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Abstract

Future hydroclimate projections of global climate models for East-Central Europe diverge to a great extent, thus, constrain
adaptation strategies. To reach a more comprehensive understanding of this regional spread in model projections, we make
use of the CMIP5 multi-model ensemble and six single-model initial condition large ensemble (SMILE) simulations to separate
the effects of model structural differences and internal variability, respectively, on future hydroclimate projection uncertainty. To
account for model uncertainty, we rank 32 CMIP5 models based on their predictive skill in reproducing multidecadal past
hydroclimate variability. Specifically, we compare historical model simulations to long instrumental and reanalysis surface
temperature and precipitation records. The top 3—ranked models—that best reproduce regional past multidecadal temperature
and precipitation variability—show reduced spread in their projected future precipitation variability indicating less dry summer
and wetter winter conditions in part at odds with previous expectations for Central Europe. Furthermore, not only does the
regionally best performing CMIP5 models belong to the previously identified group of models with more realistic land-
atmosphere interactions, their future summer precipitation projections also emerge from the range of six SMILEs’ future
simulations. This suggests an important role for land-atmosphere coupling in regulating hydroclimate uncertainty on top of
internal variability in the upcoming decades. Our results help refine the relative contribution of structural differences between
models in affecting future hydroclimate uncertainty in the presence of irreducible internal variability in East-Central Europe.
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1 Introduction

Human-induced changes in the climate system are already
detectable on daily-to-decadal timescales (Santer et al.
2018; Sippel et al. 2020). Changing weather patterns
(Rosenzweig et al. 2008), expanding dryland regions
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(Huang et al. 2016) and the dramatic reduction of Arctic
sea ice (Screen and Simmonds 2010; Dai et al. 2019), are
just a few from the vast set of climatic changes attributed
to rising greenhouse gas concentrations. Besides global
impacts, alterations in regional scale climate patterns are
also observable. Specifically, East-Central Europe is be-
lieved to become more susceptible to the incidence of
climate extremities in response to increased radiative forc-
ing (Seneviratne et al. 2006; Bartholy and Pongracz 2007,
Beniston et al. 2007; Hirschi et al. 2010). Nevertheless,
internal variability—an inherent feature of chaotic climate
dynamics (Zeng et al. 1993)—is also known to have sub-
stantially contributed to, or masked the effects of anthro-
pogenically forced climate change (Ding et al. 2014,
2019; Swart et al. 2015; Baxter et al. 2019; Topal et al.
2020), although conclusions on how internal variability
might behave under future warming scenarios are still
controversial (Deser et al. 2012, 2020; Dai et al. 2015;
Haszpra and Herein 2019; Haszpra et al. 2020a,b).
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Fig. 1 Location of the study area 20N

a Study domain

on an orography map. The purple
and blue dashed lines represent
the HISTALP Northeast (NE) and
Southeast (SE) regions. The 65N -
primary target area is selected as
the rectangle overlapping the NE
and SE regions, i.e., 43° N-50°
N;13° E-19.5° E. The black 60N 1
rectangle represents the Central
Europe (CEU) domain (extended
target area) used to evaluate
CMIPS models against the SSN
NOAA twentieth century
reanalysis
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Global climate models (GCMs) are elaborate tools for sim-
ulating past, present, and future climatic and environmental
changes on various timescales; however, any projection is
riddled with three commonly mentioned uncertainties: scenar-
io uncertainty, model uncertainty, and internal variability
(Stainforth et al. 2007; Knutti 2008; Hawkins and Sutton
2009). Thus, coordinated modeling experiments have
launched to address these uncertainties. The Coupled Model
Intercomparison Project Phase 5 (CMIPS, Taylor et al. 2012b)
collected a number of GCMs with differing model physics,
manifested chiefly in the different parametrization schemes
applied in them. This dissimilarity tends to lead to structural
differences between the models and thought to account for
most of the uncertainty regarding their performance (Knutti
2008; Knutti and Sedlacek 2013; Harrison et al. 2015), while
the choice of the external forcing scenario plays a subtle role
(Reichler and Kim 2008). One practice to acknowledge GCM
limitations is to use a multi-model ensemble (Suh et al. 2012;
L'Heureux et al. 2017) and consider each GCM with equal
weight. However, to abandon “model democracy” and weight
or give preference to certain models in a multi-model ensem-
ble based on performance, ranking was also proposed (Knutti
2010; Merrifield et al. 2019). The latter has proved effective in
constraining model uncertainty (Knutti et al. 2017) and is of
particular importance when studying climatic variables (e.g.,
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precipitation) whose future projections show large spread be-
tween different models (Garfinkel et al. 2020).

Action taken in this direction introduced the application of
diverse model ranking methodologies, ranging from studies
using correlation, root-mean-square error, and variance ratio
(Boer and Lambert 2001; Gleckler et al. 2008) to the applica-
tion of prediction indices (Murphy et al. 2004) or to those
taking a Bayesian approach (Min and Hense 2006). In addi-
tion, the concern of interdependency of CMIP models
(Sanderson et al. 2015) has been re-evaluated recently
(Olson et al. 2019). Regarding the target area of model eval-
uation Garfinkel et al. (2020) studied the sources of CMIP5
intermodel spread in precipitation changes globally, however,
ample analyses are targeted at more regional areas, e.g., the
North-Atlantic (Perez et al. 2014), parts of Europe (Coppola
et al. 2010; Pieczka et al. 2017), Africa (Brands et al. 2013;
Dyer et al. 2019; Yapo et al. 2020), South-America (Lovino
et al. 2018), or Asia (Ahmed et al. 2019).

