios higher than 0.5 g water / 

g aerogel. Panel A: measured T 2 relaxation times as function of water content. Panel B: reciprocal T 2 as function of reciprocal filling factor ( f ) for the fast relaxation domain. 

Panel C: normalized amplitude of each relaxation domain (cf. panel A). (For interpretation of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 
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mated from NMR cryoporometry data and are referred to as V p 
NMR 

( Table 3 ). Therefore, the filling factor was calculated versus ca.

4.0 cm 

3 /g total specific pore volume ( f = 1) for all aerogels. The

mass ratio values of added water were converted to volume by us-

ing 1.00 g/cm 

3 for the density of water. 

The 1/ T 2 vs. 1/ f plots are meaningful only when constructed

for the uppermost water layer, i.e. for the slowest relaxation (high

T 2 ) domain. As seen in Fig. 8 B, the 1/ T 2 vs. 1/ f plots are linear,

and thus, follow the theoretical equation derived by Simina et al.:

[63] 

1 

T 2 
= ξ

S 

V 0 

1 

f k 
+ 

1 

T 2 b 
(6)

Here, ξ is the surface relaxation strength, S is the specific sur-

face area and V 0 is the total pore volume. The value of the inter-

cept, i.e. the bulk water relaxation rate was fixed at 1/ T 2b = 0.45

s –1 . The k exponent conveys information on the wettability of the

surface and the saturation mechanism of the pores. As demon-

strated by the linearity of the plots in Fig. 8 B, the value of k is

practically 1 for all hydrated aerogels. Overall, the 1/ T 2 vs. 1/ f plots

suggest that the total amount of surface water contributes to the

fast relaxation domain. Thus, the filling of the pores of the aero-

gels is assumed to be a continuous process, which begins with the

formation of a uniform, thick adsorption layer of water through-

out the solid network. At higher water contents (filling factors),

puddles appear in focal points of the network that form a quasi-

bulk phase inside the pores. The k = 1 value suggests that there

is a strong interaction between the homogeneous hydration layer

and the puddles filling the pore interiors. Importantly, there are no
patially separated, preferred spots (e.g. inside micropores) for wa-

er accumulation. These assumptions are reasonable, since both sil-

ca and silica-gelatin are extremely hydrophilic matrices, [48] thus

hermodynamic preferences dictate the continuous and homoge-

eous filling of the pores. 

The normalized amplitudes of the fast and slow relaxation do-

ains of water in the aerogels (cf. Fig. 8 A) are given as function

f water content in Fig. 8 C. The amplitude of a domain is given by

he size of its inverse Laplace peak, and normalized amplitude is

alculated by dividing the amplitude with the sum of the ampli-

udes of the decays. As seen in Fig. 8 C, the normalized amplitudes

f the two domains are in close correlation with each other in ev-

ry aerogel sample, especially at low water content ( < 2.0 g/g).

ccording earlier considerations, this can be attributed to a mod-

rately fast exchange between the 2 relaxation domains of water

n wet aerogels [62 , 66] . The amplitudes are more separated in the

ase of the hydrated silica-gelatin aerogels, meaning that water

xchange is slower in these materials than in the hydrated silica

erogel, but it is still not in the slow exchange region. This correla-

ion of the amplitudes strengthens the above described mechanis-

ic theory: the pores of silica and silica-gelatin aerogels are filled

y water in a continuous process which forms interconnected lay-

rs. As the water content increases, larger puddles form inside the

ores, and water in these puddles exchange slower with the sur-

ace water layer. 

