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A transition to stable one-dimensional swimming
enhances E. coli motility through narrow channels
Gaszton Vizsnyiczai 1,2,5, Giacomo Frangipane 1,3,5, Silvio Bianchi3, Filippo Saglimbeni3,

Dario Dell’Arciprete1,4 & Roberto Di Leonardo1,3✉

Living organisms often display adaptive strategies that allow them to move efficiently even in

strong confinement. With one single degree of freedom, the angle of a rotating bundle of

flagella, bacteria provide one of the simplest examples of locomotion in the living world. Here

we show that a purely physical mechanism, depending on a hydrodynamic stability condition,

is responsible for a confinement induced transition between two swimming states in E. coli.

While in large channels bacteria always crash onto confining walls, when the cross section

falls below a threshold, they leave the walls to move swiftly on a stable swimming trajectory

along the channel axis. We investigate this phenomenon for individual cells that are guided

through a sequence of micro-fabricated tunnels of decreasing cross section. Our results

challenge current theoretical predictions and suggest effective design principles for micro-

robots by showing that motility based on helical propellers provides a robust swimming

strategy for exploring narrow spaces.
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Friction is usually associated to resistance against motion.
However, for microorganisms friction is also the only pos-
sible source of thrust in an inertialess, low Reynolds number

fluid. Of all microorganisms, bacteria have developed an amaz-
ingly simple mechanism to exploit friction for self-propulsion. It
is based on a single motor unit, the flagellar motor that applies a
constant torque on a thin helical filament, the flagellum. A con-
tinuously rotating flagellum allows swimming with a single degree
of freedom while escaping the constraints imposed by kinematic
reversibility1. At the same time, flagella join together in a long
bundle that extends the total cell length, thus significantly redu-
cing the angular diffusion. While still being an amazing swim-
ming strategy in the bulk, flagellar propulsion would be useless if
not robust against confinement, which is a very common feature
of natural microenvironments. Confinement by solid walls leads
to an increased viscous drag on the cell body, but since flagellar
thrust is also derived from friction it may also increase upon
confinement. Is this thrust increase enough to counterbalance the
larger drag on the cell body and leave swimming speeds unaf-
fected? By tracking individual cells, that start from the bulk and
end up swimming on the surface of a flat wall, a 20% speed
reduction was observed. This suggests a significant thrust
enhancement which is however unable to overcompensate for the
drag increase2,3.

Very remarkably swimming speeds remain robust even when a
second parallel wall is added. Biondi et al.4 compared velocity
distributions of Escherichia coli cells swimming in wide micro-
channels with heights ranging from 2 to 10 μm. Although speed
variability within the same culture is much larger than the average
speed variations observed in different channels, a statistically
significant speed reduction was observed only for the smaller 2
μm gap, while a 10% speed increase over the bulk was reported
for the 3 μm channel. This last result was not confirmed by
Männik et al.5 who used microfabricated two-dimensional chips
to study the growth and motility of E. coli and Bacillus subtilis in
channels with a fixed height of about 6 μm, and widths ranging
from 0.3 to 5 μm. There a practically constant speed was observed
until a sharp drop occurs for gaps smaller than 1.1 μm. This last
findings are consistent with numerical simulations6 where a
monotonic speed decrease is predicted when one assumes that
bacteria swim with a constant flagellar torque. So far, large
population variability has precluded a systematic and quantitative
assessment of confinement effects on bacterial motility. Further-
more, if the evidence is controversial for quasi-two-dimensional
confinement, no experiments address bacterial motility in
stronger quasi-one-dimensional (1D) confinement as that found
in narrow blood vessels7. Some important questions remain open:
how much can we reduce the fluid volume around a cell before
substantially reducing its motility? Is there an optimal degree of
confinement that can enhance motility and how?

Here we use direct laser writing to build a three-dimensional
structure that guides individual cells through a sequence of
microtunnels with decreasing widths ranging from 3.9 to 1.4 μm.
By tracking the speed of the same cell moving through tunnels of
different size, we can isolate the effects of confinement on speed
from all other sources of speed variations among different cells. In
contrast with theoretical predictions, we find a speed that
increases as the cell moves through tunnels with decreasing cross-
section. The speed reaches a maximum in tunnels of 2.3 μm width
and then rapidly decreases in tighter tunnels. We demonstrate
that the maximum speed occurs when swimming on the tunnel
axis becomes hydrodynamically stable so that the cell swims at a
higher distance from the surrounding walls minimizing cell body
drag. Our results show that strong confinement provided by
closely surrounding walls results in a transition to 1D swimming
where bacteria only explore the neighborhood of the capillary axis

and move with a speed that is higher than in the lighter con-
finement conditions provided by a single flat wall.