Policy and management actions taken in response to the
environmental hazards linked to climatic change, especially
the consideration of the societal and agricultural impacts of
extreme climate events, are limited by the uncertainties around
GCM performance and internal variability too (Knutti and
Sedlacek 2013). There is growing body of evidence that the
regional accuracy of GCM simulations is critical for regional
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Fig. 2 Time series of
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climate model (RCM) projections. An RCM nested in a GCM
that lacks the skillful representation of the observed large-
scale climatic modes and circulation (i.e., boundary conditions
for the RCM) cannot be expected to generate realistic results
(Gautam and Mascaro 2018; Verfaillie et al. 2019). Despite a
model’s agreement with current or more distant past observa-
tions does not always guarantee credibility to its future pro-
jections, the fact that it is based on physical principles supports
the idea of using past observations as constraints in hope of
selecting models with more reliable future projections
(Reichler and Kim 2008; Sheffield et al. 2013; Sillmann
et al. 2013; Wang et al. 2014; Barnes and Polvani 2015).
Consequently, boosting the robustness of regional GCM pro-
jections via the rigorous evaluation of their uncertainties is
crucial, especially for those that drive RCMs in the MED-
CORDEX project (Ruti et al. 2016).

Several studies indicate that structural differences, namely
the land-atmosphere feedback strength, between models can
indeed be a source of uncertainty in future precipitation pro-
jections (e.g., Schwingshackl et al. 2018). However, the exact
physical mechanisms such as how changes in soil moisture
affect precipitation or temperature extremes remain uncertain
(Boberg and Christensen 2012; Taylor et al. 2012a; Berg et al.
2016). Recently Vogel et al. (2018)—based on CMIPS5

2025 2030 2035 2040 2045 2050 2055 2060 2065 2070 2075 2080 2085

models with more realistic land-atmosphere couplings—
concluded a future reduction in summer drying and warm
extremes in Central Europe in line with a study by Selten
et al. (2020). Nevertheless, how internal variability may influ-
ence the selection of best performing models and thus the
uncertainty in future precipitation projections remains
unaddressed.

Internal variability can be considered the parallel existence
of numerous climate states at a given time (Lorenz 1963). It is
an inherent feature of the climate system driven by chaotic
dynamics (Bodai and Tél 2012; Drotos et al. 2015, 2016,
2017; Herein et al. 2016, 2017). In single-model initial condi-
tion large ensemble (SMILE) simulations, unlike the CMIP5
multi-model ensemble, the same model is run several times
with perturbations in the initial condition. The single runs—
differing in their initial conditions exclusively—constitute the
members of the ensemble whose spread is related to internal
variability with the ensemble mean reflecting the forced
component.

In this paper, we aim to complement the inconclusive lit-
erature on East-Central European future precipitation projec-
tions and assess CMIP5 historical model performance based
on long instrumental records from the HISTALP database
(Auer et al. 2007) and the National Oceanic and
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Table 1 32 CMIPS
models used in the study
(excluding NorESM1-M
for the future timeframe).
Expansions/definitions

CMIP5 model

ACCESS1-0
ACCESS1-3

of the models are avail-
able online (https://
www.ametsoc.org/
PubsAcronymList)

CanESM2
CMCC-CESM
CMCC-CM
CMCC-CS
CNRM-CMS5
CSIRO-MK3.6
FGOALS-s2
GFDL-CM3
GFDL-ESM2G
GFDL-ESM2M
GISS-E2-CC
GISS-E2-H
GISS-E2-R-CC
GISS-E2-R
HadGEM2-AO
HadGEM2-CC
HadGEM2-ES
INM-CM4
IPSL-CM5A-LR
IPSL-CM5A-MR
IPSL-CM5B-LR
MIROC-ESM-CHEM
MIROC-ESM
MIROCS
MPI-ESM-LR
MPI-ESM-MR
MRI-CGCM3
MRI-ESM1
NorESM1-M
NorESM1-ME

Atmospheric Administration (NOAA) twentieth century re-
analysis (Compo et al. 2011; Slivinski et al. 2019) for 1861—
2005 and compare our constrained model ensemble’s future
precipitation projections to six SMILEs (Deser et al. 2020).

Fig. 3 Surface temperature (TS: red crosses) and precipitation (PR: blue | 4
circles) seasonal ranks (uppermost panel), NSE (middle panel), and
RMSE (lower panel) for the historical era (1861-2005) across 32
CMIP5 climate models (listed below the x-axis) a for summer (June-
July-August: JJA) and b for winter (December-January-February: DJF)

Within the CMIP5 multi-model ensemble, we cannot estimate
the relative role for internal variability and model structural
differences in influencing the spread of future precipitation
projections since, for example, land-atmosphere feedbacks
appear with different precision in the 32 CMIP5 models
(Cheruy et al. 2014). However, with the inclusion of
SMILEs, new opportunities open: we can explore the range
of future precipitation projections solely due to internal vari-
ability (per model) and thus place CMIP5 model structural
differences in the context of internal variability when
assessing future hydroclimate uncertainty.