One remarkable difference can be observed between the hydra-

ion mechanism of silica and silica-gelatin aerogels. The observed

rend for the T 2 values of hydrated silica aerogel is typical for

olid, hydrophilic mesoporous materials that retain their open pore
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Fig. 9. Small angle neutron scattering (SANS) curves of silica and silica-gelatin hy- 

brid aerogels completely filled with D 2 O (3.3 g liquid / g aerogel). Solid lines rep- 

resent data fitting to Beaucage model. Estimated structural parameters are given in 

Table 2 . 
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tructures, characteristic at their dry state, even when completely

lled with water [65] . In contrast, there is an upward break in the

rend of the T 2 relaxation times of silica-gelatin samples at around

.0 g/g water content, as seen in Fig. 8 A. At water contents lower

han this threshold value, the wetting process of silica and silica-

elatin is practically the same, and can be attributed to the hy-

ration of a hydrophilic mesoporous solid network. At high filling

actors, the T 2 values steeply increase in silica-gelatin samples for

oth of the interchanging relaxation domains. This indicates that

ater is no longer bound to well-defined solid surfaces or con-

ned in well-defined pores in these samples. Thus, it is reasonable

o propose that at higher water content ( > 2.0 g/g), silica-gelatin

atrices reach a critical level of hydration that induces the forma-

ion of hydrogel-like structures which is parallel to the extensive

eformation of the hydrated aerogel backbone. This process is also

ell-expressed by the noted increase of the observed single self-

iffusion coefficient of water by increasing water content in the

ase of the 24 wt.% gelatin aerogel (cf. Fig 7 ). 

.2.6. SANS of hydrated aerogels 

The SANS scattering curves obtained for silica and silica-gelatin

erogels saturated with 3.3 g/g D 2 O are shown in Fig. 9 . These

esults represent the homogeneously hydrated (completely filled)

tates of the aerogels. No hydration microdomains were observed

86] . 

All scattering curves can be adequately fitted with the Beaucage

odel. The estimated R g and p values are given in Table 2 . The gy-

ation radius slightly decreases upon the hydration of each aerogel,

nd p increases. The most obvious structural changes, compared to

he dry state, can be observed above 11 wt.% gelatin. The scatter-

ng curve for the hydrated 24 wt.% gelatin hybrid contains infor-

ation only in the Porod region meaning that the characteristic

esoporous network does not exist anymore in the sample. The

alue of the Porod exponent is highly above 4, which depicts a

tructure where the regions of different contrasts are separated by

 gradient zone, instead of a sharp border. This is in-line with the

tructural information deduced from NMR diffusiometry and relax-

metry. The pore network of the hybrid aerogel with the highest

elatin content collapses in water and forms a dense hydrogel-like

atrix. 

.3. Summary of structural characterization 

Results for dry aerogels by SANS, SEM and N 2 porosimetry are

n good agreement with each another. All techniques suggest that
he solid frameworks of the hybrid aerogels are somewhat looser

nd less barred than that of the parent silica aerogel. The contri-

ution of the macropores to the porosity is higher, and the total

esopore volume decreases with increasing gelatin content. Con-

rast variation SANS experiments prove that silica-gelatin is hy-

ridized on the molecular level in the solid backbones of the aero-

els. Thus, gelatin does not form an outer “layer” on the inner pore

alls, or shows any spatial preference in the matrix. 

Nuclear magnetic resonance methods (NMR cryoporometry, dif-

usiometry and relaxometry) and SANS showed that the well-

efined mesoporous structure of pristine silica aerogel is preserved

hen the material is immersed into water. The pore-structures of

ilica-gelatin hybrid aerogels significantly change upon hydration.

t low gelatin content (4–11 wt.%), the structure is permeable and

pen, yet not as open, as it is in its dry state. Hybrid aerogels

ith high gelatin content (18–24 wt.%) show hydrogel-like char-

cteristics in water, because their open pore structure collapses

ue to the extensive hydration of their backbones. A continuous,

oft matrix forms from these hybrids. Gelatin content also gov-

rns the disintegration of the monolithic matrices. Aerogels of high

elatin content yield smaller microparticles in water, because the

econdary forces between the protein molecules of the backbone

re readily disrupted by hydration, in contrast to the limited hy-

rolysis of the covalent silica network. 

