
Hybrid Distance-based, CNN and Bi-LSTM
System for Dictionary Expansion

DECEMBER 2020 • VOLUME XII • NUMBER 46

INFOCOMMUNICATIONS JOURNAL

Hybrid Distance-based, CNN and Bi-LSTM
System for Dictionary Expansion

Béla Benedek Szakács and Tamás Mészáros

This paper was submitted on 2020.09.29.
Béla Benedek Szakács is with the Budapest University of Technology and

Economics, Budapest, Hungary (e-mail: benedek.b.szakacs@gmail.com).
Tamás Mészáros is with the Budapest University of Technology and

Economics, Department of Measurement and Information Systems, Budapest,
Hungary (e-mail: meszaros@mit.bme.hu).

Abstract— Dictionaries like Wordnet can help in a variety
of Natural Language Processing applications by providing
additional morphological data. They can be used in Digital
Humanities research, building knowledge graphs and other
applications. Creating dictionaries from large corpora of texts
written in a natural language is a task that has not been a primary
focus of research, as other tasks have dominated the field (such
as chat-bots), but it can be a very useful tool in analysing texts.
Even in the case of contemporary texts, categorizing the words
according to their dictionary entry is a complex task, and for
less conventional texts (in old or less researched languages) it
is even harder to solve this problem automatically. Our task
was to create a software that helps in expanding a dictionary
containing word forms and tagging unprocessed text. We used
a manually created corpus for training and testing the model.
We created a combination of Bidirectional Long-Short Term
Memory networks, convolutional networks and a distance-
based solution that outperformed other existing solutions.
While manual post-processing for the tagged text is still needed,
it significantly reduces the amount of it.

Index Terms—machine learning, convolutional neural network,
bidirectional LSTM, Levenshtein-distance, dictionary.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Dictionaries like Wordnet can help in a variety of Natural

Language Processing applications by providing additional
morphological data. They can be used in Digital Humanities
research, building knowledge graphs and other
applications. Creating dictionaries from large corpora of
texts written in a natural language is a task that has not been
a primary focus of research, as other tasks have dominated
the field (such as chat-bots), but it can be a very useful tool
in analysing texts. Even in the case of contemporary texts,
categorizing the words according to their dictionary entry
is a complex task, and for less conventional texts (in old or
less researched languages) it is even harder to solve this
problem automatically. Our task was to create a software
that helps in expanding a dictionary containing word forms
and tagging unprocessed text. We used a manually created
corpus for training and testing the model. We created a
combination of Bidirectional Long-Short Term Memory
networks, convolutional networks and a distance-based
solution that outperformed other existing solutions. While
manual post-processing for the tagged text is still needed, it
significantly reduces the amount of it.

Index Terms - machine learning, convolutional neural network,
bidirectional LSTM, Levenshtein-distance, dictionary

I. INTRODUCTION
HE task of creating a dictionary from a corpus is a complex
one that requires a lot of manual labour without a

sufficiently accurate automatic tool, and even with that some
amount of manual post-processing is still needed, as most
solutions do not provide 100% accuracy.

Automatic dictionary expansion has been a task used in
various fields [1] such as biomedical data [2]. Sometimes a
human-in-the-loop approach is applied [3], somewhat similar to
what our research led to.

One-language dictionaries such as Wordnet [4] have been
used extensively in NLP (Natural Language Processing)
research. They can provide information about the text’s
vocabulary, can serve as a basis for knowledge graphs and other
applications.

This paper was submitted on 2020.09.29.
This work was supported by the European Regional Development Fund of

the European Union under the EFOP-3.6.2-16-2017-00013 Project.
Béla Benedek Szakács is with the Budapest University of Technology and

Economics, Budapest, Hungary (e-mail: benedek.b.szakacs@gmail.com).

It is important that this task is analogous to stemming or
lemmatizing, but that only covers part of the problem: there are
headwords that have multiple meanings in a language, and a
proper dictionary expansion tool should be able to decide
between them in addition of finding the correct headword form.

These problems increase when we are dealing with non-
conventional texts: either in languages that does not have a wide
array of tools and research in terms of NLP or texts in
significantly different dialects (old texts or texts of highly
specific environments, such the language of online
communities). In these cases, previously used algorithms and
tools will provide results that will be too inaccurate for any
applications.

If there is a sufficiently large corpus of text from the specific
dialect we are focusing on and it is processed by hand, it can be
enough to teach some kind of model on it. This was our
approach in this case: we were trying to develop a software
specifically tailored to expand an already existing dictionary in
a specific format. In this case, we had two main tasks to solve:
looking at a word, we had to find the corresponding form in the
dictionary, or the headword if the form does not exist, and if
there are multiple forms, decide which one is the most likely
based on the context.

II. THE MIKES DICTIONARY PROJECT
This is a project [5] that was created by the Hungarian

Research Center for the Humanities, and the main purpose is to
create a full author’s dictionary [6] based on the work of
Kelemen Mikes, an 18th century Hungarian writer, who had a
large body of work comprised of mostly prose and letters. The
researchers will be using this dictionary for a multitude of
analytical experiments in the field of Digital Humanities [7].

A. The Corpus
Kelemen Mikes was a very influential writer in the 18th

century, and his work is still extensively studied. The language
of Mikes is, however, very different from contemporary
Hungarian: the grammar is much more inconsistent, he uses a
lot of Latin words and expressions. The dialect which he uses
is mostly understandable by a contemporary reader, but only
because of the flexibility of the human mind.

Tamás Mészáros is with the Budapest University of Technology and
Economics, Department of Measurement and Information Systems, Budapest,
Hungary (e-mail: meszaros@mit.bme.hu).

Hybrid Distance-based, CNN and Bi-LSTM
System for Dictionary Expansion

Béla Benedek Szakács, Tamás Mészáros, Budapest University of Technology and Economics,
Department of Measurement and Information Systems

T

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Dictionaries like Wordnet can help in a variety of Natural

Language Processing applications by providing additional
morphological data. They can be used in Digital Humanities
research, building knowledge graphs and other
applications. Creating dictionaries from large corpora of
texts written in a natural language is a task that has not been
a primary focus of research, as other tasks have dominated
the field (such as chat-bots), but it can be a very useful tool
in analysing texts. Even in the case of contemporary texts,
categorizing the words according to their dictionary entry
is a complex task, and for less conventional texts (in old or
less researched languages) it is even harder to solve this
problem automatically. Our task was to create a software
that helps in expanding a dictionary containing word forms
and tagging unprocessed text. We used a manually created
corpus for training and testing the model. We created a
combination of Bidirectional Long-Short Term Memory
networks, convolutional networks and a distance-based
solution that outperformed other existing solutions. While
manual post-processing for the tagged text is still needed, it
significantly reduces the amount of it.

Index Terms - machine learning, convolutional neural network,
bidirectional LSTM, Levenshtein-distance, dictionary

I. INTRODUCTION
HE task of creating a dictionary from a corpus is a complex
one that requires a lot of manual labour without a

sufficiently accurate automatic tool, and even with that some
amount of manual post-processing is still needed, as most
solutions do not provide 100% accuracy.

Automatic dictionary expansion has been a task used in
various fields [1] such as biomedical data [2]. Sometimes a
human-in-the-loop approach is applied [3], somewhat similar to
what our research led to.

One-language dictionaries such as Wordnet [4] have been
used extensively in NLP (Natural Language Processing)
research. They can provide information about the text’s
vocabulary, can serve as a basis for knowledge graphs and other
applications.

This paper was submitted on 2020.09.29.
This work was supported by the European Regional Development Fund of

the European Union under the EFOP-3.6.2-16-2017-00013 Project.
Béla Benedek Szakács is with the Budapest University of Technology and

Economics, Budapest, Hungary (e-mail: benedek.b.szakacs@gmail.com).

It is important that this task is analogous to stemming or
lemmatizing, but that only covers part of the problem: there are
headwords that have multiple meanings in a language, and a
proper dictionary expansion tool should be able to decide
between them in addition of finding the correct headword form.

These problems increase when we are dealing with non-
conventional texts: either in languages that does not have a wide
array of tools and research in terms of NLP or texts in
significantly different dialects (old texts or texts of highly
specific environments, such the language of online
communities). In these cases, previously used algorithms and
tools will provide results that will be too inaccurate for any
applications.

If there is a sufficiently large corpus of text from the specific
dialect we are focusing on and it is processed by hand, it can be
enough to teach some kind of model on it. This was our
approach in this case: we were trying to develop a software
specifically tailored to expand an already existing dictionary in
a specific format. In this case, we had two main tasks to solve:
looking at a word, we had to find the corresponding form in the
dictionary, or the headword if the form does not exist, and if
there are multiple forms, decide which one is the most likely
based on the context.

II. THE MIKES DICTIONARY PROJECT
This is a project [5] that was created by the Hungarian

Research Center for the Humanities, and the main purpose is to
create a full author’s dictionary [6] based on the work of
Kelemen Mikes, an 18th century Hungarian writer, who had a
large body of work comprised of mostly prose and letters. The
researchers will be using this dictionary for a multitude of
analytical experiments in the field of Digital Humanities [7].

A. The Corpus
Kelemen Mikes was a very influential writer in the 18th

century, and his work is still extensively studied. The language
of Mikes is, however, very different from contemporary
Hungarian: the grammar is much more inconsistent, he uses a
lot of Latin words and expressions. The dialect which he uses
is mostly understandable by a contemporary reader, but only
because of the flexibility of the human mind.

Tamás Mészáros is with the Budapest University of Technology and
Economics, Department of Measurement and Information Systems, Budapest,
Hungary (e-mail: meszaros@mit.bme.hu).

Hybrid Distance-based, CNN and Bi-LSTM
System for Dictionary Expansion

Béla Benedek Szakács, Tamás Mészáros, Budapest University of Technology and Economics,
Department of Measurement and Information Systems

T

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

This also means that most tools developed for processing
contemporary Hungarian are significantly less accurate on these
texts, so we had to create a different solution.

B. Manual Work
We have been involved with other experiments concerning

Mikes’s texts before, and it has been fully digitalized with the
proper notations. The dictionary project, however, is only
partially done.

The current state of the dictionary was created manually by
linguists at Hungarian Research Center for the Humanities. This
was an enormous task, even for one part of the whole Mikes
corpus, called the “Turkish Letters”, a collection of 207 letters
(~106 000 words). They are only a fraction of Mikes’s complete
work, but a large enough body of text to use as a solid basis for
training algorithms.

Because of the heavily time-consuming nature of the manual
work, our task was to significantly increase its speed by
developing an automatic tagger software that would predict the
headwords for the words, and afterwards a researcher would
correct the mistakes manually. With even a moderately high
accuracy this would significantly increase the speed of work on
the corpus (we are talking about years of manual labour). This
human-in-the-loop approach can be compared to other
machine-assisted manual works, such as Alba et. al. 2019 [8] or
Ruis et. al. 2020 [9].

C. Automatic Dictionary Expansion
 The manual work on the dictionary, even with the help of a
simple software that allows fast tagging of words with
dictionary entries and offers help based on purely by the
existing dictionary, is a very time-consuming task, requiring
significant expertise in linguistics. This means that to
meaningfully increase effectiveness, the software should
contain an automatic tagging tool.

The goal is to process the entire unprocessed corpus, and one
of the most important inspirations for developing this software
was to help this work, creating some kind of pre-processing
application that allows linguists to quickly decide whether the
tagging created by the software are correct or not, and make it
accurate enough that it provides sufficient help. We focused on
developing the algorithmic part of this task, the problem of
automatically tagging words with predicted dictionary entries.

This is a very difficult task mostly because of the language
used: even the linguists doing the manual work have difficulties
quickly discerning the headword because of the archaic forms
and the foreign (mostly Latin) words. This means the task of
doing it automatically was expected to be a highly complex
task. We should not expect as high accuracy scores as with
state-of-the-art tools on contemporary texts. The goal was
rather to achieve a sufficient score that provides significant help
as pre-processing.

It is important to mention that there are words with multiple
parts that can be separated in the text but should be recognized
as one word. The recognition and categorization of these words
is a very difficult task that this solution is not able to solve, so
words with multiple parts are not recognized as one word,

1 https://spacy.io/

diminishing the accuracy of the tool. This is a known
shortcoming of this solution.

There are also headwords that are identical in form but carry
different meanings. Since in our pre-existing corpus, the
example sentences are separate for each headword, we treated
these similar headwords as completely different entities. This
also means that tools not using the context of the word will not
be able to identify it correctly.

III. EXISTING SOLUTIONS
While we expected other tools developed mainly for

analysing contemporary texts to underperform, we have
nevertheless inspected an array of other tools commonly used
in Hungarian NLP tasks.

We were not trying to take all tools into consideration, only
a select few. We were trying to use software from widely
different backgrounds: state-of-the-art solutions as well as old
but reliable ones.

We performed experiments with four solutions that can be
divided into three groups: state-based, reliable solutions, out-
of-the-box, performance-focused tools, and state-of-the-art
models.

With this, the four solutions we have chosen are the
EmMorph morphological analyser [10], the SpaCy NLP
pipeline, the BERT [11] (Bidirectional Encoder
Representations for Transformers) and Flair [12] models, using
the Flair framework.

A. EmMorph
This tool was created by Attila Novák [10], and it is a finite

state machine-based tool trained on contemporary Hungarian.
Because of this, it is an extremely accurate and reliable tool, as
it is not a probability-based model.

It uses an “Item and Arrangement” (IA)-style analysis, so the
input word is analysed as a sequence of morphs, where each
form is a specific realization (an allomorph) of a morpheme.
This means that the EmMorph does a very detailed analysis of
each word, providing a lot of morphological information.

Because this solution does not use any form of probability, it
relies on its database for every word analysed. This means that
new word forms will be unrecognizable to it, rendering it a lot
less effective in our case: the text from Mikes contains a lot of
word forms not used in contemporary Hungarian.

B. SpaCy
SpaCy1 is an industrial-strength, out-of-the-box solution in

Python for NLP problems. It is designed for production
environments, not for experimentation, although it is open
source, and has a fair number of contributors, as well as a very
flexible architecture that allows easy integration for custom
components.

The underlying technology is mostly built on convolutional
neural networks, but it uses embeddings and other pre-
computing strategies. They do not have a definitive paper that
summarizes their methods, instead they have a summary of the
technology on their webpage.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

This also means that most tools developed for processing
contemporary Hungarian are significantly less accurate on these
texts, so we had to create a different solution.

B. Manual Work
We have been involved with other experiments concerning

Mikes’s texts before, and it has been fully digitalized with the
proper notations. The dictionary project, however, is only
partially done.

The current state of the dictionary was created manually by
linguists at Hungarian Research Center for the Humanities. This
was an enormous task, even for one part of the whole Mikes
corpus, called the “Turkish Letters”, a collection of 207 letters
(~106 000 words). They are only a fraction of Mikes’s complete
work, but a large enough body of text to use as a solid basis for
training algorithms.

Because of the heavily time-consuming nature of the manual
work, our task was to significantly increase its speed by
developing an automatic tagger software that would predict the
headwords for the words, and afterwards a researcher would
correct the mistakes manually. With even a moderately high
accuracy this would significantly increase the speed of work on
the corpus (we are talking about years of manual labour). This
human-in-the-loop approach can be compared to other
machine-assisted manual works, such as Alba et. al. 2019 [8] or
Ruis et. al. 2020 [9].

C. Automatic Dictionary Expansion
 The manual work on the dictionary, even with the help of a
simple software that allows fast tagging of words with
dictionary entries and offers help based on purely by the
existing dictionary, is a very time-consuming task, requiring
significant expertise in linguistics. This means that to
meaningfully increase effectiveness, the software should
contain an automatic tagging tool.

The goal is to process the entire unprocessed corpus, and one
of the most important inspirations for developing this software
was to help this work, creating some kind of pre-processing
application that allows linguists to quickly decide whether the
tagging created by the software are correct or not, and make it
accurate enough that it provides sufficient help. We focused on
developing the algorithmic part of this task, the problem of
automatically tagging words with predicted dictionary entries.

This is a very difficult task mostly because of the language
used: even the linguists doing the manual work have difficulties
quickly discerning the headword because of the archaic forms
and the foreign (mostly Latin) words. This means the task of
doing it automatically was expected to be a highly complex
task. We should not expect as high accuracy scores as with
state-of-the-art tools on contemporary texts. The goal was
rather to achieve a sufficient score that provides significant help
as pre-processing.

It is important to mention that there are words with multiple
parts that can be separated in the text but should be recognized
as one word. The recognition and categorization of these words
is a very difficult task that this solution is not able to solve, so
words with multiple parts are not recognized as one word,

1 https://spacy.io/

diminishing the accuracy of the tool. This is a known
shortcoming of this solution.

