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Abstract— Dictionaries like Wordnet can help in a variety 
of Natural Language Processing applications by providing 
additional morphological data. They can be used in Digital 
Humanities research, building knowledge graphs and other 
applications. Creating dictionaries from large corpora of texts 
written in a natural language is a task that has not been a primary 
focus of research, as other tasks have dominated the field (such 
as chat-bots), but it can be a very useful tool in analysing texts. 
Even in the case of contemporary texts, categorizing the words 
according to their dictionary entry is a complex task, and for 
less conventional texts (in old or less researched languages) it 
is even harder to solve this problem automatically. Our task 
was to create a software that helps in expanding a dictionary 
containing word forms and tagging unprocessed text. We used 
a manually created corpus for training and testing the model. 
We created a combination of Bidirectional Long-Short Term 
Memory networks, convolutional networks and a distance-
based solution that outperformed other existing solutions. 
While manual post-processing for the tagged text is still needed, 
it significantly reduces the amount of it.

Index Terms—machine learning, convolutional neural network, 
bidirectional LSTM, Levenshtein-distance, dictionary.
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Index Terms - machine learning, convolutional neural network, 
bidirectional LSTM, Levenshtein-distance, dictionary 
 

I. INTRODUCTION 
HE task of creating a dictionary from a corpus is a complex 
one that requires a lot of manual labour without a 

sufficiently accurate automatic tool, and even with that some 
amount of manual post-processing is still needed, as most 
solutions do not provide 100% accuracy. 

Automatic dictionary expansion has been a task used in 
various fields [1] such as biomedical data [2]. Sometimes a 
human-in-the-loop approach is applied [3], somewhat similar to 
what our research led to. 

One-language dictionaries such as Wordnet [4] have been 
used extensively in NLP (Natural Language Processing) 
research. They can provide information about the text’s 
vocabulary, can serve as a basis for knowledge graphs and other 
applications. 
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It is important that this task is analogous to stemming or 
lemmatizing, but that only covers part of the problem: there are 
headwords that have multiple meanings in a language, and a 
proper dictionary expansion tool should be able to decide 
between them in addition of finding the correct headword form. 

These problems increase when we are dealing with non-
conventional texts: either in languages that does not have a wide 
array of tools and research in terms of NLP or texts in 
significantly different dialects (old texts or texts of highly 
specific environments, such the language of online 
communities). In these cases, previously used algorithms and 
tools will provide results that will be too inaccurate for any 
applications. 

If there is a sufficiently large corpus of text from the specific 
dialect we are focusing on and it is processed by hand, it can be 
enough to teach some kind of model on it. This was our 
approach in this case: we were trying to develop a software 
specifically tailored to expand an already existing dictionary in 
a specific format. In this case, we had two main tasks to solve: 
looking at a word, we had to find the corresponding form in the 
dictionary, or the headword if the form does not exist, and if 
there are multiple forms, decide which one is the most likely 
based on the context. 

II. THE MIKES DICTIONARY PROJECT 
This is a project [5] that was created by the Hungarian 

Research Center for the Humanities, and the main purpose is to 
create a full author’s dictionary [6] based on the work of 
Kelemen Mikes, an 18th century Hungarian writer, who had a 
large body of work comprised of mostly prose and letters. The 
researchers will be using this dictionary for a multitude of 
analytical experiments in the field of Digital Humanities [7]. 

A. The Corpus 
Kelemen Mikes was a very influential writer in the 18th 

century, and his work is still extensively studied. The language 
of Mikes is, however, very different from contemporary 
Hungarian: the grammar is much more inconsistent, he uses a 
lot of Latin words and expressions. The dialect which he uses 
is mostly understandable by a contemporary reader, but only 
because of the flexibility of the human mind. 

Tamás Mészáros is with the Budapest University of Technology and 
Economics, Department of Measurement and Information Systems, Budapest, 
Hungary (e-mail: meszaros@mit.bme.hu). 

Hybrid Distance-based, CNN and Bi-LSTM 
System for Dictionary Expansion 

Béla Benedek Szakács, Tamás Mészáros, Budapest University of Technology and Economics, 
Department of Measurement and Information Systems 

T 

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

 

1 

  
Dictionaries like Wordnet can help in a variety of Natural 

Language Processing applications by providing additional 
morphological data. They can be used in Digital Humanities 
research, building knowledge graphs and other 
applications. Creating dictionaries from large corpora of 
texts written in a natural language is a task that has not been 
a primary focus of research, as other tasks have dominated 
the field (such as chat-bots), but it can be a very useful tool 
in analysing texts. Even in the case of contemporary texts, 
categorizing the words according to their dictionary entry 
is a complex task, and for less conventional texts (in old or 
less researched languages) it is even harder to solve this 
problem automatically. Our task was to create a software 
that helps in expanding a dictionary containing word forms 
and tagging unprocessed text. We used a manually created 
corpus for training and testing the model. We created a 
combination of Bidirectional Long-Short Term Memory 
networks, convolutional networks and a distance-based 
solution that outperformed other existing solutions. While 
manual post-processing for the tagged text is still needed, it 
significantly reduces the amount of it.  
 

Index Terms - machine learning, convolutional neural network, 
bidirectional LSTM, Levenshtein-distance, dictionary 
 

I. INTRODUCTION 
HE task of creating a dictionary from a corpus is a complex 
one that requires a lot of manual labour without a 

sufficiently accurate automatic tool, and even with that some 
amount of manual post-processing is still needed, as most 
solutions do not provide 100% accuracy. 

Automatic dictionary expansion has been a task used in 
various fields [1] such as biomedical data [2]. Sometimes a 
human-in-the-loop approach is applied [3], somewhat similar to 
what our research led to. 

One-language dictionaries such as Wordnet [4] have been 
used extensively in NLP (Natural Language Processing) 
research. They can provide information about the text’s 
vocabulary, can serve as a basis for knowledge graphs and other 
applications. 
 

This paper was submitted on 2020.09.29. 
This work was supported by the European Regional Development Fund of 

the European Union under the EFOP-3.6.2-16-2017-00013 Project. 
Béla Benedek Szakács is with the Budapest University of Technology and 

Economics, Budapest, Hungary (e-mail: benedek.b.szakacs@gmail.com). 

It is important that this task is analogous to stemming or 
lemmatizing, but that only covers part of the problem: there are 
headwords that have multiple meanings in a language, and a 
proper dictionary expansion tool should be able to decide 
between them in addition of finding the correct headword form. 

These problems increase when we are dealing with non-
conventional texts: either in languages that does not have a wide 
array of tools and research in terms of NLP or texts in 
significantly different dialects (old texts or texts of highly 
specific environments, such the language of online 
communities). In these cases, previously used algorithms and 
tools will provide results that will be too inaccurate for any 
applications. 

If there is a sufficiently large corpus of text from the specific 
dialect we are focusing on and it is processed by hand, it can be 
enough to teach some kind of model on it. This was our 
approach in this case: we were trying to develop a software 
specifically tailored to expand an already existing dictionary in 
a specific format. In this case, we had two main tasks to solve: 
looking at a word, we had to find the corresponding form in the 
dictionary, or the headword if the form does not exist, and if 
there are multiple forms, decide which one is the most likely 
based on the context. 

II. THE MIKES DICTIONARY PROJECT 
This is a project [5] that was created by the Hungarian 

Research Center for the Humanities, and the main purpose is to 
create a full author’s dictionary [6] based on the work of 
Kelemen Mikes, an 18th century Hungarian writer, who had a 
large body of work comprised of mostly prose and letters. The 
researchers will be using this dictionary for a multitude of 
analytical experiments in the field of Digital Humanities [7]. 

A. The Corpus 
Kelemen Mikes was a very influential writer in the 18th 

century, and his work is still extensively studied. The language 
of Mikes is, however, very different from contemporary 
Hungarian: the grammar is much more inconsistent, he uses a 
lot of Latin words and expressions. The dialect which he uses 
is mostly understandable by a contemporary reader, but only 
because of the flexibility of the human mind. 

Tamás Mészáros is with the Budapest University of Technology and 
Economics, Department of Measurement and Information Systems, Budapest, 
Hungary (e-mail: meszaros@mit.bme.hu). 

Hybrid Distance-based, CNN and Bi-LSTM 
System for Dictionary Expansion 

Béla Benedek Szakács, Tamás Mészáros, Budapest University of Technology and Economics, 
Department of Measurement and Information Systems 

T 

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

 

2 

This also means that most tools developed for processing 
contemporary Hungarian are significantly less accurate on these 
texts, so we had to create a different solution. 

B.  Manual Work 
We have been involved with other experiments concerning 

Mikes’s texts before, and it has been fully digitalized with the 
proper notations. The dictionary project, however, is only 
partially done. 

The current state of the dictionary was created manually by 
linguists at Hungarian Research Center for the Humanities. This 
was an enormous task, even for one part of the whole Mikes 
corpus, called the “Turkish Letters”, a collection of 207 letters 
(~106 000 words). They are only a fraction of Mikes’s complete 
work, but a large enough body of text to use as a solid basis for 
training algorithms. 

Because of the heavily time-consuming nature of the manual 
work, our task was to significantly increase its speed by 
developing an automatic tagger software that would predict the 
headwords for the words, and afterwards a researcher would 
correct the mistakes manually. With even a moderately high 
accuracy this would significantly increase the speed of work on 
the corpus (we are talking about years of manual labour). This 
human-in-the-loop approach can be compared to other 
machine-assisted manual works, such as Alba et. al. 2019 [8] or 
Ruis et. al. 2020 [9]. 

C. Automatic Dictionary Expansion 
 The manual work on the dictionary, even with the help of a 
simple software that allows fast tagging of words with 
dictionary entries and offers help based on purely by the 
existing dictionary, is a very time-consuming task, requiring 
significant expertise in linguistics. This means that to 
meaningfully increase effectiveness, the software should 
contain an automatic tagging tool. 

The goal is to process the entire unprocessed corpus, and one 
of the most important inspirations for developing this software 
was to help this work, creating some kind of pre-processing 
application that allows linguists to quickly decide whether the 
tagging created by the software are correct or not, and make it 
accurate enough that it provides sufficient help. We focused on 
developing the algorithmic part of this task, the problem of 
automatically tagging words with predicted dictionary entries. 

This is a very difficult task mostly because of the language 
used: even the linguists doing the manual work have difficulties 
quickly discerning the headword because of the archaic forms 
and the foreign (mostly Latin) words. This means the task of 
doing it automatically was expected to be a highly complex 
task. We should not expect as high accuracy scores as with 
state-of-the-art tools on contemporary texts. The goal was 
rather to achieve a sufficient score that provides significant help 
as pre-processing. 

It is important to mention that there are words with multiple 
parts that can be separated in the text but should be recognized 
as one word. The recognition and categorization of these words 
is a very difficult task that this solution is not able to solve, so 
words with multiple parts are not recognized as one word, 
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diminishing the accuracy of the tool. This is a known 
shortcoming of this solution. 

There are also headwords that are identical in form but carry 
different meanings. Since in our pre-existing corpus, the 
example sentences are separate for each headword, we treated 
these similar headwords as completely different entities. This 
also means that tools not using the context of the word will not 
be able to identify it correctly. 

III. EXISTING SOLUTIONS 
While we expected other tools developed mainly for 

analysing contemporary texts to underperform, we have 
nevertheless inspected an array of other tools commonly used 
in Hungarian NLP tasks. 

We were not trying to take all tools into consideration, only 
a select few. We were trying to use software from widely 
different backgrounds: state-of-the-art solutions as well as old 
but reliable ones. 

We performed experiments with four solutions that can be 
divided into three groups: state-based, reliable solutions, out-
of-the-box, performance-focused tools, and state-of-the-art 
models. 

With this, the four solutions we have chosen are the 
EmMorph morphological analyser [10], the SpaCy NLP 
pipeline, the BERT [11] (Bidirectional Encoder 
Representations for Transformers) and Flair [12] models, using 
the Flair framework. 

A. EmMorph 
This tool was created by Attila Novák [10], and it is a finite 

state machine-based tool trained on contemporary Hungarian. 
Because of this, it is an extremely accurate and reliable tool, as 
it is not a probability-based model. 

It uses an “Item and Arrangement” (IA)-style analysis, so the 
input word is analysed as a sequence of morphs, where each 
form is a specific realization (an allomorph) of a morpheme. 
This means that the EmMorph does a very detailed analysis of 
each word, providing a lot of morphological information. 

Because this solution does not use any form of probability, it 
relies on its database for every word analysed. This means that 
new word forms will be unrecognizable to it, rendering it a lot 
less effective in our case: the text from Mikes contains a lot of 
word forms not used in contemporary Hungarian. 

B. SpaCy 
SpaCy1 is an industrial-strength, out-of-the-box solution in 

Python for NLP problems. It is designed for production 
environments, not for experimentation, although it is open 
source, and has a fair number of contributors, as well as a very 
flexible architecture that allows easy integration for custom 
components. 

The underlying technology is mostly built on convolutional 
neural networks, but it uses embeddings and other pre-
computing strategies. They do not have a definitive paper that 
summarizes their methods, instead they have a summary of the 
technology on their webpage. 
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as one word. The recognition and categorization of these words 
is a very difficult task that this solution is not able to solve, so 
words with multiple parts are not recognized as one word, 
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diminishing the accuracy of the tool. This is a known 
shortcoming of this solution. 