We identify three CMIP5 models with outstanding perfor-
mance in simulating both regional past hydroclimate variabil-
ity and land-atmosphere feedbacks (Seneviratne et al. 2013;
Vogel et al. 2018), which unanimously indicate significantly
less dry future summer conditions relative to the spread of
CMIPS and six SMILE simulations. This emphasizes the role
for land-atmosphere coupling in regulating future summer
hydroclimate uncertainty and a possible limitation affecting
the state-of-the-art SMILE simulations that requires future
work to disentangle. Our paper provides new insights into
how those models that show better skills in reproducing ob-
served climate variability can help refine future hydroclimate
uncertainty in the presence of internal variability and advo-
cates new efforts dedicated to improving model performance
in simulating land-atmosphere feedbacks in Central Europe.

2 Data and methods
2.1 Study area description
The primary target area consists of the northeast (NE) and

southeast (SE) subregions of the Greater Alpine Region (43°
N-50° N; 13° E-19.5° E; Fig. 1), which have been delineated

Table2  Large ensemble simulations used in the study

Modeling center Model version Abbreviation Number of members Time period Reference

CCCma CanESM2 CanESM-LE 50 2006-2080 Kirchmeier-Young et al. (2017)
CSIRO MK3.6 CSIRO-LE 30 20062080 Jeffrey et al. (2013)

GFDL ESM2M GFDL_ESM2M-LE 30 20062080 Rodgers et al. (2015)

MPI MPI-ESM-LR MPI-GE 100 1850-2080 Maher et al. (2019)

NCAR CESMI1 CESM-LE 40 2006-2080 Kay et al. (2015)

SMHI/KNMI EC-EARTH EC _EARTH-LE 16 1850-2080 Hazeleger et al. (2010)
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<« Fig. 4 a Surface temperature (TS) and precipitation (PR) mean ((JJA +

DIJF)/2) ranks (upper panel), mean NSE (middle panel), and mean RMSE
(lower panel) for East-Central Europe for the historical era (1861-2005)
across 32 CMIPS5 climate models (indicated below the x-axis). b Box-
and-whiskers plot of the scaled [0;1] grand-rank, grand-NSE, and grand-
RMSE (indicated below the x-axis) showing the 10th and 90th percentiles
of 32 CMIP5 model’s performances. Red circles show models above 90th
and below 10th percentiles, respectively. Those six models above the
90th percentile in the grand-rank or -NSE or -RMSE are highlighted with
green on a

by Auer et al. (2007) based on the regionalization of certain
climatic variables. It was chosen to cover the region of interest
(East-Central Europe), where precipitation projections of
CMIP5 models show large spread for both summer (Fig. 2a)
and winter (Fig. 2b). To ensure the robustness of results based

Table 3
the CMIP5 ensemble are italicized

on the primary target area, supplementary calculations were
performed on an extended domain (43° N-57° N; 4° E-20° E;
Fig. 1) corresponding to the East-Central European part of the
area used in Vogel et al. (2018).

2.2 HISTALP instrumental and the NOAA twentieth
century reanalysis data

For the basis of model assessment, we used monthly surface
temperature (TS) and precipitation (PR) data from the
HISTALP coarse resolution subregional mean (CRSM) series
for the NE and SE subregions of the Greater Alpine Region
(Fig. 1) for 1861-2005 (Auer et al. 2007; we refer to this data
as observations). The CRSMs are arithmetic means of the

Scaled [0; 1] grand-RMSE, -NSE, and -rank of 32 CMIP5 models for East-Central Europe. Models performing above the 90th percentile of

Model Grand RMSE Model Grand NSE Model Grand Rank
FGOALS-s2 0.12 FGOALS-s2 0.92 FGOALS-s2 0.92
GISS-E2-R-CC 0.15 MRI-CGCM3 0.92 IPSL-CM5B-LR 0.84
MRI-CGCM3 0.16 GISS-E2-R-CC 0.91 MRI-CGCM3 0.8
MPI-ESM-LR 0.25 MPI-ESM-LR 0.86 MRI-ESM1 0.74
IPSL-CM5B-LR 0.26 MRI-ESM1 0.86 IPSL-CM5A-LR 0.69
MRI-ESM1 0.28 INM-CM4 0.8 GISS-E2-R-CC 0.68
INM-CM4 0.34 IPSL-CM5B-LR 0.78 GISS-E2-H 0.65
GISS-E2-H 0.35 NorESM1-M 0.75 MPI-ESM-LR 0.64
NorESM1-ME 0.35 NorESM1-ME 0.74 NorESM1-ME 0.57
GISS-E2-R 0.35 GISS-E2-H 0.74 MPI-ESM-MR 0.57
GFDL-CM3 0.38 GISS-E2-CC 0.73 GISS-E2-R 0.57
IPSL-CM5A-LR 0.38 GISS-E2-R 0.73 GFDL-CM3 0.52
NorESM1-M 0.39 ACCESS1-0 0.72 ACCESS1-0 0.51
GFDL-ESM2M 0.40 GFDL-CM3 0.72 IPSL-CM5A-MR 0.51
GISS-E2-H-CC 0.42 GFDL-ESM2M 0.72 MIROCS 0.49
ACCESS1-0 043 HadGEM2-AO 0.7 GISS-E2-CC 0.49
MPI-ESM-MR 043 CMCC-CM 0.67 MIROC-ESM 0.48
HadGEM2-AO 0.46 IPSL-CM5A-LR 0.66 NorESM1-M 0.48
MIROC-ESM 0.47 HadGEM2-ES 0.63 INM-CM4 0.47
CMCC-CM 0.49 MPI-ESM-MR 0.63 GFDL-ESM2M 0.41
HadGEM2-ES 0.51 MIROC-ESM 0.62 HadGEM2-CC 0.38
HadGEM2-CC 0.52 CanESM2 0.6 CanESM2 0.35
CanESM?2 0.52 GFDL-ESM2G 0.57 HadGEM2-AO 0.32
GFDL-ESM2G 0.58 CMCC-CMS 0.55 GFDL-ESM2G 0.31
IPSL-CM5A-MR 0.59 HadGEM2-CC 0.54 HadGEM2-ES 0.29
MIROCS5 0.62 ACCESS1-3 0.51 CSIRO-MK3.6 0.25
ACCESS1-3 0.62 IPSL-CM5A-MR 0.46 MIROC-ESM-CHEM 0.23
CMCC-CMS 0.63 MIROCS 043 ACCESSI1-3 0.2
CSIRO-Mk3-6-0 0.71 CSIRO-MK3.6 041 CMCC-CM 0.19
CMCC-CESM 0.75 CMCC-CESM 0.37 CMCC-CESM 0.19
CNRM-CMS5-2 0.82 CNRM-CMS5 0.29 CMCC-CMS 0.17
MIROC-ESM-CHEM 0.87 MIROC-ESM-CHEM 0.28 CNRM-CM5 0.01
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Fig. 5 Spatial map of a—f surface temperature (TS) and g1 precipitation
(PR) RMSE based on the NOAA twentieth century reanalysis (1861—
2005) relative to the CMIP5 ensemble mean shown for the top 6-
ranked models (based on historical instrumental data, see Methods) and
m box-and-whiskers plot of the TS (violet) and PR (light blue) RMSE
averaged for the Central European (CEU) domain (43°-57° N;4° E-20° E)
and the average of the TS and PR RMSE values (Grand RMSE with gray)
for 32 CMIP5 models each of which is marked as in the legend. The
whiskers extend to the minimums and maximums. The median of each
group is indicated with orange horizontal lines. The means are marked
with x

