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Abstract: Malaria is responsible for major diseases of humans, while associated haemosporidians 

are important factors in regulating wildlife populations. Polychromophilus, a haemosporidian para-

site of bats, is phylogenetically close to human-pathogenic Plasmodium species, and their study may 

provide further clues for understanding the evolutionary relationships between vertebrates and 

malarial parasites. Our aim was to investigate the distribution of Polychromophilus spp. in Eastern 

Europe and test the importance of host ecology and roost site on haemosporidian parasite infection 

of bats. We sampled bats and their ectoparasites at eight locations in Romania and Bulgaria. DNA 

was extracted from blood samples and ectoparasites and tested individually for the presence of 

DNA of Polychromophilus spp. using a nested PCR targeting a 705 bp fragment of cytB. Two species 

of Polychromophilus were identified: Po. melanipherus in Miniopterus schreibersii and associated ecto-

parasites and Po. murinus in rhinolophid and vespertilionid bats (6 species) and their ticks and nyc-

teribiid flies. Only cave-dwelling bat species (and their ectoparasites) showed infections, and we 

found a strong correlation between infections with Polychromophilus parasites and Nycteribiidae 

prevalence. We report the high genetic diversity of Polychromophilus spp. in Eastern Europe, sug-

gesting that the simultaneous presence of varied host and vector assemblages enhances bat 

haemosporidian parasite diversity. 
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1. Introduction 

Haemosporidians causing malaria are responsible for major diseases of humans (e.g., 

malarial infections in humans resulted in an estimated 228 million cases and 405,000 

deaths in 2018 [1]). Certain species also act as important factors in regulating wildlife pop-

ulations. The impact of malaria parasites was considered crucial in the extinction of 

Maclear’s rat (Rattus macleari) on Christmas Island [2], and it should be blamed for the 

extinction of up to 23 endemic Hawaiian bird species [3]. Recently avian malaria parasites 

were suggested to be the cause of the widespread decline of house sparrows (Passer do-

mesticus) in Europe [4]. Host switching was recorded for several haemosporidian parasites 
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[5,6], with even the most pathogenic human malaria species, Plasmodium falciparum, being 

suggested as a recent pathogen with a chimpanzee origin [7]. Other malaria-like 

haemosporidian parasites occurring in wildlife (e.g., Polychromophilus species of bats) are 

phylogenetically close to human-pathogenic Plasmodium species [8–10]; thus, their study 

may provide further clues in our fight against humanity’s most deadly infectious disease 

[11]. 

Bats are suggested or demonstrated reservoirs for a large variety of pathogens caus-

ing emerging infectious diseases such as viruses [12], bacteria [13], and protozoa [14–16]. 

The study of Hemosporidia [17] of bats can further provide an in-depth understanding of 

the evolutionary relationships between vertebrates and malarial parasites [6,18,19], espe-

cially in the view of the remarkable natural tolerance of bats towards these parasites 

[20,21]. 

Nine genera of Plasmodiidae infect bats worldwide: Biguetiella, Bioccala, Dionisia, 

Hepatocystis, Johnsprentia, Nycteria, Plasmodium, Polychromophilus, and Sprattiella [22] and 

based on current data; only Polychromophilus is present in Europe [6]. The genus Polychro-

mophilus includes five species globally (Po. adami, Po. corradetii, Po. deanei, Po. melanipherus 

and Po. murinus), with two species infecting different hosts groups in Europe: Po. melani-

pherus is a parasite of the long-winged bat (Miniopterus schreibersii), while Po. murinus oc-

curs mainly in vesper bats (Vespertilionidae) and certain rhinolophid species [23]. Unlike 

in other hosts, seemingly bats show little or no physiological symptoms associated with 

Polychromophilus infections [20]. 