There are also headwords that are identical in form but carry 
different meanings. Since in our pre-existing corpus, the 
example sentences are separate for each headword, we treated 
these similar headwords as completely different entities. This 
also means that tools not using the context of the word will not 
be able to identify it correctly. 

III. EXISTING SOLUTIONS 
While we expected other tools developed mainly for 

analysing contemporary texts to underperform, we have 
nevertheless inspected an array of other tools commonly used 
in Hungarian NLP tasks. 

We were not trying to take all tools into consideration, only 
a select few. We were trying to use software from widely 
different backgrounds: state-of-the-art solutions as well as old 
but reliable ones. 

We performed experiments with four solutions that can be 
divided into three groups: state-based, reliable solutions, out-
of-the-box, performance-focused tools, and state-of-the-art 
models. 

With this, the four solutions we have chosen are the 
EmMorph morphological analyser [10], the SpaCy NLP 
pipeline, the BERT [11] (Bidirectional Encoder 
Representations for Transformers) and Flair [12] models, using 
the Flair framework. 

A. EmMorph 
This tool was created by Attila Novák [10], and it is a finite 

state machine-based tool trained on contemporary Hungarian. 
Because of this, it is an extremely accurate and reliable tool, as 
it is not a probability-based model. 

It uses an “Item and Arrangement” (IA)-style analysis, so the 
input word is analysed as a sequence of morphs, where each 
form is a specific realization (an allomorph) of a morpheme. 
This means that the EmMorph does a very detailed analysis of 
each word, providing a lot of morphological information. 

Because this solution does not use any form of probability, it 
relies on its database for every word analysed. This means that 
new word forms will be unrecognizable to it, rendering it a lot 
less effective in our case: the text from Mikes contains a lot of 
word forms not used in contemporary Hungarian. 

B. SpaCy 
SpaCy1 is an industrial-strength, out-of-the-box solution in 

Python for NLP problems. It is designed for production 
environments, not for experimentation, although it is open 
source, and has a fair number of contributors, as well as a very 
flexible architecture that allows easy integration for custom 
components. 

The underlying technology is mostly built on convolutional 
neural networks, but it uses embeddings and other pre-
computing strategies. They do not have a definitive paper that 
summarizes their methods, instead they have a summary of the 
technology on their webpage. 
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This also means that most tools developed for processing 
contemporary Hungarian are significantly less accurate on these 
texts, so we had to create a different solution. 

B.  Manual Work 
We have been involved with other experiments concerning 

Mikes’s texts before, and it has been fully digitalized with the 
proper notations. The dictionary project, however, is only 
partially done. 

The current state of the dictionary was created manually by 
linguists at Hungarian Research Center for the Humanities. This 
was an enormous task, even for one part of the whole Mikes 
corpus, called the “Turkish Letters”, a collection of 207 letters 
(~106 000 words). They are only a fraction of Mikes’s complete 
work, but a large enough body of text to use as a solid basis for 
training algorithms. 

Because of the heavily time-consuming nature of the manual 
work, our task was to significantly increase its speed by 
developing an automatic tagger software that would predict the 
headwords for the words, and afterwards a researcher would 
correct the mistakes manually. With even a moderately high 
accuracy this would significantly increase the speed of work on 
the corpus (we are talking about years of manual labour). This 
human-in-the-loop approach can be compared to other 
machine-assisted manual works, such as Alba et. al. 2019 [8] or 
Ruis et. al. 2020 [9]. 

C. Automatic Dictionary Expansion 
 The manual work on the dictionary, even with the help of a 
simple software that allows fast tagging of words with 
dictionary entries and offers help based on purely by the 
existing dictionary, is a very time-consuming task, requiring 
significant expertise in linguistics. This means that to 
meaningfully increase effectiveness, the software should 
contain an automatic tagging tool. 

The goal is to process the entire unprocessed corpus, and one 
of the most important inspirations for developing this software 
was to help this work, creating some kind of pre-processing 
application that allows linguists to quickly decide whether the 
tagging created by the software are correct or not, and make it 
accurate enough that it provides sufficient help. We focused on 
developing the algorithmic part of this task, the problem of 
automatically tagging words with predicted dictionary entries. 

This is a very difficult task mostly because of the language 
used: even the linguists doing the manual work have difficulties 
quickly discerning the headword because of the archaic forms 
and the foreign (mostly Latin) words. This means the task of 
doing it automatically was expected to be a highly complex 
task. We should not expect as high accuracy scores as with 
state-of-the-art tools on contemporary texts. The goal was 
rather to achieve a sufficient score that provides significant help 
as pre-processing. 

It is important to mention that there are words with multiple 
parts that can be separated in the text but should be recognized 
as one word. The recognition and categorization of these words 
is a very difficult task that this solution is not able to solve, so 
words with multiple parts are not recognized as one word, 
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diminishing the accuracy of the tool. This is a known 
shortcoming of this solution. 

There are also headwords that are identical in form but carry 
different meanings. Since in our pre-existing corpus, the 
example sentences are separate for each headword, we treated 
these similar headwords as completely different entities. This 
also means that tools not using the context of the word will not 
be able to identify it correctly. 

III. EXISTING SOLUTIONS 
While we expected other tools developed mainly for 

analysing contemporary texts to underperform, we have 
nevertheless inspected an array of other tools commonly used 
in Hungarian NLP tasks. 

We were not trying to take all tools into consideration, only 
a select few. We were trying to use software from widely 
different backgrounds: state-of-the-art solutions as well as old 
but reliable ones. 

We performed experiments with four solutions that can be 
divided into three groups: state-based, reliable solutions, out-
of-the-box, performance-focused tools, and state-of-the-art 
models. 

With this, the four solutions we have chosen are the 
EmMorph morphological analyser [10], the SpaCy NLP 
pipeline, the BERT [11] (Bidirectional Encoder 
Representations for Transformers) and Flair [12] models, using 
the Flair framework. 

A. EmMorph 
This tool was created by Attila Novák [10], and it is a finite 

state machine-based tool trained on contemporary Hungarian. 
Because of this, it is an extremely accurate and reliable tool, as 
it is not a probability-based model. 

It uses an “Item and Arrangement” (IA)-style analysis, so the 
input word is analysed as a sequence of morphs, where each 
form is a specific realization (an allomorph) of a morpheme. 
This means that the EmMorph does a very detailed analysis of 
each word, providing a lot of morphological information. 

Because this solution does not use any form of probability, it 
relies on its database for every word analysed. This means that 
new word forms will be unrecognizable to it, rendering it a lot 
less effective in our case: the text from Mikes contains a lot of 
word forms not used in contemporary Hungarian. 

B. SpaCy 
SpaCy1 is an industrial-strength, out-of-the-box solution in 

Python for NLP problems. It is designed for production 
environments, not for experimentation, although it is open 
source, and has a fair number of contributors, as well as a very 
flexible architecture that allows easy integration for custom 
components. 

The underlying technology is mostly built on convolutional 
neural networks, but it uses embeddings and other pre-
computing strategies. They do not have a definitive paper that 
summarizes their methods, instead they have a summary of the 
technology on their webpage. 
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This also means that most tools developed for processing 
contemporary Hungarian are significantly less accurate on these 
texts, so we had to create a different solution. 

B.  Manual Work 
We have been involved with other experiments concerning 

Mikes’s texts before, and it has been fully digitalized with the 
proper notations. The dictionary project, however, is only 
partially done. 

The current state of the dictionary was created manually by 
linguists at Hungarian Research Center for the Humanities. This 
was an enormous task, even for one part of the whole Mikes 
corpus, called the “Turkish Letters”, a collection of 207 letters 
(~106 000 words). They are only a fraction of Mikes’s complete 
work, but a large enough body of text to use as a solid basis for 
training algorithms. 

Because of the heavily time-consuming nature of the manual 
work, our task was to significantly increase its speed by 
developing an automatic tagger software that would predict the 
headwords for the words, and afterwards a researcher would 
correct the mistakes manually. With even a moderately high 
accuracy this would significantly increase the speed of work on 
the corpus (we are talking about years of manual labour). This 
human-in-the-loop approach can be compared to other 
machine-assisted manual works, such as Alba et. al. 2019 [8] or 
Ruis et. al. 2020 [9]. 

C. Automatic Dictionary Expansion 
 The manual work on the dictionary, even with the help of a 
simple software that allows fast tagging of words with 
dictionary entries and offers help based on purely by the 
existing dictionary, is a very time-consuming task, requiring 
significant expertise in linguistics. This means that to 
meaningfully increase effectiveness, the software should 
contain an automatic tagging tool. 

The goal is to process the entire unprocessed corpus, and one 
of the most important inspirations for developing this software 
was to help this work, creating some kind of pre-processing 
application that allows linguists to quickly decide whether the 
tagging created by the software are correct or not, and make it 
accurate enough that it provides sufficient help. We focused on 
developing the algorithmic part of this task, the problem of 
automatically tagging words with predicted dictionary entries. 

This is a very difficult task mostly because of the language 
used: even the linguists doing the manual work have difficulties 
quickly discerning the headword because of the archaic forms 
and the foreign (mostly Latin) words. This means the task of 
doing it automatically was expected to be a highly complex 
task. We should not expect as high accuracy scores as with 
state-of-the-art tools on contemporary texts. The goal was 
rather to achieve a sufficient score that provides significant help 
as pre-processing. 

It is important to mention that there are words with multiple 
parts that can be separated in the text but should be recognized 
as one word. The recognition and categorization of these words 
is a very difficult task that this solution is not able to solve, so 
words with multiple parts are not recognized as one word, 
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diminishing the accuracy of the tool. This is a known 
shortcoming of this solution. 

There are also headwords that are identical in form but carry 
different meanings. Since in our pre-existing corpus, the 
example sentences are separate for each headword, we treated 
these similar headwords as completely different entities. This 
also means that tools not using the context of the word will not 
be able to identify it correctly. 

III. EXISTING SOLUTIONS 
While we expected other tools developed mainly for 

analysing contemporary texts to underperform, we have 
nevertheless inspected an array of other tools commonly used 
in Hungarian NLP tasks. 

We were not trying to take all tools into consideration, only 
a select few. We were trying to use software from widely 
different backgrounds: state-of-the-art solutions as well as old 
but reliable ones. 

We performed experiments with four solutions that can be 
divided into three groups: state-based, reliable solutions, out-
of-the-box, performance-focused tools, and state-of-the-art 
models. 

With this, the four solutions we have chosen are the 
EmMorph morphological analyser [10], the SpaCy NLP 
pipeline, the BERT [11] (Bidirectional Encoder 
Representations for Transformers) and Flair [12] models, using 
the Flair framework. 

A. EmMorph 
This tool was created by Attila Novák [10], and it is a finite 

state machine-based tool trained on contemporary Hungarian. 
Because of this, it is an extremely accurate and reliable tool, as 
it is not a probability-based model. 

It uses an “Item and Arrangement” (IA)-style analysis, so the 
input word is analysed as a sequence of morphs, where each 
form is a specific realization (an allomorph) of a morpheme. 
This means that the EmMorph does a very detailed analysis of 
each word, providing a lot of morphological information. 

Because this solution does not use any form of probability, it 
relies on its database for every word analysed. This means that 
new word forms will be unrecognizable to it, rendering it a lot 
less effective in our case: the text from Mikes contains a lot of 
word forms not used in contemporary Hungarian. 

B. SpaCy 
SpaCy1 is an industrial-strength, out-of-the-box solution in 

Python for NLP problems. It is designed for production 
environments, not for experimentation, although it is open 
source, and has a fair number of contributors, as well as a very 
flexible architecture that allows easy integration for custom 
components. 

The underlying technology is mostly built on convolutional 
neural networks, but it uses embeddings and other pre-
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This also means that most tools developed for processing 
contemporary Hungarian are significantly less accurate on these 
texts, so we had to create a different solution. 

B.  Manual Work 
We have been involved with other experiments concerning 

Mikes’s texts before, and it has been fully digitalized with the 
proper notations. The dictionary project, however, is only 
partially done. 

The current state of the dictionary was created manually by 
linguists at Hungarian Research Center for the Humanities. This 
was an enormous task, even for one part of the whole Mikes 
corpus, called the “Turkish Letters”, a collection of 207 letters 
(~106 000 words). They are only a fraction of Mikes’s complete 
work, but a large enough body of text to use as a solid basis for 
training algorithms. 

Because of the heavily time-consuming nature of the manual 
work, our task was to significantly increase its speed by 
developing an automatic tagger software that would predict the 
headwords for the words, and afterwards a researcher would 
correct the mistakes manually. With even a moderately high 
accuracy this would significantly increase the speed of work on 
the corpus (we are talking about years of manual labour). This 
human-in-the-loop approach can be compared to other 
machine-assisted manual works, such as Alba et. al. 2019 [8] or 
Ruis et. al. 2020 [9]. 

C. Automatic Dictionary Expansion 
 The manual work on the dictionary, even with the help of a 
simple software that allows fast tagging of words with 
dictionary entries and offers help based on purely by the 
existing dictionary, is a very time-consuming task, requiring 
significant expertise in linguistics. This means that to 
meaningfully increase effectiveness, the software should 
contain an automatic tagging tool. 

