
Modernising an Industrial CFD Application
István Z. Reguly

Faculty of Information Technology and Bionics
Pázmány Péter Catholic University

Budapest, Hungary
reguly.istvan@itk.ppke.hu

Gihan R. Mudalige
Department of Comuter Science

University of Warwick
Coventry, UK

g.mudalige@warwick.ac.uk

Abstract—Rolls-Royce Hydra is an industrial Computational
Fluid Dynamics (CFD) code used for the design of turboma-
chinery. In this paper we describe the modernisation effort that
takes the current MPI-only version and migrates it to use the
OP2 Domain Specific Language (DSL), which enables OpenMP
as well as CUDA parallelisations on top of MPI. We discuss
the issue of the the original codebase being under continuous
development, and having to keep upstreaming the modernised
version using a set of conversion scripts that help to automate
the process. The result is a single, easy to maintain, source
code that can target modern CPUs and GPUs. We evaluate the
performance and scalability of the modernised version on a set
of the latest Intel CPUs and NVIDIA GPUs. Results demonstrate
matching performance to the original production code using the
same parallelization model (MPI) on CPUs, but further speedups
of up to 2.8× on modern many-core architectures.

Index Terms—Code modernisation, CFD, CPU, GPU, CUDA,
Fortran, DSL

I. INTRODUCTION

Current and future high performance computing architectures
increasingly require moving away from a pure MPI paralleli-
sation towards using one of a variety of shared-memory par-
allelisation techniques. Unfortunately large legacy codebases
are notoriously difficult to modernise for a variety of reasons,
including (but not limited to):

1) A large fraction of the codebase needs to be refactored
to achieve meaningful acceleration,

2) external dependencies that cannot be modernised, and
require certain aspects of the code to remain the same
(typically some data structures),

3) concurrent development of the original and modernised
codebase.

In this paper we describe our modernisation of the Rolls-
Royce Hydra CFD code, which is an unstructured mesh
Reynolds Averaged Navier-Stokes (RANS) solver that has
been in development for over 20 years. It is written in Fortran
77 using the OPlus MPI parallelisation library [1].

Hydra is a multi-component piece of software, which itself
fits into a larger workflow designed to accurately simulate
various aspects of turbomachinery design, such as steady and
unsteady flows around rows of turbine blades that may be
rotating relative to each other. It uses a 5-step Runge Kutta
method for time-marching and multigrid solvers with block-
Jacobi preconditioning [2]–[5]. Typical production simulations

FUNDING

use 3D unstructured meshes with tens or hundreds of millions
of edges, and run for several days on conventional CPU
clusters. While there is a growing need to speed up Hydra
for production uses by adopting newer compute architectures,
there is a further push for this due to the ASiMoV project [6],
funded by the UK EPSRC, that aims to carry out coupled full-
engine simulations, which will run into the billions of edges,
and require a high-performing, dynamic code base.

While Hydra had been converted to use OP2 previously
[7], [8], it was based on a fork of the original codebase
and could not be upstreamed, and therefore was only used
for demonstrating the capabilities of OP2. In this paper, we
describe a new effort to modernise Hydra, while also make
it relatively simple to upstream, and allow it to be adopted
into production use. We discuss the automated and semi-
automated steps that convert the OPlus-based code to use the
OP2 API, and how OP2 enables the utilisation of shared-
memory parallelisation techniques. Finally, we demonstrate
performance improvements on modern CPUs and GPUs.

II. RELATED WORK

The modernisation of existing applications has been a long-
standing challenge in the HPC community, most commonly
faced by national research laboratories and larger companies.
Due to the longevity and the large user base of scientific codes,
there is considerable inertia, and many aspects of software
development need to be considered, not just the performance
of the code.

Work on MSSG (Multi- scale Simulator for the Geo-
environment) [9] discusses a common challenge – while port-
ing the application to OpenACC, simply including pragmas
may not yield to performant code due to the unsuitability
of underlying data structures and algorithms. Their paper
discusses a number of code transformations through the Xe-
volver [10], [11] tool that yield structures more amenable to
acceleration. The authors in [12] aim to enable optimizations
in existing code by creating a Metaprogramming Frame-
work that enables developers to write custom directives and
transformations, that are then translated by the Omni [13]
compiler. Of course, there are many who apply (often low-
level) optimisations by hand [14], [15].

