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Abstract By using advanced control techniques to control physiological systems
sophisticated control regimes can be realized. There are several challenges need to
be solved in these approaches, however. Most of the time, the lack of information of
the internal dynamics, the nonlinear behavior of the system to be controlled and the
variabilities coming from that simple fact that people are different and their specifics
vary in time makes the control design difficult. Nevertheless, the use of appropriate
methodologies can facilitate to find solutions to them. In this study, our aim is to
introduce different techniques and by combining them we show an effective way for
control design with respect to physiological systems. Our solution stands on four
pillars: transformation of the formulated model into control oriented model (COM)
form; use the COM for linear parameter varying (LPV) kind modeling to handle
unfavorable dynamics as linear dependencies; tensor product modeling (TPM) to
downsize the computational costs both frommodeling and control design viewpoint;
and finally, using linear matrix inequalities (LMI) based controller design to satisfy
predefined requirements. The occurring TP-LPV-LMI controller is able to enforce a
given, nonlinear system to behave as a selected reference system. In this study, the
detailed control solution is applied for tumor growth control to maintain the volume
of the tumor.
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1 Introduction

The so-called Targeted Molecular Therapies (TMTs) are specific therapeutic oppor-
tunities came into focus recently concerning the treatment of cancer. They have been
successfully applied as therapeutic agents in treatment of different types of tumor
moreover they are under investigation as complementary therapies as well regard-
ing classical treatments such as surgery, chemotherapy, radiotherapy and so on. In
general they affect the tumors by inhibiting specific biochemical which are respon-
sible for the growth, spread and/or proliferation of tumor concourses [1, 2]. Due to
they block or inhibit the properties of tumors in a specific way more personalized
therapies can be achieved [3]. Another aspect why TMTs could be good alterna-
tive or complementary to conservative therapies is that they are less harmful them,
causing less side effects while the load of the body becomes lower. Further they are
able to increase the efficiency of regular therapies as well [1]. In the recent times
many biochemical pathways have been discovered serving as a basis for TMT de-
velopments. The most commonly applied are the apoptosis inducers (facilitating the
self-destruction of tumor cells), gene expression inhibitors (decreasing the protein
expression in tumor cells which can be useful for the goals of tumor cells), signal
transmission inhibitors (inhibiting the biochemical signaling capabilities of tumors)
and anti-angiogenic therapies [3].

In this study we consider angiogen inhibition as the basis of therapy. Angiogen
inhibitors affect the vascular endothelial growth factor (VEGF) which facilitates the
proliferation concerning to the formation of new blood vessels. The process is es-
sential for cancer concourses in order to get enough nutrients needed for further
growing after the size of them reach a given volume (diffusion barrier) [4]. The tu-
mors produce VEGF to facilitate the formation of new blood vessels through which
the tumor populations can be supported with oxygen and nutrients. The inhibition
of this pathway leads to insufficient nutrition from the tumor point of view and after
time causing the “starvation” of the tumor [3, 5]. The way of how this therapy works
makes it an excellent therapeutic target and by combining with control engineering
methodologies more optimized drug administration can be realized for a better treat-
ment outcome [6]. Bevacizumab is one of the applied anti-angiogen TMT kind drugs
considered in this study as well [4].

From the applicable control methods viewpoint several issues need to be over-
bridged during the design. Alike well-known physiological control problems such
as anesthesia or diabetes [7–11], the control of tumor growth is challenging. Several
unfavorable effects need to be considered for example the nonlinear behavior of the
phenomena to be controlled, the cross-effects, model and parameter uncertainties or
even time-delay. Although, it is possible to find solutions suitable with respect to
given requirements [6, 12–16].

In this study we investigate a complex controller design approach that involves
techniques from the latest developments of control engineering. We alloy the Lin-
ear Parameter Variability (LPV) modeling technique with Linear Matrix Inequality
(LMI) based controller design both formulated accordingly by Tensor Product (TP)
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model transformation. The LPV framework is a useful technique by which model
and parameter uncertainties can be handled moreover it allows the use of linear con-
trol design techniques without exact linearization [17–19]. In the recent decades the
LMI based control design regarding the LPV framework became well-established
especially with respect to state- and output-feedback kind controls. Most of the LMI
theorems are based on the laws of Lyapunov [17, 20, 21]. The TP framework is
extremely useful because of its ability to make the previously mentioned methods
less conservative and the specific properties of the TP form representation makes
the LMI based design easier [22–24]. The study investigates a specific TP-LPV-LMI
kind controller class regarding tumor growth control. These controllers have many
favorable properties for example the uncertainties and nonlinearities can be encap-
sulated into the model structure leading an “intuitive” robust behavior of the control
structure against sort of issues. Moreover the qualitative and quantitative control re-
quirements can be formulated as LMIs through which the designed controller is able
to satisfy them [17, 20].

During our research state-feedback kind control has applied which requires inter-
nal information regarding the state variables during operation. In order to deal with
the problem we applied an LPV based Extended Kalman Filter (EKF) solution as an
estimator of the state variables. The designed EKF is able to provide the necessary
information even though the circumstances [25].

This study is structured in the following way. First we introduce the modeling
parts of the research concern to the applied nonlinear tumor growth model, reference
model and developed qLPVmodels.After the controller design is presented including
the TP model transformation and the applied LMIs. Then our results are showed and
discussed. Finally, we conclude our research and formulate some hints regarding our
future work.

2 Modeling Assumptions

2.1 Investigated Tumor Growth Model

We have applied the modified version of the extended Hahnfeldt-model in this study
in accordance with the research goals [6, 16, 26]. The extended model takes into
account the absorption dynamics of the inhibitor as well as it is described by (3).

The model has three ordinary differential equations [6]:

ż1(t) = −λ1z1(t) ln

(
z1(t)

z2(t)

)
, (1)

ż2(t) = bz1(t) − dz2/31 (t)z2(t) − ηz2(t)z3(t) , (2)

ż3(t) = −λ3z3(t) + u(t) . (3)
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Themodel consists of three state variables: the tumor volume z1(t) [mm3], the sup-
porting vasculature volume z2(t) [mm3] and the inhibitor serum level z3(t) [mg/kg],
respectively. The considered measurable output is the tumor volume z1(t) [mm3].
The following parameter set has been applied during our investigations: λ1 = 0.1921
1/day, b = 5.851 1/day, d = 0.00871 1/(mm2 day), η = 0.66 kg/(mg day) based on
[26]. The λ3 = 1.31 1/day clearance rate belongs to the assumed inhibitor (endo-
statin) [26].