There are also headwords that are identical in form but carry
different meanings. Since in our pre-existing corpus, the
example sentences are separate for each headword, we treated
these similar headwords as completely different entities. This
also means that tools not using the context of the word will not
be able to identify it correctly.

III. EXISTING SOLUTIONS
While we expected other tools developed mainly for

analysing contemporary texts to underperform, we have
nevertheless inspected an array of other tools commonly used
in Hungarian NLP tasks.

We were not trying to take all tools into consideration, only
a select few. We were trying to use software from widely
different backgrounds: state-of-the-art solutions as well as old
but reliable ones.

We performed experiments with four solutions that can be
divided into three groups: state-based, reliable solutions, out-
of-the-box, performance-focused tools, and state-of-the-art
models.

With this, the four solutions we have chosen are the
EmMorph morphological analyser [10], the SpaCy NLP
pipeline, the BERT [11] (Bidirectional Encoder
Representations for Transformers) and Flair [12] models, using
the Flair framework.

A. EmMorph
This tool was created by Attila Novák [10], and it is a finite

state machine-based tool trained on contemporary Hungarian.
Because of this, it is an extremely accurate and reliable tool, as
it is not a probability-based model.

It uses an “Item and Arrangement” (IA)-style analysis, so the
input word is analysed as a sequence of morphs, where each
form is a specific realization (an allomorph) of a morpheme.
This means that the EmMorph does a very detailed analysis of
each word, providing a lot of morphological information.

Because this solution does not use any form of probability, it
relies on its database for every word analysed. This means that
new word forms will be unrecognizable to it, rendering it a lot
less effective in our case: the text from Mikes contains a lot of
word forms not used in contemporary Hungarian.

B. SpaCy
SpaCy1 is an industrial-strength, out-of-the-box solution in

Python for NLP problems. It is designed for production
environments, not for experimentation, although it is open
source, and has a fair number of contributors, as well as a very
flexible architecture that allows easy integration for custom
components.

The underlying technology is mostly built on convolutional
neural networks, but it uses embeddings and other pre-
computing strategies. They do not have a definitive paper that
summarizes their methods, instead they have a summary of the
technology on their webpage.

DOI: 10.36244/ICJ.2020.4.2

mailto:benedek.b.szakacs%40gmail.com?subject=
mailto:meszaros%40mit.bme.hu?subject=
https://doi.org/10.36244/ICJ.2020.4.2

Hybrid Distance-based, CNN and Bi-LSTM
System for Dictionary Expansion

INFOCOMMUNICATIONS JOURNAL

DECEMBER 2020 • VOLUME XII • NUMBER 4 7

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Dictionaries like Wordnet can help in a variety of Natural

Language Processing applications by providing additional
morphological data. They can be used in Digital Humanities
research, building knowledge graphs and other
applications. Creating dictionaries from large corpora of
texts written in a natural language is a task that has not been
a primary focus of research, as other tasks have dominated
the field (such as chat-bots), but it can be a very useful tool
in analysing texts. Even in the case of contemporary texts,
categorizing the words according to their dictionary entry
is a complex task, and for less conventional texts (in old or
less researched languages) it is even harder to solve this
problem automatically. Our task was to create a software
that helps in expanding a dictionary containing word forms
and tagging unprocessed text. We used a manually created
corpus for training and testing the model. We created a
combination of Bidirectional Long-Short Term Memory
networks, convolutional networks and a distance-based
solution that outperformed other existing solutions. While
manual post-processing for the tagged text is still needed, it
significantly reduces the amount of it.

Index Terms - machine learning, convolutional neural network,
bidirectional LSTM, Levenshtein-distance, dictionary

I. INTRODUCTION
HE task of creating a dictionary from a corpus is a complex
one that requires a lot of manual labour without a

sufficiently accurate automatic tool, and even with that some
amount of manual post-processing is still needed, as most
solutions do not provide 100% accuracy.

Automatic dictionary expansion has been a task used in
various fields [1] such as biomedical data [2]. Sometimes a
human-in-the-loop approach is applied [3], somewhat similar to
what our research led to.

One-language dictionaries such as Wordnet [4] have been
used extensively in NLP (Natural Language Processing)
research. They can provide information about the text’s
vocabulary, can serve as a basis for knowledge graphs and other
applications.

This paper was submitted on 2020.09.29.
This work was supported by the European Regional Development Fund of

the European Union under the EFOP-3.6.2-16-2017-00013 Project.
Béla Benedek Szakács is with the Budapest University of Technology and

Economics, Budapest, Hungary (e-mail: benedek.b.szakacs@gmail.com).

It is important that this task is analogous to stemming or
lemmatizing, but that only covers part of the problem: there are
headwords that have multiple meanings in a language, and a
proper dictionary expansion tool should be able to decide
between them in addition of finding the correct headword form.

These problems increase when we are dealing with non-
conventional texts: either in languages that does not have a wide
array of tools and research in terms of NLP or texts in
significantly different dialects (old texts or texts of highly
specific environments, such the language of online
communities). In these cases, previously used algorithms and
tools will provide results that will be too inaccurate for any
applications.

If there is a sufficiently large corpus of text from the specific
dialect we are focusing on and it is processed by hand, it can be
enough to teach some kind of model on it. This was our
approach in this case: we were trying to develop a software
specifically tailored to expand an already existing dictionary in
a specific format. In this case, we had two main tasks to solve:
looking at a word, we had to find the corresponding form in the
dictionary, or the headword if the form does not exist, and if
there are multiple forms, decide which one is the most likely
based on the context.

II. THE MIKES DICTIONARY PROJECT
This is a project [5] that was created by the Hungarian

Research Center for the Humanities, and the main purpose is to
create a full author’s dictionary [6] based on the work of
Kelemen Mikes, an 18th century Hungarian writer, who had a
large body of work comprised of mostly prose and letters. The
researchers will be using this dictionary for a multitude of
analytical experiments in the field of Digital Humanities [7].

A. The Corpus
Kelemen Mikes was a very influential writer in the 18th

century, and his work is still extensively studied. The language
of Mikes is, however, very different from contemporary
Hungarian: the grammar is much more inconsistent, he uses a
lot of Latin words and expressions. The dialect which he uses
is mostly understandable by a contemporary reader, but only
because of the flexibility of the human mind.

Tamás Mészáros is with the Budapest University of Technology and
Economics, Department of Measurement and Information Systems, Budapest,
Hungary (e-mail: meszaros@mit.bme.hu).

Hybrid Distance-based, CNN and Bi-LSTM
System for Dictionary Expansion

Béla Benedek Szakács, Tamás Mészáros, Budapest University of Technology and Economics,
Department of Measurement and Information Systems

T

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

This also means that most tools developed for processing
contemporary Hungarian are significantly less accurate on these
texts, so we had to create a different solution.

B. Manual Work
We have been involved with other experiments concerning

Mikes’s texts before, and it has been fully digitalized with the
proper notations. The dictionary project, however, is only
partially done.

The current state of the dictionary was created manually by
linguists at Hungarian Research Center for the Humanities. This
was an enormous task, even for one part of the whole Mikes
corpus, called the “Turkish Letters”, a collection of 207 letters
(~106 000 words). They are only a fraction of Mikes’s complete
work, but a large enough body of text to use as a solid basis for
training algorithms.

Because of the heavily time-consuming nature of the manual
work, our task was to significantly increase its speed by
developing an automatic tagger software that would predict the
headwords for the words, and afterwards a researcher would
correct the mistakes manually. With even a moderately high
accuracy this would significantly increase the speed of work on
the corpus (we are talking about years of manual labour). This
human-in-the-loop approach can be compared to other
machine-assisted manual works, such as Alba et. al. 2019 [8] or
Ruis et. al. 2020 [9].

C. Automatic Dictionary Expansion
 The manual work on the dictionary, even with the help of a
simple software that allows fast tagging of words with
dictionary entries and offers help based on purely by the
existing dictionary, is a very time-consuming task, requiring
significant expertise in linguistics. This means that to
meaningfully increase effectiveness, the software should
contain an automatic tagging tool.

The goal is to process the entire unprocessed corpus, and one
of the most important inspirations for developing this software
was to help this work, creating some kind of pre-processing
application that allows linguists to quickly decide whether the
tagging created by the software are correct or not, and make it
accurate enough that it provides sufficient help. We focused on
developing the algorithmic part of this task, the problem of
automatically tagging words with predicted dictionary entries.

This is a very difficult task mostly because of the language
used: even the linguists doing the manual work have difficulties
quickly discerning the headword because of the archaic forms
and the foreign (mostly Latin) words. This means the task of
doing it automatically was expected to be a highly complex
task. We should not expect as high accuracy scores as with
state-of-the-art tools on contemporary texts. The goal was
rather to achieve a sufficient score that provides significant help
as pre-processing.

It is important to mention that there are words with multiple
parts that can be separated in the text but should be recognized
as one word. The recognition and categorization of these words
is a very difficult task that this solution is not able to solve, so
words with multiple parts are not recognized as one word,

1 https://spacy.io/

diminishing the accuracy of the tool. This is a known
shortcoming of this solution.

There are also headwords that are identical in form but carry
different meanings. Since in our pre-existing corpus, the
example sentences are separate for each headword, we treated
these similar headwords as completely different entities. This
also means that tools not using the context of the word will not
be able to identify it correctly.

III. EXISTING SOLUTIONS
While we expected other tools developed mainly for

analysing contemporary texts to underperform, we have
nevertheless inspected an array of other tools commonly used
in Hungarian NLP tasks.

We were not trying to take all tools into consideration, only
a select few. We were trying to use software from widely
different backgrounds: state-of-the-art solutions as well as old
but reliable ones.

We performed experiments with four solutions that can be
divided into three groups: state-based, reliable solutions, out-
of-the-box, performance-focused tools, and state-of-the-art
models.

With this, the four solutions we have chosen are the
EmMorph morphological analyser [10], the SpaCy NLP
pipeline, the BERT [11] (Bidirectional Encoder
Representations for Transformers) and Flair [12] models, using
the Flair framework.

A. EmMorph
This tool was created by Attila Novák [10], and it is a finite

state machine-based tool trained on contemporary Hungarian.
Because of this, it is an extremely accurate and reliable tool, as
it is not a probability-based model.

It uses an “Item and Arrangement” (IA)-style analysis, so the
input word is analysed as a sequence of morphs, where each
form is a specific realization (an allomorph) of a morpheme.
This means that the EmMorph does a very detailed analysis of
each word, providing a lot of morphological information.

Because this solution does not use any form of probability, it
relies on its database for every word analysed. This means that
new word forms will be unrecognizable to it, rendering it a lot
less effective in our case: the text from Mikes contains a lot of
word forms not used in contemporary Hungarian.

B. SpaCy
SpaCy1 is an industrial-strength, out-of-the-box solution in

Python for NLP problems. It is designed for production
environments, not for experimentation, although it is open
source, and has a fair number of contributors, as well as a very
flexible architecture that allows easy integration for custom
components.

The underlying technology is mostly built on convolutional
neural networks, but it uses embeddings and other pre-
computing strategies. They do not have a definitive paper that
summarizes their methods, instead they have a summary of the
technology on their webpage.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

This also means that most tools developed for processing
contemporary Hungarian are significantly less accurate on these
texts, so we had to create a different solution.

B. Manual Work
We have been involved with other experiments concerning

Mikes’s texts before, and it has been fully digitalized with the
proper notations. The dictionary project, however, is only
partially done.

The current state of the dictionary was created manually by
linguists at Hungarian Research Center for the Humanities. This
was an enormous task, even for one part of the whole Mikes
corpus, called the “Turkish Letters”, a collection of 207 letters
(~106 000 words). They are only a fraction of Mikes’s complete
work, but a large enough body of text to use as a solid basis for
training algorithms.

Because of the heavily time-consuming nature of the manual
work, our task was to significantly increase its speed by
developing an automatic tagger software that would predict the
headwords for the words, and afterwards a researcher would
correct the mistakes manually. With even a moderately high
accuracy this would significantly increase the speed of work on
the corpus (we are talking about years of manual labour). This
human-in-the-loop approach can be compared to other
machine-assisted manual works, such as Alba et. al. 2019 [8] or
Ruis et. al. 2020 [9].

C. Automatic Dictionary Expansion
 The manual work on the dictionary, even with the help of a
simple software that allows fast tagging of words with
dictionary entries and offers help based on purely by the
existing dictionary, is a very time-consuming task, requiring
significant expertise in linguistics. This means that to
meaningfully increase effectiveness, the software should
contain an automatic tagging tool.

The goal is to process the entire unprocessed corpus, and one
of the most important inspirations for developing this software
was to help this work, creating some kind of pre-processing
application that allows linguists to quickly decide whether the
tagging created by the software are correct or not, and make it
accurate enough that it provides sufficient help. We focused on
developing the algorithmic part of this task, the problem of
automatically tagging words with predicted dictionary entries.

This is a very difficult task mostly because of the language
used: even the linguists doing the manual work have difficulties
quickly discerning the headword because of the archaic forms
and the foreign (mostly Latin) words. This means the task of
doing it automatically was expected to be a highly complex
task. We should not expect as high accuracy scores as with
state-of-the-art tools on contemporary texts. The goal was
rather to achieve a sufficient score that provides significant help
as pre-processing.

It is important to mention that there are words with multiple
parts that can be separated in the text but should be recognized
as one word. The recognition and categorization of these words
is a very difficult task that this solution is not able to solve, so
words with multiple parts are not recognized as one word,

1 https://spacy.io/

diminishing the accuracy of the tool. This is a known
shortcoming of this solution.

There are also headwords that are identical in form but carry
different meanings. Since in our pre-existing corpus, the
example sentences are separate for each headword, we treated
these similar headwords as completely different entities. This
also means that tools not using the context of the word will not
be able to identify it correctly.

III. EXISTING SOLUTIONS
While we expected other tools developed mainly for

analysing contemporary texts to underperform, we have
nevertheless inspected an array of other tools commonly used
in Hungarian NLP tasks.

We were not trying to take all tools into consideration, only
a select few. We were trying to use software from widely
different backgrounds: state-of-the-art solutions as well as old
but reliable ones.

We performed experiments with four solutions that can be
divided into three groups: state-based, reliable solutions, out-
of-the-box, performance-focused tools, and state-of-the-art
models.

With this, the four solutions we have chosen are the
EmMorph morphological analyser [10], the SpaCy NLP
pipeline, the BERT [11] (Bidirectional Encoder
Representations for Transformers) and Flair [12] models, using
the Flair framework.

A. EmMorph
This tool was created by Attila Novák [10], and it is a finite

state machine-based tool trained on contemporary Hungarian.
Because of this, it is an extremely accurate and reliable tool, as
it is not a probability-based model.

It uses an “Item and Arrangement” (IA)-style analysis, so the
input word is analysed as a sequence of morphs, where each
form is a specific realization (an allomorph) of a morpheme.
This means that the EmMorph does a very detailed analysis of
each word, providing a lot of morphological information.

Because this solution does not use any form of probability, it
relies on its database for every word analysed. This means that
new word forms will be unrecognizable to it, rendering it a lot
less effective in our case: the text from Mikes contains a lot of
word forms not used in contemporary Hungarian.

B. SpaCy
SpaCy1 is an industrial-strength, out-of-the-box solution in

Python for NLP problems. It is designed for production
environments, not for experimentation, although it is open
source, and has a fair number of contributors, as well as a very
flexible architecture that allows easy integration for custom
components.

The underlying technology is mostly built on convolutional
neural networks, but it uses embeddings and other pre-
computing strategies. They do not have a definitive paper that
summarizes their methods, instead they have a summary of the
technology on their webpage.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

This also means that most tools developed for processing
contemporary Hungarian are significantly less accurate on these
texts, so we had to create a different solution.

B. Manual Work
We have been involved with other experiments concerning

Mikes’s texts before, and it has been fully digitalized with the
proper notations. The dictionary project, however, is only
partially done.

The current state of the dictionary was created manually by
linguists at Hungarian Research Center for the Humanities. This
was an enormous task, even for one part of the whole Mikes
corpus, called the “Turkish Letters”, a collection of 207 letters
(~106 000 words). They are only a fraction of Mikes’s complete
work, but a large enough body of text to use as a solid basis for
training algorithms.

Because of the heavily time-consuming nature of the manual
work, our task was to significantly increase its speed by
developing an automatic tagger software that would predict the
headwords for the words, and afterwards a researcher would
correct the mistakes manually. With even a moderately high
accuracy this would significantly increase the speed of work on
the corpus (we are talking about years of manual labour). This
human-in-the-loop approach can be compared to other
machine-assisted manual works, such as Alba et. al. 2019 [8] or
Ruis et. al. 2020 [9].

