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Abstract—Cancer therapies, like chemotherapy are generally
based on heuristic approaches and expert knowledge. Introducing
mathematical and engineering methods into the therapy design
process has great potentials in therapy optimization. We in-
vestigate the application of a discrete time, impulsive therapy
generation algorithm for a model that describes living tumor and
dead tumor volume dynamics, drug level dynamics, using mixed-
order pharmacokinetics and input saturation. We propose an
algorithm that calculates low doses of injections that are required
to reach or approximate the best results that can be achieved by
the application of the drug. The algorithm is tested based on
virtual patients (mice) whose parameters are identified based
on measurement from experiments with pegylated liposomal
doxorubicin as cytotoxic agent and breast cancer as tumor. The
algorithm tested in silico shows much better performance than
the protocol used in the experiments.

Index Terms—breast tumor, binary search, cancer treatment

I. INTRODUCTION

In medical practice, treatment of tumor is designed mostly
based on expert knowledge using heuristic methods, see e.g.,
[1]. Model-based personalized treatment is a promising future
direction of therapy design that combines mathematical, en-
gineering and physiological knowledge. Model-based therapy
design has the potential to provide the optimal therapy, the
limitations of this approach are constrained only by the accu-
racy of the underlying model.

The engineering knowledge is applied to physiological con-
trol problems usually by considering continuous time systems
and applying discrete time approximation of continuous time
controllers. The most common applications, like artificial
pancreas [2]–[5], or BIS control in anesthesia [6]–[8], allow
the application of this approach, since the control signals (i.e.,
drug injections) can be delivered with a relatively low sam-
pling time (measured in seconds), allowing efficient discrete
time approximations. In most of the papers dealing with tumor
therapies, the control problem was considered a continuous
time problem as well [9]–[13]. However, the time between
the tumor treatments is usually much larger (it is measured
in days, compared to the previous examples where the time
between the treatments is typically measured in seconds),
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moreover, the control signals are injections, thus the practical
tumor treatment problem is a discrete time impulsive control
problem.

Impulsive therapy design for antiangiogenic tumor treatment
has been considered as an open-loop model predictive control
problem in [14] where the minimal required dose to achieve
the specified tumor volume trajectory was calculated using
binary search algorithm based on the Hahnfeldt model [15].
Impulsive control based on the Hahnfeldt model and its Car-
leman discretisation is carried out in [16]. Impulsive control
of chemotherapy based on a predator-prey model is elaborated
in [17].

We modify the algorithm described in [14] to tailor it to
a tumor growth model that can describe dead tumor volume
dynamics and pharmacodynamics of the drug [18], which
is validated by mice experiments with chemotherapy, using
pegylated liposomal doxorubicin (PLD) as cytotoxic agent
[1]. The tumor growth model describes the dynamics of
the living and dead tumor cells, and the drug level. In the
experiments, the measured values are the sum of the living
and dead tumor cells, which are considered as the output of
the system. The pharmacodynamics of the drug is considered
with a Hill function, and we use mixed-order pharmacokinetics
to describe drug depletion. The differential equations of the
model are discussed in Section II.

The modified search algorithm that provides the therapy
is introduced in Section III. Due to the dead tumor volume
dynamics, the sum of the living and dead tumor volumes
increases initially when the therapy is started, thus an ex-
ponential decay can not be followed. Moreover, the input
saturation caused by the pharmacodynamics further constrains
the class of attainable trajectories, thus we generate the desired
trajectory only one step ahead based on the model and the
actual states as initial conditions. The desired output of the
system for the next step is the achievable lowest volume,
and the search algorithm looks for the input that is required
to get close to this value. The distance of the achieved and
desired volume is characterized by a tuning parameter, which
determines the order of magnitude of the dosages and the
evolution of the desired trajectory as well.

Application of the search algorithm on the tumor model
is demonstrated in Section IV. The results show that the
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algorithm performs well on the tumor model, and we can get
much lower doses than the protocol. However, these results
are only valid if the model is valid, and the parameters in the
model are accurate.