With new computational architectures, such as GPUs, mem-
ory capacity is also an issue – work by [16] discusses reducing
the memory footprint of large scale applications through

do while(hyd_par_loop(ncells, istart, iend))
call hyd_access_r8(’r’,areac,1,ncells,
& null,0,0,1,1)
call hyd_access_r8(’u’,arean,1,nnodes,
& ncell,1,1,1,3)
do ic = istart, iend
i1 = ncell(1,ic)
i2 = ncell(2,ic)
i3 = ncell(3,ic)
arean(i1) = arean(i1) + areac(ic)/3.0
arean(i2) = arean(i2) + areac(ic)/3.0
arean(i3) = arean(i3) + areac(ic)/3.0

end do
end while

Fig. 1. A Hydra loop written using the OPlus API

transformations, and demonstrate a reduction of an order of
magnitude.

What is clear, is that automatic modernisation and optimi-
sation methods work better when more assumptions can be
made about the code – the more its computations are laid
out according to a set of fixed patterns. The use of domain
specific libraries helps tremendously; indeed for our own
work we could assume that virtually all accesses to data, and
operations on data, happen in well-understood (and parsable)
code constructs.

III. THE OPLUS AND OP2 LIBRARIES

OPlus [1], [17] is a classical software library written in Fortran
77 that facilitates computations on unstructured meshes; it
handles distributed memory domain decomposition and halo
exchanges. It provides a simple abstraction: a mesh is de-
scribed using sets (such as vertices and edges), fixed arity
mappings between sets (such as edges to nodes, which always
has 2 connections per set element), and data defined on
sets (such as coordinates – x,y,z values associated with each
element). Computations are then described as a loop over the
elements of a set, accessing data either directly on the set or
via at most one level of indirection. The key assumption is that
the order in which elements are executed may not change the
result, at least within machine precision. Figure 1 describes
a loop over cells, reading a dataset areac defined on cells,
and updating a dataset arean defined on nodes. The library
sets the istart and iend variables appropriately to make sure
each process iterates over elements, while it also manages MPI
communications.

The OP2 library [18], [19] is a successor to OPlus –
it keeps the fundamental abstraction, but introduces data
structures, datatypes, and new APIs that allow it to deliver
shared-memory parallel implementations on top of MPI. Sets,
mappings, and datasets have their own opaque datatype in OP2
– as opposed to OPlus which just used Fortran arrays – which
allows OP2 to fully manage multiple memory spaces and data
transfers, and at the same time, only allows access to data
through API calls.

subroutine distr(areac,arean1,arean2,arean3)
real(8), intent(in) :: areac
real(8), intent(inout) :: arean1,

& arean2, arean3
arean1 = arean1 + areac/3.0
arean2 = arean2 + areac/3.0
arean3 = arean3 + areac/3.0
end subroutine

op_par_loop(cells, distr,
& op_arg_dat(areac,-1,OP_ID,1,’r8’,OP_READ),
& op_arg_dat(arean,1,ncell,1,’r8’,OP_INC),
& op_arg_dat(arean,2,ncell,1,’r8’,OP_INC),
& op_arg_dat(arean,3,ncell,1,’r8’,OP_INC))

Fig. 2. A Hydra loop written using the OP2 API

Figure 2 shows the same loop as before using the OP2 API –
the key difference is that the loop body has to be outlined, and
that indexing into data arrays is not done by the programmer.
This achieves a separation of concerns; the user only describes
what should be computed, and does not specify how (in terms
of data movement and parallelism), allowing OP2 to then
automatically perform this step as it is best suited for a given
target architecture.

A distinct difference between OPlus and OP2 is how
“global” variables are handled. There are two further cases;
variables in global scope, which are always read-only (other-
wise it would violate the order-less assumption), and iteration-
invariant variables that are explicitly passed to the outlined
subroutine, and are either read-only, or used for an associative
reduction. In OPlus none of these are explicitly marked or
passed through an API function, except for reductions, for
which there is a separate reduction call after a computational
loop. In OPlus-Hydra, global scope constants are defined using
common blocks, other iteration-invariant variables are locally
declared in encompassing subroutines. With OP2, global scope
constants need to be declared using the op decl const API,
which in a multiple memory space environment can make sure
the values are consistent. Iteration-invariant variables have to
be passed explicitly in the op par loop call using op arg gbl,
with the appropriate access descriptor (read/increment/min/-
max). OP2 again uses this information to move data and
perform parallel reductions when needed.