C. Automatic Dictionary Expansion
 The manual work on the dictionary, even with the help of a
simple software that allows fast tagging of words with
dictionary entries and offers help based on purely by the
existing dictionary, is a very time-consuming task, requiring
significant expertise in linguistics. This means that to
meaningfully increase effectiveness, the software should
contain an automatic tagging tool.

The goal is to process the entire unprocessed corpus, and one
of the most important inspirations for developing this software
was to help this work, creating some kind of pre-processing
application that allows linguists to quickly decide whether the
tagging created by the software are correct or not, and make it
accurate enough that it provides sufficient help. We focused on
developing the algorithmic part of this task, the problem of
automatically tagging words with predicted dictionary entries.

This is a very difficult task mostly because of the language
used: even the linguists doing the manual work have difficulties
quickly discerning the headword because of the archaic forms
and the foreign (mostly Latin) words. This means the task of
doing it automatically was expected to be a highly complex
task. We should not expect as high accuracy scores as with
state-of-the-art tools on contemporary texts. The goal was
rather to achieve a sufficient score that provides significant help
as pre-processing.

It is important to mention that there are words with multiple
parts that can be separated in the text but should be recognized
as one word. The recognition and categorization of these words
is a very difficult task that this solution is not able to solve, so
words with multiple parts are not recognized as one word,

1 https://spacy.io/

diminishing the accuracy of the tool. This is a known
shortcoming of this solution.

There are also headwords that are identical in form but carry
different meanings. Since in our pre-existing corpus, the
example sentences are separate for each headword, we treated
these similar headwords as completely different entities. This
also means that tools not using the context of the word will not
be able to identify it correctly.

III. EXISTING SOLUTIONS
While we expected other tools developed mainly for

analysing contemporary texts to underperform, we have
nevertheless inspected an array of other tools commonly used
in Hungarian NLP tasks.

We were not trying to take all tools into consideration, only
a select few. We were trying to use software from widely
different backgrounds: state-of-the-art solutions as well as old
but reliable ones.

We performed experiments with four solutions that can be
divided into three groups: state-based, reliable solutions, out-
of-the-box, performance-focused tools, and state-of-the-art
models.

With this, the four solutions we have chosen are the
EmMorph morphological analyser [10], the SpaCy NLP
pipeline, the BERT [11] (Bidirectional Encoder
Representations for Transformers) and Flair [12] models, using
the Flair framework.

A. EmMorph
This tool was created by Attila Novák [10], and it is a finite

state machine-based tool trained on contemporary Hungarian.
Because of this, it is an extremely accurate and reliable tool, as
it is not a probability-based model.

It uses an “Item and Arrangement” (IA)-style analysis, so the
input word is analysed as a sequence of morphs, where each
form is a specific realization (an allomorph) of a morpheme.
This means that the EmMorph does a very detailed analysis of
each word, providing a lot of morphological information.

Because this solution does not use any form of probability, it
relies on its database for every word analysed. This means that
new word forms will be unrecognizable to it, rendering it a lot
less effective in our case: the text from Mikes contains a lot of
word forms not used in contemporary Hungarian.

B. SpaCy
SpaCy1 is an industrial-strength, out-of-the-box solution in

Python for NLP problems. It is designed for production
environments, not for experimentation, although it is open
source, and has a fair number of contributors, as well as a very
flexible architecture that allows easy integration for custom
components.

The underlying technology is mostly built on convolutional
neural networks, but it uses embeddings and other pre-
computing strategies. They do not have a definitive paper that
summarizes their methods, instead they have a summary of the
technology on their webpage. > REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

This also means that most tools developed for processing
contemporary Hungarian are significantly less accurate on these
texts, so we had to create a different solution.

B. Manual Work
We have been involved with other experiments concerning

Mikes’s texts before, and it has been fully digitalized with the
proper notations. The dictionary project, however, is only
partially done.

The current state of the dictionary was created manually by
linguists at Hungarian Research Center for the Humanities. This
was an enormous task, even for one part of the whole Mikes
corpus, called the “Turkish Letters”, a collection of 207 letters
(~106 000 words). They are only a fraction of Mikes’s complete
work, but a large enough body of text to use as a solid basis for
training algorithms.

Because of the heavily time-consuming nature of the manual
work, our task was to significantly increase its speed by
developing an automatic tagger software that would predict the
headwords for the words, and afterwards a researcher would
correct the mistakes manually. With even a moderately high
accuracy this would significantly increase the speed of work on
the corpus (we are talking about years of manual labour). This
human-in-the-loop approach can be compared to other
machine-assisted manual works, such as Alba et. al. 2019 [8] or
Ruis et. al. 2020 [9].

C. Automatic Dictionary Expansion
 The manual work on the dictionary, even with the help of a
simple software that allows fast tagging of words with
dictionary entries and offers help based on purely by the
existing dictionary, is a very time-consuming task, requiring
significant expertise in linguistics. This means that to
meaningfully increase effectiveness, the software should
contain an automatic tagging tool.

The goal is to process the entire unprocessed corpus, and one
of the most important inspirations for developing this software
was to help this work, creating some kind of pre-processing
application that allows linguists to quickly decide whether the
tagging created by the software are correct or not, and make it
accurate enough that it provides sufficient help. We focused on
developing the algorithmic part of this task, the problem of
automatically tagging words with predicted dictionary entries.

This is a very difficult task mostly because of the language
used: even the linguists doing the manual work have difficulties
quickly discerning the headword because of the archaic forms
and the foreign (mostly Latin) words. This means the task of
doing it automatically was expected to be a highly complex
task. We should not expect as high accuracy scores as with
state-of-the-art tools on contemporary texts. The goal was
rather to achieve a sufficient score that provides significant help
as pre-processing.

It is important to mention that there are words with multiple
parts that can be separated in the text but should be recognized
as one word. The recognition and categorization of these words
is a very difficult task that this solution is not able to solve, so
words with multiple parts are not recognized as one word,

1 https://spacy.io/

diminishing the accuracy of the tool. This is a known
shortcoming of this solution.

There are also headwords that are identical in form but carry
different meanings. Since in our pre-existing corpus, the
example sentences are separate for each headword, we treated
these similar headwords as completely different entities. This
also means that tools not using the context of the word will not
be able to identify it correctly.

III. EXISTING SOLUTIONS
While we expected other tools developed mainly for

analysing contemporary texts to underperform, we have
nevertheless inspected an array of other tools commonly used
in Hungarian NLP tasks.

We were not trying to take all tools into consideration, only
a select few. We were trying to use software from widely
different backgrounds: state-of-the-art solutions as well as old
but reliable ones.

We performed experiments with four solutions that can be
divided into three groups: state-based, reliable solutions, out-
of-the-box, performance-focused tools, and state-of-the-art
models.

With this, the four solutions we have chosen are the
EmMorph morphological analyser [10], the SpaCy NLP
pipeline, the BERT [11] (Bidirectional Encoder
Representations for Transformers) and Flair [12] models, using
the Flair framework.

A. EmMorph
This tool was created by Attila Novák [10], and it is a finite

state machine-based tool trained on contemporary Hungarian.
Because of this, it is an extremely accurate and reliable tool, as
it is not a probability-based model.

It uses an “Item and Arrangement” (IA)-style analysis, so the
input word is analysed as a sequence of morphs, where each
form is a specific realization (an allomorph) of a morpheme.
This means that the EmMorph does a very detailed analysis of
each word, providing a lot of morphological information.

Because this solution does not use any form of probability, it
relies on its database for every word analysed. This means that
new word forms will be unrecognizable to it, rendering it a lot
less effective in our case: the text from Mikes contains a lot of
word forms not used in contemporary Hungarian.

B. SpaCy
SpaCy1 is an industrial-strength, out-of-the-box solution in

Python for NLP problems. It is designed for production
environments, not for experimentation, although it is open
source, and has a fair number of contributors, as well as a very
flexible architecture that allows easy integration for custom
components.

The underlying technology is mostly built on convolutional
neural networks, but it uses embeddings and other pre-
computing strategies. They do not have a definitive paper that
summarizes their methods, instead they have a summary of the
technology on their webpage.

Hybrid Distance-based, CNN and Bi-LSTM
System for Dictionary Expansion

DECEMBER 2020 • VOLUME XII • NUMBER 48

INFOCOMMUNICATIONS JOURNAL

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

SpaCy provides a variety of functions for NLP tasks: it has a
lemmatizer, a PoS (Parts of Speech) tagger, a dependency
parser that builds dependency trees between tokens in a
sentence, an entity recognizer for NER (Named Entity
Recongition), a built-in categorizer for text classification tasks,
a pattern matcher, and can incorporate custom components.
This allows for a variety of configurations based on the task at
hand.

SpaCy also has a dictionary-like system that stores lexemes
and data about the document’s vocabulary, and it is capable of
full morphological analysis, including noun cases, verb tenses
and others.

C. BERT
BERT [11] is an acronym for Bidirectional Encoder

Representation for Transformers. It was developed by Google,
mostly for NLP tasks. It is basically a multi-layer bidirectional
Transformer, trained on a very large corpus, resulting in a
network that can be easily adjusted to any NLP task using just
an extra layer and some fine-tuning. It relies heavily on the
concept of transfer-learning, the concept of using a pre-trained
model with little training on a specific dataset for a specific task.
It is mostly utilized in tasks where training data is scarce or
absent. For NLP, this means that BERT was trained extensively
on a huge multilingual corpus unsupervised, and so it learns a
lot of the characteristics of the language, making fine-tuning a
lot faster and less data-extensive.

The main improvement from the precursor model is that they
use bidirectional unsupervised learning. This allows it to be
successful at a large variety of uses, including both token level
and sentence level tasks. This bidirectional training relies on a
method called MLM (masked LM) as to not run into the
problem of the words “seeing themselves” (the word that needs
to be predicted is present for the opposite direction, making the
task trivial), by randomly masking words in both directions and
trying to predict them.

D. Flair
The name Flair [12] is used for multiple things: it is both an

NLP library (including a data library and pre-trained models for
a variety of tasks), built on PyTorch, and an embedding model.

The Flair framework is designed to make using big, complex
models very simple. It is a wrapper over PyTorch, one of the
most widely used machine learning libraries for Python, and it
makes creating for example, a BERT model for text
classification extremely simple. It also has a variety of pre-
trained networks for the most common tasks, such PoS tagging.

Flair itself is a character-level recurrent network using
contextual string embedding, usually fed into a Bi-LSTM-CRF
(Bidirectional Long-Short Term Memory, Conditional Random
Fields) model. It is currently the best solution for PoS tasks, as
it outperforms every other approach, including the previously
mentioned BERT. However, it was specifically designed for
sequence tagging, not for more complex tasks (although it can
be used in other models designed for different tasks, as it is only
an embedding).

IV. THE MODELS
Both of our main tasks (finding the correct headword for

unknown word forms and discerning the correct headword for

unambiguous word forms) are essentially categorization tasks.
We have focused on the first one, as doing it correctly
technically includes the second one as well. This means that the
output of the system should be one of the existing dictionary
entries, whereas the input should be the word and some of its
context.

Because of the strict form of example sentences (31 words,
the middle one is the target for tagging), we decided for a fixed-
length input, not a sentence-based one. This still allows for the
procession of sentences, with the use of padding tokens, and the
length of the input means that most sentences will be inside its
bounds. While this special format made the system theoretically
suboptimal, back-conversion of the dataset was practically
impossible, but this format still allowed for keeping most of the
word’s context.

For the models themselves we focused on two features of the
input: the words in the context (31 words) and the middle
word’s characters (maximum 40, 44 different possible
characters). Because in the Hungarian language most words are
similar to their headwords, and a character-level model is a
great solution in looking for it.

The architectures we have chosen were the one-dimensional
convolutional neural networks [13] and the Bi-LSTM [14].
Both of these have been extensively used in NLP tasks. In our
setup, we have used two models, trained and evaluated
separately: one using both character-level and word-level
convolutional networks, and a CNN-Bi-LSTM solution using
convolutional network for the character-level input but Bi-
LSTM for the word-level input.

We have also experimented with a pure Bi-LSTM solution,
but it underperformed compared to the CNN-Bi-LSTM solution
and was deemed too similar to the CNN-Bi-LSTM solution to
be used alongside it (more information about it can be found in
the Training and Evaluation chapter).

A. Embeddings
In both cases, the input words are embedded in a simple 256-

dimensional embedding, and the characters are one-hot
encoded.

For most NLP applications, pre-trained embeddings are
usually a staple. The problems with this approach in this case
were that the unique language of Mikes’ writing made it
impossible to utilize any pre-trained embedding. We could have
used embeddings taught on the data itself, but the size of the
corpus was not sufficient for this task.

B. Pure Convolutional Model
The model is a straightforward convolutional model, with

only one layer of 1D convolution (Fig. 1). Because the size of
the training set was not enough for large, complicated language
models, we opted for a smaller, simple model.

For optimizing the hyperparameters, we assumed that the
parameters themselves can be independently optimized. This
approach was necessary due to the large number of possible
combinations. We selected dropout (from 0.0 to 0.5 with 0.1
increments, dense, convolutional and bi-LSTM layers
optimized independently), batch size (values: 64, 128, 256,
512), the type of optimizer (Adam and Nadam), the type of

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

SpaCy provides a variety of functions for NLP tasks: it has a
lemmatizer, a PoS (Parts of Speech) tagger, a dependency
parser that builds dependency trees between tokens in a
sentence, an entity recognizer for NER (Named Entity
Recongition), a built-in categorizer for text classification tasks,
a pattern matcher, and can incorporate custom components.
This allows for a variety of configurations based on the task at
hand.

SpaCy also has a dictionary-like system that stores lexemes
and data about the document’s vocabulary, and it is capable of
full morphological analysis, including noun cases, verb tenses
and others.

C. BERT
BERT [11] is an acronym for Bidirectional Encoder

Representation for Transformers. It was developed by Google,
mostly for NLP tasks. It is basically a multi-layer bidirectional
Transformer, trained on a very large corpus, resulting in a
network that can be easily adjusted to any NLP task using just
an extra layer and some fine-tuning. It relies heavily on the
concept of transfer-learning, the concept of using a pre-trained
model with little training on a specific dataset for a specific task.
It is mostly utilized in tasks where training data is scarce or
absent. For NLP, this means that BERT was trained extensively
on a huge multilingual corpus unsupervised, and so it learns a
lot of the characteristics of the language, making fine-tuning a
lot faster and less data-extensive.

The main improvement from the precursor model is that they
use bidirectional unsupervised learning. This allows it to be
successful at a large variety of uses, including both token level
and sentence level tasks. This bidirectional training relies on a
method called MLM (masked LM) as to not run into the
problem of the words “seeing themselves” (the word that needs
to be predicted is present for the opposite direction, making the
task trivial), by randomly masking words in both directions and
trying to predict them.

D. Flair
The name Flair [12] is used for multiple things: it is both an

NLP library (including a data library and pre-trained models for
a variety of tasks), built on PyTorch, and an embedding model.

The Flair framework is designed to make using big, complex
models very simple. It is a wrapper over PyTorch, one of the
most widely used machine learning libraries for Python, and it
makes creating for example, a BERT model for text
classification extremely simple. It also has a variety of pre-
trained networks for the most common tasks, such PoS tagging.

Flair itself is a character-level recurrent network using
contextual string embedding, usually fed into a Bi-LSTM-CRF
(Bidirectional Long-Short Term Memory, Conditional Random
Fields) model. It is currently the best solution for PoS tasks, as
it outperforms every other approach, including the previously
mentioned BERT. However, it was specifically designed for
sequence tagging, not for more complex tasks (although it can
be used in other models designed for different tasks, as it is only
an embedding).

IV. THE MODELS
Both of our main tasks (finding the correct headword for

unknown word forms and discerning the correct headword for

unambiguous word forms) are essentially categorization tasks.
We have focused on the first one, as doing it correctly
technically includes the second one as well. This means that the
output of the system should be one of the existing dictionary
entries, whereas the input should be the word and some of its
context.

Because of the strict form of example sentences (31 words,
the middle one is the target for tagging), we decided for a fixed-
length input, not a sentence-based one. This still allows for the
procession of sentences, with the use of padding tokens, and the
length of the input means that most sentences will be inside its
bounds. While this special format made the system theoretically
suboptimal, back-conversion of the dataset was practically
impossible, but this format still allowed for keeping most of the
word’s context.

For the models themselves we focused on two features of the
input: the words in the context (31 words) and the middle
word’s characters (maximum 40, 44 different possible
characters). Because in the Hungarian language most words are
similar to their headwords, and a character-level model is a
great solution in looking for it.