One has to emphasize that the model has a crucial limitation regarding numerical
stability and the border of feasibility. When z1 and z2 state variables are approaching

zero the ln

(
z1(t)

z2(t)

)
part of (1) tend to 0/0 kind singularity that should be avoided

during operation.
As it was proven in [14, 16] by transforming the model the aforementioned

issue can be converted into a more suitable form. The z1,2(t) state variables can
be transformed and new state variables can be introduced as x1(t) = ln(z1(t)),
x2(t) = ln(z2(t)). The third state variable is linear and not necessary to be trans-
formed so that is x3(t) = z3(t). The newmodel equations of the extended transformed
model of Hahnfeldt can be written in the following way [16]:

ẋ1(t) = −λ1x1(t) + λ1x2(t) , (4)

ẋ2(t) = bex1(t)−x2(t) − de2x1(t)/3 − ηx3(t) , (5)

ẋ3(t) = −λ3x3(t) + u(t) . (6)

In order tomap the operating domain of the state variableswe have to examine (1)–
(3) as first step. There is a limitation regarding z1 and z2. The nontrivial equilibrium
of the model can be calculated by rearranging (1)–(3) equations. The assumption of
permanent inhibitor level z3(t) ≡ z3,∞ leads to the following results [6, 27]:

z1,∞ = z2,∞ =
(
b − ηz3,∞

d

)3/2

,

z1,max = z2,max =
(
b

d

)3/2

↔ z3,∞ = 1

λ3
u∞ ≡ 0.

(7)

Equation (7) shows that the operating domain of z1 and z2 original state vari-
ables are z1(t), z2 ∈ (

0, (b/d)3/2
]
[mm3]. In this study we assumed z1(t), z2 ∈[

1, (b/d)3/2
]
[mm3]. This corresponds to the physiological fact that by using only

the anti-angiogenic therapy the tumor cannot be totally eliminated moreover this
is in conjunction with our previous findings [6]. The numerical instability can also
be avoided in this way. Therefore the operating domain of the transformed state
variables becomes x1, x2 ∈ [

ln(1), ln((b/d)3/2)
] = [

0, 9.7648
]
.

Accordingly, the goal of the control can be predefined as x1 = x2 → 0 when
t → tend which is equivalent to z1 = z2 → 1 when t → tend . With other words, the
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“numerical goals” of the control related to the final values of the states are x1,2,∞ ≡ 0
and z1,2,∞ ≡ 1.

It should be noted that the extended transformedmodel is applied for the controller
design—moreover, the EKF is also based on the extended transformed model.

2.2 Control Oriented Model Form

A given state space model can be written in control oriented model form [17, 28].
That means the state variables of the model are transformed by using a shift oper-
ation. The transformed model describes the deviation between a given model equi-
librium xequilibrium or reference trajectory xre f (t) and the actual state variables x(t).
Namely, it models the so-called “error dynamics”. By assuming that the shifted
difference based state variables describe the deviation between xre f (t) and x(t)
the transformation is the following: Δx(t) = x(t) − xre f (t). Naturally, the output,
input, disturbances and noises should be transformed if they are interpreted dur-
ing the controller design, namely, Δy(t) = y(t) − yre f (t), Δu(t) = u(t) − ure f (t),
Δd(t) = d(t) − dre f (t), Δn(t) = n(t) − nre f (t).

In case of state-feedback kind controller, the control goal is to enforce the state
variables to reach zero. This cannot be directly used in this case.However, by applying
the control orientedmodel form in case of state-feedback the control goal is to enforce
the shifted difference based state variables to reach zero—which is equivalent that
the state variables of the reference model and the model to be controlled are equal.
With other words to eliminate the Δx(t) over time as Δx(t) → 0 , t → tend . This
is equivalent with enforcing the model to behave as the selected reference model
(Δx(t) = 0 ≡ x(t) = xre f (t)).

2.3 Development of the Reference Model

Due to only x1(t) is considered as measurable the reference model has to be based
on this state variable. In addition the x1,re f (t) has to be as simple as possible and
it should describe a smoothly decreasing state trajectory. For that reason, we have
developed the following reference model:

x1,re f (t) = e(−ξ ·t) · x1,re f (t0) , (8)

where the numerical value of ξ scalar determines the velocity of decay and t is
the time. The initial value xre f (t0) is assumed to be known. The initial value can
be derived by using measurements (then x1(t0) = x1,re f (t0)) or estimations (then
x̂1(t0) = x1,re f (t0)). The reference model will serve as a basis for trajectory planning
as it is detailed at the controller design.

In this study ξ = 0.05 was applied.
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3 LPV Modeling

A general parameter varying dynamical system can be described as follows [29]:

S = (T,P,W,B) , (9)

where S is the LPV system, T is the time series, P is the scheduling space, W is
the signal space and B ∈ (W × P)T is the behavior of the system ((W × P)T is the
collection of all possible maps from T toW × P).

In conformity with [30–32], the general state-space form of an LPV model is the
following:

ẋ(t) = A(p(t))x(t) + B(p(t))u(t)
y(t) = C(p(t))x(t) + D(p(t))u(t)

S ≡ S(p(t)) =
[

A(p(t)) B(p(t))
C(p(t)) D(p(t))

]
(

ẋ(t)
y(t)

)
= S(p(t))

(
x(t)
u(t)

) . (10)

The considered vectors and parameter dependent matrices are: x(t) ∈ R
n state vec-

tor, u(t) ∈ R
m input vector, y(t) ∈ R

k output vector, A(p(t)) ∈ R
n×n state ma-

trix, B(p(t)) ∈ R
n×m input matrix, C(p(t)) ∈ R

k×n output matrix, D(p(t)) ∈ R
k×m

feed-forward matrix and S(p(t)) ∈ R
(n+k)×(n+m) system matrix. The matrices in (5)

are dependent from the p(t) ∈ Ω R ∈ R
R parameter vector which consists of the

so-called scheduling variables pi (t), namely, p(t) = [p1(t) . . . pR(t)]�. The Ω =
[p1,min, p1,max ] × [p2,min, p2,max ] × · · · × [pR,min, pR,max ] ∈ R

R hypercube—a
subspace of the RR real vector space—is characterized by the extremes of the pi (t).