While from a programming perspective, OP2 looks like a
conventional software library (and can be used so), it also
uses source-to-source translation to generate parallel code for
various target architectures and compilers. Figure 3 illustrates
the development and compilation workflow; an application
written once with OP2’s C/C++ or Fortran API is then run
through a Python-based translator that generates specialised
implementations for each op par loop, and a modified ap-
plication file that calls these implementations. These files
are then compiled with conventional compilers and linked
against platform-specific OP2 libraries that manage distributed
memory parallelism and data movement between separate
memory spaces. While OP2 has built-in support for parallel

OP2 Source-to-Source translator (op2_fortran.py)

Conventional Compiler + compiler flags
 (e.g. icc, nvcc, pgcc)

Hardware

Link
Single Node CUDA

Cluster MPI

Cluster MPI+OpenMP

Cluster MPI+CUDA

Unstructured Mesh Application

OP2 Application (C/C++ or FORTRAN API)
(e.g. app.F90)

Modified Platform Specific
OP2 Application

(e.g. app_op.F90)

Platform Specific Files
(e.g. flux_seqkernel.F90,

flux_kernel.CUF)

Mesh
(hdf5, ASCI)

Platform Specific Binary
(e.g. app_mpi, app_mpi_cuda)

Fig. 3. OP2 build hierarchy

file I/O using HDF5 [20], Hydra uses its own (similarly HDF5-
based) I/O library that does this.

IV. THE CONVERSION PROCESS

Considering the large codebase (100k+ LoC) and the need
for a quick migration path from OPlus to OP2 to allow
upstreaming we have developed a conversion process that
automates as many steps as possible.

As a first step, we need to make sure the bodies of all
OPlus hyd par loops are outlined into separate subroutines,
as shown in Figure 4 – this is already the case for most loops
as they are implemented. For the rest of loops outlining was
done by hand, because writing a robust refactoring algorithm
to perform outlining was not feasible – it is likely that a full
compiler infrastructure would have been required, which was
not an option for the scope of this project. These changes were
already submitted to the main development branch and some
already adopted.

There were also a small number of cases where loop-
carried dependencies were present that prohibit parallelisation,
such as common block variables read and written, or Fortran
data/save values updated. The former were rewritten to use
local variables, the latter were moved out of parallel loops,
these changes were also submitted to the main development
branch.

The second step is parsing the code and finding API
calls to the OPlus library, then converting them to their
OP2 equivalents. Thanks to F77 restrictions and strict coding
conventions this is just a matter of text processing using
regular expressions;

• Finding hyd par loops, and recording its arguments (in-
dex ranges)

• Finding the following hyd access calls and recording
its arguments (read/write/update, number of values per
element, and mapping used for indirection)

• Locating the do loop with the recorded index ranges, and
noting the loop counter variable

• Recording indirect indexes (such as i1, i2, i3 here)
• Finding call to outlined subroutine, and parsing the actual

arguments.

subroutine distr(areac,arean1,arean2,arean3)
real(8), intent(in) :: areac
real(8), intent(inout) :: arean1,

& arean2, arean3
arean1 = arean1 + areac/3.0
arean2 = arean2 + areac/3.0
arean3 = arean3 + areac/3.0
end subroutine

do while(hyd_par_loop(ncells, istart, iend))
call hyd_access_r8(’r’,areac,1,ncells,
& null,0,0,1,1)
call hyd_access_r8(’u’,arean,1,nnodes,
& ncell,1,1,1,3)
do ic = istart, iend
i1 = ncell(1,ic)
i2 = ncell(2,ic)
i3 = ncell(3,ic)
call distr(areac(ic),arean(i1),arean(i2),

& arean(i3))
end do

end while

Fig. 4. A Hydra loop with an outlined body

– Arguments indexed with the loop counter are ac-
cessed directly, they need a matching hyd access call
from above

– Arguments indexed with indirect indices are accessed
indirectly, they need a matching hyd access call from
above

– Any other arguments are should be invariant of the
iteration, and will be passed as op arg gbl in OP2.

Using this information, the entire do loop using
hyd par loop is replaced with a call to op par loop. The
existing code passes Fortran arrays through the call tree, and
refactoring that to pass OP2’s opaque datatypes would be ex-
ceedingly difficult to do automatically, therefore we introduced
new Fortran 90 interfaces that can take data pointers, and then
match them up with op dats internally. OP2 internally makes a
copy of the original data and deallocates the original pointer,
so Hydra is passing pointers to invalid memory – but these
pointers are never dereferenced in OP2. Hydra itself also does
not dereference these outside of computational loops.