The presence of Polychromophilus spp. are known in Europe from Great Britain, Italy, 

the Netherlands, and Switzerland [23–26]. However, to the best of our knowledge, there 

are no reports on malaria-related haemosporidian parasites of bats in the eastern part of 

the continent. As with most haemosporidians, Polychromophilus spp. are vector-borne par-

asites, with arthropod ectoparasites suggested to biologically transfer sporozoites be-

tween bats [27]. Bat flies (Diptera: Nycteribiidae) were suspected to be the main vectors 

of Polychromophilus spp. [27,28]. Thus, we hypothesize that bat species frequently infected 

by bat flies will show a higher prevalence of Polychromophilus spp. infections. In this con-

text, our aims were to: (a) investigate the distribution of Polychromophilus spp. in Eastern 

Europe by sampling a diverse range of bat species, and (b) test whether there are differ-

ences in Polychromophilus spp. infection between primarily cave-dwelling (roosting in 

large underground shelters and commonly parasitized by bat flies) and crevice-roosting 

bat species (usually roosting in tree holes or crevices in built environments and rarely 

hosting bat flies). We predict that bat species resident in caves should show higher Poly-

chromophilus spp. infection rates, than crevice-dwelling bat species. We also screened dif-

ferent ectoparasites collected from Polychromophilus-positive bats in order to establish 

their possible carrier role for haemosporidian parasites. 

2. Materials and Methods 

Blood samples were collected from live caught bats at eight different locations in Ro-

mania and Bulgaria (Figure 1, Table 1) in the spring and autumn of 2017 and 2018. For 

capturing the bats, mist nets and harp traps were set close to the entrances of roosts or in 

suitable habitat patches. Bats were identified morphologically [29], and species, sex, age, 

forearm length and body weight were recorded for each individual. Blood was collected 

from randomly allocated (using a preset list of random numbers generated by the RandBe-

tween function of Excel), apparently healthy individuals using venipuncture. Each bat 

was immobilized, the uropatagium was disinfected with alcohol, and a puncture of the 

uropatagial vein was made using a small needle. The drop of blood was collected on a 

small piece of filter paper and kept in a sterile tube. Each tube was individually marked 

and stored at 4 °C until DNA extraction. Bat ectoparasites were also collected from bats 

and preserved in 70% ethanol in separate tubes (one tube/ectoparasite type/bat host). 

Identification of bat ectoparasites was based on morphological characteristics [30,31]. To 
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assess the potential importance of host species ecology on Polychromophilus parasite prev-

alence, we assigned each bat species to one group (underground vs. crevice-roosting, see 

Table 1), according to published records [29]. 

 

Figure 1. Geographical distribution of sampling locations used for testing Polycromophilus spp. 

presence in bats. 

Table 1. Species and numbers of bats sampled, with roost-type, geographical locations and sample 

sizes (Roost type: C—crevice roosting, U—underground shelters. Sampling locations: A—Bucha-

rest; B—Canaraua Fetii; C—Gilău; D—Căpușu Mic; E—Limanu Cave; F—Mandrata Cave (Bul-

garia); G—Băile Herculane; H—Telita). 

Bat Species 
Roost 

Type 

Locations Total No Positive Polychromophilus 

A B C D E F G H  (%) spp. 

Eptesicus serotinus C  1       1   

Miniopterus schreibersii U  46       46 31 (67.4) Po. melanipherus 

Myotis alcathoe C    4     4   

Myotis blythii U  6 3    1  10 1 (10.0) Po. murinus 

Myotis capaccinii U       1  1   

Myotis daubentonii U  1   15    16 9 (56.2) Po. murinus 

Myotis emarginatus C   10      10   

Myotis myotis U   1   5 2  8 6 (75) Po. murinus 

Myotis nattereri C  12       12   

Nyctalus lasiopterus C  1       1   

Nyctalus noctula C 95 39       134   

Pipistrellus kuhlii C 2        2   

Pipistrellus nathusii C  5       5   

Plecotus austriacus C        1 1   

Rhinolophus ferrumequi-

num 
U   9      9 1 (11.11) Po. murinus 

Rhinolophus hipposideros U     2    2 1 (50) Po. murinus 

Rhinolophus mehelyi U     2    2 1 (50) Po. murinus 

Vespertilio murinus C 1 4       5   

Total  98 115 23 4 19 5 5 1 270   
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Ectoparasites of bats with Polychromophilus-positive blood samples were selected and 

grouped in pools according to their species, host, developmental stage (for ticks only), and 

sex for DNA extraction. Ticks and bat flies were tested individually (24) or in pools (11 

pools, 2–3 flies belonging to the same species and sex collected from the same host), with 