AnLPVmodel inasmuch any of the state variables are involved into the scheduling
parameters it is called qLPV model [31].

3.1 qLPV Model Development

During the qLPV modeling we use the assumptions of Sect. 2.2. The transformation
of the first and third state variables are equivocal—since the (4) and (6) are linear
equations.

The transformations can be done as follows:

Δẋ1(t) = ẋ1(t) − ẋ1,re f (t) = −λ1x1(t) + λ1x2(t)−( − λ1x1,re f (t) + λ1x2,re f (t)
) =

−λ1(x1(t) − x1,re f (t)) + λ1(x2(t) − x2,re f (t)) =
−λ1Δx1(t) + λ1Δx2(t).

(11)
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Δẋ3(t) = ẋ3(t) − ẋ3,re f (t) =
−λ3x3(t) + u(t) − ( − λ3x3,re f (t) + ure f (t)

) =
−λ3Δx3(t) + Δu(t).

(12)

Due to the exponential functions transformation of (5) it results:

Δẋ2(t) = ẋ2(t) − ẋ2,re f (t) =
bex1(t)−x2(t) − de2x1(t)/3 − ηx3(t)
−(

bex1,re f (t)−x2,re f (t) − de2x1,re f (t)/3 − ηx3,re f (t)
)
.

(13)

In order to reach the desired qLPV form the followingmathematicalmanipulations
can be applied:

bex1(t)e−x2(t) − bex1,re f (t)e−x2,re f (t) − 0 =
bex1(t)e−x2(t) − bex1,re f (t)e−x2,re f (t) − bex1,re f (t)e−x2(t)

+bex1,re f (t)e−x2(t) =
be−x2(t)(ex1(t) − ex1,re f (t)) · 1

−bex1,re f (t)(e−x2(t) − e−x2,re f (t)) · 1 =
be−x2(t)

(ex1(t) − ex1,re f (t))

Δx1(t)
Δx1(t)

−bex1,re f (t)
(e−x2(t) − e−x2,re f (t))

Δx2(t)
Δx2(t)

−de2x1(t)/3 + de2x1,re f (t)/3 =
−d

(
e2x1(t)/3 − e2x1,re f (t)/3

) · 1 =
−d

(
e2x1(t)/3 − e2x1,re f (t)/3

)
Δx1(t)

Δx1(t).

−ηx3(t) + ηx3,re f (t) = −ηΔx3(t).

(14)

From (12) two scheduling variables can be selected based on (14):

◦ p1(t) = be−x2(t)

(
ex1(t)−ex1,re f (t)

)
Δx1(t)

− d

(
e2x1(t)/3−e2x1,re f (t)/3

)
Δx1(t)

◦ p2(t) = −bex1,re f (t) (e−x2(t)−e−x2,re f (t)
)

Δx2(t)

Accordingly, the transformed Δx2(t) state variable becomes:

Δẋ2(t) = p1(t)Δx1(t) + p2(t)Δx2(t) − ηΔx3(t) . (15)

The p1,2(t) has to be investigated from stability point of view since the divisions
by Δx1,2(t) in both terms may cause numerical instability when Δx1,2(t) → 0. In
order to decide what happens when Δx1,2(t) → 0 the L’Hospital’s rule [33] can
be applied, namely, to calculate the finite final values (if any) of p1(t)|Δx1(t)=0 and
p2(t)|Δx2(t)=0.
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lim
Δx1(t)→0

p1(t) = lim
Δx1(t)→0

b e−x2(t)

(
ex1(t) − ex1,re f (t)

)
Δx1(t)

−d

(
e2x1(t)/3 − e2x1,re f (t)/3

)
Δx1(t)

=
(
ex1(t) + ex1,re f (t)

) (
2

3
d + be2x2(t)

)
.

lim
Δx2(t)→0

p2(t) = lim
Δx2(t)→0

be−x1,re f (t)
(ex2(t) − ex2,re f (t))

Δx2(t)
=

−bex1,re f (t)
(
ex2(t) + ex2,re f (t)

)
.

(16)

By considering (15) these conditions has to be embedded into the implementation
in the following way.

p1(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

b e−x2(t)

(
ex1(t) − ex1,re f (t)

)
Δx1(t)

−d

(
e2x1(t)/3 − e2x1,re f (t)/3

)
Δx1(t)

, if Δx1(t) 	= 0

(
ex1(t) + ex1,re f (t)

) (
2

3
d + be2x2(t)

)
, if Δx1(t) = 0

(17)

p2(t) =
⎧⎨
⎩
be−x1,re f (t)

(ex2(t) − ex2,re f (t))

Δx2(t)
, if Δx2(t) 	= 0

−bex1,re f (t)
(
ex2(t) + ex2,re f (t)

)
, if Δx2(t) = 0

(18)

The operating domain of p(t) can be calculated based on (17)–(18) by con-
sidering the values of x1,2(t) and x1,2,re f (t) which may appear during opera-
tion. Based on our experiments in the topic we found that the application of
Ω = [p1,min, p1,max ] × [p2,min, p2,max ] = [0, 16] × [4, 15] domain can be applied,
namely p1(t) = [0, . . . , 16] and p2(t) = [4, . . . , 15]. The reason is to take into ac-
count the physiological reasonable minimum and maximum numerical values of
functions in (17)–(18).

The LPV model can be written in control oriented model form as with respect to
Sect. 2.2 by considering (11), (12) and (15):

Δẋ(t) = A(p(t))Δx(t) + BΔu(t)
Δy(t) = CΔx(t)

S(p(t)) =
[

A(p(t)) B
C 0

]
=

⎡
⎢⎢⎣

−λ1 λ1 0 0
p1(t) p2(t) −η 0
0 0 −λ3 1
1 0 0 0

⎤
⎥⎥⎦ .

(19)
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4 Control Design

4.1 TP Modeling and Control

The TP model transformation is a mathematical tool which is able to convert
arbitrary—but appropriately formalized—qLPV model into TP model form. The
resulting TP model approximates the qLPV model via the original nonlinear model
as well with given accuracy depends on the sampling density applied on Ω . The TP
model transformation has been successfully applied in several cases regarding non-
linear control problems (e.g. [23, 28, 34–36]). The TP model transformation can be
directly applied on (10) and (19) [17]. The resulting finite element convex polytopic
TP model is the following:

(
ẋ(t)
y(t)

)
= S(p(t))

(
x(t)
u(t)

)

S(p(t)) = S
R
�
r=1

wr (pr (t)) = S ×r w(p(t))

, (20)

where S core tensor composed of Si1,i2,...,iR LTI vertices as S ∈ R
I1×I2×···×IR ×(n+k)×(n+m).