Results
Speed increases with confinement. Our structure is composed of
eight square profile microtunnels with a length of 40 μm each that
are connected in series by turning sections as shown in Fig. 1a.
Swimming cells are guided by funneling walls towards the
entrance of the largest tunnel and are then forced to pass through
the eight tunnels arranged in order of decreasing width (Fig. 1b,
Supplementary Movie 1). We use a non-tumbling E. coli strain so
that cells can swim smoothly throughout the channels reducing
the chance of occasional collisions and clogging of the channels.
Furthermore, tumbling events in wild-type cells are not always
easy to detect and may cause spurious speed fluctuations which
are not related to the effects of external confinement. The bacteria
used also express a red fluorescent protein that allows a clear
visualization of the cell body even when closely surrounded by
optically distorting walls. Discarding all bacteria that are not
swimming alone in every tunnel of the sequence, we are left with
100 trajectories.

From these trajectories we isolate data points within a 25 μm
range inside the tunnels starting at a distance of 10 μm from the
entrance and ending 5 μm from the exit. From the clipped
trajectory data we obtain the mean speed of the cell’s body
centroid within each microtunnel. The variability of cells’ speed
in each tunnel is 15% (relative standard deviation). After the cells
exit the last tunnel, they are further tracked along a path of
about 50 μm to extract their free speed. The mean free speed is
28.8 μm s−1 with a standard deviation of 3.8 μm s−1. We remark
that the free speed is different from bulk speed, since outside of
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Fig. 1 E. coli cells swimming through a sequence of microtunnels of
decreasing cross-section. a Scanning electron micrograph of the three-
dimensional structure fabricated by two-photon polymerization. b Bacterial
cells are imaged by fluorescence microscopy, a representative cell is shown
in green at constant time intervals of 0.3 s. A bright-field microscopy image
of the microtunnel structure is overlapped on the background. Scale
bars 10 μm.
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the structure cells are trapped by the glass slide surface2,3,8–10.
However, these surface bound bacteria typically represent the
majority of cells found in mild confinement conditions.

Swimming speeds versus tunnel widths are shown for all
bacteria as gray lines in Fig. 2a, where, for every cell, we
normalize speeds to the corresponding free value. Open circles in
Fig. 2a represent mean values averaged over all bacteria. These
data show that: (i) in the widest channel the average speed is the
same as the free speed; (ii) the average speed increases in tighter
channels until it reaches a maximum value of 1.1 times the free
speed for a channel width of about 2.3 μm; (iii) for smaller tunnel
widths the speed then rapidly decreases, although cells can still
swim at 50% of the free value in the smallest tunnel having a
width of only 1.4 μm. Interestingly, if we extrapolate the last two
points of the averaged speed curve, we find that the speed
vanishes for a tunnel width of 0.8 μm, corresponding to the
average cell body thickness. Despite the large speed differences
among cells, the standard error of normalized mean speeds in
Fig. 2a is always within the symbols size. The observed initial
speed increase is statistically significant with a p value for the
comparison between tunnels 2.3 μm (orange) and 3.9 μm (blue)
given by p= 10−8 (Mann–Whitney). Furthermore as a control
experiment we fabricate a second structure composed of equal
sized tunnels (width 3 μm) to check for the presence of any
intrinsic cellular factor that could give rise to a systematic speed
variation as the cell traverses the entire structure. Results are
reported in the inset of Fig. 2a and show no statistically significant
differences between-group means as determined by one-way

ANOVA (p= 0.95). One might think that oxygen depletion can
affect the swimming speed when the cell is in a narrow tunnel.
However, a simple estimate already shows that this effect
is negligible. Typical oxygen consumption rates in E. coli is Q ≈
20 amol min−1 cell−1 (ref. 11). Assuming steady-state diffusion,
this consumption rate will be equal to the oxygen flow through
the tunnel cross-section. The resulting relative concentration
variations will be then ΔC/C ≈Ql/(CDs2) ≈ 10−3 where we used
D ≈ 2 × 10−5 cm2 s−1 for oxygen diffusion coefficient in water12,
C= 1 amol μm−3 for oxygen concentration in water13 while l
and s2 are typical length and cross-sectional area of our tunnels.