Third, we need to modify how global scope constants are
declared and set. The OPlus version of Hydra uses common
blocks, but CUDA Fortran does not support these. Instead, we
place all globals into an F90 module, which is then used. To
convert common blocks to be used in OP2, we have three fully
automated steps:

1) Parse include files with common blocks in them, and
generate the F90 module with matching variables.

2) Replace all occurrences of these files being included
with use statements.

3) Scan all files for expressions that modify these variables,
and insert op decl const API calls – which now may be
called redundantly but that does not cause correctness
issues, only minor performance issues.

Block 0
Block 1

Block 2

Global colouring Hierarchical colouring

Fig. 5. OP2 colouring schemes
Finally, we need to place the appropriate set, mapping,

and dataset declaration calls in the initialization phase of the
code. Considering the presence of equivalent calls to OPlus,
and that all such calls are in a single source file, this is a
relatively simple process. Because the sets, mappings, and
datasets concepts in OP2 and OPlus are fundamentally the
same, when running sequentially (single process, no MPI), the
two libraries are interoperable (since they both use the same
data layout for mappings and datasets). This made incremental
development and debugging possible, which was very helpful
during the development process as issues had to be located
and fixed.

With these steps, the conversion of Hydra from the OPlus
API to the OP2 API is complete. The code can be compiled
and linked against OP2’s libraries and run using a generic
implementation of op par loop to check for correctness.

V. OP2 PARALLELISATIONS

Once the conversion to the OP2 API was complete, we had
a single source code that was seemingly sequential – the
parallelism is implicit in OP2’s abstraction. This allows OP2
to automatically manage data movement and parallelisation,
which we discuss briefly in this section.

OP2 has two largely independent ways of parallelising exe-
cution; distributed memory parallelism which is implemented
in the backend libraries, and shared memory parallelism,
which is done using a combination of source-to-source trans-
lation and backend libraries. Distributed memory parallelism
uses standard techniques; graph partitioning, creating and
exchanging halo regions. OP2 uses the owner-execute strategy,
where all calculations required for computing the new dataset
values on a set element owned by the given process are done
by that process, which along the boundaries involves redundant
computations (executing a set element, owned by an adjacent
process, which indirectly updates an owned set element). The
details are documented in [21], [22]. Compared to OPlus, OP2
adds support for further graph partitioners (PT-Scotch [23]).

Support for shared memory parallelism is new in OP2 –
OPlus had no such functionality, and simple parallelisation
using compiler directives was not an option because of race
conditions in unstructured meshes where multiple iterations
may update the same value indirectly (e.g. edges updating
vertices). OP2 handles race conditions by way of using ex-
ecution plans – a runtime algorithm that calculates a safe
order of execution of the iteration set, and the generated source

code that executes this plan. There are several such execution
strategies:

1) Hierarchical colouring (Figure 5): The mesh is broken
up into blocks, the blocks themselves are coloured based
on potential data races (this is used to assign blocks
to OpenMP threads or CUDA thread blocks). Blocks
of the same colour are executed in parallel. Elements
within the block are then also coloured (this is used to
assign elements to threads in a CUDA thread block and
to synchronize between them).

2) Global colouring (Figure 5): All the elements in the
mesh are coloured based on potential data races. Ele-
ments of the same colour are executed in parallel.

3) Atomics: when the indirect operation is an increment (as
is the case in most Hydra indirect updates), data races
can be handled using atomic increment operations.

Results with hierarchical parallelism were reported for Hydra
in [7], but results with the other two strategies have not
been published before. Depending on the choice of parallel
implementation (OpenMP, CUDA, OpenACC) and the target
architecture, some of these execution schemes cannot be used
(e.g. OpenMP and both levels of hierarchical parallelism) or
perform very poorly (e.g. atomics on CPUs). Hierarchical par-
allelism has the advantage of good data locality within blocks,
but a more complex execution scheme. Global colouring is
very simple, but has almost no data reuse. Atomics are not
as widely applicable, and their performance varies with the
target architecture, though on the latest NVIDIA V100 GPUs
we will show that these perform the best.