The goal is to process the entire unprocessed corpus, and one 
of the most important inspirations for developing this software 
was to help this work, creating some kind of pre-processing 
application that allows linguists to quickly decide whether the 
tagging created by the software are correct or not, and make it 
accurate enough that it provides sufficient help. We focused on 
developing the algorithmic part of this task, the problem of 
automatically tagging words with predicted dictionary entries. 

This is a very difficult task mostly because of the language 
used: even the linguists doing the manual work have difficulties 
quickly discerning the headword because of the archaic forms 
and the foreign (mostly Latin) words. This means the task of 
doing it automatically was expected to be a highly complex 
task. We should not expect as high accuracy scores as with 
state-of-the-art tools on contemporary texts. The goal was 
rather to achieve a sufficient score that provides significant help 
as pre-processing. 

It is important to mention that there are words with multiple 
parts that can be separated in the text but should be recognized 
as one word. The recognition and categorization of these words 
is a very difficult task that this solution is not able to solve, so 
words with multiple parts are not recognized as one word, 
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diminishing the accuracy of the tool. This is a known 
shortcoming of this solution. 

There are also headwords that are identical in form but carry 
different meanings. Since in our pre-existing corpus, the 
example sentences are separate for each headword, we treated 
these similar headwords as completely different entities. This 
also means that tools not using the context of the word will not 
be able to identify it correctly. 

III. EXISTING SOLUTIONS 
While we expected other tools developed mainly for 

analysing contemporary texts to underperform, we have 
nevertheless inspected an array of other tools commonly used 
in Hungarian NLP tasks. 

We were not trying to take all tools into consideration, only 
a select few. We were trying to use software from widely 
different backgrounds: state-of-the-art solutions as well as old 
but reliable ones. 

We performed experiments with four solutions that can be 
divided into three groups: state-based, reliable solutions, out-
of-the-box, performance-focused tools, and state-of-the-art 
models. 

With this, the four solutions we have chosen are the 
EmMorph morphological analyser [10], the SpaCy NLP 
pipeline, the BERT [11] (Bidirectional Encoder 
Representations for Transformers) and Flair [12] models, using 
the Flair framework. 

A. EmMorph 
This tool was created by Attila Novák [10], and it is a finite 

state machine-based tool trained on contemporary Hungarian. 
Because of this, it is an extremely accurate and reliable tool, as 
it is not a probability-based model. 

It uses an “Item and Arrangement” (IA)-style analysis, so the 
input word is analysed as a sequence of morphs, where each 
form is a specific realization (an allomorph) of a morpheme. 
This means that the EmMorph does a very detailed analysis of 
each word, providing a lot of morphological information. 

Because this solution does not use any form of probability, it 
relies on its database for every word analysed. This means that 
new word forms will be unrecognizable to it, rendering it a lot 
less effective in our case: the text from Mikes contains a lot of 
word forms not used in contemporary Hungarian. 

B. SpaCy 
SpaCy1 is an industrial-strength, out-of-the-box solution in 

Python for NLP problems. It is designed for production 
environments, not for experimentation, although it is open 
source, and has a fair number of contributors, as well as a very 
flexible architecture that allows easy integration for custom 
components. 

The underlying technology is mostly built on convolutional 
neural networks, but it uses embeddings and other pre-
computing strategies. They do not have a definitive paper that 
summarizes their methods, instead they have a summary of the 
technology on their webpage. 
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SpaCy provides a variety of functions for NLP tasks: it has a 
lemmatizer, a PoS (Parts of Speech) tagger, a dependency 
parser that builds dependency trees between tokens in a 
sentence, an entity recognizer for NER (Named Entity 
Recongition), a built-in categorizer for text classification tasks, 
a pattern matcher, and can incorporate custom components. 
This allows for a variety of configurations based on the task at 
hand. 

SpaCy also has a dictionary-like system that stores lexemes 
and data about the document’s vocabulary, and it is capable of 
full morphological analysis, including noun cases, verb tenses 
and others. 

C. BERT 
BERT [11] is an acronym for Bidirectional Encoder 

Representation for Transformers. It was developed by Google, 
mostly for NLP tasks. It is basically a multi-layer bidirectional 
Transformer, trained on a very large corpus, resulting in a 
network that can be easily adjusted to any NLP task using just 
an extra layer and some fine-tuning. It relies heavily on the 
concept of transfer-learning, the concept of using a pre-trained 
model with little training on a specific dataset for a specific task. 
It is mostly utilized in tasks where training data is scarce or 
absent. For NLP, this means that BERT was trained extensively 
on a huge multilingual corpus unsupervised, and so it learns a 
lot of the characteristics of the language, making fine-tuning a 
lot faster and less data-extensive. 

The main improvement from the precursor model is that they 
use bidirectional unsupervised learning. This allows it to be 
successful at a large variety of uses, including both token level 
and sentence level tasks. This bidirectional training relies on a 
method called MLM (masked LM) as to not run into the 
problem of the words “seeing themselves” (the word that needs 
to be predicted is present for the opposite direction, making the 
task trivial), by randomly masking words in both directions and 
trying to predict them. 

D. Flair 
The name Flair [12] is used for multiple things: it is both an 

NLP library (including a data library and pre-trained models for 
a variety of tasks), built on PyTorch, and an embedding model. 

The Flair framework is designed to make using big, complex 
models very simple. It is a wrapper over PyTorch, one of the 
most widely used machine learning libraries for Python, and it 
makes creating for example, a BERT model for text 
classification extremely simple. It also has a variety of pre-
trained networks for the most common tasks, such PoS tagging. 

Flair itself is a character-level recurrent network using 
contextual string embedding, usually fed into a Bi-LSTM-CRF 
(Bidirectional Long-Short Term Memory, Conditional Random 
Fields) model. It is currently the best solution for PoS tasks, as 
it outperforms every other approach, including the previously 
mentioned BERT. However, it was specifically designed for 
sequence tagging, not for more complex tasks (although it can 
be used in other models designed for different tasks, as it is only 
an embedding). 

IV. THE MODELS 
Both of our main tasks (finding the correct headword for 

unknown word forms and discerning the correct headword for 

unambiguous word forms) are essentially categorization tasks. 
We have focused on the first one, as doing it correctly 
technically includes the second one as well. This means that the 
output of the system should be one of the existing dictionary 
entries, whereas the input should be the word and some of its 
context. 

Because of the strict form of example sentences (31 words, 
the middle one is the target for tagging), we decided for a fixed-
length input, not a sentence-based one. This still allows for the 
procession of sentences, with the use of padding tokens, and the 
length of the input means that most sentences will be inside its 
bounds. While this special format made the system theoretically 
suboptimal, back-conversion of the dataset was practically 
impossible, but this format still allowed for keeping most of the 
word’s context. 

For the models themselves we focused on two features of the 
input: the words in the context (31 words) and the middle 
word’s characters (maximum 40, 44 different possible 
characters). Because in the Hungarian language most words are 
similar to their headwords, and a character-level model is a 
great solution in looking for it. 

The architectures we have chosen were the one-dimensional 
convolutional neural networks [13] and the Bi-LSTM [14]. 
Both of these have been extensively used in NLP tasks. In our 
setup, we have used two models, trained and evaluated 
separately: one using both character-level and word-level 
convolutional networks, and a CNN-Bi-LSTM solution using 
convolutional network for the character-level input but Bi-
LSTM for the word-level input. 

We have also experimented with a pure Bi-LSTM solution, 
but it underperformed compared to the CNN-Bi-LSTM solution 
and was deemed too similar to the CNN-Bi-LSTM solution to 
be used alongside it (more information about it can be found in 
the Training and Evaluation chapter). 

A. Embeddings 
In both cases, the input words are embedded in a simple 256-

dimensional embedding, and the characters are one-hot 
encoded. 

For most NLP applications, pre-trained embeddings are 
usually a staple. The problems with this approach in this case 
were that the unique language of Mikes’ writing made it 
impossible to utilize any pre-trained embedding. We could have 
used embeddings taught on the data itself, but the size of the 
corpus was not sufficient for this task. 

B. Pure Convolutional Model 
The model is a straightforward convolutional model, with 

only one layer of 1D convolution (Fig. 1). Because the size of 
the training set was not enough for large, complicated language 
models, we opted for a smaller, simple model. 

For optimizing the hyperparameters, we assumed that the 
parameters themselves can be independently optimized. This 
approach was necessary due to the large number of possible 
combinations. We selected dropout (from 0.0 to 0.5 with 0.1 
increments, dense, convolutional and bi-LSTM layers 
optimized independently), batch size (values: 64, 128, 256, 
512), the type of optimizer (Adam and Nadam), the type of 
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SpaCy provides a variety of functions for NLP tasks: it has a 
lemmatizer, a PoS (Parts of Speech) tagger, a dependency 
parser that builds dependency trees between tokens in a 
sentence, an entity recognizer for NER (Named Entity 
Recongition), a built-in categorizer for text classification tasks, 
a pattern matcher, and can incorporate custom components. 
This allows for a variety of configurations based on the task at 
hand. 

SpaCy also has a dictionary-like system that stores lexemes 
and data about the document’s vocabulary, and it is capable of 
full morphological analysis, including noun cases, verb tenses 
and others. 

C. BERT 
BERT [11] is an acronym for Bidirectional Encoder 

Representation for Transformers. It was developed by Google, 
mostly for NLP tasks. It is basically a multi-layer bidirectional 
Transformer, trained on a very large corpus, resulting in a 
network that can be easily adjusted to any NLP task using just 
an extra layer and some fine-tuning. It relies heavily on the 
concept of transfer-learning, the concept of using a pre-trained 
model with little training on a specific dataset for a specific task. 
It is mostly utilized in tasks where training data is scarce or 
absent. For NLP, this means that BERT was trained extensively 
on a huge multilingual corpus unsupervised, and so it learns a 
lot of the characteristics of the language, making fine-tuning a 
lot faster and less data-extensive. 

The main improvement from the precursor model is that they 
use bidirectional unsupervised learning. This allows it to be 
successful at a large variety of uses, including both token level 
and sentence level tasks. This bidirectional training relies on a 
method called MLM (masked LM) as to not run into the 
problem of the words “seeing themselves” (the word that needs 
to be predicted is present for the opposite direction, making the 
task trivial), by randomly masking words in both directions and 
trying to predict them. 

D. Flair 
The name Flair [12] is used for multiple things: it is both an 

NLP library (including a data library and pre-trained models for 
a variety of tasks), built on PyTorch, and an embedding model. 

The Flair framework is designed to make using big, complex 
models very simple. It is a wrapper over PyTorch, one of the 
most widely used machine learning libraries for Python, and it 
makes creating for example, a BERT model for text 
classification extremely simple. It also has a variety of pre-
trained networks for the most common tasks, such PoS tagging. 

Flair itself is a character-level recurrent network using 
contextual string embedding, usually fed into a Bi-LSTM-CRF 
(Bidirectional Long-Short Term Memory, Conditional Random 
Fields) model. It is currently the best solution for PoS tasks, as 
it outperforms every other approach, including the previously 
mentioned BERT. However, it was specifically designed for 
sequence tagging, not for more complex tasks (although it can 
be used in other models designed for different tasks, as it is only 
an embedding). 

IV. THE MODELS 
Both of our main tasks (finding the correct headword for 

unknown word forms and discerning the correct headword for 

unambiguous word forms) are essentially categorization tasks. 
We have focused on the first one, as doing it correctly 
technically includes the second one as well. This means that the 
output of the system should be one of the existing dictionary 
entries, whereas the input should be the word and some of its 
context. 

Because of the strict form of example sentences (31 words, 
the middle one is the target for tagging), we decided for a fixed-
length input, not a sentence-based one. This still allows for the 
procession of sentences, with the use of padding tokens, and the 
length of the input means that most sentences will be inside its 
bounds. While this special format made the system theoretically 
suboptimal, back-conversion of the dataset was practically 
impossible, but this format still allowed for keeping most of the 
word’s context. 

For the models themselves we focused on two features of the 
input: the words in the context (31 words) and the middle 
word’s characters (maximum 40, 44 different possible 
characters). Because in the Hungarian language most words are 
similar to their headwords, and a character-level model is a 
great solution in looking for it. 

The architectures we have chosen were the one-dimensional 
convolutional neural networks [13] and the Bi-LSTM [14]. 
Both of these have been extensively used in NLP tasks. In our 
setup, we have used two models, trained and evaluated 
separately: one using both character-level and word-level 
convolutional networks, and a CNN-Bi-LSTM solution using 
convolutional network for the character-level input but Bi-
LSTM for the word-level input. 

We have also experimented with a pure Bi-LSTM solution, 
but it underperformed compared to the CNN-Bi-LSTM solution 
and was deemed too similar to the CNN-Bi-LSTM solution to 
be used alongside it (more information about it can be found in 
the Training and Evaluation chapter). 

A. Embeddings 
In both cases, the input words are embedded in a simple 256-

dimensional embedding, and the characters are one-hot 
encoded. 

For most NLP applications, pre-trained embeddings are 
usually a staple. The problems with this approach in this case 
were that the unique language of Mikes’ writing made it 
impossible to utilize any pre-trained embedding. We could have 
used embeddings taught on the data itself, but the size of the 
corpus was not sufficient for this task. 