The architectures we have chosen were the one-dimensional
convolutional neural networks [13] and the Bi-LSTM [14].
Both of these have been extensively used in NLP tasks. In our
setup, we have used two models, trained and evaluated
separately: one using both character-level and word-level
convolutional networks, and a CNN-Bi-LSTM solution using
convolutional network for the character-level input but Bi-
LSTM for the word-level input.

We have also experimented with a pure Bi-LSTM solution,
but it underperformed compared to the CNN-Bi-LSTM solution
and was deemed too similar to the CNN-Bi-LSTM solution to
be used alongside it (more information about it can be found in
the Training and Evaluation chapter).

A. Embeddings
In both cases, the input words are embedded in a simple 256-

dimensional embedding, and the characters are one-hot
encoded.

For most NLP applications, pre-trained embeddings are
usually a staple. The problems with this approach in this case
were that the unique language of Mikes’ writing made it
impossible to utilize any pre-trained embedding. We could have
used embeddings taught on the data itself, but the size of the
corpus was not sufficient for this task.

B. Pure Convolutional Model
The model is a straightforward convolutional model, with

only one layer of 1D convolution (Fig. 1). Because the size of
the training set was not enough for large, complicated language
models, we opted for a smaller, simple model.

For optimizing the hyperparameters, we assumed that the
parameters themselves can be independently optimized. This
approach was necessary due to the large number of possible
combinations. We selected dropout (from 0.0 to 0.5 with 0.1
increments, dense, convolutional and bi-LSTM layers
optimized independently), batch size (values: 64, 128, 256,
512), the type of optimizer (Adam and Nadam), the type of

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

SpaCy provides a variety of functions for NLP tasks: it has a
lemmatizer, a PoS (Parts of Speech) tagger, a dependency
parser that builds dependency trees between tokens in a
sentence, an entity recognizer for NER (Named Entity
Recongition), a built-in categorizer for text classification tasks,
a pattern matcher, and can incorporate custom components.
This allows for a variety of configurations based on the task at
hand.

SpaCy also has a dictionary-like system that stores lexemes
and data about the document’s vocabulary, and it is capable of
full morphological analysis, including noun cases, verb tenses
and others.

C. BERT
BERT [11] is an acronym for Bidirectional Encoder

Representation for Transformers. It was developed by Google,
mostly for NLP tasks. It is basically a multi-layer bidirectional
Transformer, trained on a very large corpus, resulting in a
network that can be easily adjusted to any NLP task using just
an extra layer and some fine-tuning. It relies heavily on the
concept of transfer-learning, the concept of using a pre-trained
model with little training on a specific dataset for a specific task.
It is mostly utilized in tasks where training data is scarce or
absent. For NLP, this means that BERT was trained extensively
on a huge multilingual corpus unsupervised, and so it learns a
lot of the characteristics of the language, making fine-tuning a
lot faster and less data-extensive.

The main improvement from the precursor model is that they
use bidirectional unsupervised learning. This allows it to be
successful at a large variety of uses, including both token level
and sentence level tasks. This bidirectional training relies on a
method called MLM (masked LM) as to not run into the
problem of the words “seeing themselves” (the word that needs
to be predicted is present for the opposite direction, making the
task trivial), by randomly masking words in both directions and
trying to predict them.

D. Flair
The name Flair [12] is used for multiple things: it is both an

NLP library (including a data library and pre-trained models for
a variety of tasks), built on PyTorch, and an embedding model.

The Flair framework is designed to make using big, complex
models very simple. It is a wrapper over PyTorch, one of the
most widely used machine learning libraries for Python, and it
makes creating for example, a BERT model for text
classification extremely simple. It also has a variety of pre-
trained networks for the most common tasks, such PoS tagging.

Flair itself is a character-level recurrent network using
contextual string embedding, usually fed into a Bi-LSTM-CRF
(Bidirectional Long-Short Term Memory, Conditional Random
Fields) model. It is currently the best solution for PoS tasks, as
it outperforms every other approach, including the previously
mentioned BERT. However, it was specifically designed for
sequence tagging, not for more complex tasks (although it can
be used in other models designed for different tasks, as it is only
an embedding).

IV. THE MODELS
Both of our main tasks (finding the correct headword for

unknown word forms and discerning the correct headword for

unambiguous word forms) are essentially categorization tasks.
We have focused on the first one, as doing it correctly
technically includes the second one as well. This means that the
output of the system should be one of the existing dictionary
entries, whereas the input should be the word and some of its
context.

Because of the strict form of example sentences (31 words,
the middle one is the target for tagging), we decided for a fixed-
length input, not a sentence-based one. This still allows for the
procession of sentences, with the use of padding tokens, and the
length of the input means that most sentences will be inside its
bounds. While this special format made the system theoretically
suboptimal, back-conversion of the dataset was practically
impossible, but this format still allowed for keeping most of the
word’s context.

For the models themselves we focused on two features of the
input: the words in the context (31 words) and the middle
word’s characters (maximum 40, 44 different possible
characters). Because in the Hungarian language most words are
similar to their headwords, and a character-level model is a
great solution in looking for it.

The architectures we have chosen were the one-dimensional
convolutional neural networks [13] and the Bi-LSTM [14].
Both of these have been extensively used in NLP tasks. In our
setup, we have used two models, trained and evaluated
separately: one using both character-level and word-level
convolutional networks, and a CNN-Bi-LSTM solution using
convolutional network for the character-level input but Bi-
LSTM for the word-level input.

We have also experimented with a pure Bi-LSTM solution,
but it underperformed compared to the CNN-Bi-LSTM solution
and was deemed too similar to the CNN-Bi-LSTM solution to
be used alongside it (more information about it can be found in
the Training and Evaluation chapter).

A. Embeddings
In both cases, the input words are embedded in a simple 256-

dimensional embedding, and the characters are one-hot
encoded.

For most NLP applications, pre-trained embeddings are
usually a staple. The problems with this approach in this case
were that the unique language of Mikes’ writing made it
impossible to utilize any pre-trained embedding. We could have
used embeddings taught on the data itself, but the size of the
corpus was not sufficient for this task.

B. Pure Convolutional Model
The model is a straightforward convolutional model, with

only one layer of 1D convolution (Fig. 1). Because the size of
the training set was not enough for large, complicated language
models, we opted for a smaller, simple model.

For optimizing the hyperparameters, we assumed that the
parameters themselves can be independently optimized. This
approach was necessary due to the large number of possible
combinations. We selected dropout (from 0.0 to 0.5 with 0.1
increments, dense, convolutional and bi-LSTM layers
optimized independently), batch size (values: 64, 128, 256,
512), the type of optimizer (Adam and Nadam), the type of

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 4

kernel initializer for all layers (values: uniform, normal,
glorot_uniform, glorot_normal, lecun_uniform) and the size of
the embedding layer (values: 64, 128, 256, 512) as optimizable
hyperparameters. The best regularizer was Nadam, and the best
batch size was 64 for both this and the CNN-Bi-LSTM model.

The optimised hyperparameters of the layers are the
following (all other hyperparameters can be found in the
Appendix chapter):

1. Embedding layer: input dimension = 31, output
dimension = 256, embeddings initializer =
”lecun_uniform”, no regularization, no zero masking, no
dropout.

2. Conv1D layers: filters = 29 for conv1d and 30 for
conv1d_1 and conv1d_2 in the CNN-Bi-LSTM model,
kernel size = 3, activation = relu, no dropout.

3. Dense layers: units = 512, 4096, 15829, activation =
“relu”, dropout = 0.3.

The two Conv1D layers are concatenated in a 50-
dimensional layer, and then a series of dense layers are
responsible for increasing the dimension to the size needed for
the output. Because the task is simple categorization, we used a
simple softmax function at the end and sparse categorical
crossentropy as the loss function. The dimension (15829) of the
last layer is equal to the dictionary entries. While this means
that subsequent additions to the dictionary means using a
completely new model every time, the simplicity of the model
means a low number of parameters (88 million), and with that
a relatively fast training compared to the current, much larger
models (more on that in the Training and Evaluation chapter).

Using convolutional layers in text processing is a commonly
used technique ([15], [16]), although mostly used for sentiment
analysis or text classification.

C. CNN-Bi-LSTM Model
The CNN-Bi-LSTM model (depicted on Fig. 2, with an

example input and output) was inspired by another architecture
primarily developed for Named Entity Recognition [17],
although it lacks the case-embedding and uses a simple 256-
dimensional embedding. It is very similar to the previously
described pure convolutional model, the only difference is in
the processing of the embedded words.

We used a 64-dimensional Bi-LSTM layer that was then
flattened into a dense 64-dimensional layer. This meant that
unlike with the pure convolutional model, here the output of the
word-processing part of the model was a lot larger. We
theorized that this, together with the LSTM being generally
more fitted for processing word sequences, will lead to a better
accuracy than the pure convolutional model.

The hyperparameters of the Bi-LSTM layer were the
following (the hyperparameters of the other layers are the same

Fig. 1. The layers of the pure convolutional model.

Fig. 2. The layers of the CNN-Bi-LSTM model and an example input and
output.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 4

kernel initializer for all layers (values: uniform, normal,
glorot_uniform, glorot_normal, lecun_uniform) and the size of
the embedding layer (values: 64, 128, 256, 512) as optimizable
hyperparameters. The best regularizer was Nadam, and the best
batch size was 64 for both this and the CNN-Bi-LSTM model.

The optimised hyperparameters of the layers are the
following (all other hyperparameters can be found in the
Appendix chapter):

1. Embedding layer: input dimension = 31, output
dimension = 256, embeddings initializer =
”lecun_uniform”, no regularization, no zero masking, no
dropout.

2. Conv1D layers: filters = 29 for conv1d and 30 for
conv1d_1 and conv1d_2 in the CNN-Bi-LSTM model,
kernel size = 3, activation = relu, no dropout.

3. Dense layers: units = 512, 4096, 15829, activation =
“relu”, dropout = 0.3.

The two Conv1D layers are concatenated in a 50-
dimensional layer, and then a series of dense layers are
responsible for increasing the dimension to the size needed for
the output. Because the task is simple categorization, we used a
simple softmax function at the end and sparse categorical
crossentropy as the loss function. The dimension (15829) of the
last layer is equal to the dictionary entries. While this means
that subsequent additions to the dictionary means using a
completely new model every time, the simplicity of the model
means a low number of parameters (88 million), and with that
a relatively fast training compared to the current, much larger
models (more on that in the Training and Evaluation chapter).

Using convolutional layers in text processing is a commonly
used technique ([15], [16]), although mostly used for sentiment
analysis or text classification.

C. CNN-Bi-LSTM Model
The CNN-Bi-LSTM model (depicted on Fig. 2, with an

example input and output) was inspired by another architecture
primarily developed for Named Entity Recognition [17],
although it lacks the case-embedding and uses a simple 256-
dimensional embedding. It is very similar to the previously
described pure convolutional model, the only difference is in
the processing of the embedded words.

We used a 64-dimensional Bi-LSTM layer that was then
flattened into a dense 64-dimensional layer. This meant that
unlike with the pure convolutional model, here the output of the
word-processing part of the model was a lot larger. We
theorized that this, together with the LSTM being generally
more fitted for processing word sequences, will lead to a better
accuracy than the pure convolutional model.

The hyperparameters of the Bi-LSTM layer were the
following (the hyperparameters of the other layers are the same

Fig. 1. The layers of the pure convolutional model.

Fig. 2. The layers of the CNN-Bi-LSTM model and an example input and
output.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 4

kernel initializer for all layers (values: uniform, normal,
glorot_uniform, glorot_normal, lecun_uniform) and the size of
the embedding layer (values: 64, 128, 256, 512) as optimizable
hyperparameters. The best regularizer was Nadam, and the best
batch size was 64 for both this and the CNN-Bi-LSTM model.

The optimised hyperparameters of the layers are the
following (all other hyperparameters can be found in the
Appendix chapter):

1. Embedding layer: input dimension = 31, output
dimension = 256, embeddings initializer =
”lecun_uniform”, no regularization, no zero masking, no
dropout.

2. Conv1D layers: filters = 29 for conv1d and 30 for
conv1d_1 and conv1d_2 in the CNN-Bi-LSTM model,
kernel size = 3, activation = relu, no dropout.

3. Dense layers: units = 512, 4096, 15829, activation =
“relu”, dropout = 0.3.

The two Conv1D layers are concatenated in a 50-
dimensional layer, and then a series of dense layers are
responsible for increasing the dimension to the size needed for
the output. Because the task is simple categorization, we used a
simple softmax function at the end and sparse categorical
crossentropy as the loss function. The dimension (15829) of the
last layer is equal to the dictionary entries. While this means
that subsequent additions to the dictionary means using a
completely new model every time, the simplicity of the model
means a low number of parameters (88 million), and with that
a relatively fast training compared to the current, much larger
models (more on that in the Training and Evaluation chapter).

Using convolutional layers in text processing is a commonly
used technique ([15], [16]), although mostly used for sentiment
analysis or text classification.

C. CNN-Bi-LSTM Model
The CNN-Bi-LSTM model (depicted on Fig. 2, with an

example input and output) was inspired by another architecture
primarily developed for Named Entity Recognition [17],
although it lacks the case-embedding and uses a simple 256-
dimensional embedding. It is very similar to the previously
described pure convolutional model, the only difference is in
the processing of the embedded words.

We used a 64-dimensional Bi-LSTM layer that was then
flattened into a dense 64-dimensional layer. This meant that
unlike with the pure convolutional model, here the output of the
word-processing part of the model was a lot larger. We
theorized that this, together with the LSTM being generally
more fitted for processing word sequences, will lead to a better
accuracy than the pure convolutional model.

The hyperparameters of the Bi-LSTM layer were the
following (the hyperparameters of the other layers are the same

Fig. 1. The layers of the pure convolutional model.

Fig. 2. The layers of the CNN-Bi-LSTM model and an example input and
output.

Hybrid Distance-based, CNN and Bi-LSTM
System for Dictionary Expansion

INFOCOMMUNICATIONS JOURNAL

DECEMBER 2020 • VOLUME XII • NUMBER 4 9

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 4

kernel initializer for all layers (values: uniform, normal,
glorot_uniform, glorot_normal, lecun_uniform) and the size of
the embedding layer (values: 64, 128, 256, 512) as optimizable
hyperparameters. The best regularizer was Nadam, and the best
batch size was 64 for both this and the CNN-Bi-LSTM model.

The optimised hyperparameters of the layers are the
following (all other hyperparameters can be found in the
Appendix chapter):

1. Embedding layer: input dimension = 31, output
dimension = 256, embeddings initializer =
”lecun_uniform”, no regularization, no zero masking, no
dropout.

2. Conv1D layers: filters = 29 for conv1d and 30 for
conv1d_1 and conv1d_2 in the CNN-Bi-LSTM model,
kernel size = 3, activation = relu, no dropout.

3. Dense layers: units = 512, 4096, 15829, activation =
“relu”, dropout = 0.3.

The two Conv1D layers are concatenated in a 50-
dimensional layer, and then a series of dense layers are
responsible for increasing the dimension to the size needed for
the output. Because the task is simple categorization, we used a
simple softmax function at the end and sparse categorical
crossentropy as the loss function. The dimension (15829) of the
last layer is equal to the dictionary entries. While this means
that subsequent additions to the dictionary means using a
completely new model every time, the simplicity of the model
means a low number of parameters (88 million), and with that
a relatively fast training compared to the current, much larger
models (more on that in the Training and Evaluation chapter).

Using convolutional layers in text processing is a commonly
used technique ([15], [16]), although mostly used for sentiment
analysis or text classification.

C. CNN-Bi-LSTM Model
The CNN-Bi-LSTM model (depicted on Fig. 2, with an

example input and output) was inspired by another architecture
primarily developed for Named Entity Recognition [17],
although it lacks the case-embedding and uses a simple 256-
dimensional embedding. It is very similar to the previously
described pure convolutional model, the only difference is in
the processing of the embedded words.

We used a 64-dimensional Bi-LSTM layer that was then
flattened into a dense 64-dimensional layer. This meant that
unlike with the pure convolutional model, here the output of the
word-processing part of the model was a lot larger. We
theorized that this, together with the LSTM being generally
more fitted for processing word sequences, will lead to a better
accuracy than the pure convolutional model.

The hyperparameters of the Bi-LSTM layer were the
following (the hyperparameters of the other layers are the same

Fig. 1. The layers of the pure convolutional model.

Fig. 2. The layers of the CNN-Bi-LSTM model and an example input and
output.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

SpaCy provides a variety of functions for NLP tasks: it has a
lemmatizer, a PoS (Parts of Speech) tagger, a dependency
parser that builds dependency trees between tokens in a
sentence, an entity recognizer for NER (Named Entity
Recongition), a built-in categorizer for text classification tasks,
a pattern matcher, and can incorporate custom components.
This allows for a variety of configurations based on the task at
hand.