Each of the Si1,i2,...,iR terms represents a given LTI system with different parame-
ter set. The wr (pr (t)) weighting vector determines which LTI system dominates
in the resulting S(p(t)). The wr (pr (t)) weighting vector function is composed of
wr,ir (pr (t)) (ir = 1 . . . IR) continuous convex weighting functions.

The convexity property holds if the followings are satisfied:

∀r, i, pr (t) : wr,ir (pr (t)) ∈ [0, 1]
∀r, pr (t) :

Ir∑
i=1

wr,ir (pr (t)) = 1.
(21)

By applying theTPmodel transformation only the relevantΩ hypercube is consid-
ered from parameter space within p(t) changes during operation. Frommathematical
point of view this can be reached by convex hull manipulation. The recently devel-
oped Minimal Volume Simplex (MVS) convex hull [17, 37] provides the tightest
range thus we applied this convex hull type in this study.

Compared to a “general” qLPV model, the main benefit of the TP kind qLPV
model is that interprets the qLPVmodel only at given points in theΩ by introducing
an r sampling in Ω among all dimensions. In this way both the handled parameter
space is more limited and the computational costs of the calculations is significantly
lower regarding controller design and during operation. The TP kind qLPV model
approximates the original qLPV model with given accuracy inside the predefined Ω

hypercube [22]. The realization steps of the TP model transformation can be found
in [17, 22, 28, 38].
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The state-feedback control uses the state variables or state variable estimates in
the closed loop. In general the control signal can be calculated as follows in the
continuous time domain if we consider an LPV kind state-feedback [20, 31]:

u(t) = −G(p(t))x(t) , (22)

The G(p(t)) ∈ R
m×n is the parameter dependent controller gain. The polytopic

convex TP controller is the following (based on (22)):

G(p(t)) = G
R
�
r=1

wr (pr (t)) = G ×r w(p(t)) , (23)

where G(p(t)) is the parameter dependent feedback matrix, G is the feedback tensor
consists of the Gi1,i2,...,iR feedback matrices belong to given Si1,i2,...,iR LTI vertices
and wr (pr (t)) is the convex weighting vector function (which is the same as in (20)).
Further information regarding parameter dependent state-feedback can be found in
[17, 31, 35, 39].

In the recent years the TP model transformation based modeling and control
have been widely used in many fields e.g. industrial designs, physiological controls,
physical modeling and control [40–59] thank to the continuous improvement of the
method regarding computational relaxations [60, 61] and more effective convex hull
manipulation [23, 28, 37, 62].

The w(pr ) sampled weighting vector function obtained after the TP model trans-
formation is applied on (19). The result is shown by Fig. 1 (the values are discrete
ones, but the plotting function represent is as continuous). Naturally, the weighting
vector function looks differently during operation while the p(t) is continuously
varying which is caused the variation of w as well.

Remark 1 During the realization w(p(t)) should be applied due to the continuous
controller. For that purpose we applied simple linear interpolation between values of
w(pr ) depends on the actual p(t).

0

0.5

1

0 2 4 6 8 10 12 14 16

4 5 6 7 8 9 10 11 12 13 14 15
0

0.5

1

Fig. 1 The w(pr ) applied in (20) and (23) equipped with the properties described in (21). [Upper
subfigure: w1(p1,r ); lower subfigure: w2(p2,r )]
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4.2 Linear Matrix Inequality Based Controller Design

The basic formulation of a LMI is the following expression:

F(x) := F0 +
m∑
i=1

xiFi > 0 , (24)

where x ∈ R
m , Fi = F�

i ∈ R
n×n and i = 1, . . . ,m. In (24) the requirement against

F(x) to be positive definite, namely, z�F(x)z > 0 ∀ z ∈ R
n . The inequality can be

satisfied by using numerical optimization [63].
One direction of the possible LMI based controller design opportunity is based

on the Lyapunov theorems. According to the Lyapunov theorem a given ẋ(t) =
Ax(t) system is stable if there can be constructed a positive quadratic V (x) = x�Px
Lyapunov function which derivative is negative definite, namely V̇ (x) = x�(A�P +
PA)x. This criteria is satisfied if A�P + PA < 0 and P = P� > 0 [22, 64, 65].

The criteria above can be applied in case of polytopic LPV systems given by
their state space representation: ẋ(t) = A(p(t))x(t) + B(p(t))u(t) as in (10). Due

to the polytopic representation [A(p(t)) B(p(t))] =
R∑

r=1

wr (p)[Ar Br ] [22] where
wr (p) are the related convex weighting functions as (21). By taking into account
the Lyapunov function candidate V (x(t)) = x�Px = x�X−1x a possible controller
is the following [17]:

u(t) = M(p(t))X−1x(t) =
J∑

j=1

w j (p)M jX−1x(t) . (25)

At this point the V̇ (x(t)) has to be investigated which can be described as follows
after rearranging the Lyapunov function candidate’s derivative:

V̇ (x(t)) = x�(t)X−1 · Sym(
A(p)X + B(p)M(p)

) · X−1x�(t) , (26)

where the “Sym” denotes symmetric matrix. The (26) can be written by using the
polytopic weighting function description from above:

Sym
(
A(p)X + B(p)M(p)

) =
R∑

i=1

R∑
j=1

wi (p)w j (p)Sym
(
AiX + BiM j

)
< 0 .

(27)
Sophisticated control rules and requirements can be formalized by using LMI

theorems. By solving the LMIs of the formalized convex objective function through
numerical optimization obtaining controller candidate inherits the prescribed prop-
erties [66]. By involving the TP-qLPV model into the design steps the appearing TP
controller will also be capable to act appropriately according to the predefined rules.
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During our investigations we have applied Parallel Distributed Compensation
(PDC) kind control opportunity. PDC is a complex state-feedback kind controller
based on quadratic stabilization [17]. Different LMI theorems can be involved into
the impositions (e.g. pole clustering, H∞, H2, etc.—these rules are also applicable
separately or simultaneously). In this examination we have employed the so-called
LMI regions via pole clustering. Pole clustering allows the designer to aggregate the
poles of the closed loop into a given domain in the complex plain—this domain is
called as LMI region. Thus, by solving the given LMIs the closed loop poles will lie
within this complex domain [30, 64].