homogenized anomaly series (reference period: 1961-1990)
for the stations situating within the boundaries of NE and SE
subregions. We also utilize TS and PR data from the NOAA
twentieth century reanalysis version 3 (Compo et al. 2011;
Slivinski et al. 2019) for the assessment of model
performance.

2.3 CMIP5 models and single-model initial condition
large ensembles

For the analysis, we selected CMIP5 models that have so-
called historical or future RCPS8.5 simulations following
the historical experimental design for 1861-2005 and
RCPS8.5 forcing scenario for 2006-2100 (Lamarque et al.
2010; Taylor et al. 2012b). This resulted in the selection
of 32 different model versions for the historical and 31
models for the future timeframe from 16 modeling centers
worldwide (Table 1). In addition, we made use of six
SMILE simulations’ future (2006—2080) precipitation
simulations: Max Planck Institute Grand Ensemble
(MPI-GE), Canadian Earth System Model Large
Ensemble (CanESM-LE), Community Earth System
Model Large Ensemble (CESM-LE), Geophysical Fluid
Dynamics Laboratory Earth System Model version 2
Large Ensemble (GFDL ESM2M-LE), Commonwealth
Scientific and Industrial Research Large Ensemble
(CSIRO-LE), and EC-EARTH Large Ensemble
(EC_EARTH-LE). In addition, we used two historical
(1861-2005) precipitation simulations of the MPI-GE
and EC_EARTH-LE (further details and references are
found in Table 2).

2.4 Ranking the individual CMIP5 models

As a preliminary step, model output was interpolated onto the
same regular 1.5° grid, and anomalies (relative to 1961-1990
to match the HISTALP anomaly time series) were calculated
for all the individual historical CMIP5 simulations. Boreal
summer (June-July-August: JJA) and winter (December-
January-February: DJF) averages were derived annually for
both the CMIP5 historical (1861-2005) and future (2006—
2100) simulations and the observations of TS and PR.

Additionally, both observational and model data were
smoothed with a centralized 31-year moving average to most-
ly account for multidecadal low-frequency variability (as is
the standard practice to minimize the effect of internal
variability in single model realizations; e.g., McCabe and
Palecki 2006; Senftleben et al. 2020) and to ensure compara-
bility with the GCM data with relatively coarse grid resolu-
tion. Data preparation resulted in area-averaged and smoothed
time series for the two subregions (NE and SE) for each mod-
el, variable, and season along with the observed time series.

We used three statistics for the individual CMIPS
models’ assessment with root-mean square error
(RMSE) being the primary one in addition to the frac-
tion of temporal Pearson correlation coefficient and
mean-absolute error (referred to as: rank) and the
Nash-Sutcliffe efficiency (NSE, Nash and Sutcliffe
1970) calculated between the observed and simulated
time series. The reason we include temporal correlation
is to measure to what extent simulated long-term (the
time series are smoothed with a 31-year moving aver-
age) changes in PR and TS are in-phase with observa-
tions as it is expected for a model to reproduce ob-
served low-frequency TS and PR changes. The NSE
(Eq. 1) is calculated based on the observed (obs) and
simulated (sim) time series pairs as:
" (obs—sim)*

i=1

s, (o)

NSE = 1-

(1)

where n is the length of the timeseries and (%) indi-
cates the time-mean of the observed timeseries. The
NSE ranges from - to 1, where 1 would mean the
perfect observation-simulation match (which is not pos-
sible) and NSE =0 indicates that the modeled time se-
ries’ mean-square-error is commensurable with the vari-
ance of the observed time series.