Numerical solutions14 show that the speed of a force-free helix,
driven by a constant torque in a circular microcapillary, weakly
grows with confinement until the gap between the capillary walls
and the flagellum reaches a value that is about 0.5 μm. However,
numerical simulations using finite element methods show that,
when a full cell is considered, the cell body, which is thicker than
the bundle, will feel earlier the presence of the wall and counteract
the speed increase predicted for the isolated helix with a rapidly
increasing drag coefficient. As a result, the speed of a full cell is
predicted to decrease monotonically to 90% of the bulk value
for ≈ 3 μm diameter and then quickly drop to zero15. This is in
strong contrast with our experimental observation of a speed that
initially increases with confinement. This apparent contradiction
can be resolved by looking at correlations between the cell’s speed
and spatial arrangement inside the tunnels. In Fig. 2b we report a
scatter plot of the cell’s normalized speeds and their distance d
from the closest wall. The data of the largest tunnel are shown as
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Fig. 2 Stable swimming on the microtunnel axis enhances bacterial motility in narrow constrictions. a Swimming speeds of E. coli cells as a function of
microtunnel widths. Individual cell speeds are normalized to the free values measured outside of the structure and are reported as gray lines. Open circles
represent speed averages on 100 cells. The dashed line is a linear extrapolation reaching zero speed for a tunnel width of 0.83 μm. The inset plots the
results of a control experiment where speed is measured in a structure where all the tunnels widths are 3 μm. Symbol sizes are comparable with the
standard errors. b Normalized speed vs mean distance from the tunnel wall for each cell in the two tunnels with widths of 3.9 μm (blue) and 2.3 μm
(orange). c Distributions of the cell centroids positions measured from the tunnel axis. A transition to stable axial swimming is observed for tunnel widths
below 2.5 μm. The maximum speed in panel a corresponds to the largest tunnel for which axial swimming is stable. d Central sections of all the tunnels
with the trajectories of all the bacteria superimposed are shown. e Cross-sections of the tunnels obtained by two-photon microscopy (see Supplementary
Note 1).
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blue circles while orange circles refer to the 2.3 μm tunnel where
the speed is maximal. In the larger tunnel we find a strong
correlation (r = 0.56, p= 10−9) showing that the cells that swim
slower than their free speed are also significantly closer to walls.
Surprisingly, cells in the tighter tunnel never seem to come too
close to the wall which results in a higher average speed. This
suggests a picture where the observed speed increase with
confinement is actually due to a counter-intuitive effect where
increasing confinement leads to a progressive increase of the
distance from the wall.

Axial swimming becomes stable in small tunnels. To assess this
idea more precisely, we plot for every channel the histogram of
the instantaneous absolute distance of all the cells from the tunnel
axis (Fig. 2c). The evolution of histogram shape with increasing
confinement reveals the existence of a critical tunnel width
marking a transition to 1D swimming where cell positions
become narrowly distributed around the tunnel axis. In parti-
cular, 1D swimming appears to be stable in all tunnels having a
width smaller than or equal to 2.3 μm. In this last tunnel, the
largest for which 1D swimming is stable, we also find the max-
imum value of the swimming speed. The speed gain in tight
channels is then associated to a transition to a stable axial
swimming configuration that keeps the cell farther away from the
walls. In this scenario we would then expect to find a higher speed
gain in those cells that swim closer to walls in large tunnels.
Figure 3a (bottom) shows that the distance from the wall d in the
largest tunnel (3.9 μm) is controlled by swimming characteristics
such as wobbling amplitude w and the pitch angle θ (see Sup-
plementary Note 4 for more plots). In particular, cells that wobble
less or swim with a higher pitch angle tend to maintain a smaller
distance from the wall. Those cells are also the ones undergoing
the largest displacement away from the walls when 1D swimming
along the tunnel axis becomes stable. This results in a higher
speed gain with confinement, as shown in the top panels of
Fig. 3a. If we now select those cells that are simultaneously below
the 20th percentile in w and above the 80th percentile in θ and
plot their average speed versus tunnel width, we obtain a curve
showing a marked speed gain reaching a 40% increase over the
speed in the largest channel (purple line in Fig. 3b, top panel).