Definition 1 A given D domain is an LMI region in the complex plane if ∃α that
is α = [αi j ] ∈ R

q×q and β = [βi j ] ∈ R
c×q through which D := {z ∈ C : fD(z) =

α + βz + β� z̄ < 0} [65, 67].
Definition 2 A ẋ(t) = Ax(t) dynamical system is called as D-stable if its poles lie
in this D region (it is considered that the D region is in the negative half part of the
complex plane) [63, 67].

Definition 3 The A is D stable if and only if ∃X > 0 symmetric positive definite
matrix that is MD(A, X) := α ⊗ X + β ⊗ AX + (β ⊗ AX)� < 0 in which ⊗ is the
Kronecker-product [67].

The connection between the clustered poles, the properties of the state and
Lyapunov matrix can be recognized in fD(z) and MD(A, X) that is (1, z, z̄) ↔
(X, AX, XA�) [67].

In consonance with [17, 21, 63, 64, 67] a suitably designed PDC kind controller
with appropriateG(p(t)) gains (which follow the requirements of (22), (23), (25) and
(27)) is able to satisfy the D stability requirements with respect to given system and
enforces the poles of the closed loop to lie in the determined region of the complex
plane and providing appropriate control action in case of additional requirements.
By assuming that (AX), (AX)� ↔ (AX + BM), (AX + BM)�) during the control
design an appropriate PDC controller may be obtained whereM is the varyingmatrix
(the subject of optimization) and the control gain can be calculated as G := MX−1.

In case of a polytopic qLPV system this assumption has to be extended to the
vertices as it is described in [17, 22, 67]: (AiX), (AiX)� ↔ (AiX + BMi), (AiX +
BMi)

�) where Mi is the varying matrix (the subject of optimization) and the control
gains can be calculated by the Gi := MiX−1 equation. This is the same for TP-qLPV
systems as well.

Remark 2 When we used this description that (AiX), (AiX)� ↔ (AiX + BMi),

(AiX + BMi)
�) we considered that varying parameters can be found only in the

Ai state matrix. For complex summation rules related to the given LMI theorems if
B is parameter dependent we make reference to [17, 64].

During our research we have considered two pole-clustering type LMIs, the α-
stability (28) and the disk region (29):
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(XA + BM) + (XA + BM)� + 2αX < 0 , (28)

and [ −rX −qX + (XA + BM)

−qX + (XA + BM)� −rX

]
< 0 . (29)

In (28) the α determines the boundary from which all of the closed loop poles lie
towards negative direction while (29) determines a closed circle with q center and r
radius into which the closed loop poles have to be fallen. By applying both LMI at
the same time a half circle can be determined in which all of the closed loop poles
will be found.

In order to describe the Gi gains in accordance with (23), the (28) and (29) have
to be modified as follows by taking into account the details denoted above and in
conformity with Remark 2.

Subjects : X, M

X > 0,

(XAi + BMi ) + (XAi + BMi )
� + 2αX < 0,

(XAi + BM j ) + (XAi + BM j )
� + 2αX < 0,[ −rX −qX + (XAi + BMi )

−qX + (XAi + BMi )
� −rX

]
< 0,

[ −rX −qX + (XAi + BM j )

−qX + (XAi + BM j )
� −rX

]
< 0,

i < j ≤ R s.t. ∀p(t) : wi (p(t))w j (p(t)) = 0,

(30)

The representations of the applied LMIs can be found in Fig. 2. The Fig. 2c shows
the case which has been applied in our examination, namely, the used parameters
were the followings: q, α ≤ 0 and r = 12. The selection of them have been arbitrary,
but reasonable because in this domain the closed loop poles are stable, however, suffi-
ciently “slow” to avoid high intervening (control) signals. By applying thementioned
LMIs in the represented way the closed loop poles fall into the given half circle and
their stability is guaranteed if the LMIs are satisfied.

The Gi gains have obtained after solving (30). The LMIs represent a feasibility
kind problem which can be solved by numerical iterative optimization. We applied
the YALMIP core [68] and the MOSEK [69] solver in the MATLAB framework
on (30) with respect to (19). The obtained Gi gains for the given vertices are the
followings:G1 = [306.7595 290.6111 − 21.9195],G2 = [704.5794 273.4003 −
21.2493], G3 = [277.1904 525.6143 − 20.5256], G4 = [646.2452 524.2035 −
20.5060].
Remark 3 It should be noted that the calculation of the closed loop poles can be
done as λ(Ai + BGi ) due to the formulations in (25)–(27) and (30). Therefore, the
negative sign in (22) must be positive during the application.
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Fig. 2 Targeted D-region [a α-stability in general, b disk region in general, c selected D-region]

Fig. 3 λ(A + BG) poles of
the closed system inside the
D complex region. [x -
closed loop poles at vertices;
* - closed loop poles during
operation. Due to the
overlapping poles in the plot
the asterisks seem dots]

We have calculated the closed loop poles at the vertices which were: λ(A1 +
BG1) = [−0.6391 − 9.3912 + 1.5426i − 9.3912 − 1.5426i]�, λ(A2 + BG2) =
[−0.4528 − 10.2849 − 8.0136]�, λ(A3 + BG3) = [−1.3526 + 2.6762i −
1.3526 − 2.6762i − 4.3225]�, λ(A4 + BG4) = [−1.582 + 1.5181i − 1.582 −
1.5181i − 3.8442]�.

The closed loop poles can be seen in Fig. 3 as well where we denoted the poles at
the vertices by crosses and the poles which obtained during operation by asterisks.
Despite the continuously varying resulting controller the closed loop poles liedwithin
the determined LMI region.
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4.3 Complementary Controller Design

Due to the applied error dynamics based modeling the developed controller aims to
cancel the deviation of the states of the model from given reference states and control
signal. However, these reference states and control signal need to be “externally”
provided. For that reason we have developed a complementary reference subsystem
which includes a reference model and precompensator kind controller. The goal
of this subsystem is to provide both the xre f (t) reference trajectories and ure f (t)
reference control signal need to be followed by the controlled nonlinear model.
In order to design these signals we have applied the well-known inverse dynamics
compensation completedbyproportional-derivative compensator (IDC-PD) [70–72].