Another key optimisation on GPUs is changing the data
layout from an Array-of-Structs to the Structure-of-Arrays
layout. This is done for each dataset that has multiple values
per set element (most datasets in Hydra have 6-7, some up
to 25). The conversion is done when data is uploaded from
the CPU, and it also requires modifying array accesses in the
subroutines passed to op par loops. The code generator parses
the input source code to find the implementation of these
subroutines (which is possible due to globally unique names
and no overloading in F77), then parses the list of formal
arguments, matches them with arguments to the op par loop
call to identify which require layout conversion, then uses
regular expressions to change array indexing to SoA. A similar
process is used for the atomics execution scheme; the code
generator locates a = a+b expressions where a is an indirectly
incremented argument, and swaps it for a call to atomicAdd.
Thanks to the coding conventions and the limitations of
Fortran 77, these simple transformations could be done with
regular expressions reliably.

Another key challenge in code generation and the manip-
ulation of the implementations of subroutines is that many
call further subroutines, and so on - for each of these calls the
code generator locates implementation of the called subroutine
and copies it into the F90 module created for the given
op par loop. Argument lists of subroutine calls are then
parsed and AoS to SoA or atomic access transformations are

0

5

10

15

20

25

30

35

OPlus-Hydra OPlus-Hydra Outlined OP2-Hydra (Genseq)

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
o

n
d

s
)

Inertial Part. Metis/Scotch Part.

Fig. 6. Baseline performance of Hydra with OPlus and OP2 on a pair
of Xeon Gold 6252 CPUs

propagated to the subroutines themselves. This does result in
some code duplication and increased compilation times, but it
is safe because the duplicates are now in F90 modules and not
in a global namespace. Any updates to the underlying source
code triggers a fresh source-to-source translation step which
keeps these duplicates consistent.

VI. PERFORMANCE

In this section we report on the performance of Hydra, running
a NASA Rotor37 benchmark testcase. On a single node, we
use a mesh with 2.1 millon edges and 4 multigrid levels,
running for 20 time-marching iterations – which is much
shorter than production runs, but is representative of relative
runtimes.

First, Figure 6 shows the performance of the original
unmodified code (jm51) that uses OPlus, then the version
where all parallel loops are outlined (jm51 spd), and finally
the OP2 version which only uses MPI distributed parallelism,
the generated code is sequential on each process (genseq).
We evaluate both the default partitioner (Inertial) as well as
ParMetis for OPlus, and PT-Scotch for OP2 (which performed
better than ParMetis). The benchmark was run on a dual-
socket Intel(R) Xeon(R) Gold 6252 (Cascade Lake generation)
system with 2x24 cores and Hyperthreading enabled (total of
96 MPI processes). The code was compiled with the Intel
Compilers version 2018. It is clear that neither outlining,
nor the conversion to OP2 degrades performance – rather
they slightly improve it; OP2 is 6% faster with the Inertial
partitioner, and 11% faster with PT-Scotch than OPlus with
ParMetis.

Subsequently, we evaluate various shared-memory paral-
lelisations that are now available; hybrid MPI+OpenMP on
the same Xeon Gold server CPU and an NVIDIA V100
PCI-e GPU – the latter with the CUDA 10.2 and PGI 20.4
compilers. Figure 7 shows the results with shared mem-
ory parallelisations. The hybrid MPI+OpenMP currently only
slightly outperforms pure MPI despite less time spent in MPI
communications; this is because the relatively large number
of colours required to colour the blocks (the first step of
hierarchical colouring), which then creates a load imbalance
between OpenMP threads. With a larger mesh size this is
improved, but at this time we did not have such a mesh
available. The CUDA implementation is similarly affected by

26.37

23.78 23.42

16.13

8.41

0

5

10

15

20

25

30

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
o

n
d

s
)

Oplus - 96MPI

OP2 - 96MPI

OP2 - 2MPI x 48OMP

OP2 - CUDA global coloring

OP2 - CUDA atomics

Fig. 7. Performance of Hydra with pure MPI, hybrid MPI+OpenMP,
and CUDA on a pair of Xeon Gold 6252 CPUs and an NVIDIA
V100 GPU

8

16

32

64

128

256

1536 3072 6144 12288 24576

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

Number of Cores

Hydra (Metis)

OP2 Hydra (metis)

Ideal

Fig. 8. Strong scaling a NASA Rotor 37 300M edge problem on
ARCHER

underutilisation when using colouring, but less so when using
atomics – the V100 GPU is 2.8× faster than the dual socket
CPU.