II. MODEL

The differential equations defining the system dynamics are
given by

ẋ1 = (a− n)x1 − b
x1x3

ED50 + x3
(1)

ẋ2 = nx1 + b
x1x3

ED50 + x3
− wx2 (2)

ẋ3 = −c x3
KB + x3

− bk
x1x3

ED50 + x3
+ u, (3)

where x1 is the time function of the living tumor volume
[mm3], x2 is the time function of the dead tumor volume
[mm3], x3 is the time function of the drug level [mg/kg], while
u is the time function of the injection rate [mg/(kg·day)]. The
differential equations define the dynamics of the underlying
physiological phenomena [18], [19], i.e., tumor proliferation
is described by the term ax1 in (1) with tumor growth rate
a [1/day]; (drug-independent) tumor necrosis is described by
the terms −nx1 in (1) and nx1 in (2) with necrotic rate n
[1/day]; the effect of the drug is considered with the term
−bx1x3/(ED50 + x3) in (1), +bx1x3/(ED50 + x3) in (2)
and −bκx1x3/(ED50 + x3) in (3) with drug efficacy rate b
[1/day], effective median dose ED50 [mg/kg], and modified
drug efficacy rate bκ [mg/(kg·day·mm3)]; the mixed-order
pharmacokinetics of the drug is considered with the term
−cx3/(KB + x3) in (3) with clearance rate c [1/day] and
Michaelis-Menten konstant KB [mg/kg]; while the washout
of the dead tumor cells is described by the term −wx2 in (2)
with washout rate w [1/day].

The output of the system (the measured tumor volume) is
the sum of the living and dead tumor volumes, i.e.,

y = x1 + x2 (4)

with differential equation

ẏ = ax1 − wx2. (5)

The parameters of the model have been identified based
on measurement from mice experiments. Ten mice received
pegylated liposomal doxorubicin (PLD) according to the pro-
tocol given in [1], the mice are identified by the labels
PLD1-PLD10. The numerical data for PLD7 and PLD10 were
unavailable, thus we only used data from eight mice for the
identification in [18] and we use these data in Section IV as
well. The parameters of the different mice acquired from the
identification are shown in Table I. During the identification
process, the initial values x2(0) = 0 mm3 and x3(0) = 0
mg/kg were used, while x1(0) is considered as a parameter
that needs to be estimated, thus it is listed in Table I along
with the model parameters.

The aim of the experiments was to analyze the effect of
resistance and show that PLD can overcome drug resistance.

However, in the case of PLD1 one could observe significant
resistance [1], [18], while moderate resistance can be observed
for PLD8 and PLD9. Since the model can not describe
resistance, we do not expect good results for these cases.
However, For the cases PLD2-PLD6, the model can capture
the dynamics effectively [18].

III. THERAPY DESIGN

The binary search algorithm to create the discrete time
impulsive therapy in [14] was created for the Hahnfeldt model
that has some special characteristics that are different from the
model described in Section II, i.e., the Hahnfedt model only
describes living tumor volume dynamics, and does not model
dead tumor volume dynamics, the tumor volume is strictly
monotonously decreasing if the input dose is increased, the
pharmacokinetics of the drug is linear, and there is no input
saturation in the model [15]. These characteristics allow the
application of a monotonously decreasing reference volume
(which was described as an exponential function in [14]), and
due to the monotonicity in the input and the lack of input
saturation, a binary search algorithm can be used to find the
required input dose to achieve the desired reference volume,
since by increasing the input dose, the tumor volume can
always be decreased (which may not be true if there is input
saturation).

The model described in Section II describes the living and
dead tumor volume dynamics, has mixed-order pharmacoki-
netics and input saturation caused by the pharmacodynamics of
the drug. These characteristics imply that the search algorithm
in [14] can not be used directly, due to the following problems:

P1 At the start of the therapy (when the volume of dead
tumor cells is low), the sum of the living and dead tumor
volumes increases, since the living tumor cells become
dead tumor cells (thus there is no net change in the
sum), and the living tumor cells proliferate (thus their
volume is increased), and the washout is initially slow
(because the washout velocity depends on the dead tumor
volume). Thus, as long as the ratio of the living and dead
tumor volumes is such that (5) is positive, the output
increases. For a successful therapy, one should achieve
a tumor volume ratio such that (5) becomes negative as
soon as possible. Thus, strictly monotonously decreasing
reference tumor volume can not be used.