B. Pure Convolutional Model 
The model is a straightforward convolutional model, with 

only one layer of 1D convolution (Fig. 1). Because the size of 
the training set was not enough for large, complicated language 
models, we opted for a smaller, simple model. 

For optimizing the hyperparameters, we assumed that the 
parameters themselves can be independently optimized. This 
approach was necessary due to the large number of possible 
combinations. We selected dropout (from 0.0 to 0.5 with 0.1 
increments, dense, convolutional and bi-LSTM layers 
optimized independently), batch size (values: 64, 128, 256, 
512), the type of optimizer (Adam and Nadam), the type of 
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SpaCy provides a variety of functions for NLP tasks: it has a 
lemmatizer, a PoS (Parts of Speech) tagger, a dependency 
parser that builds dependency trees between tokens in a 
sentence, an entity recognizer for NER (Named Entity 
Recongition), a built-in categorizer for text classification tasks, 
a pattern matcher, and can incorporate custom components. 
This allows for a variety of configurations based on the task at 
hand. 

SpaCy also has a dictionary-like system that stores lexemes 
and data about the document’s vocabulary, and it is capable of 
full morphological analysis, including noun cases, verb tenses 
and others. 

C. BERT 
BERT [11] is an acronym for Bidirectional Encoder 

Representation for Transformers. It was developed by Google, 
mostly for NLP tasks. It is basically a multi-layer bidirectional 
Transformer, trained on a very large corpus, resulting in a 
network that can be easily adjusted to any NLP task using just 
an extra layer and some fine-tuning. It relies heavily on the 
concept of transfer-learning, the concept of using a pre-trained 
model with little training on a specific dataset for a specific task. 
It is mostly utilized in tasks where training data is scarce or 
absent. For NLP, this means that BERT was trained extensively 
on a huge multilingual corpus unsupervised, and so it learns a 
lot of the characteristics of the language, making fine-tuning a 
lot faster and less data-extensive. 

The main improvement from the precursor model is that they 
use bidirectional unsupervised learning. This allows it to be 
successful at a large variety of uses, including both token level 
and sentence level tasks. This bidirectional training relies on a 
method called MLM (masked LM) as to not run into the 
problem of the words “seeing themselves” (the word that needs 
to be predicted is present for the opposite direction, making the 
task trivial), by randomly masking words in both directions and 
trying to predict them. 

D. Flair 
The name Flair [12] is used for multiple things: it is both an 

NLP library (including a data library and pre-trained models for 
a variety of tasks), built on PyTorch, and an embedding model. 

The Flair framework is designed to make using big, complex 
models very simple. It is a wrapper over PyTorch, one of the 
most widely used machine learning libraries for Python, and it 
makes creating for example, a BERT model for text 
classification extremely simple. It also has a variety of pre-
trained networks for the most common tasks, such PoS tagging. 

Flair itself is a character-level recurrent network using 
contextual string embedding, usually fed into a Bi-LSTM-CRF 
(Bidirectional Long-Short Term Memory, Conditional Random 
Fields) model. It is currently the best solution for PoS tasks, as 
it outperforms every other approach, including the previously 
mentioned BERT. However, it was specifically designed for 
sequence tagging, not for more complex tasks (although it can 
be used in other models designed for different tasks, as it is only 
an embedding). 

IV. THE MODELS 
Both of our main tasks (finding the correct headword for 

unknown word forms and discerning the correct headword for 

unambiguous word forms) are essentially categorization tasks. 
We have focused on the first one, as doing it correctly 
technically includes the second one as well. This means that the 
output of the system should be one of the existing dictionary 
entries, whereas the input should be the word and some of its 
context. 

Because of the strict form of example sentences (31 words, 
the middle one is the target for tagging), we decided for a fixed-
length input, not a sentence-based one. This still allows for the 
procession of sentences, with the use of padding tokens, and the 
length of the input means that most sentences will be inside its 
bounds. While this special format made the system theoretically 
suboptimal, back-conversion of the dataset was practically 
impossible, but this format still allowed for keeping most of the 
word’s context. 

For the models themselves we focused on two features of the 
input: the words in the context (31 words) and the middle 
word’s characters (maximum 40, 44 different possible 
characters). Because in the Hungarian language most words are 
similar to their headwords, and a character-level model is a 
great solution in looking for it. 

The architectures we have chosen were the one-dimensional 
convolutional neural networks [13] and the Bi-LSTM [14]. 
Both of these have been extensively used in NLP tasks. In our 
setup, we have used two models, trained and evaluated 
separately: one using both character-level and word-level 
convolutional networks, and a CNN-Bi-LSTM solution using 
convolutional network for the character-level input but Bi-
LSTM for the word-level input. 

We have also experimented with a pure Bi-LSTM solution, 
but it underperformed compared to the CNN-Bi-LSTM solution 
and was deemed too similar to the CNN-Bi-LSTM solution to 
be used alongside it (more information about it can be found in 
the Training and Evaluation chapter). 

A. Embeddings 
In both cases, the input words are embedded in a simple 256-

dimensional embedding, and the characters are one-hot 
encoded. 

For most NLP applications, pre-trained embeddings are 
usually a staple. The problems with this approach in this case 
were that the unique language of Mikes’ writing made it 
impossible to utilize any pre-trained embedding. We could have 
used embeddings taught on the data itself, but the size of the 
corpus was not sufficient for this task. 

B. Pure Convolutional Model 
The model is a straightforward convolutional model, with 

only one layer of 1D convolution (Fig. 1). Because the size of 
the training set was not enough for large, complicated language 
models, we opted for a smaller, simple model. 

For optimizing the hyperparameters, we assumed that the 
parameters themselves can be independently optimized. This 
approach was necessary due to the large number of possible 
combinations. We selected dropout (from 0.0 to 0.5 with 0.1 
increments, dense, convolutional and bi-LSTM layers 
optimized independently), batch size (values: 64, 128, 256, 
512), the type of optimizer (Adam and Nadam), the type of 

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 4

kernel initializer for all layers (values: uniform, normal, 
glorot_uniform, glorot_normal, lecun_uniform) and the size of 
the embedding layer (values: 64, 128, 256, 512) as optimizable 
hyperparameters. The best regularizer was Nadam, and the best 
batch size was 64 for both this and the CNN-Bi-LSTM model.

The optimised hyperparameters of the layers are the 
following (all other hyperparameters can be found in the 
Appendix chapter):

1. Embedding layer: input dimension = 31, output 
dimension = 256, embeddings initializer =
”lecun_uniform”, no regularization, no zero masking, no 
dropout.

2. Conv1D layers: filters = 29 for conv1d and 30 for 
conv1d_1 and conv1d_2 in the CNN-Bi-LSTM model,
kernel size = 3, activation = relu, no dropout.

3. Dense layers: units = 512, 4096, 15829, activation = 
“relu”, dropout = 0.3.

The two Conv1D layers are concatenated in a 50-
dimensional layer, and then a series of dense layers are 
responsible for increasing the dimension to the size needed for 
the output. Because the task is simple categorization, we used a 
simple softmax function at the end and sparse categorical 
crossentropy as the loss function. The dimension (15829) of the 
last layer is equal to the dictionary entries. While this means 
that subsequent additions to the dictionary means using a 
completely new model every time, the simplicity of the model
means a low number of parameters (88 million), and with that 
a relatively fast training compared to the current, much larger 
models (more on that in the Training and Evaluation chapter).

Using convolutional layers in text processing is a commonly
used technique ([15], [16]), although mostly used for sentiment 
analysis or text classification.

C. CNN-Bi-LSTM Model
The CNN-Bi-LSTM model (depicted on Fig. 2, with an 

example input and output) was inspired by another architecture 
primarily developed for Named Entity Recognition [17],
although it lacks the case-embedding and uses a simple 256-
dimensional embedding. It is very similar to the previously 
described pure convolutional model, the only difference is in 
the processing of the embedded words.

We used a 64-dimensional Bi-LSTM layer that was then 
flattened into a dense 64-dimensional layer. This meant that 
unlike with the pure convolutional model, here the output of the 
word-processing part of the model was a lot larger. We 
theorized that this, together with the LSTM being generally 
more fitted for processing word sequences, will lead to a better 
accuracy than the pure convolutional model.

The hyperparameters of the Bi-LSTM layer were the 
following (the hyperparameters of the other layers are the same 

Fig. 1.  The layers of the pure convolutional model.

Fig. 2.  The layers of the CNN-Bi-LSTM model and an example input and 
output.
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kernel initializer for all layers (values: uniform, normal, 
glorot_uniform, glorot_normal, lecun_uniform) and the size of 
the embedding layer (values: 64, 128, 256, 512) as optimizable 
hyperparameters. The best regularizer was Nadam, and the best 
batch size was 64 for both this and the CNN-Bi-LSTM model.

The optimised hyperparameters of the layers are the 
following (all other hyperparameters can be found in the 
Appendix chapter):

1. Embedding layer: input dimension = 31, output 
dimension = 256, embeddings initializer =
”lecun_uniform”, no regularization, no zero masking, no 
dropout.

2. Conv1D layers: filters = 29 for conv1d and 30 for 
conv1d_1 and conv1d_2 in the CNN-Bi-LSTM model,
kernel size = 3, activation = relu, no dropout.

3. Dense layers: units = 512, 4096, 15829, activation = 
“relu”, dropout = 0.3.

The two Conv1D layers are concatenated in a 50-
dimensional layer, and then a series of dense layers are 
responsible for increasing the dimension to the size needed for 
the output. Because the task is simple categorization, we used a 
simple softmax function at the end and sparse categorical 
crossentropy as the loss function. The dimension (15829) of the 
last layer is equal to the dictionary entries. While this means 
that subsequent additions to the dictionary means using a 
completely new model every time, the simplicity of the model
means a low number of parameters (88 million), and with that 
a relatively fast training compared to the current, much larger 
models (more on that in the Training and Evaluation chapter).

Using convolutional layers in text processing is a commonly
used technique ([15], [16]), although mostly used for sentiment 
analysis or text classification.

C. CNN-Bi-LSTM Model
The CNN-Bi-LSTM model (depicted on Fig. 2, with an 

example input and output) was inspired by another architecture 
primarily developed for Named Entity Recognition [17],
although it lacks the case-embedding and uses a simple 256-
dimensional embedding. It is very similar to the previously 
described pure convolutional model, the only difference is in 
the processing of the embedded words.

We used a 64-dimensional Bi-LSTM layer that was then 
flattened into a dense 64-dimensional layer. This meant that 
unlike with the pure convolutional model, here the output of the 
word-processing part of the model was a lot larger. We 
theorized that this, together with the LSTM being generally 
more fitted for processing word sequences, will lead to a better 
accuracy than the pure convolutional model.

The hyperparameters of the Bi-LSTM layer were the 
following (the hyperparameters of the other layers are the same 

Fig. 1.  The layers of the pure convolutional model.

Fig. 2.  The layers of the CNN-Bi-LSTM model and an example input and 
output.
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kernel initializer for all layers (values: uniform, normal, 
glorot_uniform, glorot_normal, lecun_uniform) and the size of 
the embedding layer (values: 64, 128, 256, 512) as optimizable 
hyperparameters. The best regularizer was Nadam, and the best 
batch size was 64 for both this and the CNN-Bi-LSTM model.

The optimised hyperparameters of the layers are the 
following (all other hyperparameters can be found in the 
Appendix chapter):

1. Embedding layer: input dimension = 31, output 
dimension = 256, embeddings initializer =
”lecun_uniform”, no regularization, no zero masking, no 
dropout.

2. Conv1D layers: filters = 29 for conv1d and 30 for 
conv1d_1 and conv1d_2 in the CNN-Bi-LSTM model,
kernel size = 3, activation = relu, no dropout.

3. Dense layers: units = 512, 4096, 15829, activation = 
“relu”, dropout = 0.3.

The two Conv1D layers are concatenated in a 50-
dimensional layer, and then a series of dense layers are 
responsible for increasing the dimension to the size needed for 
the output. Because the task is simple categorization, we used a 
simple softmax function at the end and sparse categorical 
crossentropy as the loss function. The dimension (15829) of the 
last layer is equal to the dictionary entries. While this means 
that subsequent additions to the dictionary means using a 
completely new model every time, the simplicity of the model
means a low number of parameters (88 million), and with that 
a relatively fast training compared to the current, much larger 
models (more on that in the Training and Evaluation chapter).

Using convolutional layers in text processing is a commonly
used technique ([15], [16]), although mostly used for sentiment 
analysis or text classification.

C. CNN-Bi-LSTM Model
The CNN-Bi-LSTM model (depicted on Fig. 2, with an 

example input and output) was inspired by another architecture 
primarily developed for Named Entity Recognition [17],
although it lacks the case-embedding and uses a simple 256-
dimensional embedding. It is very similar to the previously 
described pure convolutional model, the only difference is in 
the processing of the embedded words.

We used a 64-dimensional Bi-LSTM layer that was then 
flattened into a dense 64-dimensional layer. This meant that 
unlike with the pure convolutional model, here the output of the 
word-processing part of the model was a lot larger. We 
theorized that this, together with the LSTM being generally 
more fitted for processing word sequences, will lead to a better 
accuracy than the pure convolutional model.

The hyperparameters of the Bi-LSTM layer were the 
following (the hyperparameters of the other layers are the same 

Fig. 1.  The layers of the pure convolutional model.