SpaCy also has a dictionary-like system that stores lexemes
and data about the document’s vocabulary, and it is capable of
full morphological analysis, including noun cases, verb tenses
and others.

C. BERT
BERT [11] is an acronym for Bidirectional Encoder

Representation for Transformers. It was developed by Google,
mostly for NLP tasks. It is basically a multi-layer bidirectional
Transformer, trained on a very large corpus, resulting in a
network that can be easily adjusted to any NLP task using just
an extra layer and some fine-tuning. It relies heavily on the
concept of transfer-learning, the concept of using a pre-trained
model with little training on a specific dataset for a specific task.
It is mostly utilized in tasks where training data is scarce or
absent. For NLP, this means that BERT was trained extensively
on a huge multilingual corpus unsupervised, and so it learns a
lot of the characteristics of the language, making fine-tuning a
lot faster and less data-extensive.

The main improvement from the precursor model is that they
use bidirectional unsupervised learning. This allows it to be
successful at a large variety of uses, including both token level
and sentence level tasks. This bidirectional training relies on a
method called MLM (masked LM) as to not run into the
problem of the words “seeing themselves” (the word that needs
to be predicted is present for the opposite direction, making the
task trivial), by randomly masking words in both directions and
trying to predict them.

D. Flair
The name Flair [12] is used for multiple things: it is both an

NLP library (including a data library and pre-trained models for
a variety of tasks), built on PyTorch, and an embedding model.

The Flair framework is designed to make using big, complex
models very simple. It is a wrapper over PyTorch, one of the
most widely used machine learning libraries for Python, and it
makes creating for example, a BERT model for text
classification extremely simple. It also has a variety of pre-
trained networks for the most common tasks, such PoS tagging.

Flair itself is a character-level recurrent network using
contextual string embedding, usually fed into a Bi-LSTM-CRF
(Bidirectional Long-Short Term Memory, Conditional Random
Fields) model. It is currently the best solution for PoS tasks, as
it outperforms every other approach, including the previously
mentioned BERT. However, it was specifically designed for
sequence tagging, not for more complex tasks (although it can
be used in other models designed for different tasks, as it is only
an embedding).

IV. THE MODELS
Both of our main tasks (finding the correct headword for

unknown word forms and discerning the correct headword for

unambiguous word forms) are essentially categorization tasks.
We have focused on the first one, as doing it correctly
technically includes the second one as well. This means that the
output of the system should be one of the existing dictionary
entries, whereas the input should be the word and some of its
context.

Because of the strict form of example sentences (31 words,
the middle one is the target for tagging), we decided for a fixed-
length input, not a sentence-based one. This still allows for the
procession of sentences, with the use of padding tokens, and the
length of the input means that most sentences will be inside its
bounds. While this special format made the system theoretically
suboptimal, back-conversion of the dataset was practically
impossible, but this format still allowed for keeping most of the
word’s context.

For the models themselves we focused on two features of the
input: the words in the context (31 words) and the middle
word’s characters (maximum 40, 44 different possible
characters). Because in the Hungarian language most words are
similar to their headwords, and a character-level model is a
great solution in looking for it.

The architectures we have chosen were the one-dimensional
convolutional neural networks [13] and the Bi-LSTM [14].
Both of these have been extensively used in NLP tasks. In our
setup, we have used two models, trained and evaluated
separately: one using both character-level and word-level
convolutional networks, and a CNN-Bi-LSTM solution using
convolutional network for the character-level input but Bi-
LSTM for the word-level input.

We have also experimented with a pure Bi-LSTM solution,
but it underperformed compared to the CNN-Bi-LSTM solution
and was deemed too similar to the CNN-Bi-LSTM solution to
be used alongside it (more information about it can be found in
the Training and Evaluation chapter).

A. Embeddings
In both cases, the input words are embedded in a simple 256-

dimensional embedding, and the characters are one-hot
encoded.

For most NLP applications, pre-trained embeddings are
usually a staple. The problems with this approach in this case
were that the unique language of Mikes’ writing made it
impossible to utilize any pre-trained embedding. We could have
used embeddings taught on the data itself, but the size of the
corpus was not sufficient for this task.

B. Pure Convolutional Model
The model is a straightforward convolutional model, with

only one layer of 1D convolution (Fig. 1). Because the size of
the training set was not enough for large, complicated language
models, we opted for a smaller, simple model.

For optimizing the hyperparameters, we assumed that the
parameters themselves can be independently optimized. This
approach was necessary due to the large number of possible
combinations. We selected dropout (from 0.0 to 0.5 with 0.1
increments, dense, convolutional and bi-LSTM layers
optimized independently), batch size (values: 64, 128, 256,
512), the type of optimizer (Adam and Nadam), the type of

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 4

kernel initializer for all layers (values: uniform, normal,
glorot_uniform, glorot_normal, lecun_uniform) and the size of
the embedding layer (values: 64, 128, 256, 512) as optimizable
hyperparameters. The best regularizer was Nadam, and the best
batch size was 64 for both this and the CNN-Bi-LSTM model.

The optimised hyperparameters of the layers are the
following (all other hyperparameters can be found in the
Appendix chapter):

1. Embedding layer: input dimension = 31, output
dimension = 256, embeddings initializer =
”lecun_uniform”, no regularization, no zero masking, no
dropout.

2. Conv1D layers: filters = 29 for conv1d and 30 for
conv1d_1 and conv1d_2 in the CNN-Bi-LSTM model,
kernel size = 3, activation = relu, no dropout.

3. Dense layers: units = 512, 4096, 15829, activation =
“relu”, dropout = 0.3.

The two Conv1D layers are concatenated in a 50-
dimensional layer, and then a series of dense layers are
responsible for increasing the dimension to the size needed for
the output. Because the task is simple categorization, we used a
simple softmax function at the end and sparse categorical
crossentropy as the loss function. The dimension (15829) of the
last layer is equal to the dictionary entries. While this means
that subsequent additions to the dictionary means using a
completely new model every time, the simplicity of the model
means a low number of parameters (88 million), and with that
a relatively fast training compared to the current, much larger
models (more on that in the Training and Evaluation chapter).

Using convolutional layers in text processing is a commonly
used technique ([15], [16]), although mostly used for sentiment
analysis or text classification.

C. CNN-Bi-LSTM Model
The CNN-Bi-LSTM model (depicted on Fig. 2, with an

example input and output) was inspired by another architecture
primarily developed for Named Entity Recognition [17],
although it lacks the case-embedding and uses a simple 256-
dimensional embedding. It is very similar to the previously
described pure convolutional model, the only difference is in
the processing of the embedded words.

We used a 64-dimensional Bi-LSTM layer that was then
flattened into a dense 64-dimensional layer. This meant that
unlike with the pure convolutional model, here the output of the
word-processing part of the model was a lot larger. We
theorized that this, together with the LSTM being generally
more fitted for processing word sequences, will lead to a better
accuracy than the pure convolutional model.

The hyperparameters of the Bi-LSTM layer were the
following (the hyperparameters of the other layers are the same

Fig. 1. The layers of the pure convolutional model.

Fig. 2. The layers of the CNN-Bi-LSTM model and an example input and
output.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 4

kernel initializer for all layers (values: uniform, normal,
glorot_uniform, glorot_normal, lecun_uniform) and the size of
the embedding layer (values: 64, 128, 256, 512) as optimizable
hyperparameters. The best regularizer was Nadam, and the best
batch size was 64 for both this and the CNN-Bi-LSTM model.

The optimised hyperparameters of the layers are the
following (all other hyperparameters can be found in the
Appendix chapter):

1. Embedding layer: input dimension = 31, output
dimension = 256, embeddings initializer =
”lecun_uniform”, no regularization, no zero masking, no
dropout.

2. Conv1D layers: filters = 29 for conv1d and 30 for
conv1d_1 and conv1d_2 in the CNN-Bi-LSTM model,
kernel size = 3, activation = relu, no dropout.

3. Dense layers: units = 512, 4096, 15829, activation =
“relu”, dropout = 0.3.

The two Conv1D layers are concatenated in a 50-
dimensional layer, and then a series of dense layers are
responsible for increasing the dimension to the size needed for
the output. Because the task is simple categorization, we used a
simple softmax function at the end and sparse categorical
crossentropy as the loss function. The dimension (15829) of the
last layer is equal to the dictionary entries. While this means
that subsequent additions to the dictionary means using a
completely new model every time, the simplicity of the model
means a low number of parameters (88 million), and with that
a relatively fast training compared to the current, much larger
models (more on that in the Training and Evaluation chapter).

Using convolutional layers in text processing is a commonly
used technique ([15], [16]), although mostly used for sentiment
analysis or text classification.

C. CNN-Bi-LSTM Model
The CNN-Bi-LSTM model (depicted on Fig. 2, with an

example input and output) was inspired by another architecture
primarily developed for Named Entity Recognition [17],
although it lacks the case-embedding and uses a simple 256-
dimensional embedding. It is very similar to the previously
described pure convolutional model, the only difference is in
the processing of the embedded words.

We used a 64-dimensional Bi-LSTM layer that was then
flattened into a dense 64-dimensional layer. This meant that
unlike with the pure convolutional model, here the output of the
word-processing part of the model was a lot larger. We
theorized that this, together with the LSTM being generally
more fitted for processing word sequences, will lead to a better
accuracy than the pure convolutional model.

The hyperparameters of the Bi-LSTM layer were the
following (the hyperparameters of the other layers are the same

Fig. 1. The layers of the pure convolutional model.

Fig. 2. The layers of the CNN-Bi-LSTM model and an example input and
output.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 4

kernel initializer for all layers (values: uniform, normal,
glorot_uniform, glorot_normal, lecun_uniform) and the size of
the embedding layer (values: 64, 128, 256, 512) as optimizable
hyperparameters. The best regularizer was Nadam, and the best
batch size was 64 for both this and the CNN-Bi-LSTM model.

The optimised hyperparameters of the layers are the
following (all other hyperparameters can be found in the
Appendix chapter):

1. Embedding layer: input dimension = 31, output
dimension = 256, embeddings initializer =
”lecun_uniform”, no regularization, no zero masking, no
dropout.

2. Conv1D layers: filters = 29 for conv1d and 30 for
conv1d_1 and conv1d_2 in the CNN-Bi-LSTM model,
kernel size = 3, activation = relu, no dropout.

3. Dense layers: units = 512, 4096, 15829, activation =
“relu”, dropout = 0.3.

The two Conv1D layers are concatenated in a 50-
dimensional layer, and then a series of dense layers are
responsible for increasing the dimension to the size needed for
the output. Because the task is simple categorization, we used a
simple softmax function at the end and sparse categorical
crossentropy as the loss function. The dimension (15829) of the
last layer is equal to the dictionary entries. While this means
that subsequent additions to the dictionary means using a
completely new model every time, the simplicity of the model
means a low number of parameters (88 million), and with that
a relatively fast training compared to the current, much larger
models (more on that in the Training and Evaluation chapter).

Using convolutional layers in text processing is a commonly
used technique ([15], [16]), although mostly used for sentiment
analysis or text classification.

C. CNN-Bi-LSTM Model
The CNN-Bi-LSTM model (depicted on Fig. 2, with an

example input and output) was inspired by another architecture
primarily developed for Named Entity Recognition [17],
although it lacks the case-embedding and uses a simple 256-
dimensional embedding. It is very similar to the previously
described pure convolutional model, the only difference is in
the processing of the embedded words.

We used a 64-dimensional Bi-LSTM layer that was then
flattened into a dense 64-dimensional layer. This meant that
unlike with the pure convolutional model, here the output of the
word-processing part of the model was a lot larger. We
theorized that this, together with the LSTM being generally
more fitted for processing word sequences, will lead to a better
accuracy than the pure convolutional model.

The hyperparameters of the Bi-LSTM layer were the
following (the hyperparameters of the other layers are the same

Fig. 1. The layers of the pure convolutional model.

Fig. 2. The layers of the CNN-Bi-LSTM model and an example input and
output.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 4

kernel initializer for all layers (values: uniform, normal,
glorot_uniform, glorot_normal, lecun_uniform) and the size of
the embedding layer (values: 64, 128, 256, 512) as optimizable
hyperparameters. The best regularizer was Nadam, and the best
batch size was 64 for both this and the CNN-Bi-LSTM model.

The optimised hyperparameters of the layers are the
following (all other hyperparameters can be found in the
Appendix chapter):

1. Embedding layer: input dimension = 31, output
dimension = 256, embeddings initializer =
”lecun_uniform”, no regularization, no zero masking, no
dropout.

2. Conv1D layers: filters = 29 for conv1d and 30 for
conv1d_1 and conv1d_2 in the CNN-Bi-LSTM model,
kernel size = 3, activation = relu, no dropout.

3. Dense layers: units = 512, 4096, 15829, activation =
“relu”, dropout = 0.3.

The two Conv1D layers are concatenated in a 50-
dimensional layer, and then a series of dense layers are
responsible for increasing the dimension to the size needed for
the output. Because the task is simple categorization, we used a
simple softmax function at the end and sparse categorical
crossentropy as the loss function. The dimension (15829) of the
last layer is equal to the dictionary entries. While this means
that subsequent additions to the dictionary means using a
completely new model every time, the simplicity of the model
means a low number of parameters (88 million), and with that
a relatively fast training compared to the current, much larger
models (more on that in the Training and Evaluation chapter).

Using convolutional layers in text processing is a commonly
used technique ([15], [16]), although mostly used for sentiment
analysis or text classification.

C. CNN-Bi-LSTM Model
The CNN-Bi-LSTM model (depicted on Fig. 2, with an

example input and output) was inspired by another architecture
primarily developed for Named Entity Recognition [17],
although it lacks the case-embedding and uses a simple 256-
dimensional embedding. It is very similar to the previously
described pure convolutional model, the only difference is in
the processing of the embedded words.

We used a 64-dimensional Bi-LSTM layer that was then
flattened into a dense 64-dimensional layer. This meant that
unlike with the pure convolutional model, here the output of the
word-processing part of the model was a lot larger. We
theorized that this, together with the LSTM being generally
more fitted for processing word sequences, will lead to a better
accuracy than the pure convolutional model.

The hyperparameters of the Bi-LSTM layer were the
following (the hyperparameters of the other layers are the same

Fig. 1. The layers of the pure convolutional model.

Fig. 2. The layers of the CNN-Bi-LSTM model and an example input and
output.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 4

kernel initializer for all layers (values: uniform, normal,
glorot_uniform, glorot_normal, lecun_uniform) and the size of
the embedding layer (values: 64, 128, 256, 512) as optimizable
hyperparameters. The best regularizer was Nadam, and the best
batch size was 64 for both this and the CNN-Bi-LSTM model.

The optimised hyperparameters of the layers are the
following (all other hyperparameters can be found in the
Appendix chapter):

1. Embedding layer: input dimension = 31, output
dimension = 256, embeddings initializer =
”lecun_uniform”, no regularization, no zero masking, no
dropout.

2. Conv1D layers: filters = 29 for conv1d and 30 for
conv1d_1 and conv1d_2 in the CNN-Bi-LSTM model,
kernel size = 3, activation = relu, no dropout.

3. Dense layers: units = 512, 4096, 15829, activation =
“relu”, dropout = 0.3.

The two Conv1D layers are concatenated in a 50-
dimensional layer, and then a series of dense layers are
responsible for increasing the dimension to the size needed for
the output. Because the task is simple categorization, we used a
simple softmax function at the end and sparse categorical
crossentropy as the loss function. The dimension (15829) of the
last layer is equal to the dictionary entries. While this means
that subsequent additions to the dictionary means using a
completely new model every time, the simplicity of the model
means a low number of parameters (88 million), and with that
a relatively fast training compared to the current, much larger
models (more on that in the Training and Evaluation chapter).

Using convolutional layers in text processing is a commonly
used technique ([15], [16]), although mostly used for sentiment
analysis or text classification.

C. CNN-Bi-LSTM Model
The CNN-Bi-LSTM model (depicted on Fig. 2, with an

example input and output) was inspired by another architecture
primarily developed for Named Entity Recognition [17],
although it lacks the case-embedding and uses a simple 256-
dimensional embedding. It is very similar to the previously
described pure convolutional model, the only difference is in
the processing of the embedded words.

We used a 64-dimensional Bi-LSTM layer that was then
flattened into a dense 64-dimensional layer. This meant that
unlike with the pure convolutional model, here the output of the
word-processing part of the model was a lot larger. We
theorized that this, together with the LSTM being generally
more fitted for processing word sequences, will lead to a better
accuracy than the pure convolutional model.

The hyperparameters of the Bi-LSTM layer were the
following (the hyperparameters of the other layers are the same

Fig. 1. The layers of the pure convolutional model.