Conversely, choosing those cells that are simultaneously below
the 20th percentile in θ and above the 80th percentile in w, no
significant speed increase is observed as the cells move through
progressively smaller tunnels (green line in Fig. 3b, top panel). As
expected, this different behavior of the speeds in the two groups is
linked to a qualitatively different evolution of the wall distance
with increasing confinement (Fig. 3b, bottom panel). While cells
that swim closer to the walls in the entrance tunnel display a
marked jump to a larger distance when 1D swimming becomes
stable, those cells that keep a larger distance from the wall in the
largest channel smoothly move closer to walls as the size of the
channel is reduced.

In order to locate more precisely the threshold tunnel size for
stable axial swimming we introduce a minimal model to describe
position fluctuations along a transverse coordinate x. For axial
swimming to be stable, a restoring speed component should
appear on the cell center as it moves away from the axis (x= 0).
For small displacements we may assume that this speed
component is linear in x:

_x ¼ vxðxÞ þ η � �αx þ η; ð1Þ
where α is the slope ∂vx/∂x and η represents an effective white
noise term 〈η(t)η(0)〉= Aδ(t) incorporating random speed
fluctuations due to both thermal and active fluctuations in
flagellar dynamics. A positive α means stable axial swimming
while a negative α leads to unstable axial swimming. In
this situation we would expect to describe the x ~ 0 part
of the histograms in Fig. 2c with a Gaussian distribution
PðxÞ / exp½�αx2=A�. Figure 4a confirms that the logarithm of
the distribution of cell positions is well fitted by a quadratic law
where the coefficient of the quadratic term can be assumed to be
an indicator of the slope α. If we now plot α as a function of
tunnel width we find a nice linear curve crossing zero for a
channel size of 2.4 μm (Fig. 4b). We evaluate α also numerically
using a Rotne–Prager method (see Methods) to simulate a full cell
swimming at different lateral displacements from the tunnel axis.
Numerical values for α are reported on top of Fig. 4b. Although
experimental and numerical values for α can be only compared
within an unknown multiplication factor, we find a remarkable
agreement with experimental data with an α value that goes to

a b

Fig. 3 Speed gain depends on swimming characteristics. a Speed gain (from 3.9 to 2.3 μm) and wall distances versus wobbling amplitude w and pitch
angle θ. Each cell appears as a point in the scatter plots. Dashed lines represent mean values. Wall distance, w, and θ are all measured in the largest tunnel
(3.9 μm). Error bars (s.e.m.) are always within the symbol size. b Cells with low w and high θ display a substantial speed increase with confinement
(purple) which is connected to a marked increase in the distance from the wall below 2.5 μm. The speeds are normalized to the values in the largest
microtunnel. No significant speed gain is observed for cells with high w and low θ (green) for which the wall distance progressively decreases with
confinement. Plotted error bars represent s.e.m.
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zero for a tunnel width that is very close to the experimental
value. In simulations we can easily check for the robustness of this
result for different shapes of the tunnel cross-section. Repeating
the calculations for a circular tunnel we find that α values can be
scaled on top of each other by expressing tunnel widths as the
square root of cross-sectional area (side length for square tunnels
and

ffiffiffi

π
p

´ radius for circular tunnels)

Confinement enhances flagellar thrust. In the tightest tunnel we
observe an average swimming speed U 0 that is reduced to 50% of
the free value U0. This is a rather modest reduction when one
considers that, in the same tunnel, a spherical particle with a
diameter equal to the cell body width would experience a ten-fold
drag increase compared to the bulk16. This suggests that such a
strong drag increase is probably compensated by an increase of
the thrust due to confinement. Such an increase in the thrust was
predicted theoretically14 but never measured directly since most
of the experiments look at the cell speed which depends on both
thrust and drag. Before we begin a quantitative discussion on the
thrust, some definitions are needed. Linearity of Stokes equations
links forces and velocities in a rigid body through a constant
resistance matrix. Treating cell body and flagellar bundle as two
hydrodynamically uncoupled rigid bodies that are rigidly con-
nected but can rotate independently around a common axis we
can write