.4. Mechanism of drug release from aerogel carriers 

.4.1. Structure of active ingredient in aerogel 

Silica and silica-gelatin aerogels were impregnated with ibupro-

en and with ketoprofen by using the well-established technique

f adsorptive precipitation in supercritical CO 2 . The optimization

f this technique for the impregnation of silica and silica-gelatin

erogel matrices has been carried out before [24 , 40 , 41] . 

The ibuprofen content of the loaded aerogels varies between 19

nd 24 wt.%, and the ketoprofen content varies between 11 and

5 wt.% (Tables S1 and S2 in the Supporting Information). It is

roved by XRD that the active ingredients are amorphous in the

oaded aerogels. The spatial distribution of the active ingredient is

omogeneous on the macroscopic level, as proved by FT-IR mea-

urements. This was ensured by the constant stirring and the slow

epressurization of the autoclave during adsorptive precipitation. 

.4.2. Design of drug release experiments 

The loading of the drugs was realized by using dry, milled and

ieved aerogel powders. These loaded aerogel particles were used

n the release tests. The loaded aerogel particles spontaneously dis-

ntegrate in aqueous media to microparticles, eventually giving the

haracteristic size distributions, as seen in Fig. 4 . 

The detailed conditions of the drug release experiments and the

olubilities of the amorphous forms of IBU and KET are given in Ta-

les S1 and S2 in the Supporting Information. Sink conditions were

ulfilled in the release experiments of both ibuprofen and ketopro-

en in pH = 7.4 PBS, but not in pH = 2.0 HCl solution. At complete

issolution in HCl, the concentrations of IBU and KET are equiva-

ent to ca. 80% and 40% of the respective solubilities. Representa-

ive release curves are shown in Figs. 10 and S3 for KET and in Fig.

4 for IBU (in the Supporting Information). 

It should be noted for the profound evaluation of the drug re-

ease experiments, that both IBU and KET are amorphous in the

erogel carriers. In general, the amorphous forms of drugs have

igher solubilities and dissolve faster than the crystalline forms

87–91] . Independent drug release experiments were performed in

H = 2.0 HCl solution by using different weights of loaded aerogel

nd equal volume of release medium in each test. This ensures that

he final drug concentration is different in each test. When drug

elease is given as the percentage of the total amount of loaded
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Fig. 10. Drug release experiments. The dissolution of ketoprofen from silica-gelatin hybrid aerogels containing 4–24 wt.% gelatin in pH = 2.0 HCl solution (A) and in pH = 7.4 

PBS (B). Continuous lines represent model fitting: yellow – Hopfenberg, red – Peppas. Magnified versions of the same plots are given in Fig. S3 in the Supporting Information. 

Mass of loaded aerogel: 1.50 mg, volume of release medium: 3.0 mL, T = 37.0 °C, 300 rpm stirring. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 
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drug, the independent release curves ideally overlap, as seen in

Fig. S5 in the Supporting Information. This proves that the release

of the amorphous IBU and KET is independent from the absolute

concentration of the drug in the medium, even when sink condi-

tions are not fulfilled, i.e. in HCl solution. 

3.4.3. Evaluation of drug release experiments 

The rate of drug release from the hybrid aerogel of the lowest

gelatin content (4 wt.%) is one order of magnitude higher than the

rate of drug release from the parent silica aerogel carrier. A pos-

sible explanation for this phenomenon has been proposed before

[40] . In conclusion, the facile hydration and erosion of the 4 wt.%

gelatin matrix is the key factor leading to the rapid desorption

and dissolution of the drugs. Naturally, the rate of drug release de-

pends on pH, because the strength of the interactions between the

drug molecules and the pore walls is pH-dependent and changes

with the charges (protonation states) of these [2 , 92] . Protonated

molecules form hydrogen bonds, therefore their release is slower

than that of the deprotonated species. 