Fig. 2. The layers of the CNN-Bi-LSTM model and an example input and
output.

Hybrid Distance-based, CNN and Bi-LSTM
System for Dictionary Expansion

DECEMBER 2020 • VOLUME XII • NUMBER 410

INFOCOMMUNICATIONS JOURNAL

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

Contrary to our expectations, the pure convolutional model
had slightly better accuracy than the CNN-Bi-LSTM model.
This can be explained with the length of the context fed into the
input: only 10 other words were used as context, and Bi-LSTM
networks are mostly used because of their ability to identify
long-term connections. Furthermore, experiments have shown
[18] that in certain sequence-labelling problems, CNNs can
outperform RNNs. It is also worth mentioning that the gap in
accuracy is very small (only 1.9%). Using both was, however,
crucial for the system to be able to use majority voting.

The system as a whole achieved 65.9% accuracy all together
on the same dataset. This means that the parts of the system do,
in fact, perform significantly better together (even the
convolutional model which performed the best of all the
solutions achieved only 48.7%).

We also experimented with different ways of deciding ties
between the components, and found out that the Levenshtein
distance was, in fact, the best for this task, despite being the
least accurate standalone. Fig. 3 shows that the distribution of
correct guesses supports this.

Training times were typically around 3-4 hours for the whole
system. All training and evaluation were performed on a PC
with a GTX 1060 6GB GPU. With a TPU using more VRAM
training these models would take even less time.

B. Testing on Other Texts
Whereas the previously mentioned experiments provide a

numerical metric, in the case of a tool designed to help manual
work, manual experiments were also needed. We have used it
on a handful of other texts to manually test its usefulness and if
any typical errors are present.

For experimenting on these texts, we used the hybrid system,
including a lookup function that uses the Solr database to look
for already existing forms (the Solr query searched for an exact
match amongst the word forms, and we grouped them by
headword, then in the case of multiple matching headword,
used the prediction function). This means that the prediction
function is only used in the case of ambiguous or unknown
forms.

As we can see on Fig. 5. and Fig. 6., the number of wrong
predictions is low, much lower than the measured 34%. This is
primarily because these texts contain a lot of words that are
already known. The large size of the dictionary allows for more
common words with a small number of forms to be easily
identified without the uncertainty present in the predictive
function. The errors do not show any certain trend (some are
similar to the wrongly predicted headword, some are seemingly
random, some are the result of the model’s inability to correctly
identify multi-part words).

C. Comparison to Other Solutions
We have performed the same experiment with the dataset

used for training and testing on all the previously mentioned
other solutions. For both the EmMorph and SpaCy we only used
pre-trained models, and for the BERT and Flair we trained
multilingual models on the training dataset.

EmMorph performed according to our expectations: with the
score of 21.9%, it was the least accurate. It is mostly due to the
large number of unknown words and a very different grammar
used in Mikes’s writing.

SpaCy (using the lemmatizer module, and the lemma of each
word as the predicted headword) has surpassed our expectations
with its score of 41.3%, as it performed closely to our individual
networks. This shows the power of context-analysing
(EmMorph only uses the form of the word, SpaCy uses the
context as well), and the robustness of its Hungarian models.

We have used a multilingual BERT model as well as the
HuBERT [19] model. We used the Flair framework for training
and evaluating the BERT implementations, using Flair’s own
built-in categorizer architecture. We used ADAM optimizer
with a learning rate of 0.1 and an annealing factor of 0.5,
minibatch size was 32. The multilingual model’s raining was
stopped at 19% accuracy, and the training of HuBERT was
stopped at 20% accuracy. We have not evaluated them on the
test dataset.

 We used the Flair embeddings similarly to the BERT
embeddings, in the same setup. It has performed much better
than BERT, reaching 57.7% accuracy during training, and when
subjected to the same evaluation as our models, it reached an
accuracy of 29.7%. This, although still significantly worse than
our models, means that big, multilingual models can be trained
for processing unusual language, but custom-built solutions
will usually be better.

VI. IMPLEMENTATION
We have used Python for the implementation, mostly

because most state-of-the-art machine learning tools are
accessible as Python libraries, and it provides an easy and fast
way to create a simple application that is capable of tagging

Fig. 5. The results of testing on a letter from Mikes not from the “Turkish
Letters”. The red background signals the wrong predictions. The $ symbol is
the separator for multi-part words (e.g. “elég$tételi”), and for multi-meaning
words, a number is appended (e. g. “az 1”)

 <beszélgetni U:beszélgetni> <beátrixal U:Beatrix>
<egyik U:egyik> <a U:az 1> <leányi U:leány> <közül
U:közül> <valoval U:ló> <akiben U:a$ki> <leg
U:elég$tételi> <több U:több> <bizodalma
U:bizodalom> <volt U:van> <ugyan U:ugyan> <orában
U:óra> <verték U:vet> <fel U:fel$üttet> <a U:az 1>
<házát U:ház> <az U:az 1> <anglusok U:ánglius>
<éléonora U:Eleonora> <le U:le$ülve> <heveredet
U:hever> <volt U:van>

Fig. 6. The results of testing on a letter from Ferenc Rákóczi the II, a
contemporary of Mikes. The red background signals the wrong predictions. The
$ symbol is the separator for multi-part words (e.g. “a$midőn”), and for multi-
meaning words, a number is appended (e. g. “mind 1”)

 <augusti U:augustus> <írott U:írott> <levelét U:levél>
<kegyelmednek U:kegyelmed> <vévén U:vevés> <az
U:az 1> <midőn U:a$midőn> <abból U:az 2> <s U:sok>
<mind U:mind 1> <az U:az 1> <includált U:csoda>
<levelekből U:levél> <értem U:ért 1> <az U:az 1>
<ellenségnek U:ellenség> <kegyetlen U:kegyetlen>
<actusit U:acta> <az U:az 1> <dunán U:Duna> <túl
U:túl> <való U:való> <földön U:föld> <való U:való>

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 5

as the ones in the pure convolutional model, and the other
hyperparameters can be found in the Appendix chapter):

Units = 64, activation = “tanh”, recurrent activation =
sigmoid, use bias = True, kernel initializer = “lecun_uniform”,
dropout = 0.1.

We expected the CNN-Bi-LSTM network to outperform the
pure convolutional model, but also to learn more slowly. Also
because of the difference in the word processing architecture,
we theorized that the two networks would be better at
identifying different words. This led to the final solution
combining the result of both models and deciding between
them. The problem was that we needed a three-opinion system
to use majority voting, so we used a third component, a simple
distance-based solution.

D. Levenshtein Distance
The Levenshtein distance is often used in approximate string

matching, especially in spell checking, where one of the strings
comes from a dictionary. This is somewhat similar to the task
of finding a headword, although not equal. We have chosen this
as an often used and simple solution in string distance
measurement.

Levenshtein distance is a measurement of difference between
two strings, based on the number of edits that are needed to
transform one to another. These edits are: 1. adding a character,
2. deleting a character, 3. substituting a character with another
character. This can be calculated very efficiently using a
dynamic programming algorithm.

The main issue with using a distance-measurement like this
in a dictionary of roughly 16 000 word is that every time we
need to do the whole calculation 16 000 times. This, even with
a C implementation, takes significantly longer than simply
running one word and its context through the models for
prediction. So, as we can see, using Levenshtein every time
leads to a significant amount of time increase, which, while not
necessarily one of the main considerations, is still a factor to
keep in mind.

E. The Hybrid System
We have decided to use two models and the Levenshtein-

distance as a three-part expert system. Because of the higher
computational cost and the distribution of correct guesses (Fig.
3), the Levenshtein-distance was used as a tiebreaker.

The execution was very simple: first, both models predicted
a dictionary entry, then if these were not the same, the entry
predicted by the Levenshtein-distance was used, regardless of
the results produced by the models.

While as we will see on Fig. 4, both the CNN-Bi-LSTM
model and the convolutional model outperformed the distance-
based prediction, a disparity in the results of the two models
usually means they are both wrong, and in this case the distance
can be a helpful third option. This is the reason why the
Levenshtein distance takes priority over both of them.

It is not trivial that these three solutions complement each
other well, but in this application the results show that the
system together performs significantly better than the
individual components, which can be explained by the varying
architectures.

V. TRAINING AND EVALUATION

To allow for a good evaluation, we have used the following
method: we randomly chosen 5% of all known word forms as
the test set and excluded them from the dataset on which we
performed the training. This meant that the word forms used in
testing are analogous to unknown words which the application
has to predict headwords for. This set formed our testing set
during the evaluation phase.

The training was always performed with 48 iterations, in
every iteration a new set of 10 000 sentences were used to train
the model with 10% as the validation set. We used early
stopping based on validation loss with a patience of 3 and used
the best weights.

A. Evaluation
Pure Bi-LSTM stands for the previously mentioned model

where even the character-level input was fed into a Bi-LSTM
network. It did not achieve similar accuracy to the other two
models, so it was discarded.

Contrast these results (Fig. 4) with the performance of the
Levenshtein-distance-based solution: that achieved 37% on the
same dataset. We used it as our baseline, as it is the most basic
solution, and it performed remarkably well for its simplicity.

Type Best Accuracy
CNN-Bi-LSTM 46.8%
Pure Bi-LSTM 37.5%
Pure convolution 48.7%
Levenshtein 37.0%
Hybrid System 65.9%
SpaCy 41.3%
EmMorph 21.9%
BERT/HuBERT -
Flair 29.7%

Fig. 4. The accuracies of all solutions. BERT was not tested because training
was early stopped at 19% accuracy. HuBERT achieved 20% accuracy on the

training set.

Fig. 3. Accuracy of the combination of components in percentage of accurately
guessed headwords using the whole test dataset.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 4

kernel initializer for all layers (values: uniform, normal,
glorot_uniform, glorot_normal, lecun_uniform) and the size of
the embedding layer (values: 64, 128, 256, 512) as optimizable
hyperparameters. The best regularizer was Nadam, and the best
batch size was 64 for both this and the CNN-Bi-LSTM model.

The optimised hyperparameters of the layers are the
following (all other hyperparameters can be found in the
Appendix chapter):

1. Embedding layer: input dimension = 31, output
dimension = 256, embeddings initializer =
”lecun_uniform”, no regularization, no zero masking, no
dropout.

2. Conv1D layers: filters = 29 for conv1d and 30 for
conv1d_1 and conv1d_2 in the CNN-Bi-LSTM model,
kernel size = 3, activation = relu, no dropout.

3. Dense layers: units = 512, 4096, 15829, activation =
“relu”, dropout = 0.3.

The two Conv1D layers are concatenated in a 50-
dimensional layer, and then a series of dense layers are
responsible for increasing the dimension to the size needed for
the output. Because the task is simple categorization, we used a
simple softmax function at the end and sparse categorical
crossentropy as the loss function. The dimension (15829) of the
last layer is equal to the dictionary entries. While this means
that subsequent additions to the dictionary means using a
completely new model every time, the simplicity of the model
means a low number of parameters (88 million), and with that
a relatively fast training compared to the current, much larger
models (more on that in the Training and Evaluation chapter).

Using convolutional layers in text processing is a commonly
used technique ([15], [16]), although mostly used for sentiment
analysis or text classification.

C. CNN-Bi-LSTM Model
The CNN-Bi-LSTM model (depicted on Fig. 2, with an

example input and output) was inspired by another architecture
primarily developed for Named Entity Recognition [17],
although it lacks the case-embedding and uses a simple 256-
dimensional embedding. It is very similar to the previously
described pure convolutional model, the only difference is in
the processing of the embedded words.

We used a 64-dimensional Bi-LSTM layer that was then
flattened into a dense 64-dimensional layer. This meant that
unlike with the pure convolutional model, here the output of the
word-processing part of the model was a lot larger. We
theorized that this, together with the LSTM being generally
more fitted for processing word sequences, will lead to a better
accuracy than the pure convolutional model.

The hyperparameters of the Bi-LSTM layer were the
following (the hyperparameters of the other layers are the same

Fig. 1. The layers of the pure convolutional model.

Fig. 2. The layers of the CNN-Bi-LSTM model and an example input and
output.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 5

as the ones in the pure convolutional model, and the other
hyperparameters can be found in the Appendix chapter):

Units = 64, activation = “tanh”, recurrent activation =
sigmoid, use bias = True, kernel initializer = “lecun_uniform”,
dropout = 0.1.

We expected the CNN-Bi-LSTM network to outperform the
pure convolutional model, but also to learn more slowly. Also
because of the difference in the word processing architecture,
we theorized that the two networks would be better at
identifying different words. This led to the final solution
combining the result of both models and deciding between
them. The problem was that we needed a three-opinion system
to use majority voting, so we used a third component, a simple
distance-based solution.

D. Levenshtein Distance
The Levenshtein distance is often used in approximate string

matching, especially in spell checking, where one of the strings
comes from a dictionary. This is somewhat similar to the task
of finding a headword, although not equal. We have chosen this
as an often used and simple solution in string distance
measurement.

Levenshtein distance is a measurement of difference between
two strings, based on the number of edits that are needed to
transform one to another. These edits are: 1. adding a character,
2. deleting a character, 3. substituting a character with another
character. This can be calculated very efficiently using a
dynamic programming algorithm.

The main issue with using a distance-measurement like this
in a dictionary of roughly 16 000 word is that every time we
need to do the whole calculation 16 000 times. This, even with
a C implementation, takes significantly longer than simply
running one word and its context through the models for
prediction. So, as we can see, using Levenshtein every time
leads to a significant amount of time increase, which, while not
necessarily one of the main considerations, is still a factor to
keep in mind.

E. The Hybrid System
We have decided to use two models and the Levenshtein-

distance as a three-part expert system. Because of the higher
computational cost and the distribution of correct guesses (Fig.
3), the Levenshtein-distance was used as a tiebreaker.

The execution was very simple: first, both models predicted
a dictionary entry, then if these were not the same, the entry
predicted by the Levenshtein-distance was used, regardless of
the results produced by the models.

While as we will see on Fig. 4, both the CNN-Bi-LSTM
model and the convolutional model outperformed the distance-
based prediction, a disparity in the results of the two models
usually means they are both wrong, and in this case the distance
can be a helpful third option. This is the reason why the
Levenshtein distance takes priority over both of them.

It is not trivial that these three solutions complement each
other well, but in this application the results show that the
system together performs significantly better than the
individual components, which can be explained by the varying
architectures.

V. TRAINING AND EVALUATION

To allow for a good evaluation, we have used the following
method: we randomly chosen 5% of all known word forms as
the test set and excluded them from the dataset on which we
performed the training. This meant that the word forms used in
testing are analogous to unknown words which the application
has to predict headwords for. This set formed our testing set
during the evaluation phase.

The training was always performed with 48 iterations, in
every iteration a new set of 10 000 sentences were used to train
the model with 10% as the validation set. We used early
stopping based on validation loss with a patience of 3 and used
the best weights.

A. Evaluation
Pure Bi-LSTM stands for the previously mentioned model

where even the character-level input was fed into a Bi-LSTM
network. It did not achieve similar accuracy to the other two
models, so it was discarded.

Contrast these results (Fig. 4) with the performance of the
Levenshtein-distance-based solution: that achieved 37% on the
same dataset. We used it as our baseline, as it is the most basic
solution, and it performed remarkably well for its simplicity.

Type Best Accuracy
CNN-Bi-LSTM 46.8%
Pure Bi-LSTM 37.5%
Pure convolution 48.7%
Levenshtein 37.0%
Hybrid System 65.9%
SpaCy 41.3%
EmMorph 21.9%
BERT/HuBERT -
Flair 29.7%

Fig. 4. The accuracies of all solutions. BERT was not tested because training
was early stopped at 19% accuracy. HuBERT achieved 20% accuracy on the

training set.

Fig. 3. Accuracy of the combination of components in percentage of accurately
guessed headwords using the whole test dataset.

Hybrid Distance-based, CNN and Bi-LSTM
System for Dictionary Expansion

INFOCOMMUNICATIONS JOURNAL

DECEMBER 2020 • VOLUME XII • NUMBER 4 11

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

Contrary to our expectations, the pure convolutional model
had slightly better accuracy than the CNN-Bi-LSTM model.
This can be explained with the length of the context fed into the
input: only 10 other words were used as context, and Bi-LSTM
networks are mostly used because of their ability to identify
long-term connections. Furthermore, experiments have shown
[18] that in certain sequence-labelling problems, CNNs can
outperform RNNs. It is also worth mentioning that the gap in
accuracy is very small (only 1.9%). Using both was, however,
crucial for the system to be able to use majority voting.

The system as a whole achieved 65.9% accuracy all together
on the same dataset. This means that the parts of the system do,
in fact, perform significantly better together (even the
convolutional model which performed the best of all the
solutions achieved only 48.7%).