For simplicity, we now only go through the ranking
steps for the RMSE as the calculations are the same for
the other two statistics. First, RMSE corresponding to
each of the two seasons (JJA and DJF) was calculated
for both variables (referred to as TS and PR seasonal
RMSE) for the two subregions separately. Then, the
RMSE values were averaged for the two subregions
and seasons for the two variables separately (referred
to as TS and PR mean RMSE). We also assess the
overall performance of a model in reproducing the ob-
served past hydroclimate variability in the target region
and introduce the grand-RMSE, which is the average of
the TS and PR mean RMSE values. To ensure compa-
rability of the RMSE of PR and TS, we rescaled the
values (for both variables) to range between 0 and 1
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Fig. 6 Rank histograms based on the year-to-year seasonal mean HISTALP observed precipitation in the target area for two large ensembles a—b MPI-

GE and ¢—d EC-EARTH-LE, and the CMIP5 multi-model ensemble e—f

(Eq. 2) before averaging them into the grand-RMSE,
which is the arithmetic mean of the scaled mean
RMSE of TS and PR.

meanRMSE— min

m=1,",

maxy,—i -y (meanRMSE)— glipM (meanRMSE)

(2)

(meanRMSE)
RMSEcated =

where m goes through the M=32 CMIP5 models.Note
that the applied rescaling is based on the maximum and
minimum values of the mean RMSE to maintain the
relative differences between each model’s performances.

@ Springer

2.5 Rank histogram to assess the performance of an
ensemble

Additionally, to assess the performance of an ensemble
as a whole, we apply the rank histogram on year-to-year
seasonal (JJA and DJF) averaged HISTALP and simulat-
ed data (Talagrand et al. 1997; Annan and Hargreaves
2010; Maher et al. 2019) for the two SMILEs with suf-
ficiently long historical simulations (MPI-GE and
EC EARTH-LE) and for the CMIPS ensemble. To do
so, let us consider an ensemble with » members and
initially let the rank=1. At each time-step (1861—
2005), we count the number of members of a given en-
semble that are greater than the observed value at that
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Fig. 7 Time series of
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time-step, which can be between count=0 and count=n.
If count=0, then the rank=1, or if count=n, then the
rank =7 + 1, else the rank = count. We plot the histogram
of the ranks and check for consistency with uniformity
based on a chi-squared test (Annan and Hargreaves
2010). If the ensemble underestimates the observed var-
iability, then observations will frequently lie close to, or
outside the edges of the ensemble resulting in a u-shaped
rank histogram, while a well performing ensemble would
yield a flat rank histogram.

3 Using observations to constrain the CMIP5
ensemble

3.1 Ranking CMIP5 models based on their historical
performance (1861-2005)

To begin with, we assess the historical performance of 32
CMIP5 models based on the HISTALP observations
(1861-2005) and use the above described ranking meth-
od. At first, seasonal RMSE, rank, and NSE were

2025 2030 2035 2040 2045 2050 2055 2060 2065 2070 2075 2080

31CMIPS mean
————— FGOALS-s2

MRI-CGCM3
—— MRI-ESM1

calculated for the NE and SE subregions for both seasons
separately, then averaged over the primary target area
(Fig. 3). The 32 CMIP5 models show diverging perfor-
mance in capturing past seasonal TS and PR variability
(Fig. 3). Some models (e.g., FGOALS-s2; MRI-CGCM3)
stand out from others, suggesting that abandoning the
“one model one vote” approach (Knutti 2010) is a right
decision for the target area. The spread between the per-
formances of the models are larger in summer (Fig. 3a)
than in winter (Fig. 3b), which discrepancy might be root-
ed in that (i) summertime convective precipitation is more
challenging for GCMs to capture (Dai 2006) and (ii) that
the regional surface temperature warming signal over the
past decades is more pronounced in summer than in win-
ter. For some of the models (e.g., CanESM2; CSIRO-
Mk3.6) the seasonal rank is negative, along with higher
seasonal RMSE values. The negative rank means negative
correlation between the observed and simulated time se-
ries, which is indicative of that the model is out of phase
with the long-term observed changes.

In the next steps, first, we average the seasonal statis-
tics and obtain the mean RMSE, rank, and NSE (Fig. 4a)
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<« Fig. 8 Spatial map of the linear trend (relative to 1971-2000 mean) of a—

¢ and g-i surface temperature (TS: K/decade) and d—f and j-1 precipita-
tion (PR: %/decade) for 2021-2085 (31-year moving averaged) under
RCP8.5 scenario in the members of the constrained CMIP5 ensemble
(see Methods for ranking details) for JJA and DJF

per variable, second, re-scale them to range from 0 to 1
based on Eq. 2 and third, via averaging the re-scaled
mean RMSE, rank, and NSE values, we obtain the
grand-RMSE, -rank, and -NSE (Fig. 4b). Those models
that performed above the 90th percentile of the CMIPS
ensemble based on any of the three metrics—a total of
six models (FGOALS-s2; IPSL-CM5B-LR; MPI-ESM-
LR; MRI-CGCM3; MRI-ESM1; GISS-E2-R-CC)—are
selected that skillfully reproduce multidecadal TS and
PR variability over the past ~150 years in East-Central
Europe (Fig. 4b; Table 3). To get a more visual picture
of the six top performing models’ past climate variabili-
ty, 31-year moving averaged TS and PR time series for
1861-2005 are plotted against the HISTALP observa-
tions for both JJA and DJF for the two Greater Alpine
subregions, separately (Fig. S1). Overall, models show
large spread in their historical projections in the two
subregions for both variables and seasons, which are vis-
ibly reduced among the six selected models (see the col-
ored solid lines in Fig. S1).