P2 The model contains input saturation, thus there is a lower
limit in the achievable tumor volumes, thus by increasing
the input dose, the output can not be further decreased.
This excludes the direct use of a binary search algorithm.

The therapy design is carried out using Algorithm 1 at
each discrete time instant (at each investigation). Let the time
between the investigations be Ts (the sampling time, measured
in days), and denote the value of the states and the injection
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TABLE I
THE IDENTIFIED PARAMETERS FOR THE MODEL [18] BASED ON THE MICE EXPERIMENTS [1]

Parameter PLD1 PLD2 PLD3 PLD4 PLD5 PLD6 PLD8 PLD9
a [1/day] 0.33251014 0.30727096 0.30659619 0.30984098 0.28777381 0.29874356 0.30784321 0.31092964
b [1/day] 0.11613599 0.16921924 0.19814684 0.1798533 0.1634586 0.18360699 0.17379563 0.16690942

bκ [mg/(kg·day·mm3)] 0.000000615 0.000000605 0.000000602 0.00000061 0.000000619 0.000000616 0.000000617 0.000000611
c [1/day] 0.23542154 0.29746975 0.30389129 0.27168118 0.31242166 0.36544031 0.18651212 0.16078102

ED50 [mg/kg] 0.0000889 0.0000903 0.000104287 0.000133009 0.0000864 0.0000791 0.0000779 0.0000894
KB [mg/kg] 0.36661411 0.36073687 0.34188486 0.22958564 0.36201885 0.37417739 0.51541433 0.40024977
n [1/day] 0.1152974 0.14752398 0.15274208 0.17321153 0.13435788 0.16124057 0.13288544 0.14492042
w [1/day] 0.34557407 0.34392401 0.33110052 0.34131477 0.34069415 0.33937546 0.33605275 0.34242884

x1(0) [mm3] 0.011772001 6.105563 147.57776 51.473444 3.8661982 50.751527 11.022992 2.6868058

at the kth investigation (i.e., at time instant kTs) by

x1[k] := x1(kTs) (6)
x2[k] := x2(kTs) (7)
x3[k] := x3(kTs) (8)
u[k] := u(kTs), (9)

with the input at the kth investigation being u(kTs)δ(kTs),
i.e., it is not a function, but a Dirac-delta distribution, and can
be interpreted such that x3 is modified by the value u(kTs) =
u[k] at time instant kTs, thus the dimension of u[k] is mg/kg,
and refers to the dose of injection, not the injection rate.

The modified algorithm is shown in Algorithm 1. The
first step of the modified algorithm solves problem P1 by
calculating the lowest achievable output (sum of living and
dead tumor volumes) for the next step, by applying large dose
of input (ideally the dose tends to infinity), and calculating
the tumor volumes x1[k + 1] and x2[k + 1] for the next time
instant by solving the differential equations (1)-(3) with initial
conditions x1[k], x2[k] and x3[k] := x3[k] + u[k] ideally with

limu[k]→∞. (10)

For practical reasons, the algorithm uses u[k] = UMAX

instead of (10), where UMAX should be chosen such that
it is larger than the maximal tolerable dose of the applied
drug. The sum of the calculated tumor volumes yref [k+1] =
x1[k+1]+x2[k+1] will be used as the reference volume by
the search algorithm. This step is carried out before the while
cycle in Algorithm 1.