Polychromophilus spp. Genomic DNA was extracted from the blood from filter papers us-

ing an Isolate II Genomic DNA kit (Bioline, London, UK). The genomic DNA of bat ecto-

parasites was extracted using the QIAamp DNA Mini Kit (Qiagen, Hilden, Germany) ac-

cording to the manufacturer’s instructions. All the DNA samples were stored at −20 °C 

until further analysis. 

A nested PCR targeting a 705 bp fragment of cytB gene using previously described 

primers [6] was used for screening. The reactions were carried out as follows: 25 µL reac-

tion mixture containing 12.5 µL Master Mix (My TaqTM Red Mix, Bioline, London, UK), 

7.5 µL water, 1 µL of each primer (10 pmol/µL) and 3 µL aliquot of isolated DNA in the 

first round and in the second round instead of DNA 1 µL of PCR product from the first 

reaction was used. The PCR was performed using the T1000TM thermal cycler (Bio-Rad, 

London, UK) with the following condition: initial denaturation at 94 °C for 5 min, then 25 

cycles (for the first reaction) and 35 cycles (for the second reaction) of denaturation at 94 

°C for 30 s, annealing at 47.2 °C for 30 s (for both reactions), and extension at 72 °C for 45 

s and a final extension at 72 °C for 10 min. For each set of reactions (45 samples) 2 negative 

controls (distilled water) and one positive control, which was Polychromophilus spp.-posi-

tive DNA isolated from bat flies of Common bent-wing bat (Mi. schreibersii) collected from 

Italy were included. 

Amplification products were visualized by electrophoresis on 1.5% agarose gel 

stained with RedSafe™ 20000× nucleic acid staining solution (Chembio, Rickmansworth, 

UK), and their molecular weight was assessed by comparison to a molecular marker 100 

bp DNA Ladder (O’GeneRuler TM, Thermo Fisher Scientific, Waltham, MA, USA). PCR 

products were purified and sequenced (Macrogen Europe, Amsterdam, Netherlands). 

Obtained sequences were manually edited, then aligned and compared to those available 

in GenBankTM by basic local alignments tool (BLAST) analysis. The MEGA model selection 

method was applied to choose the appropriate model for phylogenetic analyses. In the 

phylogenetic analyses, reference sequences with high coverage (i.e., 99–100% of the region 

amplified here) were retrieved from GenBank and trimmed to the same length. Phyloge-

netic analyses were conducted by MEGA version 7.0 using the maximum-likelihood 

method, Hasegawa–Kishino–Yano (HKY) model according to the selection of the program 

and 1000 bootstraps. The sequences were deposited in GenBank under the following ac-

cession numbers (Po. melanipherus: MT996236, MT996237, MT996238, MT996239, 

MT996240, MT996241, MT996242, MT996243; Po. murinus: MT996244, MT996245, 

MT996246, MT996247, MT996248). 

3. Results 

Blood samples were taken from a total of 270 bats belonging to 19 species (Table 1, 

Figure 1). Among these bats, 59 individuals had ectoparasites, which were also included in 

the analysis. The DNA of Polychromophilus spp. was identified in the blood samples of 50 

bats (general prevalence was 18.5%, CI: 14.3–23.5%), belonging to 7 species. In the case of 

positive samples, prevalence showed wide variations among different species, ranging from 

10% (Myotis blythii) to 67.3% (Mi. schreibersii), or even 75% (My. myotis; see also Table 1). 