We also evaluate the strong scalability on the UK National
Supercomputer ARCHER [24], a Cray XC30 machine. An
ARCHER node consists of two 2.7 GHz, 12-core E5-2697 v2
(Ivy Bridge) series processors (24 cores in total), each core
can support 2 hardware threads (Hyperthreads). The nodes are
interconnected by a Cray Aries interconnect in a Dragonfly
topology. The code was compiled using Intel Compilers, ifort
version 17.0.0 20160721, and Intel MPI. Figure 8 shows
scaling with a 300M edge mesh, comparing pure MPI versions
of the OPlus and OP2 Hydra – we demonstrate improved
scaling due to improvements to OP2’s MPI communications:
halo exchanges of multiple datasets and reductions of multiple
variables in the same parallel loop are combined in OP2,
whereas these are done separately in OPlus.

VII. CONCLUSIONS

In this paper, we have described our efforts to modernise
an industrial CFD application that has been in development
for over 20 years. After describing the fundamental layout
of computations in the legacy and the modern version, we
presented a number of steps – some that had to be done by
hand, but most automated – that carry out the modernisation. A
key requirement was to make it as easy to repeat as possible

so as to trivialise parallel development of the two versions
and simplify the adoption into the larger workflow – initially
for the academic ASiMoV project, and later for Rolls-Royce
themselves. Since the development of the code conversion
scripts, Rolls-Royce has released a major update to the OPlus
Hydra codebase, which we were able to convert to OP2 in
two days, which shows that our conversion process is indeed
reasonably streamlined.

While the conversion scripts used are only directly applica-
ble to the Hydra application, some of the methods apply more
generally as well; numerous refactoring steps can be carried
out using scripts and regular expressions, without having to
use a full compiler stack to carry out the conversion.

We demonstrated that the modernised code can be run with
shared memory parallel implementations as well, and thus can
exploit hardware such as GPUs. The modernised OP2 version
is also shown to be no worse in performance under identical
testing scenarios, and up to 3× when running on GPUs.

ACKNOWLEDGMENT

This research is supported by Rolls-Royce plc and by the
UK Engineering and Physical Sciences Research Council (EP-
SRC): (EP/S005072/1 - Strategic Partnership in Computational
Science for Advanced Simulation and Modelling of Engineer-
ing Systems - ASiMoV). Gihan Mudalige was supported by
the Royal Society Industry Fellowship Scheme(INF/R1/1800
12). István Reguly was supported by National Research,
Development and Innovation Fund of Hungary, project PD
124905, financed under the PD 17 funding scheme. This
research has been carried out partly in the project Thematic
Research Cooperation Establishing Innovative Informatic and
Info-communication Solutions, which has been supported by
the European Union and co-financed by the European Social
Fund under grant number EFOP-3.6.2-16-2017-00013.

REFERENCES

[1] P. I. Crumpton and M. B. Giles, “Multigrid Aircraft Computations Using
the OPlus Parallel Library,” Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers, vol. -, pp. 339–
346, 1995, A. Ecer, J. Periaux, N. Satofuka, and S. Taylor, (eds.), North-
Holland, 1996.

[2] J.-D. M. P. Moinier and M. Giles, “Edge-based multigrid and precondi-
tioning for hybrid grids,” AIAA Journal, vol. 40, pp. 1954–1960, 2002.

[3] M. C. M.C. Duta, M.B. Giles, “The harmonic adjoint approach to
unsteady turbomachinery design,” International Journal for Numerical
Methods in Fluids, vol. 40, pp. 323–332, 2002.

[4] M. B. Giles, M. C. Duta, J. D. Muller, and N. A. Pierce, “Algorithm
Developments for Discrete Adjoint Methods,” AIAA Journal, vol. 42,
no. 2, pp. 198–205, 2003.

[5] L. Lapworth, “The Challenges for Aero-Engine CFD,” Sept, 2008,
invited Lecture, ICFD 25th Anniversary Meeting, Oxford, UK. www.
icfd.rdg.ac.uk/ICFD25/Talks/LLapworth.pdf.