Fig. 2.  The layers of the CNN-Bi-LSTM model and an example input and 
output.
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kernel initializer for all layers (values: uniform, normal, 
glorot_uniform, glorot_normal, lecun_uniform) and the size of 
the embedding layer (values: 64, 128, 256, 512) as optimizable 
hyperparameters. The best regularizer was Nadam, and the best 
batch size was 64 for both this and the CNN-Bi-LSTM model.

The optimised hyperparameters of the layers are the 
following (all other hyperparameters can be found in the 
Appendix chapter):

1. Embedding layer: input dimension = 31, output 
dimension = 256, embeddings initializer =
”lecun_uniform”, no regularization, no zero masking, no 
dropout.

2. Conv1D layers: filters = 29 for conv1d and 30 for 
conv1d_1 and conv1d_2 in the CNN-Bi-LSTM model,
kernel size = 3, activation = relu, no dropout.

3. Dense layers: units = 512, 4096, 15829, activation = 
“relu”, dropout = 0.3.

The two Conv1D layers are concatenated in a 50-
dimensional layer, and then a series of dense layers are 
responsible for increasing the dimension to the size needed for 
the output. Because the task is simple categorization, we used a 
simple softmax function at the end and sparse categorical 
crossentropy as the loss function. The dimension (15829) of the 
last layer is equal to the dictionary entries. While this means 
that subsequent additions to the dictionary means using a 
completely new model every time, the simplicity of the model
means a low number of parameters (88 million), and with that 
a relatively fast training compared to the current, much larger 
models (more on that in the Training and Evaluation chapter).

Using convolutional layers in text processing is a commonly
used technique ([15], [16]), although mostly used for sentiment 
analysis or text classification.

C. CNN-Bi-LSTM Model
The CNN-Bi-LSTM model (depicted on Fig. 2, with an 

example input and output) was inspired by another architecture 
primarily developed for Named Entity Recognition [17],
although it lacks the case-embedding and uses a simple 256-
dimensional embedding. It is very similar to the previously 
described pure convolutional model, the only difference is in 
the processing of the embedded words.

We used a 64-dimensional Bi-LSTM layer that was then 
flattened into a dense 64-dimensional layer. This meant that 
unlike with the pure convolutional model, here the output of the 
word-processing part of the model was a lot larger. We 
theorized that this, together with the LSTM being generally 
more fitted for processing word sequences, will lead to a better 
accuracy than the pure convolutional model.

The hyperparameters of the Bi-LSTM layer were the 
following (the hyperparameters of the other layers are the same 

Fig. 1.  The layers of the pure convolutional model.

Fig. 2.  The layers of the CNN-Bi-LSTM model and an example input and 
output.
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SpaCy provides a variety of functions for NLP tasks: it has a 
lemmatizer, a PoS (Parts of Speech) tagger, a dependency 
parser that builds dependency trees between tokens in a 
sentence, an entity recognizer for NER (Named Entity 
Recongition), a built-in categorizer for text classification tasks, 
a pattern matcher, and can incorporate custom components. 
This allows for a variety of configurations based on the task at 
hand. 

SpaCy also has a dictionary-like system that stores lexemes 
and data about the document’s vocabulary, and it is capable of 
full morphological analysis, including noun cases, verb tenses 
and others. 

C. BERT 
BERT [11] is an acronym for Bidirectional Encoder 

Representation for Transformers. It was developed by Google, 
mostly for NLP tasks. It is basically a multi-layer bidirectional 
Transformer, trained on a very large corpus, resulting in a 
network that can be easily adjusted to any NLP task using just 
an extra layer and some fine-tuning. It relies heavily on the 
concept of transfer-learning, the concept of using a pre-trained 
model with little training on a specific dataset for a specific task. 
It is mostly utilized in tasks where training data is scarce or 
absent. For NLP, this means that BERT was trained extensively 
on a huge multilingual corpus unsupervised, and so it learns a 
lot of the characteristics of the language, making fine-tuning a 
lot faster and less data-extensive. 

The main improvement from the precursor model is that they 
use bidirectional unsupervised learning. This allows it to be 
successful at a large variety of uses, including both token level 
and sentence level tasks. This bidirectional training relies on a 
method called MLM (masked LM) as to not run into the 
problem of the words “seeing themselves” (the word that needs 
to be predicted is present for the opposite direction, making the 
task trivial), by randomly masking words in both directions and 
trying to predict them. 

D. Flair 
The name Flair [12] is used for multiple things: it is both an 

NLP library (including a data library and pre-trained models for 
a variety of tasks), built on PyTorch, and an embedding model. 

The Flair framework is designed to make using big, complex 
models very simple. It is a wrapper over PyTorch, one of the 
most widely used machine learning libraries for Python, and it 
makes creating for example, a BERT model for text 
classification extremely simple. It also has a variety of pre-
trained networks for the most common tasks, such PoS tagging. 

Flair itself is a character-level recurrent network using 
contextual string embedding, usually fed into a Bi-LSTM-CRF 
(Bidirectional Long-Short Term Memory, Conditional Random 
Fields) model. It is currently the best solution for PoS tasks, as 
it outperforms every other approach, including the previously 
mentioned BERT. However, it was specifically designed for 
sequence tagging, not for more complex tasks (although it can 
be used in other models designed for different tasks, as it is only 
an embedding). 

IV. THE MODELS 
Both of our main tasks (finding the correct headword for 

unknown word forms and discerning the correct headword for 

unambiguous word forms) are essentially categorization tasks. 
We have focused on the first one, as doing it correctly 
technically includes the second one as well. This means that the 
output of the system should be one of the existing dictionary 
entries, whereas the input should be the word and some of its 
context. 

Because of the strict form of example sentences (31 words, 
the middle one is the target for tagging), we decided for a fixed-
length input, not a sentence-based one. This still allows for the 
procession of sentences, with the use of padding tokens, and the 
length of the input means that most sentences will be inside its 
bounds. While this special format made the system theoretically 
suboptimal, back-conversion of the dataset was practically 
impossible, but this format still allowed for keeping most of the 
word’s context. 

For the models themselves we focused on two features of the 
input: the words in the context (31 words) and the middle 
word’s characters (maximum 40, 44 different possible 
characters). Because in the Hungarian language most words are 
similar to their headwords, and a character-level model is a 
great solution in looking for it. 

The architectures we have chosen were the one-dimensional 
convolutional neural networks [13] and the Bi-LSTM [14]. 
Both of these have been extensively used in NLP tasks. In our 
setup, we have used two models, trained and evaluated 
separately: one using both character-level and word-level 
convolutional networks, and a CNN-Bi-LSTM solution using 
convolutional network for the character-level input but Bi-
LSTM for the word-level input. 

We have also experimented with a pure Bi-LSTM solution, 
but it underperformed compared to the CNN-Bi-LSTM solution 
and was deemed too similar to the CNN-Bi-LSTM solution to 
be used alongside it (more information about it can be found in 
the Training and Evaluation chapter). 

A. Embeddings 
In both cases, the input words are embedded in a simple 256-

dimensional embedding, and the characters are one-hot 
encoded. 

For most NLP applications, pre-trained embeddings are 
usually a staple. The problems with this approach in this case 
were that the unique language of Mikes’ writing made it 
impossible to utilize any pre-trained embedding. We could have 
used embeddings taught on the data itself, but the size of the 
corpus was not sufficient for this task. 

B. Pure Convolutional Model 
The model is a straightforward convolutional model, with 

only one layer of 1D convolution (Fig. 1). Because the size of 
the training set was not enough for large, complicated language 
models, we opted for a smaller, simple model. 

For optimizing the hyperparameters, we assumed that the 
parameters themselves can be independently optimized. This 
approach was necessary due to the large number of possible 
combinations. We selected dropout (from 0.0 to 0.5 with 0.1 
increments, dense, convolutional and bi-LSTM layers 
optimized independently), batch size (values: 64, 128, 256, 
512), the type of optimizer (Adam and Nadam), the type of 
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kernel initializer for all layers (values: uniform, normal, 
glorot_uniform, glorot_normal, lecun_uniform) and the size of 
the embedding layer (values: 64, 128, 256, 512) as optimizable 
hyperparameters. The best regularizer was Nadam, and the best 
batch size was 64 for both this and the CNN-Bi-LSTM model.

The optimised hyperparameters of the layers are the 
following (all other hyperparameters can be found in the 
Appendix chapter):

1. Embedding layer: input dimension = 31, output 
dimension = 256, embeddings initializer =
”lecun_uniform”, no regularization, no zero masking, no 
dropout.

2. Conv1D layers: filters = 29 for conv1d and 30 for 
conv1d_1 and conv1d_2 in the CNN-Bi-LSTM model,
kernel size = 3, activation = relu, no dropout.

3. Dense layers: units = 512, 4096, 15829, activation = 
“relu”, dropout = 0.3.

The two Conv1D layers are concatenated in a 50-
dimensional layer, and then a series of dense layers are 
responsible for increasing the dimension to the size needed for 
the output. Because the task is simple categorization, we used a 
simple softmax function at the end and sparse categorical 
crossentropy as the loss function. The dimension (15829) of the 
last layer is equal to the dictionary entries. While this means 
that subsequent additions to the dictionary means using a 
completely new model every time, the simplicity of the model
means a low number of parameters (88 million), and with that 
a relatively fast training compared to the current, much larger 
models (more on that in the Training and Evaluation chapter).

Using convolutional layers in text processing is a commonly
used technique ([15], [16]), although mostly used for sentiment 
analysis or text classification.

C. CNN-Bi-LSTM Model
The CNN-Bi-LSTM model (depicted on Fig. 2, with an 

example input and output) was inspired by another architecture 
primarily developed for Named Entity Recognition [17],
although it lacks the case-embedding and uses a simple 256-
dimensional embedding. It is very similar to the previously 
described pure convolutional model, the only difference is in 
the processing of the embedded words.

We used a 64-dimensional Bi-LSTM layer that was then 
flattened into a dense 64-dimensional layer. This meant that 
unlike with the pure convolutional model, here the output of the 
word-processing part of the model was a lot larger. We 
theorized that this, together with the LSTM being generally 
more fitted for processing word sequences, will lead to a better 
accuracy than the pure convolutional model.

The hyperparameters of the Bi-LSTM layer were the 
following (the hyperparameters of the other layers are the same 

Fig. 1.  The layers of the pure convolutional model.

Fig. 2.  The layers of the CNN-Bi-LSTM model and an example input and 
output.
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kernel initializer for all layers (values: uniform, normal, 
glorot_uniform, glorot_normal, lecun_uniform) and the size of 
the embedding layer (values: 64, 128, 256, 512) as optimizable 
hyperparameters. The best regularizer was Nadam, and the best 
batch size was 64 for both this and the CNN-Bi-LSTM model.

The optimised hyperparameters of the layers are the 
following (all other hyperparameters can be found in the 
Appendix chapter):

1. Embedding layer: input dimension = 31, output 
dimension = 256, embeddings initializer =
”lecun_uniform”, no regularization, no zero masking, no 
dropout.

2. Conv1D layers: filters = 29 for conv1d and 30 for 
conv1d_1 and conv1d_2 in the CNN-Bi-LSTM model,
kernel size = 3, activation = relu, no dropout.

3. Dense layers: units = 512, 4096, 15829, activation = 
“relu”, dropout = 0.3.

The two Conv1D layers are concatenated in a 50-
dimensional layer, and then a series of dense layers are 
responsible for increasing the dimension to the size needed for 
the output. Because the task is simple categorization, we used a 
simple softmax function at the end and sparse categorical 
crossentropy as the loss function. The dimension (15829) of the 
last layer is equal to the dictionary entries. While this means 
that subsequent additions to the dictionary means using a 
completely new model every time, the simplicity of the model
means a low number of parameters (88 million), and with that 
a relatively fast training compared to the current, much larger 
models (more on that in the Training and Evaluation chapter).

Using convolutional layers in text processing is a commonly
used technique ([15], [16]), although mostly used for sentiment 
analysis or text classification.

C. CNN-Bi-LSTM Model
The CNN-Bi-LSTM model (depicted on Fig. 2, with an 

example input and output) was inspired by another architecture 
primarily developed for Named Entity Recognition [17],
although it lacks the case-embedding and uses a simple 256-
dimensional embedding. It is very similar to the previously 
described pure convolutional model, the only difference is in 
the processing of the embedded words.

We used a 64-dimensional Bi-LSTM layer that was then 
flattened into a dense 64-dimensional layer. This meant that 
unlike with the pure convolutional model, here the output of the 
word-processing part of the model was a lot larger. We 
theorized that this, together with the LSTM being generally 
more fitted for processing word sequences, will lead to a better 
accuracy than the pure convolutional model.

The hyperparameters of the Bi-LSTM layer were the 
following (the hyperparameters of the other layers are the same 

Fig. 1.  The layers of the pure convolutional model.

Fig. 2.  The layers of the CNN-Bi-LSTM model and an example input and 
output.
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kernel initializer for all layers (values: uniform, normal, 
glorot_uniform, glorot_normal, lecun_uniform) and the size of 
the embedding layer (values: 64, 128, 256, 512) as optimizable 
hyperparameters. The best regularizer was Nadam, and the best 
batch size was 64 for both this and the CNN-Bi-LSTM model.