Sequencing showed the presence of two Polychromophilus spp. (Figures 2 and 3). The sam-

ples from Mi. schreibersii showed a 99–100% identity to Po. melanipherus from Central and 

Southern Europe (Switzerland and Italy), but also showed an identity of 97.7–98.5% with 

Po. melanipherus collected from Mi. gleni in Madagascar. Blood samples from rhinolophid 

and vespertilionid bats all hosted different sequences of Po. murinus, with a sequence iden-

tity of 96.3–99.8% to reference sequences from bats (My. daubentonii, My. myotis) sampled in 

Switzerland and deposited in GenBankTM (Figure 2). 
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Ectoparasites were collected at three locations (Băile Herculane, Canaraua Fetii and Li-

manu Cave, all in Romania). Two bat species were infested with ticks (prevalence 54.2%, 

mean intensity 4.2 tick/host, Tables 2 and 3): Mi. schreibersii carried Ixodes simplex (prevalence 

78.9%, mean intensity 4.4), while My. daubentonii was infected by I. vespertilionis (prevalence 

11.8%, mean intensity 2.0, for other details, see Sándor et al. 2019 [32]). Bat flies (n = 53, seven 

species, mean prevalence 11.1%) were collected from five host species, among which the 

highest prevalence and diversity was recorded in the case of Mi. schreibersii (Table 2). 

Table 2. Ticks found on bats, with host species, parasite life stages and presence of Polychromophi-

lus spp. DNA in ticks. 

Host Species 
No Samples 

(Infested) 

I. simplex I. vespertilionis 
Total 

Polychromophilus spp. 

Positive F N L F N L 

Miniopterus 

schreibersii 
30 (6) 1 48 37 - - - 86 16 L, 10 N 

Myotis daubentonii 3 (2) - - - - 1 3 4 2 L, 1 N 

Total 33 (8) 1 48 37 - 1 3 90 29 (29.2%) 

F—female, N—nymph, L—larva. 

Altogether, 33 tick samples (10 individuals and 23 pools) were tested for Plasmodiidae 

DNA, and six I. simplex pools (8.9%) and three individuals of I. vespertilionis (one individual 

and one pool, 66.6%) were positive for Polychromophilus spp. (Table 2). Three of the positive 

pools of I. simplex contained larvae (2, 3, and 12, respectively), and further three consisted of 

three nymphs, collected from five different Mi. schreibersii individuals. The positive I. ves-

pertilionis pool was made from two larvae. All these ectoparasites originated from bats that 

tested positive for Polychromophilus spp. However, only 20% of all DNA samples of ticks 

collected from Polychromophilus-positive bats were PCR-positive. The species identified with 

sequencing was Po. melanipherus (99.5–100% identity with KJ131274.1) in I. simplex pools, 

while I. vespertilionis harbored Po. murinus (99.2% identity with HM055588.1). Interestingly, 

corresponding sequences between ticks and their host individual did not show 100% se-

quence identity in each of the cases, with just a 94.9% identity between a 3 larva pool and 

the collecting host (32 linked single-nucleotide polymorphism—SNP difference, 23 dele-

tions and 9 substitutions, 598/630 bp, see also Figure 2). 

 

Figure 2. Un-rooted tree representing phylogenetic relationships between Polycromophilus spp. se-

quences collected from bats and their ectoparasites (Ixodidae and Nycteribiidae) in SE Europe. 
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Color indicates sampling site, while symbols indicate organism type sampled (bats, bat flies and 

ticks). The scale-bar indicates the number of substitutions per site. 

DNA of Polychromophilus spp. was detected in 23 fly samples (prevalence: 62.1%). 

Five different fly species contained the DNA of haemosporidians, with high prevalence 

rates recorded in Penicillidia conspicua (8/11, Table 3). No infection was found in N. latreillii 

(n = 3) and N. pedicularia (n = 3). Both species of Polychromophilus spp. were identified in 

bat flies. In particular, flies collected from Mi. schreibersii (N. schmidlii, Pe. conspicua and 

Pe. dufourii) contained the DNA of Po. melanipherus, while flies collected from vespertilio-

nids (N. kolenatii, N. vexata and Pe. dufourii) all tested positive for Po. murinus. These are 

the first records of Polychromophilus spp. identified in nycteribiid flies in Eastern Europe 

(Romania), with first-ever records of Po. melanipherus in Pe. conspicua and Pe. dufourii, and 

the first-ever records of Po. murinus in N. vexata and Pe. dufourii. DNA of Po. melanipherus 

was found in Pe. dufourii, collected from Mi. schreibersii (Canarau Fetii), while individuals 

of the same dipteran species (collected from My. blythii and My. myotis at two different 

sites) tested positive for Po. murinus. 