The connection between the control signal and controlled variable need to be
determined in order to design an appropriate IDC-PD compensator as first step.
According to the (4)–(6) the u(t) control signal affects

...
x 1(t) (as a reminder, the x1(t)

state variables is considered as measurable thus the control law has to be defined for
that). For that purpose we have applied the previously developed reference model as
described by (8). Therefore the mapping between the signals, namely,

...
x 1(t) should

be elaborated by using (8):

x1,nom(t) = e(−ξ ·t) · x1,re f (t0)
ẋ1,nom(t) = −ξe(−ξ ·t) · x1,re f (t0)
ẍ1,nom(t) = (−ξ)2e(−ξ ·t) · x1,re f (t0)...
x 1,nom(t) = (−ξ)3e(−ξ ·t) · x1,re f (t0)

. (31)

The general third order error compensator can be formulated as follows [71]:

F
...
e (t) + F1ë(t) + F2ė(t) + F3e(t) =

F(
...
x nom(t) − ...

x (t)) + F1(ẍnom(t) − ẍ(t)) + F2(ẋnom(t) − ẋ(t))
+F3(xnom(t) − x(t)) = 0

. (32)

In (32) F , F1, F2 and F3 are the weighting parameters belong to the third, second,
first and zero derivatives of the e(t) = xnom(t) − x(t) error function, respectively.
Moreover, the xnom(t) is the desired nominal state trajectory and x(t) is the state
variable need to be controlled.

A reference system can be an arbitrary system which describes the connection
between the control signal and the controlled variable in a roughly approximate
way—another key point is that the reference system need to be a third order one to
fit both to the transformed model and the third order error compensator. In this study
we have considered the transformed model (4)–(6) as reference systems as well and
we assumed that both the model structure and parameters are known. In our later
work we will investigate other reference systems as well to examine the robustness
of the developed control framework. Therefore, the considered reference systemwas
the following:
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ẋ1,re f (t) = −λ1x1,re f (t) + λ1x2,re f (t)
ẋ2,re f (t) = bex1,re f (t)−x2,re f (t) − de2x1,re f (t)/3 − ηx3,re f (t)
ẋ3,re f (t) = −λ3x3,re f (t) + ure f (t)

, (33)

The direct connection between ure f (t) and
...
x 1,re f (t) can be elaborated as follows

by applying (33):

...
x 1,re f (t) = −λ1 ẍ1,re f (t) + λ1 ẍ2,re f (t)

= −λ1 ẍ1,re f (t) + λ1

(
bex1,re f (t)−x2,re f (t)(ẋ1,re f (t) − ẋ2,re f (t))

−d
2

3
e2x1,re f (t)/3 ẋ1,re f (t) − ηẋ3,re f (t)

)
= −λ1 ẍ1,re f (t) + λ1

(
bex1,re f (t)−x2,re f (t) ẋ1,re f (t) − ẋ2,re f (t)

−d
2

3
e2x1,re f (t)/3 ẋ1,re f (t) − η

(
− λ3x3,re f (t) + ure f (t)

))
(34)

We have assumed that F = 1 in (32)which is a usual consideration in the literature
[71, 72]. The specific third order compensator can be realized by using (31), (32)
and (34) in the following way:

...
e (t) + F1ë(t) + F2ė(t) + F3e(t) = 0

(
...
x 1,nom(t) − ...

x 1,re f (t)) + F1(ẍ1,nom(t) − ẍ1,re f (t)) + F2(ẋ1,nom(t)
−ẋ1,re f (t)) + F3(x1,nom(t) − x1,re f (t)) = 0

(...
x 1,nom(t) −

(
− λ1 ẍ1,re f (t) + λ1

(
bex1,re f (t)−x2,re f (t)(ẋ1,re f (t) − ẋ2,re f (t))

−d
2

3
e2x1,re f (t)/3 ẋ1,re f (t) − η

(
− λ3x3,re f (t) + ure f (t)

))))
+

F1(ẍ1,nom(t) − ẍ1,re f (t)) + F2(ẋ1,nom(t) − ẋ1,re f (t))+
F3(x1,nom(t) − x1,re f (t)) = 0

. (35)

By rearranging (35) the ure f can be expressed as follows:

L(t) = ...
x 1,nom(t) − λ1bex1,re f (t)−x2,re f (t)(ẋ1,re f (t) − ẋ2,re f (t))+

λ1d
2

3
e2x1,re f (t)/3 ẋ1,re f (t) − λ1ηλ3x3,re f (t) + F1(ẍ1,nom(t) − ẍ1,re f (t))

+F2(ẋ1,nom(t) − ẋ1,re f (t)) + F3(x1,nom(t) − x1,re f (t))

ure f (t) = L(t)

−λ1η

. (36)

To summarize the operation, the application of ure f (t) is the input for the (33)
reference system, the x1,re f (t) behaves as the developed x1,nom(t). In other words, the
ure f (t) reference control signal assures that the x1,re f (t) smoothly follows x1,nom(t)
over time.
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Remark 4 During the calculation of F1,2,3 it should be kept in mind that these pa-
rameters have to be positive and small scalers to be sure about the stability of the
closed loop and the soft action of the IDC-PD compensator. The values can be cal-
culated by determining the poles of (32) (in our case by determining the poles of
(35)) characteristic equation. We applied the following poles: λ1,2,3 = −0.05. These
poles provide the stability and soft control action as well for the closed loop with
respect to the reference subsystem. By realizing the characteristics polynomial the
F1 = 0.15, F2 = 0.0075, and F3 = 0.000125 weights have been obtained.

4.4 Extended Kalman Filter Design

In order tofinalize the control environment, the lastmissing piece is the state estimator
which is needed due to the application of state-feedback kind PDC control. We
decided to use a mixed continuous/discrete EKF since the physiological system to
be controlled is continuous, however, the EKF usually uses discrete measurements
(not mentioning the fact that it is realized on discrete systems) [25, 73, 74]. For the
sake of simplicity we have considered the transformed Hahnfeldt model described
by (4)–(6) during the EKF design. Naturally, this can be replaced with LPV based
solution as well [75].

It should be noted that we have considered T = 1 day sampling time which fits
to the model properties.