3.2 Validation of the ranking based on the NOAA
twentieth century reanalysis

To account for possible obscuring effects of the moderate
size of the primary target area on the selection of the best
performing models, we repeat the ranking using only the
RMSE statistic for the extended domain (section 2.1; Fig.
1) based on the NOAA twentieth century version 3
gridded reanalysis (Slivinski et al. 2019). The calculation
method is equivalent to the one applied to the HISTALP
records except the 32 CMIPS models are evaluated
against the gridded reanalysis product. In Fig. 5, we dem-
onstrate the spatial distribution of the reanalysis-based
TS/PR mean RMSE relative to the CMIP5 multi-model
ensemble mean for the six previously selected models
(Fig. 5a-1) and show the TS/PR mean RMSE and the
grand-RMSE for each model averaged over the extended
target area (Fig. 1) as a box-and-whiskers plot (Fig. 5Sm).
Spatial maps of the TS/PR mean RMSE for each of the 32
models are additionally shown in Fig. S2. Based on the
grand-RMSE for the extended target area (Fig. Sm), only
three out of the previously selected six models exhibit
similar good overall performance; thus, we further reduce
the range of selected models to the MRI-CGCM3, MRI-
ESM1, and FGOALS-s2 and refer to them as the
constrained ensemble.

3.3 Rank histograms

Furthermore, since internal variability cannot be correctly
assessed in a multi-model ensemble because of the initial con-
dition problem and differences in model structures (Branstator
and Teng 2010; Knutti 2010; Boédai and Tél 2012), it must be
considered that it may leave its fingerprint on our ranking and
study rank histograms of historical precipitation projections of
the MPI-GE and EC_EARTH-LE in the primary target area.
Figure 6a—d exhibit that both SMILEs underestimate the ob-
served summer and winter precipitation variability (histo-
grams are u-shaped), which is reinforced by the chi-squared
tests indicating significant differences from uniformity (on the
99% confidence level). Additionally, the CMIP5 multi-model
ensemble shows similar rank histograms to the SMILEs’ (Fig.
6e—f), except that the winter rank histogram does not differ
significantly from a flat one. These indicate that (i) conclu-
sions based on simulated internal variability by these two
state-of-the-art SMILEs (and possibly by the others as well)
should be treated with caution and that (ii) observational con-
straints may indeed be helpful in revealing models with struc-
tural advances relative to other models. In the upcoming sec-
tions, we further elucidate these issues.

4 A possible source for a reduced projection
spread: land-atmosphere couplings

We are particularly concerned with how future projections of
the constrained model ensemble look like in East-Central
Europe. We find that not only did the ranking result in a
reduced spread in historical simulations (Fig. S1), but the
members of the constrained ensemble also show reduced
spread in their future projections relative to the CMIP5 ensem-
ble mean for both summer (Fig. 7a) and winter (Fig. 7b).
Moreover, the difference between the CMIP5 ensemble mean
(28 models’ mean: —3.9%/decade) and the constrained en-
semble mean (3 models’ mean: — 0.1%/decade) future precip-
itation trend is significant based on a two-sample ¢ test (99%
confidence level). The three top-ranked models indicate less
dry summer and wetter winter conditions in the upcoming
decades not only in the primary target area but also on the
extended domain in parallel with considerable surface temper-
ature rise (Fig. 8). Members of the constrained CMIP5 ensem-
ble indicate — 0.7 to + 1%/decade summer and + 1 to + 5%/
decade winter precipitation change for East-Central Europe
relative to 1971-2000 (Fig. 8). Examining the constrained
ensemble members’ future seasonal surface temperature pro-
jections, we find no noticeable differences relative to the
CMIP5 ensemble mean; therefore, we rule out the possibility
that the discrepancy in future precipitation projections may be
due to a negative surface temperature bias in those models
(Fig. 8).
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< Fig. 9 Above: a—f spatial map of the ensemble mean (forced component)

linear trend (relative to 1971-2000) of summer (June-July-August: JJA)
precipitation for 2021-2085 (31-year moving averaged) for the six
SMILEs. Below: g box-and-whiskers plot (with the whiskers extending to
1.5 x interquartile range) of JJA precipitation linear trends (relative to 1971—
2000) for 2021-2085 (31-year moving averaged) for the CMIP5 multi-model
and the six SMILEs (indicated below the x-axis) for the primary target area
(indicated by the red rectangles on a—f: 43° N-50° N; 13° E-19.5° E). The
median of each ensemble is indicated with numbers above the boxes in
addition to the orange lines. The means are marked with %, while the outliers
(extending 1.5 x interquartile range) are marked with +. Trend values of the
members of the constrained CMIP5 ensemble are indicated with markers on
the first box-and-whiskers

Our results are partly at odds with previous expectations
that project extensive summer drying in the Central European
region (Feng and Fu 2013; Sheerwood and Fu 2014; Polade
et al. 2015; Pfleiderer et al. 2019). One mechanism for the
advanced summer aridification in the region has been associ-
ated with the moist lapse-rate feedback due to global warming
(Brogli et al. 2019). A warmer atmosphere, deduced from
Clausius-Clapeyron relation, can hold more moisture, which,
during moist adiabatic vertical motions, allows enhanced la-
tent heat release and thus upper-tropospheric warming. These
altogether result in an increased dry atmospheric static stabil-
ity as the thermal stratification remains close to the moist
adiabat during summer (Schneider 2007; Brogli et al. 2019).
Another mechanism regarding changes in atmospheric circu-
lation regimes, such as the poleward shifted subsidence zone
with the projected expansion of the Hadley-cell, has also been
suggested to influence future hydroclimate in the region due to
enhanced radiative forcing (Perez et al. 2014; Mann et al.
2018). Nevertheless, inconclusive literature (e.g., Kroner
et al. 2017) hinders us from a complete understanding of pos-
sible future precipitation changes in transitional climatic
zones, such as Central Europe.