F

T

� �

¼ � A 0

0 B

� �

� U

Ω

� �

; ð2Þ

f

τ

� �

¼ � a c

c b

� �

� U

ω

� �

; ð3Þ

where F, f and T, τ are the axial components of the viscous forces
and torques acting, respectively, on the cell body and the flagellar
bundle. U is the cell axial speed, and Ω and ω, respectively, are the
body and bundle angular velocities. Matrix elements are A, a
translational drag of body and bundle, B, b rotational drag of
body and bundle, c, the helical bundle coupling coefficient16. We
define the thrust as the force transmitted by the rotating bundle to
the cell body when the cell body is kept fixed by an external force
(U= 0). From Eq. (3), this force is ft=−cτ/b. This definition of
thrust has the advantage of being a property of the bundle alone
with no reference to the actual drag on the load (cell body). By
imposing force free (F+ f = 0) and torque free (T+ τ= 0)
conditions we can solve for the cell speed:

U ¼ � cτ
bðaþ AÞ � c2

� � cτ
bðaþ AÞ ¼

f t
aþ A

: ð4Þ

A direct evidence of the fact that confinement results in an
increased thrust is obtained by plotting the speed of the cells
while they progressively move across the last tunnel exit (Fig. 5).
Before point I the entire cell swims inside the tunnel with an
average normalized speed equal to 0.5. Between point I and II, the
cell body passes through the tunnel exit, its drag is progressively
reduced to the free value while flagellar drag and thrust remain
constant. This results in a three-fold increase in the speed. From
II to III the bundle goes from being entirely in to entirely
out. Calling a0;A0; f 0t the drag coefficients and the thrust of a free
cell and a0;A0; f 0t the corresponding values when fully confined
inside the tunnel, the thrust enhancement ratio is f 0t=f

0
t ¼

ðU II=U IIIÞða0 þ A0Þ=ða0 þ A0Þ. Since a0 > a0 and, from data in
Fig. 5, UII >UIII we can unequivocally conclude that f 0t > f 0t . We

a b

Fig. 4 Stability of the axial swimming state. a Effective potential for the cell center along the transverse coordinate in the five smallest tunnels. The
potential is computed as the logarithm of the cell position probability distributions shown in Fig. 2c and shows a minimum where axial swimming is stable.
Each solid line plots the best quadratic fit to experimental data. b Comparison between the curvatures of the fitted effective potential κ (white squares) and
the restoring speed gradient α (see Eq. (1)) obtained from numerical simulations. Orange squares and blue circles plot simulations results for tunnels with
square and circular section respectively.

(µm)

I

I

II
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III

III

Fig. 5 Confinement enhances flagellar thrust. Gray lines plot the time
evolution of the speed as the cell exits the tightest microtunnel at the end
of the structure. Circles represent mean values averaged over all the cells.
Orange solid line is the best fit with the model described in the text.
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now propose a theoretical minimal model for the speed versus
position curve in Fig. 5. Assuming that flagellar motors apply a
constant torque17,18 (see Supplementary Note 3) the speed U will
depend on cell position only through the drag coefficients
A, a, b, c. As before we call A0 and A0 the free and confined values
of the translational drag on the cell body. We then assume that
when a fraction x/L of the body is outside of the tunnel, the drag
will be given by the weighted average AðxÞ ¼ A0 þ ðx=LÞðA0 �
A0Þ where L is the body length and x is the position of cell body
head relative to the microtunnel exit point. Similarly the linear
drag coefficient of a partially confined flagellar bundle is
aðxÞ ¼ a0 þ ððx � LÞ=‘Þða0 � a0Þ, where x − L is the position of
the bundle end attached to the cell and ℓ is the bundle length
which we leave as a free fitting parameter. In the same way we
obtain expressions for b(x) and c(x) and substitute all position
dependent coefficients in Eq. (4). The parameters
A0; a0; b0;A0; a0; b0 are obtained from numerical calculations (see
Methods) over a range of ℓ values while c0 and c0 are left as free
fitting parameters. The best-fit curve is plotted as a solid line in
Fig. 5 and provides a very good representation of data points. We
find a value for ℓ = 6.7 ± 0.3 μm that is compatible with literature
data19. While the translational drag on the cell body increases by
a substantial factor A0=A0 ¼ 3:85, both translational and rota-
tional drag on the flagellar bundle are less affected and increase
respectively by a0=a0 ¼ 1:54, b0=b0 ¼ 1:26. Remarkably, the
coupling coefficient, that is responsible for thrust generation,
increases by about a factor of two c0=c0 ¼ 1:95 with a corre-
sponding thrust enhancement of f 0t=f

0
t ¼ ðc0=b0Þ=ðc0=b0Þ ¼ 1:56.