Interestingly, the kinetics of drug release displays an obvious

correlation with the gelatin content of the hybrid aerogel carriers

as seen in Figs. 10 , S3 and S4. High gelatin content (11–24 wt.%)

alters both the rate and the mechanism of drug release. The initial

stage of release becomes significantly slower, and the overall shape

of the kinetic curve reveals a diffusion controlled release mecha-

nism. These characteristics are the most expressed in the case of

the 24 wt.% gelatin carrier. 

In order to confirm the qualitative mechanistic assumptions, the

release curves were fitted to widely accepted semi-empirical re-

lease models [45 , 93] . Drug release curves in the case of the 4–

11 wt.% gelatin aerogels can be successfully fitted by using the

Hopfenberg model. The Hopfenberg model is a semi-empirical

model used to describe drug leaching from eroding drug carriers

where a zeroth order surface detachment is the limiting step of

the release: 

M t 

M max 
= 1 − ( 1 − k obs 1 t ) 

n 1 (7)

Here, M t and M max are the cumulative absolute amounts of drug

released at time t and at infinite time, respectively. The observed

rate constant is k obs1 , which depends on the initial concentration of

drug in the system and on the physical dimensions of the carrier.

Parameter n 1 is a shape factor representing the geometry of the

carrier: spherical ( n 1 = 3), cylindrical ( n 1 = 2) or slab ( n 1 = 1).

The shape factor was fixed at n = 3 for fitting release curves in
1 
he case of the aerogel carriers. The estimated kinetic parameters

re given in Table S3 in the Supporting Information. 

In the case of the aerogels of low-gelatin content, the kinetic

urves start with a steep increase, i.e. burst release in the first 30 s

cf. Figs. S3 and S4). An initial burst, such as this, is characteristic

or the release curves of erosion driven delivery systems. 

On the other hand, it is natural to assume that gelatin forms a

ydrogel in aqueous media, thus using it as a matrix component

ay lead to slower, diffusion controlled drug release. A versatile

mpirical model to describe diffusion controlled release of drugs is

he Peppas model: 

M t 

M max 
= k obs 2 t 

n 2 (8)

here M t and M max are the cumulative absolute amounts of drug

eleased at time t and at infinite time, as defined previously. The

bserved rate constant is k obs2 , which incorporates the structural

nd geometric characteristics of the delivery system. Parameter n 2 
s the release exponent and its value can be indicative of the mech-

nism of the limiting diffusion. The limiting value of the expo-

ent changes with the geometry of the carrier vehicle and it also

epends on the particle size distribution of the delivery system.

rug release curves measured in the case of the 18–24 wt.% gelatin

ybrid aerogel carriers cannot be fitted by using the Hopfenberg

odel, but adequate fits were obtained by using the Peppas model

t fixed n 2 = 0.43 value until ca. 65% cumulative release. (The limit

f 65% is naturally set by the model itself, because the Peppas

odel is a short-time approximation.) [94 , 95] . The estimated ki-

etic parameters are given in Table S3 in the Supporting Informa-

ion. 

It is evident by examining the first 30 s of the experimental ki-

etic curves, that the erosion controlled initial burst release is also

uppressed in the case of the high-gelatin hybrid aerogel carriers. 

.4.4. Mechanism of drug release 

Molecular-level considerations on the mechanism of drug re-

ease from hybrid silica-gelatin aerogels can be drawn by correlat-

ng the results of the structural characterization of the wet carriers

nd the drug release kinetic results [1 , 3] . At low gelatin content

4–11 wt.%), an erosion controlled fast release process takes place,

here the facile hydration of the matrix accelerates the desorption

f the drug. The initial aerogel monoliths disintegrate to micropar-

icles, and the adsorbed amorphous drug gets in contact with the

elease medium through the open pores. The strong interaction be-

ween the water molecules and the aerogel backbone repels the
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dsorbed drug leading to its fast release, as further evidenced by

he initial burst in the release curves [40 , 46] . Water hydrates the

ilica-gelatin backbone, but the gelatin content is too low for the

ormation of a dense hydrogel at 4–11 wt.% gelatin (cf. Section 3.3 ).

he pores remain open and permeable for the drug molecules. 