The following functions describe the generalmixed continuous/discreteEKF [25]:

ẋ(t) = f (x(t), u(t)) + d(t), d(t) ∼ N (0, Q)

yk = h(xk) + vk, vk ∼ N (0, Rk)
. (37)

In (37) the f (x(t), u(t)) is the equation of the system and h(xk) is the sensor
model while xk = x(tk). Disturbances and noise have been also considered: the d(t)
and vk are the continuous disturbance signal and vk is the discrete sensor noise signal,
respectively.

Remark 5 The f (x(t), u(t)) is equal to (4)–(6). We have also considered that h(xk)
sensor model is equal to x1(t)—which is the only measurable state variable. In our
future work we will examine the opportunity the incorporation of more advanced
sensor model.

With respect to the model properties the considered d(t) disturbance vector con-
sists of normally distributed random variables with zero mean and 0.05 standard
distribution. Hence, Q = cov(diag[0.052, 0.052, 0.052]). We assumed Rk = 0.012

due to the only one measurable output we have is the x1(t) state variable. The con-
sidered initial conditions have been the followings: x̂0|0 = E

[
x(t0)

]
estimated initial

state vector and P0|0 = Var
[
x(t0)

]
error covariance matrix.
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˙̂x(t) = f (x̂(t), u(t))
Ṗ(t) = F(t)P(t) + P(t)F�(t) + Q,

. (38)

In x̂(tk−1) = x̂k−1|k−1, P(tk−1) = Pk−1|k−1 and F(t) = ∂ f

∂x

∣∣∣∣∣
x̂,u

.

In the update phase these results have been applied as x̂k|k−1 = x̂(tk) and Pk|k−1 =
P(tk).

Based on the previous findings, the Kalman gain can be calculated as

Kk = Pk|k−1H�
k (HkPk|k−1H�

k + Rk)
−1 , (39)

where Hk = ∂h

∂x

∣∣∣∣∣
x̂k|k−1

which is in this particular case Hk = [1, 0, 0].
During the EKF design the last step is the update phase in which the predictions

are corrected concerning to the measurements by using the calculated Kalman gain
where I is the identity matrix:

x̂k|k = x̂k|k−1 + Kk(yk − h
(
x̂k|k−1))

Pk|k = (I − KkHk)Pk|k−1
. (40)

4.5 Finalized Control Scheme

The finalized control scheme can be seen in Fig. 4. It consists of the reference sub-
system and the control framework.

The reference subsystem is an important, but replaceable part of the scheme. It is
responsible to generate the xre f (t) reference state trajectories and the ure f (t) refer-
ence control signal which are utilized by the control framework during the realization
of the error based dynamical descriptions (namely to realize the Δx̂re f (t) difference
based estimated state variables and u(t) applied control signal). The development of
the belonging parts of the reference subsystem was described in Sects. 2.3 and 4.3.

The TP-LPV-LMI controller presented by Fig. 4 is based on the findings of
Sects. 4.1–4.2 in a form of (22), while the EKF is based on Sect. 4.4.

The considered nonlinearmodel in the control frameworkwas themodel described
by (4)–(6).

The applied deviation based state reference signal is Δr = 0 which means that
the goal of the state feedback kind control is x(t) = xre f (t) while t → ∞. Thus, the
control framework enforces the xre f = x equality over time.
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Fig. 4 Finalized control scheme

Finally, the generation of p(t) is the last missing piece. In (17)–(18) the x(t) state
variables are needed in the realization of the parameter vector. However, x2,3(t) are
not available directly and x1(t) is also loaded with noise. In the practical realization
this issue can be solved by using the x̂(t) estimated state variables instead of x(t). In
this way, the (17)–(18) need to be modified as follows by considering the xre f (t) is
known as it was described previously:

p1(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

b e−x̂2(t)

(
ex̂1(t) − ex1,re f (t)

)
Δx̂1(t)

−d

(
e2x̂1(t)/3 − e2x1,re f (t)/3

)
Δx̂1(t)

, if Δx̂1(t) 	= 0

(
ex̂1(t) + ex1,re f (t)

) (
2

3
d + be2x̂2(t)

)
, if Δx̂1(t) = 0

(41)

p2(t) =
⎧⎨
⎩
be−x1,re f (t)

(ex̂2(t) − ex2,re f (t))

Δx̂2(t)
, if Δx̂2(t) 	= 0

−bex1,re f (t)
(
ex̂2(t) + ex2,re f (t)

)
, if Δx̂2(t) = 0

(42)
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5 Results and Discussion

The simulation environment consists of two parts. The initialization, modeling and
control design have been done in the MATLAB core. The numerical simulations
have run in SIMULINK environment, however.

The circumstances considered during the numerical simulations were the fol-
lowing. The numerical values are arbitrarily selected, however, in accordance with
our previous findings [6, 16]. Due to x1(t) is the measurable output we assumed
that x1(t0) = ln(14900) = 9.6091 is known. We selected that x2(t0) = x1(t0) in
conjunction to our previous studies [6, 16]. The x3(t0) = 0, namely, there was no
drug administration before the start of the therapy. The initial state variables of the
EKF have been selected alongside the following assumptions. The x̂1(t0) = x1(t0) =
ln(14900) = 9.6091 since x1(t) ismeasurable and x̂3(t0) = 0 similarly to x3(t0) = 0.
The x̂2(t0) = ln(18159) = 9.8069mm3 considered as slightly perturbated and differ-
ent than x2(t0). The xre f (t0) = [ln(17000), ln(17000), 0]� = [9.7410, 9.7410, 0]�.

The final numerical values of the state variables after the end of the simulation
have been the following:

• x(t f inal) = [ln(1.0245), ln(1.0552), 8.9604]� = [0.0242, 0.0537, 8.9604]�;
• x̂(t f inal) = [ln(1.0334), ln(1.1363), 8.7441]� = [0.0329, 0.1278, 8.7441]�;
• xre f (t f inal) = [ln(1.054), ln(1.0451), 8.929]� = [0.0526, 0.0441, 8.929]�.

Figure5 shows the decay of state variables over time. The upper sub-figure rep-
resents the original model x(t) to be controlled, the middle sub-figure is the state
variables of the EKF x̂(t), while the lower sub-figure belongs to the reference model
xre f (t). The disturbances and noise can be observed on x(t) which reflect in the x̂(t)
as well. As one can see the final values of state variables of the model to be controlled
(detailed above) reached the close environment of the determined therapeutic goal—
however, because of the disturbances and noises a small deviation obtained. The other
aim of the controller is to enforce x(t) to behave as xre f (t)—which requirement has
also been satisfied.