At this point it comes natural to wonder if swimming efficiency is
also enhanced by confinement. There are mainly two ways of
defining the self-propulsion efficiency of a swimmer. The first one is
by the ratio of swimming speed U over the bundle rotational
frequency ω/2π. This ratio has the dimensions of a length and
represents the distance traveled by the cell in a full rotation period of
the bundle. Assuming a constant torque, the energy supplied by a
flagellar motor in a full rotation cycle is constant so that this
definition corresponds to what we generally use for transport
vehicles, i.e. the ratio of distance traveled per unit of fuel consumed.
With a little bit of manipulation this efficiency can be expressed as
ϵ1= 2πU/ω= 2πbU/τ∝ bU where we have used τ ≈ bω. Alterna-
tively, swimming efficiency is often defined as the ratio between the
power required to drag a dead cell body at a speed U and the power
τω supplied by the flagellar motors to self-propel the cell at the same
speed ϵ2= (A + a)U2/τω= cU/τ∝ cU where we have used the
approximation U ≈ cτ/b(A+ a) in Eq. (4). It is interesting to note
that both efficiencies are proportional to the product of cell speed by
a drag coefficient in the bundle resistance matrix. If the drag
coefficients increase under confinement, it can be concluded that a
higher swimming speed also corresponds to a higher swimming
efficiency. The situation is not so straightforward in the last two
channels where the speed falls below one but the corresponding
efficiencies could still be greater than outside if the coefficients c and
b are sufficiently larger than in free cells. In the case of the last tunnel
we have reliable estimates for the ratios c0=c0 and b0=b0 obtained
from the fit of data in Fig. 5. Substituting those values we can obtain
the efficiency ratio between the last tunnel and the free case. We
find that the first efficiency decreases in the tightest tunnel
ϵ01=ϵ

0
1 ¼ ðb0=b0ÞðU 0=U0Þ ¼ 0:68. The second efficiency is remark-

ably still the same as outside ϵ02=ϵ
0
2 ¼ ðc0=c0ÞðU 0=U0Þ ¼

1:95 ´ 0:5 ¼ 1, indicating that flagella shape seems to be optimized
for maximum efficiency even under strong confinement condi-
tions14. The possible existence of stable swimming states at the
midplane between two parallel flat walls was suggested by some
theoretical studies20,21. However the only, though indirect, evidence
for that was obtained for artificially elongated cells that swam in

straight lines between nearby flat walls rather then tracing circular
paths that are typical of surface swimming22. Theoretical work on
squirmers in a capillary tube suggests instead that, for swimmers of
the pusher type like E. coli, axial swimming is always unstable23.
Here we provide the first direct evidence that E. coli cells can float
away from boundaries and swiftly move at the center of a
microchannel having a cross-section below a threshold size. The
existence of this hydrodynamically stable state, coupled with a
substantial increase in the thrust force generated by the bundle,
results in a motility that is enhanced in narrow channels compared
to weaker confinement conditions. This phenomenon could be
relevant for other microswimmers such as sperm cells24, blood
vessels pathogens, or microrobots that are designed to explore
narrow spaces25. Our results also challenge current theoretical and
simulation schemes to identify the essential conditions for stable
axial swimming and to provide a quantitative match with the
observed values for the thrust enhancement.

Methods
Microfabrication. Microfabrication is carried out by a custom built two-photon
polymerization setup, described previously26. The microtunnel structures are cre-
ated from SU-8 2015 photoresist (MicroChem Corp). A high numerical aperture
oil immersion objective (Nikon Plan Apo Lambda ×60 1.4) is used to create a
single fabrication focus with 2.3 mW optical power that is moved with 100 μm s−1

scanning speed during fabrication. After exposure, the SU-8 photoresist sample is
baked at 100 °C for 7 min, then developed by its standard developer solvent, and
finally rinsed in a 1:1 mixture of water and ethanol. Strong adhesion of the SU-8
structures to the carrier coverglass is ensured by a layer of OmniCoat adhesion
promoter (MicroChem Corp). The precise sizing of the microtunnels is ensured by
measuring their widths and heights with two-photon fluorescence laser scanning
microscopy (Supplementary Note 1), giving mean widths of [1.42, 1.78, 2.04, 2.27,
2.48, 2.95, 3.44, 3.94] μm.