The optimised hyperparameters of the layers are the 
following (all other hyperparameters can be found in the 
Appendix chapter):

1. Embedding layer: input dimension = 31, output 
dimension = 256, embeddings initializer =
”lecun_uniform”, no regularization, no zero masking, no 
dropout.

2. Conv1D layers: filters = 29 for conv1d and 30 for 
conv1d_1 and conv1d_2 in the CNN-Bi-LSTM model,
kernel size = 3, activation = relu, no dropout.

3. Dense layers: units = 512, 4096, 15829, activation = 
“relu”, dropout = 0.3.

The two Conv1D layers are concatenated in a 50-
dimensional layer, and then a series of dense layers are 
responsible for increasing the dimension to the size needed for 
the output. Because the task is simple categorization, we used a 
simple softmax function at the end and sparse categorical 
crossentropy as the loss function. The dimension (15829) of the 
last layer is equal to the dictionary entries. While this means 
that subsequent additions to the dictionary means using a 
completely new model every time, the simplicity of the model
means a low number of parameters (88 million), and with that 
a relatively fast training compared to the current, much larger 
models (more on that in the Training and Evaluation chapter).

Using convolutional layers in text processing is a commonly
used technique ([15], [16]), although mostly used for sentiment 
analysis or text classification.

C. CNN-Bi-LSTM Model
The CNN-Bi-LSTM model (depicted on Fig. 2, with an 

example input and output) was inspired by another architecture 
primarily developed for Named Entity Recognition [17],
although it lacks the case-embedding and uses a simple 256-
dimensional embedding. It is very similar to the previously 
described pure convolutional model, the only difference is in 
the processing of the embedded words.

We used a 64-dimensional Bi-LSTM layer that was then 
flattened into a dense 64-dimensional layer. This meant that 
unlike with the pure convolutional model, here the output of the 
word-processing part of the model was a lot larger. We 
theorized that this, together with the LSTM being generally 
more fitted for processing word sequences, will lead to a better 
accuracy than the pure convolutional model.

The hyperparameters of the Bi-LSTM layer were the 
following (the hyperparameters of the other layers are the same 
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output.
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kernel initializer for all layers (values: uniform, normal, 
glorot_uniform, glorot_normal, lecun_uniform) and the size of 
the embedding layer (values: 64, 128, 256, 512) as optimizable 
hyperparameters. The best regularizer was Nadam, and the best 
batch size was 64 for both this and the CNN-Bi-LSTM model.

The optimised hyperparameters of the layers are the 
following (all other hyperparameters can be found in the 
Appendix chapter):

1. Embedding layer: input dimension = 31, output 
dimension = 256, embeddings initializer =
”lecun_uniform”, no regularization, no zero masking, no 
dropout.

2. Conv1D layers: filters = 29 for conv1d and 30 for 
conv1d_1 and conv1d_2 in the CNN-Bi-LSTM model,
kernel size = 3, activation = relu, no dropout.

3. Dense layers: units = 512, 4096, 15829, activation = 
“relu”, dropout = 0.3.

The two Conv1D layers are concatenated in a 50-
dimensional layer, and then a series of dense layers are 
responsible for increasing the dimension to the size needed for 
the output. Because the task is simple categorization, we used a 
simple softmax function at the end and sparse categorical 
crossentropy as the loss function. The dimension (15829) of the 
last layer is equal to the dictionary entries. While this means 
that subsequent additions to the dictionary means using a 
completely new model every time, the simplicity of the model
means a low number of parameters (88 million), and with that 
a relatively fast training compared to the current, much larger 
models (more on that in the Training and Evaluation chapter).

Using convolutional layers in text processing is a commonly
used technique ([15], [16]), although mostly used for sentiment 
analysis or text classification.

C. CNN-Bi-LSTM Model
The CNN-Bi-LSTM model (depicted on Fig. 2, with an 

example input and output) was inspired by another architecture 
primarily developed for Named Entity Recognition [17],
although it lacks the case-embedding and uses a simple 256-
dimensional embedding. It is very similar to the previously 
described pure convolutional model, the only difference is in 
the processing of the embedded words.

We used a 64-dimensional Bi-LSTM layer that was then 
flattened into a dense 64-dimensional layer. This meant that 
unlike with the pure convolutional model, here the output of the 
word-processing part of the model was a lot larger. We 
theorized that this, together with the LSTM being generally 
more fitted for processing word sequences, will lead to a better 
accuracy than the pure convolutional model.

The hyperparameters of the Bi-LSTM layer were the 
following (the hyperparameters of the other layers are the same 

Fig. 1.  The layers of the pure convolutional model.

Fig. 2.  The layers of the CNN-Bi-LSTM model and an example input and 
output.
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kernel initializer for all layers (values: uniform, normal, 
glorot_uniform, glorot_normal, lecun_uniform) and the size of 
the embedding layer (values: 64, 128, 256, 512) as optimizable 
hyperparameters. The best regularizer was Nadam, and the best 
batch size was 64 for both this and the CNN-Bi-LSTM model.

The optimised hyperparameters of the layers are the 
following (all other hyperparameters can be found in the 
Appendix chapter):

1. Embedding layer: input dimension = 31, output 
dimension = 256, embeddings initializer =
”lecun_uniform”, no regularization, no zero masking, no 
dropout.

2. Conv1D layers: filters = 29 for conv1d and 30 for 
conv1d_1 and conv1d_2 in the CNN-Bi-LSTM model,
kernel size = 3, activation = relu, no dropout.

3. Dense layers: units = 512, 4096, 15829, activation = 
“relu”, dropout = 0.3.

The two Conv1D layers are concatenated in a 50-
dimensional layer, and then a series of dense layers are 
responsible for increasing the dimension to the size needed for 
the output. Because the task is simple categorization, we used a 
simple softmax function at the end and sparse categorical 
crossentropy as the loss function. The dimension (15829) of the 
last layer is equal to the dictionary entries. While this means 
that subsequent additions to the dictionary means using a 
completely new model every time, the simplicity of the model
means a low number of parameters (88 million), and with that 
a relatively fast training compared to the current, much larger 
models (more on that in the Training and Evaluation chapter).

Using convolutional layers in text processing is a commonly
used technique ([15], [16]), although mostly used for sentiment 
analysis or text classification.

C. CNN-Bi-LSTM Model
The CNN-Bi-LSTM model (depicted on Fig. 2, with an 

example input and output) was inspired by another architecture 
primarily developed for Named Entity Recognition [17],
although it lacks the case-embedding and uses a simple 256-
dimensional embedding. It is very similar to the previously 
described pure convolutional model, the only difference is in 
the processing of the embedded words.

We used a 64-dimensional Bi-LSTM layer that was then 
flattened into a dense 64-dimensional layer. This meant that 
unlike with the pure convolutional model, here the output of the 
word-processing part of the model was a lot larger. We 
theorized that this, together with the LSTM being generally 
more fitted for processing word sequences, will lead to a better 
accuracy than the pure convolutional model.

The hyperparameters of the Bi-LSTM layer were the 
following (the hyperparameters of the other layers are the same 

Fig. 1.  The layers of the pure convolutional model.

Fig. 2.  The layers of the CNN-Bi-LSTM model and an example input and 
output.
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Contrary to our expectations, the pure convolutional model 
had slightly better accuracy than the CNN-Bi-LSTM model. 
This can be explained with the length of the context fed into the 
input: only 10 other words were used as context, and Bi-LSTM 
networks are mostly used because of their ability to identify 
long-term connections. Furthermore, experiments have shown 
[18] that in certain sequence-labelling problems, CNNs can 
outperform RNNs. It is also worth mentioning that the gap in 
accuracy is very small (only 1.9%). Using both was, however, 
crucial for the system to be able to use majority voting. 

The system as a whole achieved 65.9% accuracy all together 
on the same dataset. This means that the parts of the system do, 
in fact, perform significantly better together (even the 
convolutional model which performed the best of all the 
solutions achieved only 48.7%). 

We also experimented with different ways of deciding ties 
between the components, and found out that the Levenshtein 
distance was, in fact, the best for this task, despite being the 
least accurate standalone. Fig. 3 shows that the distribution of 
correct guesses supports this. 

Training times were typically around 3-4 hours for the whole 
system. All training and evaluation were performed on a PC 
with a GTX 1060 6GB GPU. With a TPU using more VRAM 
training these models would take even less time. 

B. Testing on Other Texts 
Whereas the previously mentioned experiments provide a 

numerical metric, in the case of a tool designed to help manual 
work, manual experiments were also needed. We have used it 
on a handful of other texts to manually test its usefulness and if 
any typical errors are present. 

For experimenting on these texts, we used the hybrid system, 
including a lookup function that uses the Solr database to look 
for already existing forms (the Solr query searched for an exact 
match amongst the word forms, and we grouped them by 
headword, then in the case of multiple matching headword, 
used the prediction function). This means that the prediction 
function is only used in the case of ambiguous or unknown 
forms. 

As we can see on Fig. 5. and Fig. 6., the number of wrong 
predictions is low, much lower than the measured 34%. This is 
primarily because these texts contain a lot of words that are 
already known. The large size of the dictionary allows for more 
common words with a small number of forms to be easily 
identified without the uncertainty present in the predictive 
function. The errors do not show any certain trend (some are 
similar to the wrongly predicted headword, some are seemingly 
random, some are the result of the model’s inability to correctly 
identify multi-part words). 

C. Comparison to Other Solutions 
We have performed the same experiment with the dataset 

used for training and testing on all the previously mentioned 
other solutions. For both the EmMorph and SpaCy we only used 
pre-trained models, and for the BERT and Flair we trained 
multilingual models on the training dataset. 

EmMorph performed according to our expectations: with the 
score of 21.9%, it was the least accurate. It is mostly due to the 
large number of unknown words and a very different grammar 
used in Mikes’s writing. 

SpaCy (using the lemmatizer module, and the lemma of each 
word as the predicted headword) has surpassed our expectations 
with its score of 41.3%, as it performed closely to our individual 
networks. This shows the power of context-analysing 
(EmMorph only uses the form of the word, SpaCy uses the 
context as well), and the robustness of its Hungarian models. 

We have used a multilingual BERT model as well as the 
HuBERT [19] model. We used the Flair framework for training 
and evaluating the BERT implementations, using Flair’s own 
built-in categorizer architecture. We used ADAM optimizer 
with a learning rate of 0.1 and an annealing factor of 0.5, 
minibatch size was 32. The multilingual model’s raining was 
stopped at 19% accuracy, and the training of HuBERT was 
stopped at 20% accuracy. We have not evaluated them on the 
test dataset. 

 We used the Flair embeddings similarly to the BERT 
embeddings, in the same setup. It has performed much better 
than BERT, reaching 57.7% accuracy during training, and when 
subjected to the same evaluation as our models, it reached an 
accuracy of 29.7%. This, although still significantly worse than 
our models, means that big, multilingual models can be trained 
for processing unusual language, but custom-built solutions 
will usually be better. 

VI. IMPLEMENTATION 
We have used Python for the implementation, mostly 

because most state-of-the-art machine learning tools are 
accessible as Python libraries, and it provides an easy and fast 
way to create a simple application that is capable of tagging 

 
 

Fig. 5.  The results of testing on a letter from Mikes not from the “Turkish 
Letters”. The red background signals the wrong predictions. The $ symbol is 
the separator for multi-part words (e.g. “elég$tételi”), and for multi-meaning 
words, a number is appended (e. g. “az 1”) 

 <beszélgetni U:beszélgetni> <beátrixal U:Beatrix> 
<egyik U:egyik> <a U:az 1> <leányi U:leány> <közül 
U:közül> <valoval U:ló> <akiben U:a$ki> <leg 
U:elég$tételi> <több U:több> <bizodalma 
U:bizodalom> <volt U:van> <ugyan U:ugyan> <orában 
U:óra> <verték U:vet> <fel U:fel$üttet> <a U:az 1> 
<házát U:ház> <az U:az 1> <anglusok U:ánglius> 
<éléonora U:Eleonora> <le U:le$ülve> <heveredet 
U:hever> <volt U:van> 
 

 
 

Fig. 6.  The results of testing on a letter from Ferenc Rákóczi the II, a 
contemporary of Mikes. The red background signals the wrong predictions. The 
$ symbol is the separator for multi-part words (e.g. “a$midőn”), and for multi-
meaning words, a number is appended (e. g. “mind 1”) 

 <augusti U:augustus> <írott U:írott> <levelét U:levél> 
<kegyelmednek U:kegyelmed> <vévén U:vevés> <az 
U:az 1> <midőn U:a$midőn> <abból U:az 2> <s U:sok> 
<mind U:mind 1> <az U:az 1> <includált U:csoda> 
<levelekből U:levél> <értem U:ért 1> <az U:az 1> 
<ellenségnek U:ellenség> <kegyetlen U:kegyetlen> 
<actusit U:acta> <az U:az 1> <dunán U:Duna> <túl 
U:túl> <való U:való> <földön U:föld> <való U:való> 
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as the ones in the pure convolutional model, and the other 
hyperparameters can be found in the Appendix chapter):

Units = 64, activation = “tanh”, recurrent activation = 
sigmoid, use bias = True, kernel initializer = “lecun_uniform”, 
dropout = 0.1.