On the other hand, higher gelatin content (18–24 wt.%) signif-

cantly alters the release mechanism. In this case the disintegra-

ion of the particles also takes place, but now the gelatin content

s sufficiently high for the formation of a continuous hydrogel in

he presence of water, that practically entraps loaded molecules.

inally, the hindered diffusion of the drug through this hydrogel

tructure becomes the controlling factor that limits the release

ate. The formation of the hydrogel also suppresses the initial burst

elease in the case of hybrid aerogels of high-gelatin content. 

The liberation of active ingredient can be slightly altered by the

rotonation of the drug molecules in acidic media, where the pro-

onated species form H-bonds with polar surface groups [2 , 92] . The

inetic curves recorded at pH = 7.4 stop at ca. 90% even at the long

ime-scale. This suggest that the thermodynamic-driven partition-

ng of the active ingredient between the carrier and the aqueous

edium has an additional influence on drug release at pH = 7.4

96] . 

. Conclusions 

Silica-gelatin aerogel based drug delivery systems developed

n previous studies have now been investigated by an array of

omplementary physico-chemical characterization techniques. Such 

tudies have not been performed before. The conclusions drawn

rom these materials chemistry related measurements are well-

ligned with the quantitative drug release characteristics of the de-

ivery systems in a wide range of composition. 

Evidently, the release of the amorphous drugs from the aero-

els shows a significant correlation with the composition of the hy-

rid aerogels. In addition, the composition of the hybrids governs

heir mechanism of wetting and hydration. Aerogels of low gelatin

ontent (4–11wt%) are typical eroding carriers that rapidly release

he loaded drugs, even show an initial burst. On the other hand,

rug release is significantly slower from aerogels of high gelatin

ontent (18–24 wt.%), and shows retarded characteristics. While all

erogels have approximately the same porosity and morphology in

heir dry state, and disintegrate into approximately the same sized

nd charged microparticles in water, the pore structures of these

et microparticles are radically different for the hybrids of differ-

nt gelatin content. Namely, silica-gelatin aerogels of low gelatin

ontent (4–11 wt.%) retain their open porous structure in water

similarly to the parent silica aerogel), but the pores of high-gelatin

18–24 wt.%) aerogels collapse due the facile hydration of the hy-

rid backbone, leading to a dense hydrogel structure. This continu-

us, soft hydrogel entraps loaded drug molecules, and thus, repre-

ents a diffusion barrier in drug release. Burst release is also sup-

ressed in the case of hybrid aerogels of high gelatin content. 

The burst release and the relatively high rate of additional drug

elease even at 24 wt.% gelatin content make this hybrid less com-

etitive to achieve sustained release, than e.g., the preparation of

oated aerogels [31 , 33] . Still, the simplicity and the versatility of

he silica-gelatin aerogels are attractive. 

The main point of the present study is to show that the shifting

f the release mechanism from erosion facilitated to diffusion con-

rolled in the case of the hybrid aerogels is the direct consequence

f the hydration induced structural changes in the backbone in cor-

elation with its gelatin content. A molecular-level explanation is

iven for the first time for the structure-activity relationship of

 hybrid aerogel based drug delivery system. When considering

he generalization of the above conclusions, it should be empha-

ized, that the above discussed characteristics are most probably
alid only for inorganic-organic matrices that are hybridized on the

olecular level. Importantly, contrast variation SANS experiments

rove that this criterion is fulfilled for the present silica-gelatin

erogels. No spatial separation of gelatin, e.g. the formation of a

coating” takes place even on the molecular level in the porous

erogels. 
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