Table 3. Bat flies (Nycteribiidae) analyzed for Polychromophilus spp. infection, with host species and haemosporidian spe-

cies recorded. 

Nycteribiidae/Host 

Species 

Bat Fly 

Sex 

Miniopterus 

schreibersii 

Myotis 

blythii 

Myotis capac-

cinii 

Myotis dauben-

tonii 

Myotis myo-

tis 

No. of Positive Pools 

(Detected Species) 

Nycteribia kolenatii 
F    1  1 (Po. murinus) 

M      - 

Nycteribia latreillii 
F  2    - 

M  1    - 

Nycteribia pedicularia 
F   1   - 

M   2   - 

Nycteribia schmidlii 
F 9     4 (Po. melanipherus) 

M 16     3 (Po. melanipherus) 

Nycteribia vexata 
F      - 

M  1    1 (Po. murinus) 

Penicillidia conspicua 
F 7     4 (Po. melanipherus) 

M 4     3 (Po. melanipherus) 

Penicillidia dufourii 

F   1  2 2 (Po. murinus) 

M 3 2 1  3 
1 (Po. melanipherus), 4 

(Po. murinus) 

Total  39 6 5 1 5  

We found high sequence diversity of both Polychromophilus spp. identified (Figure 2). 

Altogether six different haplotype groups differing in at least 5 SNPs were identified 

among sequences belonging to Po. melanipherus (highest difference between two se-

quences was 5.3%, 38 SNP, 12 substitutions and 26 deletions, 626/664 bp), while four hap-

lotype groups were identified among different sequences of Po. murinus (highest differ-

ence between two Po. murinus sequences was 3.9%, 25 base pairs, 8 substitutions and 17 

deletions, 615/640 bp), while highest identity was 100% (700/702 bp). We found no geo-

graphical structuring in haplotype diversity. High identity sequences (99.99–100%) were 

found at geographically distant locations (e.g., Mandrata Cave, Somova and Gilău, ca. 400 

km distance either direction), while single sites held high haplogroup diversity (in case of 

Po. melanipherus, all six haplogroups were located at Canaraua Fetii, while three out of 

four haplogroups of Po. murinus were identified at Limanu). 

DNA of Polychromophilus spp. was identified only in cave-dwelling bat species (Table 1) 

and showed a strong correlation with Nycteribiidae prevalence on host species (Pearson Rank 

Correlation, R(17) = 0.9406, p < 0.001). We found no statistically significant effect of neither bat 

sex nor age or bat fly sex on Polychromophilus spp. prevalence. Capture season had no effect 

on prevalence or haplotype diversity. 
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Figure 3. Phylogenetic comparison of cytB sequences of Polychromophilus spp. The genotypes of Plasmodiidae sequences 

collected in this study are marked with red color. Branch lengths represent the number of substitutions per site inferred 

according to the scale shown. 

4. Discussion 

Here we report on the occurrence of Polychromophilus spp. DNA in the blood of seven 

European insectivorous bat species and their tick and bat fly ectoparasites. These obser-

vations are the first geographical records of malaria-like bat parasites from Romania (both 

Po. melanipherus and Po. murinus) and Bulgaria (Po. murinus), thus further expanding the 

known host and geographic ranges of Polychromophilus spp. These results confirm the 
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wide geographical distribution of both species of Polychromophilus in Europe after they 

were reported from the central, southern and western parts of the continent [23–26,33,34]. 