The required drug dose u[k] to reach yref [k + 1] from the
initial conditions x1[k], x2[k] and x3[k] + u[k] is calculated
by a binary search algorithm, by specifying the search space
as the interval [umin, umax] and shrinking the interval until
umax − umin < TOL, where TOL is a design parameter.
In the first step, the input is the center of the interval, i.e.,
u[k] = (umax + umin)/2. In the original algorithm in [14],
if the solution is less than the desired volume, then the dose
is large, thus let umax = u[k], otherwise let umin = u[k],
and repeat the process until the width of the interval becomes
less than the specified limit. However, this can not be applied
here due to problem P2, so the algorithm is modified such that
we compare the distance from the desired value to a specified

limit, and if the distance of the resulting output is larger than
a limit specified by the parameter ε as

y[k + 1]− yref [k + 1] > εyref [k + 1], (11)

then the input is too low, thus we modify the lower limit of
the interval as umin := u[k], otherwise we modify the upper
limit of the interval to umax := u[k]. In (11) we have used
the consideration that y[k + 1] ≥ yref [k + 1], thus taking
the absolute value of the difference to get a distance is not
required. The value of the parameter ε characterizes how close
we get to the minimal achievable volumes, and as the results
will show in Section IV, it has significant effect on the doses
and the achieved trajectories as well.

IV. RESULTS

The results are verified using in silico tests shown in Figs.
1-7. The figures show the simulated tumor volumes (upper
figure, green curve, where the simulated tumor volume refers
to the sum of the simulated living and dead tumor volumes),
the reference (desired) tumor volumes (upper figure, red x in
Figs. 2-4), the injections (lower figure, green dots) and the
drug levels (lower figure, blue curve). The algorithm defined
in Section III is used to generate the injections for 180 days
with Ts = 6 days for the case PLD6, and tested for all the
other cases without feedback.

Figure 1 shows the simulated tumor volume and the sim-
ulated drug level if the same injections are applied to the
model as in the experiments [1] for PLD6, i.e., by applying
the injections according to the protocol, with initial condition
x1(0) from Table I, x2(0) = 0 mm3 and x3(0) = 0 mg/kg.
Note that the tumor volumes are simulated, thus are not the
same as in the experiments, which can be found in [1]. The
applied dose was the maximal tolerable dose, i.e., 8 mg/kg,
and the total amount of drug used during the therapy was 40
mg/kg.

Figures 2-4 show the in silico results of the therapy gen-
erated by Algorithm 1 with different ε parameter values. The
value of the TOL parameter was set to UMAX/1000, where
UMAX is the initial upper limit for the injection, which was
set to UMAX = 10 mg/kg for all the cases (which is over
the maximum tolerable dose for PLD, which is 8 mg/kg). The
initial living tumor volume was the identified value that can
be found in Table I, while the initial dead tumor volume was
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Data: The initial values x1[k], x2[k] and x3[k]. The
maximal drug injection UMAX and the accuracy
parameter ε and TOL.

Result: The minimal drug dosage u[k] that is required
to reach the tumor volume in the vicinity of the
desired tumor volume (parameterized by ε) in
the next step.

Let umax = UMAX and umin = 0 ;
Let u = UMAX . Calculate the tumor volumes in the next

time instant (k + 1)Ts by solving the initial value
problem on time interval [kTs, (k + 1)Ts] defined by
(1)–(3) with initial values x1[k], x2[k], x3[k] + u,
denote them by x1[k + 1] and x2[k + 1], and let the
desired tumor volume in the next time instant be
yref [k + 1] := x1[k + 1] + x2[k + 1].

while umax − umin > TOL do
u = (umax − umin)/2;
Calculate the tumor volumes in the next time instant
(k + 1)Ts by solving the initial value problem on
time interval [kTs, (k + 1)Ts] defined by (1)–(3)
with initial values x1[k], x2[k], x3[k] + u, denote
them by x1[k + 1] and x2[k + 1].;

Let y[k + 1] = x1[k + 1] + x2[k + 1];
if y[k + 1]− yref [k + 1] > εyref [k + 1] then

umin := u;
else

umax := u;
end

end
Algorithm 1: The search algorithm to find the minimal drug
delivery for the next step

set to x2(0) = 0 mm3 and the initial drug level was x3(0) = 0
mg/kg for all the cases.