We expected the CNN-Bi-LSTM network to outperform the 
pure convolutional model, but also to learn more slowly. Also 
because of the difference in the word processing architecture, 
we theorized that the two networks would be better at 
identifying different words. This led to the final solution 
combining the result of both models and deciding between 
them. The problem was that we needed a three-opinion system 
to use majority voting, so we used a third component, a simple 
distance-based solution.

D. Levenshtein Distance
The Levenshtein distance is often used in approximate string 

matching, especially in spell checking, where one of the strings 
comes from a dictionary. This is somewhat similar to the task 
of finding a headword, although not equal. We have chosen this 
as an often used and simple solution in string distance 
measurement.

Levenshtein distance is a measurement of difference between 
two strings, based on the number of edits that are needed to 
transform one to another. These edits are: 1. adding a character, 
2. deleting a character, 3. substituting a character with another 
character. This can be calculated very efficiently using a 
dynamic programming algorithm.

The main issue with using a distance-measurement like this 
in a dictionary of roughly 16 000 word is that every time we 
need to do the whole calculation 16 000 times. This, even with 
a C implementation, takes significantly longer than simply 
running one word and its context through the models for 
prediction. So, as we can see, using Levenshtein every time 
leads to a significant amount of time increase, which, while not 
necessarily one of the main considerations, is still a factor to 
keep in mind.

E. The Hybrid System
We have decided to use two models and the Levenshtein-

distance as a three-part expert system. Because of the higher 
computational cost and the distribution of correct guesses (Fig. 
3), the Levenshtein-distance was used as a tiebreaker.

The execution was very simple: first, both models predicted 
a dictionary entry, then if these were not the same, the entry 
predicted by the Levenshtein-distance was used, regardless of 
the results produced by the models.

While as we will see on Fig. 4, both the CNN-Bi-LSTM
model and the convolutional model outperformed the distance-
based prediction, a disparity in the results of the two models 
usually means they are both wrong, and in this case the distance 
can be a helpful third option. This is the reason why the 
Levenshtein distance takes priority over both of them.

It is not trivial that these three solutions complement each 
other well, but in this application the results show that the 
system together performs significantly better than the 
individual components, which can be explained by the varying 
architectures.

V. TRAINING AND EVALUATION

To allow for a good evaluation, we have used the following 
method: we randomly chosen 5% of all known word forms as 
the test set and excluded them from the dataset on which we 
performed the training. This meant that the word forms used in 
testing are analogous to unknown words which the application 
has to predict headwords for. This set formed our testing set 
during the evaluation phase.

The training was always performed with 48 iterations, in 
every iteration a new set of 10 000 sentences were used to train
the model with 10% as the validation set. We used early 
stopping based on validation loss with a patience of 3 and used 
the best weights.

A. Evaluation
Pure Bi-LSTM stands for the previously mentioned model 

where even the character-level input was fed into a Bi-LSTM 
network. It did not achieve similar accuracy to the other two 
models, so it was discarded.

Contrast these results (Fig. 4) with the performance of the 
Levenshtein-distance-based solution: that achieved 37% on the 
same dataset. We used it as our baseline, as it is the most basic 
solution, and it performed remarkably well for its simplicity.

Type Best Accuracy
CNN-Bi-LSTM 46.8%
Pure Bi-LSTM 37.5%
Pure convolution 48.7%
Levenshtein 37.0%
Hybrid System 65.9%
SpaCy 41.3%
EmMorph 21.9%
BERT/HuBERT -
Flair 29.7%

Fig. 4.  The accuracies of all solutions. BERT was not tested because training 
was early stopped at 19% accuracy. HuBERT achieved 20% accuracy on the 

training set.

Fig. 3.  Accuracy of the combination of components in percentage of accurately 
guessed headwords using the whole test dataset.
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kernel initializer for all layers (values: uniform, normal, 
glorot_uniform, glorot_normal, lecun_uniform) and the size of 
the embedding layer (values: 64, 128, 256, 512) as optimizable 
hyperparameters. The best regularizer was Nadam, and the best 
batch size was 64 for both this and the CNN-Bi-LSTM model.

The optimised hyperparameters of the layers are the 
following (all other hyperparameters can be found in the 
Appendix chapter):

1. Embedding layer: input dimension = 31, output 
dimension = 256, embeddings initializer =
”lecun_uniform”, no regularization, no zero masking, no 
dropout.

2. Conv1D layers: filters = 29 for conv1d and 30 for 
conv1d_1 and conv1d_2 in the CNN-Bi-LSTM model,
kernel size = 3, activation = relu, no dropout.

3. Dense layers: units = 512, 4096, 15829, activation = 
“relu”, dropout = 0.3.

The two Conv1D layers are concatenated in a 50-
dimensional layer, and then a series of dense layers are 
responsible for increasing the dimension to the size needed for 
the output. Because the task is simple categorization, we used a 
simple softmax function at the end and sparse categorical 
crossentropy as the loss function. The dimension (15829) of the 
last layer is equal to the dictionary entries. While this means 
that subsequent additions to the dictionary means using a 
completely new model every time, the simplicity of the model
means a low number of parameters (88 million), and with that 
a relatively fast training compared to the current, much larger 
models (more on that in the Training and Evaluation chapter).

Using convolutional layers in text processing is a commonly
used technique ([15], [16]), although mostly used for sentiment 
analysis or text classification.

C. CNN-Bi-LSTM Model
The CNN-Bi-LSTM model (depicted on Fig. 2, with an 

example input and output) was inspired by another architecture 
primarily developed for Named Entity Recognition [17],
although it lacks the case-embedding and uses a simple 256-
dimensional embedding. It is very similar to the previously 
described pure convolutional model, the only difference is in 
the processing of the embedded words.

We used a 64-dimensional Bi-LSTM layer that was then 
flattened into a dense 64-dimensional layer. This meant that 
unlike with the pure convolutional model, here the output of the 
word-processing part of the model was a lot larger. We 
theorized that this, together with the LSTM being generally 
more fitted for processing word sequences, will lead to a better 
accuracy than the pure convolutional model.

The hyperparameters of the Bi-LSTM layer were the 
following (the hyperparameters of the other layers are the same 

Fig. 1.  The layers of the pure convolutional model.

Fig. 2.  The layers of the CNN-Bi-LSTM model and an example input and 
output.
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as the ones in the pure convolutional model, and the other 
hyperparameters can be found in the Appendix chapter):

Units = 64, activation = “tanh”, recurrent activation = 
sigmoid, use bias = True, kernel initializer = “lecun_uniform”, 
dropout = 0.1.

We expected the CNN-Bi-LSTM network to outperform the 
pure convolutional model, but also to learn more slowly. Also 
because of the difference in the word processing architecture, 
we theorized that the two networks would be better at 
identifying different words. This led to the final solution 
combining the result of both models and deciding between 
them. The problem was that we needed a three-opinion system 
to use majority voting, so we used a third component, a simple 
distance-based solution.

D. Levenshtein Distance
The Levenshtein distance is often used in approximate string 

matching, especially in spell checking, where one of the strings 
comes from a dictionary. This is somewhat similar to the task 
of finding a headword, although not equal. We have chosen this 
as an often used and simple solution in string distance 
measurement.

Levenshtein distance is a measurement of difference between 
two strings, based on the number of edits that are needed to 
transform one to another. These edits are: 1. adding a character, 
2. deleting a character, 3. substituting a character with another 
character. This can be calculated very efficiently using a 
dynamic programming algorithm.

The main issue with using a distance-measurement like this 
in a dictionary of roughly 16 000 word is that every time we 
need to do the whole calculation 16 000 times. This, even with 
a C implementation, takes significantly longer than simply 
running one word and its context through the models for 
prediction. So, as we can see, using Levenshtein every time 
leads to a significant amount of time increase, which, while not 
necessarily one of the main considerations, is still a factor to 
keep in mind.

E. The Hybrid System
We have decided to use two models and the Levenshtein-

distance as a three-part expert system. Because of the higher 
computational cost and the distribution of correct guesses (Fig. 
3), the Levenshtein-distance was used as a tiebreaker.

The execution was very simple: first, both models predicted 
a dictionary entry, then if these were not the same, the entry 
predicted by the Levenshtein-distance was used, regardless of 
the results produced by the models.

While as we will see on Fig. 4, both the CNN-Bi-LSTM
model and the convolutional model outperformed the distance-
based prediction, a disparity in the results of the two models 
usually means they are both wrong, and in this case the distance 
can be a helpful third option. This is the reason why the 
Levenshtein distance takes priority over both of them.

It is not trivial that these three solutions complement each 
other well, but in this application the results show that the 
system together performs significantly better than the 
individual components, which can be explained by the varying 
architectures.

V. TRAINING AND EVALUATION

To allow for a good evaluation, we have used the following 
method: we randomly chosen 5% of all known word forms as 
the test set and excluded them from the dataset on which we 
performed the training. This meant that the word forms used in 
testing are analogous to unknown words which the application 
has to predict headwords for. This set formed our testing set 
during the evaluation phase.

The training was always performed with 48 iterations, in 
every iteration a new set of 10 000 sentences were used to train
the model with 10% as the validation set. We used early 
stopping based on validation loss with a patience of 3 and used 
the best weights.

A. Evaluation
Pure Bi-LSTM stands for the previously mentioned model 

where even the character-level input was fed into a Bi-LSTM 
network. It did not achieve similar accuracy to the other two 
models, so it was discarded.

Contrast these results (Fig. 4) with the performance of the 
Levenshtein-distance-based solution: that achieved 37% on the 
same dataset. We used it as our baseline, as it is the most basic 
solution, and it performed remarkably well for its simplicity.

Type Best Accuracy
CNN-Bi-LSTM 46.8%
Pure Bi-LSTM 37.5%
Pure convolution 48.7%
Levenshtein 37.0%
Hybrid System 65.9%
SpaCy 41.3%
EmMorph 21.9%
BERT/HuBERT -
Flair 29.7%

Fig. 4.  The accuracies of all solutions. BERT was not tested because training 
was early stopped at 19% accuracy. HuBERT achieved 20% accuracy on the 

training set.

Fig. 3.  Accuracy of the combination of components in percentage of accurately 
guessed headwords using the whole test dataset.



Hybrid Distance-based, CNN and Bi-LSTM 
System for Dictionary Expansion

INFOCOMMUNICATIONS JOURNAL

DECEMBER 2020 • VOLUME XII • NUMBER 4 11

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

 

6 

Contrary to our expectations, the pure convolutional model 
had slightly better accuracy than the CNN-Bi-LSTM model. 
This can be explained with the length of the context fed into the 
input: only 10 other words were used as context, and Bi-LSTM 
networks are mostly used because of their ability to identify 
long-term connections. Furthermore, experiments have shown 
[18] that in certain sequence-labelling problems, CNNs can 
outperform RNNs. It is also worth mentioning that the gap in 
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We also experimented with different ways of deciding ties 
between the components, and found out that the Levenshtein 
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already known. The large size of the dictionary allows for more 
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multilingual models on the training dataset. 

EmMorph performed according to our expectations: with the 
score of 21.9%, it was the least accurate. It is mostly due to the 
large number of unknown words and a very different grammar 
used in Mikes’s writing. 

SpaCy (using the lemmatizer module, and the lemma of each 
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with its score of 41.3%, as it performed closely to our individual 
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HuBERT [19] model. We used the Flair framework for training 
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stopped at 19% accuracy, and the training of HuBERT was 
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 We used the Flair embeddings similarly to the BERT 
embeddings, in the same setup. It has performed much better 
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accuracy of 29.7%. This, although still significantly worse than 
our models, means that big, multilingual models can be trained 
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will usually be better. 

VI. IMPLEMENTATION 
We have used Python for the implementation, mostly 

because most state-of-the-art machine learning tools are 
accessible as Python libraries, and it provides an easy and fast 
way to create a simple application that is capable of tagging 

 
 

Fig. 5.  The results of testing on a letter from Mikes not from the “Turkish 
Letters”. The red background signals the wrong predictions. The $ symbol is 
the separator for multi-part words (e.g. “elég$tételi”), and for multi-meaning 
words, a number is appended (e. g. “az 1”) 

 <beszélgetni U:beszélgetni> <beátrixal U:Beatrix> 
<egyik U:egyik> <a U:az 1> <leányi U:leány> <közül 
U:közül> <valoval U:ló> <akiben U:a$ki> <leg 
U:elég$tételi> <több U:több> <bizodalma 
U:bizodalom> <volt U:van> <ugyan U:ugyan> <orában 
U:óra> <verték U:vet> <fel U:fel$üttet> <a U:az 1> 
<házát U:ház> <az U:az 1> <anglusok U:ánglius> 
<éléonora U:Eleonora> <le U:le$ülve> <heveredet 
U:hever> <volt U:van> 
 

 
 

Fig. 6.  The results of testing on a letter from Ferenc Rákóczi the II, a 
contemporary of Mikes. The red background signals the wrong predictions. The 
$ symbol is the separator for multi-part words (e.g. “a$midőn”), and for multi-
meaning words, a number is appended (e. g. “mind 1”) 

 <augusti U:augustus> <írott U:írott> <levelét U:levél> 
<kegyelmednek U:kegyelmed> <vévén U:vevés> <az 
U:az 1> <midőn U:a$midőn> <abból U:az 2> <s U:sok> 
<mind U:mind 1> <az U:az 1> <includált U:csoda> 
<levelekből U:levél> <értem U:ért 1> <az U:az 1> 
<ellenségnek U:ellenség> <kegyetlen U:kegyetlen> 
<actusit U:acta> <az U:az 1> <dunán U:Duna> <túl 
U:túl> <való U:való> <földön U:föld> <való U:való> 
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texts. We have uploaded our implementation to GitHub at 
https://github.com/szakacsb/dictionary_expander, together 
with links for models and for the xml file needed to initialize 
the Solr database. 