We also experimented with different ways of deciding ties
between the components, and found out that the Levenshtein
distance was, in fact, the best for this task, despite being the
least accurate standalone. Fig. 3 shows that the distribution of
correct guesses supports this.

Training times were typically around 3-4 hours for the whole
system. All training and evaluation were performed on a PC
with a GTX 1060 6GB GPU. With a TPU using more VRAM
training these models would take even less time.

B. Testing on Other Texts
Whereas the previously mentioned experiments provide a

numerical metric, in the case of a tool designed to help manual
work, manual experiments were also needed. We have used it
on a handful of other texts to manually test its usefulness and if
any typical errors are present.

For experimenting on these texts, we used the hybrid system,
including a lookup function that uses the Solr database to look
for already existing forms (the Solr query searched for an exact
match amongst the word forms, and we grouped them by
headword, then in the case of multiple matching headword,
used the prediction function). This means that the prediction
function is only used in the case of ambiguous or unknown
forms.

As we can see on Fig. 5. and Fig. 6., the number of wrong
predictions is low, much lower than the measured 34%. This is
primarily because these texts contain a lot of words that are
already known. The large size of the dictionary allows for more
common words with a small number of forms to be easily
identified without the uncertainty present in the predictive
function. The errors do not show any certain trend (some are
similar to the wrongly predicted headword, some are seemingly
random, some are the result of the model’s inability to correctly
identify multi-part words).

C. Comparison to Other Solutions
We have performed the same experiment with the dataset

used for training and testing on all the previously mentioned
other solutions. For both the EmMorph and SpaCy we only used
pre-trained models, and for the BERT and Flair we trained
multilingual models on the training dataset.

EmMorph performed according to our expectations: with the
score of 21.9%, it was the least accurate. It is mostly due to the
large number of unknown words and a very different grammar
used in Mikes’s writing.

SpaCy (using the lemmatizer module, and the lemma of each
word as the predicted headword) has surpassed our expectations
with its score of 41.3%, as it performed closely to our individual
networks. This shows the power of context-analysing
(EmMorph only uses the form of the word, SpaCy uses the
context as well), and the robustness of its Hungarian models.

We have used a multilingual BERT model as well as the
HuBERT [19] model. We used the Flair framework for training
and evaluating the BERT implementations, using Flair’s own
built-in categorizer architecture. We used ADAM optimizer
with a learning rate of 0.1 and an annealing factor of 0.5,
minibatch size was 32. The multilingual model’s raining was
stopped at 19% accuracy, and the training of HuBERT was
stopped at 20% accuracy. We have not evaluated them on the
test dataset.

 We used the Flair embeddings similarly to the BERT
embeddings, in the same setup. It has performed much better
than BERT, reaching 57.7% accuracy during training, and when
subjected to the same evaluation as our models, it reached an
accuracy of 29.7%. This, although still significantly worse than
our models, means that big, multilingual models can be trained
for processing unusual language, but custom-built solutions
will usually be better.

VI. IMPLEMENTATION
We have used Python for the implementation, mostly

because most state-of-the-art machine learning tools are
accessible as Python libraries, and it provides an easy and fast
way to create a simple application that is capable of tagging

Fig. 5. The results of testing on a letter from Mikes not from the “Turkish
Letters”. The red background signals the wrong predictions. The $ symbol is
the separator for multi-part words (e.g. “elég$tételi”), and for multi-meaning
words, a number is appended (e. g. “az 1”)

 <beszélgetni U:beszélgetni> <beátrixal U:Beatrix>
<egyik U:egyik> <a U:az 1> <leányi U:leány> <közül
U:közül> <valoval U:ló> <akiben U:a$ki> <leg
U:elég$tételi> <több U:több> <bizodalma
U:bizodalom> <volt U:van> <ugyan U:ugyan> <orában
U:óra> <verték U:vet> <fel U:fel$üttet> <a U:az 1>
<házát U:ház> <az U:az 1> <anglusok U:ánglius>
<éléonora U:Eleonora> <le U:le$ülve> <heveredet
U:hever> <volt U:van>

Fig. 6. The results of testing on a letter from Ferenc Rákóczi the II, a
contemporary of Mikes. The red background signals the wrong predictions. The
$ symbol is the separator for multi-part words (e.g. “a$midőn”), and for multi-
meaning words, a number is appended (e. g. “mind 1”)

 <augusti U:augustus> <írott U:írott> <levelét U:levél>
<kegyelmednek U:kegyelmed> <vévén U:vevés> <az
U:az 1> <midőn U:a$midőn> <abból U:az 2> <s U:sok>
<mind U:mind 1> <az U:az 1> <includált U:csoda>
<levelekből U:levél> <értem U:ért 1> <az U:az 1>
<ellenségnek U:ellenség> <kegyetlen U:kegyetlen>
<actusit U:acta> <az U:az 1> <dunán U:Duna> <túl
U:túl> <való U:való> <földön U:föld> <való U:való>

Hybrid Distance-based, CNN and Bi-LSTM
System for Dictionary Expansion

VIII. Acknowledgments

DECEMBER 2020 • VOLUME XII • NUMBER 412

INFOCOMMUNICATIONS JOURNAL

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

texts. We have uploaded our implementation to GitHub at
https://github.com/szakacsb/dictionary_expander, together
with links for models and for the xml file needed to initialize
the Solr database.

For storing the dictionary, we used Apache Solr2. Solr is a
powerful search platform with a multitude of functions that
made it ideal for quick lookups and storing data in a dictionary-
like format. We did not utilize most of its advanced
functionality, but it provided a robust out-of-the-box solution
for storing data.

A. The Application
The Application itself was written purely in Python,

including the parts for populating the Solr server with data, the
client querying the server for data, the training and evaluation
of models, and the functional tagger. The machine learning
parts rely on Keras, and for the distance-based part, we used
python-Levenshtein.

The application does not rely strictly on the Mikes dictionary
as a corpus: using the same format, any dataset can be used to
teach the model. This means that reconfiguring it for different
task is fairly simple, be it dictionary expansion for a different
corpus or an entirely different entity recognition and tagging
task.

B. The Solr Server
While Solr is a much more robust technology than required

for this task, its performance is a significant upside for this
application. We transformed and uploaded the half-done
dictionary and used it as our database server for the
experiments.

The results, after being manually checked, can very easily be
fed back into the Solr server, making further training of models
possible. An incremental workflow can be created, where the
application tags the text, the expert manually corrects it, and
then it is uploaded into the server, and used for further training
for the models.

VII. CONCLUSION
We have created an expert system-based automatic tagger

that can be used to pre-process texts for dictionary-expansion.
We have demonstrated that a three-component tool performs
better on Mikes Kelemen’s writings that are in an archaic
dialect of the Hungarian language, and we compared our results
to some already existing tools on the same corpus.

Whereas the tool we created was specifically designed for
this task, it can be used in many other applications, and its
flexibility allows for processing other non-contemporary or
otherwise drastically different dialects.

The accuracy of the predictions is not fit for unsupervised
dictionary expansion; however, we have reached a 65.9%
accuracy on unknown words and this makes this tool ideal for
pre-processing texts before manual corrections.

We also built the system into an easy-to-use application,
together with a Solr-based server that stores the dictionary
itself.

2 https://lucene.apache.org/solr/

For future works we will be developing the decision-making
component, using the posterior probabilities of the softmax
layers and trying different, more complex approaches. We will
also be looking at more sophisticated distance-based methods
and more complex neural networks to try to diversify the
components even further.

REFERENCES

[1] A. Toprak and M. Turan, "English Automatic Dictionary Creation with

Natural Language Processing", 2019 Innovations in Intelligent Systems
and Applications Conference (ASYU), Izmir, Turkey, 2019, pp. 1-6
DOI: 10.1109/ASYU48272.2019.8946431.

[2] X. Wang, Y. Zhang, Q. Li, X. Ren, J. Shang and J. Han, "Distantly
Supervised Biomedical Named Entity Recognition with Dictionary
Expansion", 2019 IEEE International Conference on Bioinformatics and
Biomedicine (BIBM), San Diego, CA, USA, 2019, pp. 496-503
DOI: 10.1109/BIBM47256.2019.8983212.

[3] Gentile A.L., Gruhl D., Ristoski P., Welch S. “Explore and Exploit.
Dictionary Expansion with Human-in-the-Loop”, Hitzler P. et al. (eds)
The Semantic Web. ESWC 2019. Lecture Notes in Computer Science, vol
11503. Springer, Cham
DOI:10.1007/978-3-030-21348-0_9

[4] George A. Miller, “WordNet: A Lexical Database for English”,
Communications of the ACM Vol. 38, No. 11, pp. 39-41, 1995
DOI: 10.1145/219717.219748

[5] Margit Kiss, “The Digital Mikes-Dictionary”, In: Tüskés Gábor; Bernard
Adams; Thierry Fouilleul; Klaus Haberkamm (editor), Transmission of
Literature and Intercultural Discourse in Exile [...] The Work of Kelemen
Mikes in the Context of Europen Enlightment [...], Bern: Peter, Lang
Verlag, pp 288-297, 2012

[6] Tamás Mészáros, Margit Kiss, „The DHmine Dictionary Work-flow:
Creating a Knowledge-based Author’s Dictionary”, Proceedings of the
XVIII EURALEX International Congress: Lexicography in Global
Contexts, pp 77-86, Jul. 2018

[7] Kiss, Margit, Mészáros, Tamás, “Rethinking the Role of Digital Author's
Dictionaries in Humanities Research”, Feb. 2019

[8] Ruis, F., Pathak, S., Geerdink, J., Hegeman, J. H., Seifert, C., & van
Keulen, M. “Human-in-the-loop Language-agnostic Extraction of
Medication Data from Highly Unstructured Electronic Health Records”,
20th International Conference on Data Mining Workshops 2020 IEEE
EDS, 2020

[9] Alfredo Alba, Chad DeLuca, Anna Lisa Gentile, Daniel Gruhl, Linda
Kato, Chris Kau, Petar Ristoski, and Steve Welch „Identifying High
Value Opportunities for Human in the Loop Lexicon Expansion”,
HumBL2019. The third international workshop on Augmenting
Intelligence with Bias-Aware Humans-in-the–Loop. In the Web
Conference 2019 Companion volume. ACM, New York, NY, USA, 2019
DOI: 10.1145/3308560.3317305

[10] Attila Novák, “A New Form of Humor – Mapping Constraint-Based
Computational Morphologies to a Finite-State Representation.” in:
Proceedings of the 9th International Conference on Language Resources
and Evaluation (LREC-2014), Reykjavík, pp. 1068–1073, 2014

[11] Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova,
“BERT: Pre-training of Deep Bidirecional Transformers for Language
Understanding”, arXiv preprint arXiv:1810.04805, Oct. 2018

[12] Akbik, Alan and Blythe, Duncan and Vollgraf, Roland, “Contextual
String Embeddings for Sequence Labeling”, in: Proceedings of the 27th
International Conference on Computational Linguistics, pp. 1638-1649,
2018

[13] Zhang, Wei, “Shift-invariant pattern recognition neural network and its
optical architecture” in: Proceedings of Annual Conference of the Japan
Society of Applied Physics, 1988

[14] Hochreiter, Sepp; Schmidhuber, Jürgen, “Long short-term memory” in:
Neural Computation 9 (8), pp 1735–1780, 1997, MIT Press
DOI: 10.1162/neco.1997.9.8.1735

[15] Alexis Conneau, Holger Schwenk, Loïc Barrault, Yann Lecun, “Very
Deep Convolutional Networks for Natural Language Processing”, Jun.
2016, arXiv preprint arXiv:1606:01781

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

texts. We have uploaded our implementation to GitHub at
https://github.com/szakacsb/dictionary_expander, together
with links for models and for the xml file needed to initialize
the Solr database.

For storing the dictionary, we used Apache Solr2. Solr is a
powerful search platform with a multitude of functions that
made it ideal for quick lookups and storing data in a dictionary-
like format. We did not utilize most of its advanced
functionality, but it provided a robust out-of-the-box solution
for storing data.

A. The Application
The Application itself was written purely in Python,

including the parts for populating the Solr server with data, the
client querying the server for data, the training and evaluation
of models, and the functional tagger. The machine learning
parts rely on Keras, and for the distance-based part, we used
python-Levenshtein.

The application does not rely strictly on the Mikes dictionary
as a corpus: using the same format, any dataset can be used to
teach the model. This means that reconfiguring it for different
task is fairly simple, be it dictionary expansion for a different
corpus or an entirely different entity recognition and tagging
task.

B. The Solr Server
While Solr is a much more robust technology than required

for this task, its performance is a significant upside for this
application. We transformed and uploaded the half-done
dictionary and used it as our database server for the
experiments.

The results, after being manually checked, can very easily be
fed back into the Solr server, making further training of models
possible. An incremental workflow can be created, where the
application tags the text, the expert manually corrects it, and
then it is uploaded into the server, and used for further training
for the models.

VII. CONCLUSION
We have created an expert system-based automatic tagger

that can be used to pre-process texts for dictionary-expansion.
We have demonstrated that a three-component tool performs
better on Mikes Kelemen’s writings that are in an archaic
dialect of the Hungarian language, and we compared our results
to some already existing tools on the same corpus.

Whereas the tool we created was specifically designed for
this task, it can be used in many other applications, and its
flexibility allows for processing other non-contemporary or
otherwise drastically different dialects.

The accuracy of the predictions is not fit for unsupervised
dictionary expansion; however, we have reached a 65.9%
accuracy on unknown words and this makes this tool ideal for
pre-processing texts before manual corrections.

We also built the system into an easy-to-use application,
together with a Solr-based server that stores the dictionary
itself.

2 https://lucene.apache.org/solr/

For future works we will be developing the decision-making
component, using the posterior probabilities of the softmax
layers and trying different, more complex approaches. We will
also be looking at more sophisticated distance-based methods
and more complex neural networks to try to diversify the
components even further.

REFERENCES

[1] A. Toprak and M. Turan, "English Automatic Dictionary Creation with

Natural Language Processing", 2019 Innovations in Intelligent Systems
and Applications Conference (ASYU), Izmir, Turkey, 2019, pp. 1-6
DOI: 10.1109/ASYU48272.2019.8946431.

[2] X. Wang, Y. Zhang, Q. Li, X. Ren, J. Shang and J. Han, "Distantly
Supervised Biomedical Named Entity Recognition with Dictionary
Expansion", 2019 IEEE International Conference on Bioinformatics and
Biomedicine (BIBM), San Diego, CA, USA, 2019, pp. 496-503
DOI: 10.1109/BIBM47256.2019.8983212.

[3] Gentile A.L., Gruhl D., Ristoski P., Welch S. “Explore and Exploit.
Dictionary Expansion with Human-in-the-Loop”, Hitzler P. et al. (eds)
The Semantic Web. ESWC 2019. Lecture Notes in Computer Science, vol
11503. Springer, Cham
DOI:10.1007/978-3-030-21348-0_9

[4] George A. Miller, “WordNet: A Lexical Database for English”,
Communications of the ACM Vol. 38, No. 11, pp. 39-41, 1995
DOI: 10.1145/219717.219748

[5] Margit Kiss, “The Digital Mikes-Dictionary”, In: Tüskés Gábor; Bernard
Adams; Thierry Fouilleul; Klaus Haberkamm (editor), Transmission of
Literature and Intercultural Discourse in Exile [...] The Work of Kelemen
Mikes in the Context of Europen Enlightment [...], Bern: Peter, Lang
Verlag, pp 288-297, 2012

[6] Tamás Mészáros, Margit Kiss, „The DHmine Dictionary Work-flow:
Creating a Knowledge-based Author’s Dictionary”, Proceedings of the
XVIII EURALEX International Congress: Lexicography in Global
Contexts, pp 77-86, Jul. 2018

[7] Kiss, Margit, Mészáros, Tamás, “Rethinking the Role of Digital Author's
Dictionaries in Humanities Research”, Feb. 2019

[8] Ruis, F., Pathak, S., Geerdink, J., Hegeman, J. H., Seifert, C., & van
Keulen, M. “Human-in-the-loop Language-agnostic Extraction of
Medication Data from Highly Unstructured Electronic Health Records”,
20th International Conference on Data Mining Workshops 2020 IEEE
EDS, 2020

[9] Alfredo Alba, Chad DeLuca, Anna Lisa Gentile, Daniel Gruhl, Linda
Kato, Chris Kau, Petar Ristoski, and Steve Welch „Identifying High
Value Opportunities for Human in the Loop Lexicon Expansion”,
HumBL2019. The third international workshop on Augmenting
Intelligence with Bias-Aware Humans-in-the–Loop. In the Web
Conference 2019 Companion volume. ACM, New York, NY, USA, 2019
DOI: 10.1145/3308560.3317305

[10] Attila Novák, “A New Form of Humor – Mapping Constraint-Based
Computational Morphologies to a Finite-State Representation.” in:
Proceedings of the 9th International Conference on Language Resources
and Evaluation (LREC-2014), Reykjavík, pp. 1068–1073, 2014

[11] Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova,
“BERT: Pre-training of Deep Bidirecional Transformers for Language
Understanding”, arXiv preprint arXiv:1810.04805, Oct. 2018

[12] Akbik, Alan and Blythe, Duncan and Vollgraf, Roland, “Contextual
String Embeddings for Sequence Labeling”, in: Proceedings of the 27th
International Conference on Computational Linguistics, pp. 1638-1649,
2018

[13] Zhang, Wei, “Shift-invariant pattern recognition neural network and its
optical architecture” in: Proceedings of Annual Conference of the Japan
Society of Applied Physics, 1988

[14] Hochreiter, Sepp; Schmidhuber, Jürgen, “Long short-term memory” in:
Neural Computation 9 (8), pp 1735–1780, 1997, MIT Press
DOI: 10.1162/neco.1997.9.8.1735

[15] Alexis Conneau, Holger Schwenk, Loïc Barrault, Yann Lecun, “Very
Deep Convolutional Networks for Natural Language Processing”, Jun.
2016, arXiv preprint arXiv:1606:01781

This work was supported by the European Regional
Development Fund of the European Union under the EFOP-
3.6.2-16-2017-00013 Project.