Recent studies highlight a competing role for land-
atmosphere interactions and the extent of its realistic represen-
tation in climate models in determining future hydroclimate
uncertainty in the Mediterranean and Central Europe, where
soil moisture largely affects temperature and precipitation via
the partitioning of net radiation into sensible and latent heat
fluxes (Boberg and Christensen 2012; Lorenz et al.
2016; Vogel et al. 2018; Al-Yaari et al. 2019; Selten et al.
2020). It has also been proposed that it is not enough for a
model to faithfully represent observed soil-atmosphere feed-
backs because convection, land-surface, and cloud parametri-
zation schemes not only influence how soil moisture-
precipitation feedbacks are handled in a model but also affect
soil moisture-temperature feedbacks in turn (Christensen and
Boberg 2012). This further complicates and highlights the
importance of land-atmosphere interactions in determining
future hydroclimate uncertainty in our target region.

Members of our constrained CMIP5 ensemble belong to
the group of CMIP5 models that was identified by Vogel et al.

(2018) with (i) more fidelity in representing land-atmosphere
couplings and (ii) less pronounced summer hot and dry ex-
tremes for central Europe. A physical mechanism strongly
connected to land-atmosphere feedbacks that might balance
the decrease in precipitation during future transition into semi-
arid regions in Central Europe was also suggested (Taylor
et al. 2012a). In an early study, Dai (2006) showed that a
previous version of MRI-CGCM3 (the MRI-CGCM version
2.3.2a) better captured observed global rainfall patterns than
other models indicating that some basic features rooted in the
model physics (most likely the convective and stratiform pre-
cipitation parametrization schemes) can indeed be sources of
intermodel spread.

These lines of evidence reinforce the idea of ranking to
constrain future hydroclimate projections of different CMIP5
models based on evaluating their historical performance and
suggest an important physical mechanism that can explain
why our selected models perform better regionally.
Furthermore, presented results provide valuable implications
for future RCM simulations and advocate future research to
revisit the problem of the fidelity of land-atmosphere feed-
backs in RCM simulations, where the enhanced resolution
allows for a more detailed picture of regional feedback
mechanisms.

Although the 32 GCMs differ in their external forc-
ing components for their historical simulations, no pro-
nounced differences are observable between the mem-
bers of the constrained and the CMIP5 ensemble (not
shown). We argue that the varying historical model pro-
jection skills are not primarily rooted in the differences
between the external forcing components in line with
previous studies, e.g., Reichler and Kim (2008).
Nevertheless, we note that the choice of the external
forcing scenario does influence future model projections
(Santer et al. 2018), especially under a changing cli-
mate, when the external forcing components are time-
dependent (Bodai et al. 2020; Haszpra et al. 2020a,b).

5 Placing future precipitation projections
of the constrained ensemble in the context
of SMILE projections

Based on the ranking, we identified a constrained CMIP5
multi-model ensemble that shows reduced spread in their his-
torical and future precipitation projections indicating less dry
summer and wetter winter conditions in the upcoming decades
(Figs. 7 and 8). We have also seen that land-atmosphere feed-
backs may be of key importance in explaining why some
models perform better than others. The advantage of including
SMILE simulations in our study is to provide an estimate (i)
for the forced response (ensemble mean) in precipitation to
greenhouse gas emissions and (ii) for all possible states
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« Fig. 10 Above: a—f spatial map of the ensemble mean (forced

component) linear trend (relative to 1971-2000) of winter (December-
January-February: DJF) precipitation for 2021-2085 (31-year moving
averaged) for the six SMILEs. Below: g box-and-whiskers plot (with
the whiskers extending to 1.5xinterquartile range) of DJF precipitation
linear trends (relative to 1971-2000) for 2021-2085 (31-year moving
averaged) for the CMIP5 multi-model and the six SMILEs (indicated
below the x-axis) for the primary target area (indicated by the red rectan-
gles on a—f: 43° N-50° N; 13° E-19.5° E). The median of each ensemble
is indicated with numbers above the boxes in addition to the orange lines.
The means are marked with %, while the outliers (extending 1.5 xinter-
quartile range) are marked with +. Trend values of the members of the
constrained CMIP5 ensemble are indicated with markers on the first box-
and-whiskers

allowed by internal variability in a certain model (ensemble
spread), which allows us to place the observationally
constrained CMIP5 ensemble (three top-ranked models) in
the context of internal variability. What is more, with the
inclusion of six SMILEs, we can compare the internal vari-
ability of projected precipitation of various models, thus, get a
more robust estimate of future states of hydroclimate allowed
by internal variability in the region. We are aware of caveats
added by the coarse spatial and topography resolution of
SMILEs; however, currently, it is our best estimate for
projected hydroclimate uncertainty due to internal variability.