Microscopy and cell tracking. Epifluorescence imaging is performed on an inverted
optical microscope (Nikon TE-2000U) equipped with a ×60 (NA= 1.27) water
immersion objective and a high-sensitivity CMOS camera (Hamamatsu Orca Flash
4.0). A high power LED (Thorlabs M565L3) provides the epifluorescence excitation
light. Image acquisition during the experiment is run at 50 frames per second. The
trajectories of the recorded cells are calculated with a custom made OpenCV based
tracking software written in Python. The position of the wall appearing in Figs. 2c and
3b can be accurately determined by aligning the cells trajectories in a coordinate
system where the center of the smallest tunnel is located at x= 0. Small drifts of the
sample are corrected by setting to zero the mean position of each cell in the smallest
tunnel. The wall positions in this coordinate system are then calculated by considering
the spacing (15 μm) of the microtunnels and their widths which are extracted from
scanning electron microscope images and two-photon microscopy as described in
Supplementary Note 1 and reported in Fig. 2d.

Cell growth and sample preparation. For these experiments we use the smooth
swimming E. coli strain HCB43727. The cells are modified to express the red
fluorescent protein mRFP1 under the control of the lacI promoter (BioBricks,
BBa_J04450 coding device inserted in pSB1C3 plasmid backbone). Single colonies
of the cells are inoculated in 10 ml of LB medium, before growing overnight at
33 °C. The saturated culture is then diluted 1:100 (50 μl in 5 ml) into tryptone broth
fresh medium and grown up to OD590 ≈ 0.8 at 33 °C shaken (for aeration) at
200 r.p.m. The production of mRFP1 is induced during the last growth stage
by addition of 1 mM IPTG. In all culturing stages 25 μg ml−1 kanamycin and
34 μg ml−1 chloramphenicol are present. Bacterial cells are then harvested from
culture media by centrifugation at 1100g for 5 min at room temperature. The pellet
is re-suspended by gently mixing in motility buffer [10 mM potassium phosphate
(pH 7.0), 0.1 mM EDTA (pH 7.0), and 0.02% Tween 20]28. To increase the speed of
the cells, glucose 10 mM is added to the motility buffer11. The cells are washed
three times to replace growth medium with motility buffer. Motility buffer sustains
bacterial motility but not growth/replication so that the bacterial population
remains constant during the experiment. The experiment is performed in an open
chamber sample built around a microtunnel structure fabricated onto a microscope
coverglass. The sample is first filled with motility buffer, and then a low-density
suspension of E. coli cells is added.

Hydrodynamic simulation. We have used the Rotne–Prager method29,30 to
numerically calculate the hydrodynamic drag coefficients of an E. coli cell body
and flagella. The Rotne–Prager mobility matrix is computed by a CUDA kernel.
The cell body and the flagella are simulated in two different geometries: (1) over a
flat surface at a distance of 0.9 μm, as measured in the largest tunnel (Fig. 2c) and
(2) on the axis of a 40 μm long square-section microtunnel. The cell body is
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constructed as a spherocylinder with 2.8 μm length and 0.9 μm diameter built up
from 50 nm radius spheres. The bundle is composed of 30 nm radius spheres
forming a 6.9 μm long helix with a wavelength of 2.3 μm and a radius of 0.3 μm19.
The microtunnel is constructed by 138 nm radius spheres, while the flat surface
by 100 nm radius spheres. For representative plots of the model geometries see
Supplementary Note 2. Our simulation calculates a bulk drag of 1.40 × 10−2 pN s
m−1 for a cell body, close to the experimentally measured value of 1.48 × 10−2

pN s m−1 reported in literature31.
To compute the restoring speed gradient α in Eq. (1) we simulate a full cell

where two equal and opposite torques are applied on the cell body and on the
flagellar bundle, respectively. While the cell orientation is kept parallel to the
channel, the cell is displaced laterally by a distance x from the channel axis and the
transversal speed component vx is computed. For small displacements, vx grows
linearly with x with a slope α (see Supplementary Note 2).

Data availability
The data that support the findings of this study are available from the corresponding
author on reasonable request.

Code availability
The code is available from the corresponding author upon reasonable request.
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