This latter conclusion can be strengthen qualitatively and quantitatively by in-
vestigating Fig. 6 and the root mean square error (RMSE) values, respectively. The
RMSE values consider the difference between the models and state variables under
the whole simulation horizon. The following list presents the RMSE values.

(a) RMSEx(t)−x̂(t) = [0.1033, 0.2357, 0.4422];
(b) RMSEx(t)−xre f (t) = [0.023, 0.0091, 0.2944];
(c) RMSExre f (t)−x̂(t) = [0.1041, 0.2364, 0.398].

The numerical RMSE results correspond to the expectations. The highest differ-
ences obtained when we compared the EKF’s state variables x̂(t) to the original and
reference models (a and c cases). The performance of the control environment can
be judged based on the b case as well. Despite the applied disturbances and noises
the model to be controlled followed the reference model with low error. The control’s
aim was determined as Δx1,2,3(t) = 0 over t → 200 (where 200 was the final day of
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Fig. 5 Trajectories of state variables during operation

simulated therapy). According to the x(t f inal) the controller environment was able
to satisfy this requirement (Fig. 6). The main source of differences between the state
variables of systems caused by the effect of disturbances and noise, however, the
magnitudes of the deviations were approximately 0.3 in case of ‖x(t) − x̂(t)‖ and
‖xre f (t) − x̂(t)‖ and 0.15 in case of ‖xre f (t) − x(t)‖ which is an acceptably low
value with respect to d(t) and vk .

The applied transformedmodel originated from the described Hahnfeldt model—
thus, it ismeaningful to investigate the control effects on theHahnfeldtmodel aswell.
For that purpose a reverse transformation (z1,2 = exp(x1,2)) of the first two states can
be done. The third state variable are identical, namely, z3 = x3. The result can be
seen in Fig. 7. It is clearly visible that the control framework performed well and it
decreased the tumor and vasculature volumes in the predefined way.

Figure8 shows the applied control signals. The upper subfigure is the ure f (t)
reference control signal provided by the reference subsystem which guarantees the
appropriate values of xre f (t) over time. As it can be seen in the middle subfigure
the u(t) provided by the control framework was quite similar to ure f (t). The main
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Fig. 6 2-norm based error representations between the state variables of the systems

0 20 40 60 80 100 120 140 160 180 200
0

5000

10000

15000

0

5

10

15

Fig. 7 State variables of the controlled model after reverse transformation
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Fig. 8 Obtained control signals

source of difference (lower sugfigure) was that u(t) was loaded by the effect of
disturbances and noise due to signal smoothers have not been applied on x̂(t) (this
is also corroborated by Fig. 9 as well). The application of x̂(t) affected the generated
u(t) from two sides. The first one that according to (22)–(23) the state feedback
kind control law need to be applied as u(t) = −G(p(t))x̂(t). The second effect is
coming from G(p(t)) = G ×r w(p(t)) in which the p(t) is calculated as (41)–(42),
namely, different terms of x̂(t) have been applied here as well. The consequence is
the “noisy” resulting u(t) control signal. However, by applying smoothers as the part
of the EKF this effect can be minimized. This will be investigated in our future work.

Figure9 shows the integrated control signals and their difference. In the upper
subfigure the integrated time signals are almost totally aliasing—which corroborates
that themain difference between u(t) and ure f (t) is coming from the disturbances and
noise effects. The lower subfigure shows the difference between them and indicated
that the u(t) and ure f (t) is quite similar to each other. An important marker is the total
injected amount of drug. In this case these values have beenUref = 2807.5 [mg/kg]
andU = 2798.2 [mg/kg] in the simulated time horizon—which also strengthen that
the discrepancy was minimal between the signals during operation.
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Fig. 10 Vary of p(t) during
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Fig. 11 Very of convex weighting functions during operation

An important indicator of the control framework is the behavior of the closed loop
poles, p(t) and w(p(t)), respectively. Regarding the closed loop poles we refer to
Fig. 2 on which the obtained closed loop poles were shown. The related details are
described in Sect. 4.2. In order to check the domain violations the values of p(t) need
to be investigated. Figure10 shows the values of p(t) during operation in which the
Ω domain of scheduling parameters are denoted by dashed lines. It can be seen that
there is no domain violation. The other important indicator is the behavior ofw(p(t))
as it is operated which can be seen in Fig. 11. The control framework performed well
from this point of view as well and the (21) is satisfied during operation.

6 Conclusion

The study describes our latest results concerning tumor growth control by applying
anti-angiogen therapy. We have applied a transformed model of Hahnfeldt and from
it a specific qLPV model have developed on which the control design have been
executed. A reference subsystem was also introduced to describe the behavior of the
first state and this has been applied to generate reference trajectory.
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We detailed the control design as a step-by-step procedure. First, the control
oriented qLPV model was converted to a TP-qLPV model trough TP model trans-
formation. The control goals were determined with respect to the final values of the
state variables to be controlled. These goals have been embedded into the LMIs. In
this way the obtained resulting controller was ready to act according to them and
finally to satisfy them.

The developed control framework has been examined by using numerical simula-
tions. According to the results all of the control goals have reached—and the tumor
and vasculature volumes decreased as prescribed.

In our future work we will investigate more complex model with the same con-
troller design procedure, moreover, we examine the use of smoothers at the EKF
side.

Appendix

Notations and Abbreviations

For the notations and abbreviations applied in this study please see Tables1 and 2.

Table 1 General Phrases Abbreviation Meaning

LTI Linear time invariant

LTV Linear time variant

LPV Linear parameter varying

qLPV quasi LPV

TP model Tensor product model

LMI Linear matrix inequality

MVS Minimal volume simplex

SVD Singular value
decomposition

HOSVD Higher-order SVD

EKF Extended kalman filter
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Table 2 Mathematical terms Notation Meaning

a, b, . . . Scalars

a, b, . . . Vector

A, B, . . . Matrices

ai , bi , . . . ith row vector of A, B, . . .

matrices

ai, j , bi, j , . . . jth elements of the ai , bi , . . .

row vectors

A,B, . . . Tensors

S
N
�
n=1

Wn Multiple tensor products, e.g.
S ×1 W1 . . . ×N WN

R,C, . . . Mathematical sets
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