We plot the spatial map of the ensemble mean future precip-
itation projections’ linear trends for Europe and the spread across
all members of the ensembles as a box-and-whiskers plot for our
primary target area (Fig. 1) for summer (Fig. 9) and winter (Fig.
10). In summer, all SMILE mean simulations show drier future
conditions in East-Central Europe indicating — 2 to — 7%/decade
precipitation decrease during the upcoming decades relative to
1971-2000 (Fig. 9), while the constrained CMIP5 ensemble
mean trend indicates less pronounced summer drying (—0.1%/
decade). However, the magnitudes of the ensemble mean projec-
tions and the ensemble spread of different SMILE simulations
vary considerably across the six SMILEs that implies a role for
model uncertainty in regulating future hydroclimate changes on
top of internal variability. Furthermore, the constrained ensem-
ble’s mean future (2021-2085) precipitation trend (—0.1%/de-
cade) emerges from the interquartile range of simulated internal
variability by six SMILEs ((— 8%, — 1%)/decade). The difference
between the group of future precipitation trends spanned by all
the members of the six SMILE:s (a total of 256 members) and the
constrained ensemble (3 members) is significant based on a two-
sample ¢ test on the 99% confidence level (the means of the two
groups’ trends: — 4.8%/decade for the six SMILEs and —0.1%/
decade for the constrained ensemble).

Since we used observations to constrain the CMIPS ensem-
ble, which resulted in the selection of models with more real-
istic representations of land-atmosphere feedbacks, we as-
sume that the difference between the constrained ensemble’s
and the six SMILEs’ future summer precipitation trends may
be attributable to land-atmosphere coupling discrepancies

between the models. Importantly, except for the CESM1, the
base models of the large ensemble simulations were either
involved in the ranking, or we evaluated their historical sim-
ulations (see Sect. 3.3). Thus, it is unlikely that the SMILE
simulations would regionally outperform the members of the
constrained CMIP5 ensemble in capturing observed precipi-
tation variability. Although this needs further efforts to clarify,
these lines of evidence suggest less extreme summer drying in
East-Central Europe and that land-atmosphere coupling may
play a key role in regulating future summer hydroclimate un-
certainty in line with several recent studies (Boberg and
Christensen 2012; Vogel et al. 2018; Selten et al. 2020).

On the other hand, in winter, the six SMILE mean simulations
show future regional precipitation changes ranging from — 0.2 to
+4.5%/decade relative to 1971-2000 (Fig. 10a—f). For winter,
the SMILEs show a similar range (—3.7 to 7.1%/decade) of
possible future precipitation conditions in our region to both the
unconstrained and the constrained CMIP5 ensemble; however,
the differences between the six SMILEs are discerible (Fig.
10g). Unlike in summer, the top 3—ranked CMIP5 models’ future
winter precipitation trend values are well within 1.5xinterquartile
range of SMILE simulations (Fig. 10g). However, the relative
role for internal variability compared with model structural dif-
ferences, or the exact physical mechanism responsible for the
spread in either among the different ensembles or among the
members of a SMILE, remains uncertain and needs future work
to untangle. For example, based on Fig. 10a—f, we note the
importance of the exact geographical location of the simulated
transition zone between regions with drier and wetter future con-
ditions in the different models. This suggests that internal atmo-
spheric circulation changes may play an important role (e.g., via
regulating the extent of the northward expansion of the Hadley-
cell and thus the subsidence zone (Lu et al. 2007)) in determining
the geographical location of the transition between projected dri-
er and wetter conditions that might also be dependent on the
amount of emitted greenhouse gases in the future (Haszpra
et al. 2020b). There are plenty of rooms for future studies in these
directions, which is strongly encouraged in hope of a more com-
prehensive understanding of future hydroclimate uncertainties.

6 Summary and conclusions

In this paper, we applied a ranking method to account for the
possible role of structural differences between 32 CMIP5
GCMs in regulating hydroclimate projection uncertainty.
The assessment of historical performance of GCM projections
resulted in a constrained CMIPS5 ensemble with reduced future
seasonal precipitation projection spread for East-Central
Europe. Moreover, the members of the constrained ensemble
belong to a group of models previously identified with more
realistically simulated land-atmosphere coupling (Vogel et al.
2018) and the mean of their future summer precipitation
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projections—indicating little-to-no changes (—0.1%/de-
cade)—significantly differ from the unconstrained CMIP5 en-
semble mean (—3.9%/decade) and from the mean of the
spread of six SMILEs (—4.8%/decade). These altogether sug-
gest an important role for land-atmosphere coupling differ-
ences among climate models in regulating future summer
hydroclimate uncertainty on top of the irreducible internal
variability and calls for caution when interpreting future sum-
mer precipitation projections of the state-of-the-art SMILE
simulations. We urge coordinated efforts to further quantify
the relative contribution of internal variability and model
structural differences in regulating future seasonal
hydroclimate uncertainty in Central Europe.

Our results also shed more light on how future efforts toward
reducing hydroclimate uncertainty based on regional climate
models may be organized. Recent studies note that RCMs driven
by GCMs with more realistic precipitation variability are more
likely to have reliable precipitation projections (Syed et al. 2019).
Therefore, the careful selection of driving GCMs for RCMs and
the thorough evaluation of RCMs based on their land-
atmosphere coupling feedbacks (e.g., soil moisture-temperature/
precipitation couplings) may be a useful step toward alleviating
RCM projection uncertainty, which physical constraint must also
be taken into account before downscaling SMILE:s to get region-
al ensemble simulations. In light of our results, we emphasize the
possibility of less than previously thought dry summer conditions
in the upcoming decades and advocate the parallel application of
SMILE simulations with multi-model ensembles when produc-
ing inputs for future policymaking.
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