Figure 2 shows the case when ε = 10−5, i.e., the solution
is very close to the achievable minimum (the solution is in
0.001% distance from the achievable minimum). The upper
figure shows that the generated series of injections (shown
by the green dots in the lower figure) define a therapy that
meets the goals, i.e., the tumor volumes are coincident with
the desired tumor volumes at each investigation. The maximal
dose that has to be injected is 3.11 mg/kg, but it is only applied
in the first treatment, from the third treatment the dose reaches
the value 1.88 mg/kg and remains constant during the therapy.
The total amount of drug used in the therapy is 58 mg/kg,
which is larger than the amount used according to the protocol
in the experiments.

Figure 3 shows the results with ε = 10−2, i.e., the distance
from the reference can be larger than the previous case (the
achieved tumor volume is in 1% distance from the reference).
This distance can not be visually noticed from Fig. 3 on the
tumor volume trajectories, which look identical to the tumor
volumes in Fig. 2, however, the required doses are much lower
in this case. The maximal injection dose is 0.1025 mg/kg,
which is only used in the first treatment, for the remaining

treatments, the injections have the same value, which is 0.0928
mg/kg. The total amount of used drug is 2.793 mg/kg, which
is much smaller than the amount used in the experiments.

Figure 4 shows the results with ε = 0.1, i.e, the distance
from the desired tumor volume can be large (10%). This
distance can be observed in Fig. 4, and has significant effect on
the first step of the algorithm, thus on the achievable minimal
tumor volume. This large distance from the reference can not
ensure that the balance of the living and dead tumor volume
is such that (5) is negative for most of the time, thus the
therapy is not successful, and the result looks like a cycle:
there are intervals where the tumor volume increases, followed
by intervals where the volume decreases. The required doses
are lower in this case (with minimum value of 0.0049 mg/kg,
maximum value of 0.0146 mg/kg, and total drug usage 0.332
mg/kg). However, as Fig. 4 shows, the therapy is not efficient,
thus we need to use smaller ε.

The mixed-order pharmacokinetics can be observed on the
simulation results: for large doses (larger than the parameter
KB), the pharmacokinetics described by the first term in the
right-hand side of (3) is close to zero order, and since the
solution of a zero order (constant) differential equation is
linear, the drug depletes linearly as it is shown in Figs. 1 and
2. This also implies that the second term in the right-hand
side of (3) with bκ rate has negligible effect on the drug level
dynamics if the tumor volume is small (which is also indicated
by the small value of bκ, which can be observed from Table I).
For smaller doses (smaller than the parameter KB), the first
term in the right-hand side of (3) is close to linear, and since
the solution to a linear differential equation is exponential, we
can observe exponential depletion in Figs. 3 and 4. The effect
of the second term in the right-hand side of (3) is negligible
as well since the tumor volumes are small.

Since the therapy generated with parameters ε = 10−5 and
ε = 10−2 have similar performance, but the latter uses much
lower amount of drug, we chose the therapy generated with
ε = 10−2 as optimal therapy shown in Fig. 3 and tested the
series of injections on the other virtual patients from Table I.
We have carried out tests separately with the groups PLD2-
PL6, the group PLD8-PLD9 and with PLD1.

The simulation results of the open-loop application of the
therapy from Fig. 3 on the virtual patients PLD2-PLD6 are
in Fig. 5. The figure shows that the therapy is successful for
all the cases, the tumor shrinks to a small volume till the end
of the treatment, while the drug levels are similar in all the
cases.

Application of the therapy in Fig. 3 to the cases PLD8-
PLD9 results in the volumes and drug levels shown in Fig. 6.
For the case PLD8, the tumor volume increases (but linearly,
and not exponentially), while for PLD9, the tumor volume
is constant. The drug levels are different from the previous
results, probably due to lower parameter c and larger parameter
KB (Table I). Since the model is not realistic for these cases,
the results are not reliable.

Finally, Fig. 7 shows the in silico test carried out with the
case PLD1 using the injections from the therapy in Fig. 3. The
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Fig. 1. The simulated tumor volume (green curve) and the injections (green
dots) given according to the protocol for PLD6 in the experiments in [1], and
the drug levels (blue curves).