With regard to host specificity of malaria-like parasites in bats, in our study Po. 

melanipherus was reported only from the common bent-wing bat (Mi. schreibersii), while 

Po. murinus had a wider host range. Polychromophilus melanipherus is a fairly common par-

asite of the genus Miniopterus worldwide, with at least 20 different species of bent-winged 

bats recorded as hosts in Europe, Africa and Australia (Table S1). While other bat species 

(belonging to Hipposideridae, Pteropodidae and Vespertilionidae) were recorded as hosts 

of Po. melanipherus in Africa and Australia, all European records of Po. melanipherus relate 

to Mi. schreibersii (Table S1 and references therein). 

Polychromophilus murinus is the type species of the genus [35], originally being de-

scribed from the particolored bat (Vespertilio murinus) and later recorded in at least six 

other European bat species (Myotis daubentonii, My. myotis, My. mystacinus, My. nattereri, 

Eptesicus serotinus, and Nyctalus noctula) (Table S1). Here we report Po. murinus DNA in 

three new bat hosts, with the first records listed for My. blythii, Rhinolophus hipposideros 

and R. mehelyi. We also reconfirmed the presence of Po. murinus in three bat species (My. 

daubentonii, My. myotis and R. ferrumequinum) [19,23,27,36,37]. Five species were previ-

ously shown to harbor Polychromophilus spp. tested negative in our study. While several 

of these species were sampled in small numbers (n = 1–12), in the case of N. noctula, the 

sample size was relatively large (n = 134) from two different locations. Thus, our results 

indicate a low probability of infection for this bat species, at least in the investigated geo-

graphical territory. 

A high prevalence of infection with Polychromophilus spp. was recorded in three bat 

species here, with values exceeding previous European records [19,23,27,36,37]. The mean 

prevalence for Po. melanipherus was 67.3% in Mi. schreibersii, while Po. murinus had a mean 

prevalence of 56.2% in the case of My. daubentonii and an even higher level (75%) in My. 

myotis. Moreover, these prevalence rates were recorded at more than one site, thus sug-

gesting a widespread presence of Polychromophilus spp. in these bat species. 

Only 20% of ticks collected from bats in this study were found to contain the DNA of 

either of the two Polychromophilus species, with 8 out of the 33 tick individuals/pools test-

ing positive (Table 2). Both positive pools of I. vespertilionis came from Daubenton’s bat 

(My. daubentonii). However, the six positive pools of I. simplex (prevalence 19.3%, Table 2) 

came from several different hosts. While all these ticks were collected from hosts (thus 

probably consumed host–blood and may show host-derived Polychromophilus DNA), their 

vectorial role cannot be excluded and warrant further research. Interestingly, correspond-

ing sequence pairs (ticks and their respective bat–host individual) did not show 100% 

identity in two of the cases recorded in this study (Figure 2). Either more than one Poly-

chromophilus spp. geno-sequence was present in the sampled individuals (with nPCR be-

ing able to identify only one, an expected caveat of the methodology [38]) or ticks still 

maintained Polychromophilus DNA fragments from a previous meal (and host, in case of 

nymphs), not an unusual property of ixodid ticks [39]. To establish the vectorial role of 

ectoparasites, one should prove that haemosporidian parasites are able to finish their cycle 

inside the ectoparasite individual [40]. 

Altogether five different bat fly species hosted haemosporidian DNA, and one of 

them (Pe. dufourii) tested positive for both Polychromophilus species. Here we report the 

first-ever records of Po. melanipherus in Pe. conspicua and Pe. dufourii and the first-ever rec-

ords of Po. murinus in N. vexata and Pe. dufourii. Nycteribiid bat flies were proposed to be 

the main vectors of Polychromophilus spp. in bats [27,36]. While no experimental proof has 

yet been published, their ubiquitous presence on bats, coupled with the high prevalence 

of Polychromophilus spp. recorded in bat flies themselves [20,33,34] suggest this. Our re-

sults indirectly support this hypothesis. We identified a significantly higher prevalence of 

Polychromophilus DNA in cave-dwelling bat species known to regularly host bat flies in 

high abundance in Romania (Mi. schreibersii, My. blythii, My. daubentonii or My. myotis see 

[41]). Bat species with low levels of fly parasitism or rarely hosting nycteribiids (e.g., R. 
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ferrumequinum) had low Polychromophilus DNA prevalence or tested negative for this par-

asite (E. serotinus, My. emarginatus, N. noctula, V. murinus, [41]). 