References

	 [1]	 A. Toprak and M. Turan, "English Automatic Dictionary Creation with
Natural Language Processing", 2019 Innovations in Intelligent Systems
and Applications Conference (ASYU), Izmir, Turkey, 2019, pp. 1-6

		 doi: 10.1109/ASYU48272.2019.8946431.
	 [2]	 X. Wang, Y. Zhang, Q. Li, X. Ren, J. Shang and J. Han, "Distantly

Supervised Biomedical Named Entity Recognition with Dictionary
Expansion", 2019 IEEE International Conference on Bioinformatics
and Biomedicine (BIBM), San Diego, CA, USA, 2019, pp. 496-503

		 doi: 10.1109/BIBM47256.2019.8983212.
	 [3]	 Gentile A.L., Gruhl D., Ristoski P., Welch S. “Explore and Exploit.

Dictionary Expansion with Human-in-the-Loop”, Hitzler P. et al.
(eds) The Semantic Web. ESWC 2019. Lecture Notes in Computer
Science, vol 11503. Springer, Cham

		 doi: 10.1007/978-3-030-21348-0_9
	 [4]	 George A. Miller, “WordNet: A Lexical Database for English”,

Communications of the ACM Vol. 38, No. 11, pp. 39-41, 1995
		 doi: 10.1145/219717.219748
	 [5]	 Margit Kiss, “The Digital Mikes-Dictionary”, In: Tüskés Gábor;

Bernard Adams; Thierry Fouilleul; Klaus Haberkamm (editor),
Transmission of Literature and Intercultural Discourse in Exile [...]
The Work of Kelemen Mikes in the Context of Europen Enlightment
[...], Bern: Peter, Lang Verlag, pp 288-297, 2012

	 [6]	 Tamás Mészáros, Margit Kiss, „The DHmine Dictionary Work-flow:
Creating a Knowledge-based Author’s Dictionary”, Proceedings
of the XVIII EURALEX International Congress: Lexicography in
Global Contexts, pp 77-86, Jul. 2018

	 [7]	 Kiss, Margit, Mészáros, Tamás, “Rethinking the Role of Digital
Author's Dictionaries in Humanities Research”, Feb. 2019

	 [8]	 Ruis, F., Pathak, S., Geerdink, J., Hegeman, J. H., Seifert, C., &
van Keulen, M. “Human-in-the-loop Language-agnostic Extraction
of Medication Data from Highly Unstructured Electronic Health
Records”, 20th International Conference on Data Mining Workshops
2020 IEEE EDS, 2020

	 [9]	 Alfredo Alba, Chad DeLuca, Anna Lisa Gentile, Daniel Gruhl, Linda
Kato, Chris Kau, Petar Ristoski, and Steve Welch „Identifying High
Value Opportunities for Human in the Loop Lexicon Expansion”,
HumBL2019. The third international workshop on Augmenting
Intelligence with Bias-Aware Humans-in-the–Loop. In the Web
Conference 2019 Companion volume. ACM, New York, NY, USA,
2019. doi: 10.1145/3308560.3317305

	[10]	 Attila Novák, “A New Form of Humor – Mapping Constraint-Based
Computational Morphologies to a Finite-State Representation.”
in: Proceedings of the 9th International Conference on Language
Resources and Evaluation (LREC-2014), Reykjavík, pp. 1068–1073,
2014

	[11]	 Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova,
“BERT: Pre-training of Deep Bidirecional Transformers for
Language Understanding”, arXiv preprint arXiv:1810.04805, Oct.
2018

http://doi.org/10.1109/ASYU48272.2019.8946431
https://doi.org/10.1109/BIBM47256.2019.8983212
https://doi.org/10.1007/978-3-030-21348-0_9
http://doi.org/10.1145/219717.219748
http://doi.org/10.1145/3308560.3317305

Hybrid Distance-based, CNN and Bi-LSTM
System for Dictionary Expansion

IX. Appendix

INFOCOMMUNICATIONS JOURNAL

DECEMBER 2020 • VOLUME XII • NUMBER 4 13

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

[16] Xiang Yu, Agnieszka Falenska, Ngoc Thang Vu, “A General-Purpose
Tagger with Convolutional Neural Networks”, in: Proceedings of the
First Workshop on Subword and Character Level Models in NLP, pp.
124-129, Sept. 2017, Copenhagen, Denmark, Association for
Computational Linguistics
DOI: 10.18653/v1/W17-4118

[17] Jason P.C. Chiu, Eric Nichols, “Named Entity Recognition with
Bidirectional LSTM-CNNs”, in: Transactions of the Association for
Computational Linguistics, Volume 4, pp. 357-370, 2016
DOI: 10.1162/tacl_a_00104

[18] Shaojie Bai; J. Zico Kolter, Vladlen Koltun, “An Empirical Evaluation of
Generic Convolutional and Recurrent Networks for Sequence Modeling”,
eprint arXiv:1803.01271, March 2018

[19] Nemeskey, Dávid Márk, “Natural Language Processing methods for
Language Modeling” PhD thesis. Eötvös Loránd University, 2020

VIII. APPENDIX
The additional hyperparameters of the layers are the

following:
1. Conv1D layers: padding = valid, data format =

“channels_last”, dilation rate = 1, groups = 1, use
bias = True, bias initializer = “zeros”, no kernel
regularizer, no bias regularizer, no activity
regularizer, no kernel constraints, no bias
constraints.

2. Dense layers: use bias = True, bias initializer =
“zeros”, no kernel regularizer, no bias regularizer,
no activity regularizer, no kernel constraints, no bias
constraints.

3. Bidirectional LSTM: use bias = True, recurrent
initializer = “orthogonal”, bias initializer = “zeros”,
unit forget bias = True, no kernel regularizer, no
bias regularizer, no activity regularizer, no recurrent
regularizer, no kernel constraints, no recurrent
constraints, no bias constraints, no recurrent
dropout, return sequences = False, return state =
False, go backwards = False, stateful = False, time
major = False, unroll = False.

Béla Benedek Szakács finished his BSc in
computer engineering in 2018 and is currently
doing his MSc studies in the same field at the
Budapest University of Technology and
Economics. He is a member of the
Balatonfüred Student Research Group. His
main field of study is machine learning and
natural language processing.

Tamás Mészáros is an associate professor at
the Budapest University of
Technology and Economics. His research
areas include intelligent agents,
information retrieval and natural language
processing.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

texts. We have uploaded our implementation to GitHub at
https://github.com/szakacsb/dictionary_expander, together
with links for models and for the xml file needed to initialize
the Solr database.

For storing the dictionary, we used Apache Solr2. Solr is a
powerful search platform with a multitude of functions that
made it ideal for quick lookups and storing data in a dictionary-
like format. We did not utilize most of its advanced
functionality, but it provided a robust out-of-the-box solution
for storing data.

A. The Application
The Application itself was written purely in Python,

including the parts for populating the Solr server with data, the
client querying the server for data, the training and evaluation
of models, and the functional tagger. The machine learning
parts rely on Keras, and for the distance-based part, we used
python-Levenshtein.

The application does not rely strictly on the Mikes dictionary
as a corpus: using the same format, any dataset can be used to
teach the model. This means that reconfiguring it for different
task is fairly simple, be it dictionary expansion for a different
corpus or an entirely different entity recognition and tagging
task.

B. The Solr Server
While Solr is a much more robust technology than required

for this task, its performance is a significant upside for this
application. We transformed and uploaded the half-done
dictionary and used it as our database server for the
experiments.

The results, after being manually checked, can very easily be
fed back into the Solr server, making further training of models
possible. An incremental workflow can be created, where the
application tags the text, the expert manually corrects it, and
then it is uploaded into the server, and used for further training
for the models.

VII. CONCLUSION
We have created an expert system-based automatic tagger

that can be used to pre-process texts for dictionary-expansion.
We have demonstrated that a three-component tool performs
better on Mikes Kelemen’s writings that are in an archaic
dialect of the Hungarian language, and we compared our results
to some already existing tools on the same corpus.

Whereas the tool we created was specifically designed for
this task, it can be used in many other applications, and its
flexibility allows for processing other non-contemporary or
otherwise drastically different dialects.

The accuracy of the predictions is not fit for unsupervised
dictionary expansion; however, we have reached a 65.9%
accuracy on unknown words and this makes this tool ideal for
pre-processing texts before manual corrections.

We also built the system into an easy-to-use application,
together with a Solr-based server that stores the dictionary
itself.

2 https://lucene.apache.org/solr/

For future works we will be developing the decision-making
component, using the posterior probabilities of the softmax
layers and trying different, more complex approaches. We will
also be looking at more sophisticated distance-based methods
and more complex neural networks to try to diversify the
components even further.

REFERENCES

[1] A. Toprak and M. Turan, "English Automatic Dictionary Creation with

Natural Language Processing", 2019 Innovations in Intelligent Systems
and Applications Conference (ASYU), Izmir, Turkey, 2019, pp. 1-6
DOI: 10.1109/ASYU48272.2019.8946431.

[2] X. Wang, Y. Zhang, Q. Li, X. Ren, J. Shang and J. Han, "Distantly
Supervised Biomedical Named Entity Recognition with Dictionary
Expansion", 2019 IEEE International Conference on Bioinformatics and
Biomedicine (BIBM), San Diego, CA, USA, 2019, pp. 496-503
DOI: 10.1109/BIBM47256.2019.8983212.

[3] Gentile A.L., Gruhl D., Ristoski P., Welch S. “Explore and Exploit.
Dictionary Expansion with Human-in-the-Loop”, Hitzler P. et al. (eds)
The Semantic Web. ESWC 2019. Lecture Notes in Computer Science, vol
11503. Springer, Cham
DOI:10.1007/978-3-030-21348-0_9

[4] George A. Miller, “WordNet: A Lexical Database for English”,
Communications of the ACM Vol. 38, No. 11, pp. 39-41, 1995
DOI: 10.1145/219717.219748

[5] Margit Kiss, “The Digital Mikes-Dictionary”, In: Tüskés Gábor; Bernard
Adams; Thierry Fouilleul; Klaus Haberkamm (editor), Transmission of
Literature and Intercultural Discourse in Exile [...] The Work of Kelemen
Mikes in the Context of Europen Enlightment [...], Bern: Peter, Lang
Verlag, pp 288-297, 2012

[6] Tamás Mészáros, Margit Kiss, „The DHmine Dictionary Work-flow:
Creating a Knowledge-based Author’s Dictionary”, Proceedings of the
XVIII EURALEX International Congress: Lexicography in Global
Contexts, pp 77-86, Jul. 2018

[7] Kiss, Margit, Mészáros, Tamás, “Rethinking the Role of Digital Author's
Dictionaries in Humanities Research”, Feb. 2019

[8] Ruis, F., Pathak, S., Geerdink, J., Hegeman, J. H., Seifert, C., & van
Keulen, M. “Human-in-the-loop Language-agnostic Extraction of
Medication Data from Highly Unstructured Electronic Health Records”,
20th International Conference on Data Mining Workshops 2020 IEEE
EDS, 2020

[9] Alfredo Alba, Chad DeLuca, Anna Lisa Gentile, Daniel Gruhl, Linda
Kato, Chris Kau, Petar Ristoski, and Steve Welch „Identifying High
Value Opportunities for Human in the Loop Lexicon Expansion”,
HumBL2019. The third international workshop on Augmenting
Intelligence with Bias-Aware Humans-in-the–Loop. In the Web
Conference 2019 Companion volume. ACM, New York, NY, USA, 2019
DOI: 10.1145/3308560.3317305

[10] Attila Novák, “A New Form of Humor – Mapping Constraint-Based
Computational Morphologies to a Finite-State Representation.” in:
Proceedings of the 9th International Conference on Language Resources
and Evaluation (LREC-2014), Reykjavík, pp. 1068–1073, 2014

[11] Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova,
“BERT: Pre-training of Deep Bidirecional Transformers for Language
Understanding”, arXiv preprint arXiv:1810.04805, Oct. 2018

[12] Akbik, Alan and Blythe, Duncan and Vollgraf, Roland, “Contextual
String Embeddings for Sequence Labeling”, in: Proceedings of the 27th
International Conference on Computational Linguistics, pp. 1638-1649,
2018

[13] Zhang, Wei, “Shift-invariant pattern recognition neural network and its
optical architecture” in: Proceedings of Annual Conference of the Japan
Society of Applied Physics, 1988

[14] Hochreiter, Sepp; Schmidhuber, Jürgen, “Long short-term memory” in:
Neural Computation 9 (8), pp 1735–1780, 1997, MIT Press
DOI: 10.1162/neco.1997.9.8.1735

[15] Alexis Conneau, Holger Schwenk, Loïc Barrault, Yann Lecun, “Very
Deep Convolutional Networks for Natural Language Processing”, Jun.
2016, arXiv preprint arXiv:1606:01781

	[12]	 Akbik, Alan and Blythe, Duncan and Vollgraf, Roland, “Contextual
String Embeddings for Sequence Labeling”, in: Proceedings of the
27th International Conference on Computational Linguistics, pp.
1638-1649, 2018

	[13]	 Zhang, Wei, “Shift-invariant pattern recognition neural network and
its optical architecture” in: Proceedings of Annual Conference of the
Japan Society of Applied Physics, 1988

	[14]	 Hochreiter, Sepp; Schmidhuber, Jürgen, “Long short-term memory”
in: Neural Computation 9 (8), pp 1735–1780, 1997, MIT Press

		 doi: 10.1162/neco.1997.9.8.1735
	[15]	 Alexis Conneau, Holger Schwenk, Loïc Barrault, Yann Lecun, “Very

Deep Convolutional Networks for Natural Language Processing”,
Jun. 2016, arXiv preprint arXiv:1606:01781

[16]	 Xiang Yu, Agnieszka Falenska, Ngoc Thang Vu, “A General-Purpose
Tagger with Convolutional Neural Networks”, in: Proceedings of the First
Workshop on Subword and Character Level Models in NLP, pp. 124-
129, Sept. 2017, Copenhagen, Denmark, Association for Computational
Linguistics

		 doi: 10.18653/v1/W17-4118
	[17]	 Jason P.C. Chiu, Eric Nichols, “Named Entity Recognition with

Bidirectional LSTM-CNNs”, in: Transactions of the Association for
Computational Linguistics, Volume 4, pp. 357-370, 2016

		 doi: 10.1162/tacl_a_00104
	[18]	 Shaojie Bai; J. Zico Kolter, Vladlen Koltun, “An Empirical Evaluation of

Generic Convolutional and Recurrent Networks for Sequence Modeling”,
eprint arXiv:1803.01271, March 2018

	[19]	 Nemeskey, Dávid Márk, “Natural Language Processing methods for
Language Modeling” PhD thesis. Eötvös Loránd University, 2020

Béla Benedek Szakács finished his BSc in computer
engineering in 2018 and is currently doing his MSc
studies in the same field at the Budapest University
of Technology and Economics. He is a member of the
Balatonfüred Student Research Group. His main field
of study is machine learning and natural language
processing.

Tamás Mészáros is an associate professor at the
Budapest University of Technology and Economics. His
research areas include intelligent agents, information
retrieval and natural language processing.

http://doi.org/10.1162/neco.1997.9.8.1735
http://doi.org/10.18653/v1/W17-4118
http://doi.org/10.1162/tacl_a_00104