For storing the dictionary, we used Apache Solr2. Solr is a 
powerful search platform with a multitude of functions that 
made it ideal for quick lookups and storing data in a dictionary-
like format. We did not utilize most of its advanced 
functionality, but it provided a robust out-of-the-box solution 
for storing data. 

A. The Application 
The Application itself was written purely in Python, 

including the parts for populating the Solr server with data, the 
client querying the server for data, the training and evaluation 
of models, and the functional tagger. The machine learning 
parts rely on Keras, and for the distance-based part, we used 
python-Levenshtein. 

The application does not rely strictly on the Mikes dictionary 
as a corpus: using the same format, any dataset can be used to 
teach the model. This means that reconfiguring it for different 
task is fairly simple, be it dictionary expansion for a different 
corpus or an entirely different entity recognition and tagging 
task. 

B. The Solr Server 
While Solr is a much more robust technology than required 

for this task, its performance is a significant upside for this 
application. We transformed and uploaded the half-done 
dictionary and used it as our database server for the 
experiments. 

The results, after being manually checked, can very easily be 
fed back into the Solr server, making further training of models 
possible. An incremental workflow can be created, where the 
application tags the text, the expert manually corrects it, and 
then it is uploaded into the server, and used for further training 
for the models. 

VII. CONCLUSION 
We have created an expert system-based automatic tagger 

that can be used to pre-process texts for dictionary-expansion. 
We have demonstrated that a three-component tool performs 
better on Mikes Kelemen’s writings that are in an archaic 
dialect of the Hungarian language, and we compared our results 
to some already existing tools on the same corpus. 

Whereas the tool we created was specifically designed for 
this task, it can be used in many other applications, and its 
flexibility allows for processing other non-contemporary or 
otherwise drastically different dialects. 

The accuracy of the predictions is not fit for unsupervised 
dictionary expansion; however, we have reached a 65.9% 
accuracy on unknown words and this makes this tool ideal for 
pre-processing texts before manual corrections. 

We also built the system into an easy-to-use application, 
together with a Solr-based server that stores the dictionary 
itself. 

 
2 https://lucene.apache.org/solr/ 

For future works we will be developing the decision-making 
component, using the posterior probabilities of the softmax 
layers and trying different, more complex approaches. We will 
also be looking at more sophisticated distance-based methods 
and more complex neural networks to try to diversify the 
components even further. 
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made it ideal for quick lookups and storing data in a dictionary-
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accuracy on unknown words and this makes this tool ideal for 
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VIII. APPENDIX 
The additional hyperparameters of the layers are the 

following: 
1. Conv1D layers: padding = valid, data format = 

“channels_last”, dilation rate = 1, groups = 1, use 
bias = True, bias initializer = “zeros”, no kernel 
regularizer, no bias regularizer, no activity 
regularizer, no kernel constraints, no bias 
constraints. 

2. Dense layers: use bias = True, bias initializer = 
“zeros”, no kernel regularizer, no bias regularizer, 
no activity regularizer, no kernel constraints, no bias 
constraints. 

3. Bidirectional LSTM: use bias = True, recurrent 
initializer = “orthogonal”, bias initializer = “zeros”, 
unit forget bias = True, no kernel regularizer, no 
bias regularizer, no activity regularizer, no recurrent 
regularizer, no kernel constraints, no recurrent 
constraints, no bias constraints, no recurrent 
dropout, return sequences = False, return state = 
False, go backwards = False, stateful = False, time 
major = False, unroll = False. 
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texts. We have uploaded our implementation to GitHub at 
https://github.com/szakacsb/dictionary_expander, together 
with links for models and for the xml file needed to initialize 
the Solr database. 

For storing the dictionary, we used Apache Solr2. Solr is a 
powerful search platform with a multitude of functions that 
made it ideal for quick lookups and storing data in a dictionary-
like format. We did not utilize most of its advanced 
functionality, but it provided a robust out-of-the-box solution 
for storing data. 

A. The Application 
The Application itself was written purely in Python, 

including the parts for populating the Solr server with data, the 
client querying the server for data, the training and evaluation 
of models, and the functional tagger. The machine learning 
parts rely on Keras, and for the distance-based part, we used 
python-Levenshtein. 

The application does not rely strictly on the Mikes dictionary 
as a corpus: using the same format, any dataset can be used to 
teach the model. This means that reconfiguring it for different 
task is fairly simple, be it dictionary expansion for a different 
corpus or an entirely different entity recognition and tagging 
task. 

B. The Solr Server 
While Solr is a much more robust technology than required 

for this task, its performance is a significant upside for this 
application. We transformed and uploaded the half-done 
dictionary and used it as our database server for the 
experiments. 

The results, after being manually checked, can very easily be 
fed back into the Solr server, making further training of models 
possible. An incremental workflow can be created, where the 
application tags the text, the expert manually corrects it, and 
then it is uploaded into the server, and used for further training 
for the models. 

VII. CONCLUSION 
We have created an expert system-based automatic tagger 

that can be used to pre-process texts for dictionary-expansion. 
We have demonstrated that a three-component tool performs 
better on Mikes Kelemen’s writings that are in an archaic 
dialect of the Hungarian language, and we compared our results 
to some already existing tools on the same corpus. 

Whereas the tool we created was specifically designed for 
this task, it can be used in many other applications, and its 
flexibility allows for processing other non-contemporary or 
otherwise drastically different dialects. 

The accuracy of the predictions is not fit for unsupervised 
dictionary expansion; however, we have reached a 65.9% 
accuracy on unknown words and this makes this tool ideal for 
pre-processing texts before manual corrections. 

We also built the system into an easy-to-use application, 
together with a Solr-based server that stores the dictionary 
itself. 

 
2 https://lucene.apache.org/solr/ 

For future works we will be developing the decision-making 
component, using the posterior probabilities of the softmax 
layers and trying different, more complex approaches. We will 
also be looking at more sophisticated distance-based methods 
and more complex neural networks to try to diversify the 
components even further. 

REFERENCES 
 
[1] A. Toprak and M. Turan, "English Automatic Dictionary Creation with 

Natural Language Processing", 2019 Innovations in Intelligent Systems 
and Applications Conference (ASYU), Izmir, Turkey, 2019, pp. 1-6 
DOI: 10.1109/ASYU48272.2019.8946431. 

[2] X. Wang, Y. Zhang, Q. Li, X. Ren, J. Shang and J. Han, "Distantly 
Supervised Biomedical Named Entity Recognition with Dictionary 
Expansion", 2019 IEEE International Conference on Bioinformatics and 
Biomedicine (BIBM), San Diego, CA, USA, 2019, pp. 496-503  
DOI: 10.1109/BIBM47256.2019.8983212. 

[3] Gentile A.L., Gruhl D., Ristoski P., Welch S. “Explore and Exploit. 
Dictionary Expansion with Human-in-the-Loop”, Hitzler P. et al. (eds) 
The Semantic Web. ESWC 2019. Lecture Notes in Computer Science, vol 
11503. Springer, Cham 
DOI:10.1007/978-3-030-21348-0_9 

[4] George A. Miller, “WordNet: A Lexical Database for English”, 
Communications of the ACM Vol. 38, No. 11, pp. 39-41, 1995 
DOI: 10.1145/219717.219748 

[5] Margit Kiss, “The Digital Mikes-Dictionary”, In: Tüskés Gábor; Bernard 
Adams; Thierry Fouilleul; Klaus Haberkamm (editor), Transmission of 
Literature and Intercultural Discourse in Exile [...] The Work of Kelemen 
Mikes in the Context of Europen Enlightment [...], Bern: Peter, Lang 
Verlag, pp 288-297, 2012 

[6] Tamás Mészáros, Margit Kiss, „The DHmine Dictionary Work-flow: 
Creating a Knowledge-based Author’s Dictionary”, Proceedings of the 
XVIII EURALEX International Congress: Lexicography in Global 
Contexts, pp 77-86, Jul. 2018  

[7] Kiss, Margit, Mészáros, Tamás, “Rethinking the Role of Digital Author's 
Dictionaries in Humanities Research”, Feb. 2019 

[8] Ruis, F., Pathak, S., Geerdink, J., Hegeman, J. H., Seifert, C., & van 
Keulen, M. “Human-in-the-loop Language-agnostic Extraction of 
Medication Data from Highly Unstructured Electronic Health Records”, 
20th International Conference on Data Mining Workshops 2020 IEEE 
EDS, 2020 

[9] Alfredo Alba, Chad DeLuca, Anna Lisa Gentile, Daniel Gruhl, Linda 
Kato, Chris Kau, Petar Ristoski, and Steve Welch „Identifying High 
Value Opportunities for Human in the Loop Lexicon Expansion”, 
HumBL2019. The third international workshop on Augmenting 
Intelligence with Bias-Aware Humans-in-the–Loop. In the Web 
Conference 2019 Companion volume. ACM, New York, NY, USA, 2019 
DOI: 10.1145/3308560.3317305 

[10] Attila Novák, “A New Form of Humor – Mapping Constraint-Based 
Computational Morphologies to a Finite-State Representation.” in: 
Proceedings of the 9th International Conference on Language Resources 
and Evaluation (LREC-2014), Reykjavík, pp. 1068–1073, 2014 

[11] Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova, 
“BERT: Pre-training of Deep Bidirecional Transformers for Language 
Understanding”, arXiv preprint arXiv:1810.04805, Oct. 2018 

[12] Akbik, Alan and Blythe, Duncan and Vollgraf, Roland, “Contextual 
String Embeddings for Sequence Labeling”, in: Proceedings of the 27th 
International Conference on Computational Linguistics, pp. 1638-1649, 
2018 

[13] Zhang, Wei, “Shift-invariant pattern recognition neural network and its 
optical architecture” in: Proceedings of Annual Conference of the Japan 
Society of Applied Physics, 1988 

[14] Hochreiter, Sepp; Schmidhuber, Jürgen, “Long short-term memory” in: 
Neural Computation 9 (8), pp 1735–1780, 1997, MIT Press 
DOI: 10.1162/neco.1997.9.8.1735 

[15] Alexis Conneau, Holger Schwenk, Loïc Barrault, Yann Lecun, “Very 
Deep Convolutional Networks for Natural Language Processing”, Jun. 
2016, arXiv preprint arXiv:1606:01781 

	[12]	 Akbik, Alan and Blythe, Duncan and Vollgraf, Roland, “Contextual 
String Embeddings for Sequence Labeling”, in: Proceedings of the 
27th International Conference on Computational Linguistics, pp. 
1638-1649, 2018

	[13]	 Zhang, Wei, “Shift-invariant pattern recognition neural network and 
its optical architecture” in: Proceedings of Annual Conference of the 
Japan Society of Applied Physics, 1988

	[14]	 Hochreiter, Sepp; Schmidhuber, Jürgen, “Long short-term memory” 
in: Neural Computation 9 (8), pp 1735–1780, 1997, MIT Press

		  doi: 10.1162/neco.1997.9.8.1735
	[15]	 Alexis Conneau, Holger Schwenk, Loïc Barrault, Yann Lecun, “Very 

Deep Convolutional Networks for Natural Language Processing”, 
Jun. 2016, arXiv preprint arXiv:1606:01781

[	16]	 Xiang Yu, Agnieszka Falenska, Ngoc Thang Vu, “A General-Purpose 
Tagger with Convolutional Neural Networks”, in: Proceedings of the First 
Workshop on Subword and Character Level Models in NLP, pp. 124-
129, Sept. 2017, Copenhagen, Denmark, Association for Computational 
Linguistics

		  doi: 10.18653/v1/W17-4118
	[17]	 Jason P.C. Chiu, Eric Nichols, “Named Entity Recognition with 

Bidirectional LSTM-CNNs”, in: Transactions of the Association for 
Computational Linguistics, Volume 4, pp. 357-370, 2016

		  doi: 10.1162/tacl_a_00104
	[18]	 Shaojie Bai; J. Zico Kolter, Vladlen Koltun, “An Empirical Evaluation of 

Generic Convolutional and Recurrent Networks for Sequence Modeling”, 
eprint arXiv:1803.01271, March 2018

	[19]	 Nemeskey, Dávid Márk, “Natural Language Processing methods for 
Language Modeling” PhD thesis. Eötvös Loránd University, 2020

Béla Benedek Szakács finished his BSc in computer 
engineering in 2018 and is currently doing his MSc 
studies in the same field at the Budapest University 
of Technology and Economics. He is a member of the 
Balatonfüred Student Research Group. His main field 
of study is machine learning and natural language 
processing.

Tamás Mészáros is an associate professor at the 
Budapest University of Technology and Economics. His 
research areas include intelligent agents, information 
retrieval and natural language processing.

http://doi.org/10.1162/neco.1997.9.8.1735
http://doi.org/10.18653/v1/W17-4118
http://doi.org/10.1162/tacl_a_00104