Nycteribiid-related Po. melanipherus sequences clustered with bat-related Po. melani-

pherus sequences from Central and Southern Europe (99.3–100% identity, [33]) and from 

Madagascar (99.3% identity, [28]). Polychromophilus murinus sequences from bat flies were 

similar (92.4–98.7% identity) to samples collected from vespertilionid bats in Switzerland 

(see also Figure 3). 

Polychromophilus melanipherus showed high haplotype diversity both in bats and their 

ectoparasites. Two genetically different haplotypes were identified in the two bat fly spe-

cies collected from bent-winged bats, while I. simplex ticks also provided different haplo-

types. Unfortunately, our method prevented us from evaluating the true diversity of Pol-

ychromophilus spp. haplotypes in individuals sampled (both bats and/or ectoparasite indi-

viduals), as the method deployed (nested PCR) amplified only a single sequence from 

each sample. The six haplogroups identified clustered into two main groups, including all 

ectoparasite-derived and bat-derived sequences. While all Po. melanipherus-positive bats 

and ectoparasites were collected at a single site (Canaraua Fetii), this site hosts a huge 

maternity cluster of Mi. schreibersii, with up to 8000 individuals in summer [42,43], but no 

bats present in winter. Local recapture of ringed bats suggests multiple wintering areas 

for these bats, with hibernacula known in the NE, E, SE and SW ([44] and Barti L. un-

published). These subpopulations may host different genetic lineages of Po. melanipherus, 

all of which may be encountered at the maternity roost at Canaraua Fetii. 

The high diversity of individual Polychromophilus spp. sequences encountered in bats, 

ticks, and bat flies (see Figure 2) suggest an intricate web of malaria-like parasite circula-

tion among bats and their ectoparasites in eastern Europe, with multiple genotypes pre-

sent even at the site level. This is likely the result of (i) either the adaptation of individual 

genotypes to specific vector or host species (in the case of the multi-host Po. murinus) or 

(ii) the presence of multiple genetic lineages of Po. melanipherus linked to different migra-

tory subpopulations of bent-winged bats. 

DNA of both haemosporidian species was identified in a polyxenous bat fly species, 

Pe. dufourii, thus suggesting vector competence for both Polychromophilus species. This 

dipteran species commonly occurs on a number of cave-dwelling bat species like Mi. 

schreibersii, My. blythii, My. daubentonii or My. myotis [41], i.e., bat species of which popu-

lations may share the same underground roost (like in our case, the Canaraua Fetii site). 

At such roosts, individual bat flies may easily move not only between host individuals of 

the same species but also between different host species [45–47]. Thus, these flies have the 

potential to transfer both haemosporidian species to nonspecific bat hosts (e.g., Po. melani-

pherus to vesper bats and/or Po. murinus to Mi. schreibersii), too. The fact that we found no 

sign of such cross-infection in any of the host species may be an indication that there is a 

specific barrier of infectivity at the host level, an idea already suggested for Po. melani-

pherus [28]. 

5. Conclusions 

Our results expanded the known geographical range of bat-associated Plasmodiidae 

species occurring in the Western Palearctic, showing wide distribution among bats and 

their ectoparasites in SE Europe. Here we report the first records of Polychromophilus 

murinus in three new bat species and Polychromophilus spp. in two tick and three bat fly 

species, thus increasing both host and possible vector species spectra. High genetic diver-

sity is reported for both Polychromophilus species, with diverse genetic variants present 

even at the same location, suggesting that simultaneous presence of diverse host and vec-

tor assemblages may enhance malaria-like parasite diversity, too. 

Supplementary Materials: The following are available online at www.mdpi.com/2076-

2607/9/2/230/s1. Table S1: List of bat and ectoparasite species recorded to be harboring Polychromoph-

ilus spp., with geographical location and species of Plasmodiidae hosted. 
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