Fig. 2. The simulated tumor volume (green curve) with the desired tumor
volumes (red x-s) and the injections (green dots) and the drug levels (blue
curves) with ε = 10−5; the therapy is designed for PLD6.

results show that the therapy can not control tumor growth,
the tumor grows exponentially. The results show that as the
tumor volume reaches large values, the second-term in the
right-hand side of (3) starts to dominate the dynamics of the
drug (approximately after day 120), and the drug depletes fast.
However, the model is not valid for this case, since the model
can not describe the drug resistance, thus this result is not
reliable either.

Fig. 3. The simulated tumor volume (green curve) with the desired tumor
volumes (red x-s) and the injections (green dots) and the drug levels (blue
curves) with ε = 10−2; the therapy is designed for PLD6.

Fig. 4. The simulated tumor volume (green curve) with the desired tumor
volumes (red x-s) and the injections (green dots) and the drug levels (blue
curves) with ε = 10−1; the therapy is designed for PLD6.

V. CONCLUSIONS

The modified algorithm can be used to generate opti-
mal discrete time, impulsive therapy to treat cancer with
chemotherapy based on a model able to describe living and
dead tumor volume dynamics, mixed-order pharmacokinetics
and pharmacodynamics of the drug with input saturation.
The result of the algorithm depends on the parameter which
specifies the achievable distance from the reference output,
the optimal value of the parameter should be set such that the
tumor volume trajectory is desirable with low dosages. The
optimal value of that parameter can be set by trial and error,
more sophisticated solutions are subject to future research.

The algorithm was able to generate a series of injections
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Fig. 5. The results of the application of the therapy to the virtual patients
PLD2–PLD6; the simulated tumor volumes (upper figure), the injections
(green dots) and the drug levels (lower figure) with the therapy designed
for PLD6 with ε = 10−2.

Fig. 6. The results of the application of the therapy to the virtual patients
PLD8–PLD9; the simulated tumor volumes (upper figure), the injections
(green dots) and the drug levels (lower figure) with the therapy designed
for PLD6 with ε = 10−2.

with 6 days of sampling time which was more effective than
the protocol (managed to shrink the tumor and keep it in that
state), used much smaller doses (0.1 mg/kg vs 8 mg/kg) and
used much less drug during the 180 days (2.793 mg/kg vs 40
mg/kg). These are promising results, however, the reliability
of the results depend on the accuracy of the model and its
parameters. The acquired small doses are due to the low value
of the identified ED50 parameter. However, it is possible, that
the identification process stopped in a local minimum, and
the identified parameter is not valid. The practical application
of the algorithm should be preceded by targeted experiments
aimed to get realistic values for the critical pharmacokinetic

Fig. 7. The result of the application of the therapy to the virtual patient
PLD1; the simulated tumor volume (upper figure), the injections (green dots)
and the drug level (lower figure) with the therapy designed for PLD6 with
ε = 10−2.

and pharmacodynamic parameters.
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general anaesthesia in closed loop: Availability and challenges,” IFAC-
PapersOnLine, vol. 48, no. 20, pp. 551 – 556, 2015, 9th IFAC Sympo-
sium on Biological and Medical Systems BMS 2015.

[7] C.-M. Ionescu, “A computationally efficient hill curve adaptation strat-
egy during continuous monitoring of dose-effect relation in anaesthesia,”
Nonlinear Dynamics, vol. 92, no. 3, pp. 843–852, 2018.

[8] M. Alamir, M. Fiacchini, I. Queinnec, S. Tarbouriech, and M. Maze-
rolles, “Feedback law with probabilistic certification for propofol-based
control of bis during anesthesia,” International Journal of Robust and
Nonlinear Control, vol. 28, no. 18, pp. 6254–6266, 2018.

Authorized licensed use limited to: Auckland University of Technology. Downloaded on June 02,2020 at 07:13:06 UTC from IEEE Xplore.  Restrictions apply. 
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