[6] “EPSRC Prosperity Grant - ASiMoV,” 2018. [Online]. Available:
https://app.dimensions.ai/details/grant/grant.7828967

[7] I. Z. Reguly, G. R. Mudalige, C. Bertolli, M. B. Giles, A. Betts,
P. H. J. Kelly, and D. Radford, “Acceleration of a full-scale industrial cfd
application with op2,” IEEE Transactions on Parallel and Distributed
Systems, vol. 27, no. 5, pp. 1265–1278, 2016.

[8] C. Bertolli, A. Betts, N. Loriant, G. R. Mudalige, D. Radford, M. B.
Giles, and P. H. J. Kelly, “Compiler Optimizations for Industrial Un-
structured Mesh CFD Applications on GPUs,” in Proceedings of the
25th International Workshop on Languages and Compilers for Parallel
Computing (LCPC’12), Sept 2012.

[9] K. Komatsu, R. Egawa, S. Hirasawa, H. Takizawa, K. Itakura, and
H. Kobayashi, “Migration of an atmospheric simulation code to an
openacc platform using the xevolver framework,” in 2015 Third Inter-
national Symposium on Computing and Networking (CANDAR), 2015,
pp. 515–520.

[10] H. Takizawa, S. Hirasawa, Y. Hayashi, R. Egawa, and H. Kobayashi,
“Xevolver: An xml-based code translation framework for supporting hpc
application migration,” in 2014 21st International Conference on High
Performance Computing (HiPC). IEEE, 2014, pp. 1–11.

[11] R. Suda, H. Takizawa, and S. Hirasawa, “Xevtgen: Fortran code trans-
former generator for high performance scientific codes,” International
Journal of Networking and Computing, vol. 6, no. 2, pp. 263–289, 2016.

[12] H. Murai, M. Sato, M. Nakao, and J. Lee, “Metaprogramming frame-
work for existing hpc languages based on the omni compiler infras-
tructure,” in 2018 Sixth International Symposium on Computing and
Networking Workshops (CANDARW), 2018, pp. 250–256.

[13] A. RIKEN, “University of tsukuba. omni compiler project.”
[14] I. Kanamori and H. Matsufuru, “Practical implementation of lattice qcd

simulation on intel xeon phi knights landing,” in 2017 Fifth International
Symposium on Computing and Networking (CANDAR), 2017, pp. 375–
381.

[15] T. Boku, K. Ishikawa, Y. Kuramashi, and L. Meadows, “Mixed precision
solver scalable to 16000 mpi processes for lattice quantum chromo-
dynamics simulations on the oakforest-pacs system,” in 2017 Fifth
International Symposium on Computing and Networking (CANDAR),
2017, pp. 362–368.

[16] R. Mathur, H. Matsuoka, O. Watanabe, A. Musa, R. Egawa, and
H. Kobayashi, “A case study of memory optimization for migration of a
plasmonics simulation application to sx-ace,” in 2015 Third International
Symposium on Computing and Networking (CANDAR), 2015, pp. 521–
527.

[17] D. A. Burgess, P. I. Crumpton, and M. B. Giles, “A Parallel Frame-
work for Unstructured Grid Solvers,” in Computational Fluid Dy-
namics’94:Proceedings of the Second European Computational Fluid
Dynamics Conference, S. Wagner, E. Hirschel, J. Periaux, and R. Piva,
Eds. John Wiley and Sons, 1994, pp. 391–396.

[18] M. B. Giles, G. R. Mudalige, Z. Sharif, G. Markall, and P. H. J. Kelly,
“Performance analysis and optimization of the OP2 framework on many-
core architectures,” The Computer Journal, vol. 55, no. 2, pp. 168–180,
2012.

[19] C. Bertolli, A. Betts, G. R. Mudalige, M. B. Giles, and P. H. J.
Kelly, “Design and Performance of the OP2 Library for Unstructured
Mesh Applications,” ser. Euro-Par 2011 Parallel Processing Workshops,
Lecture Notes in Computer Science, 2011.

[20] The HDF Group. (2000-2010) Hierarchical data format version 5.
[Online]. Available: http://www.hdfgroup.org/HDF5

[21] M. Giles, G. Mudalige, and I. Reguly. (2010-2020) OP2 MPI Developer
Guide. [Online]. Available: https://op-dsl.github.io/docs/OP2/mpi-dev.
pdf

[22] G. Mudalige, M. Giles, J. Thiyagalingam, I. Reguly, C. Bertolli, P. Kelly,
and A. Trefethen, “Design and initial performance of a high-level un-
structured mesh framework on heterogeneous parallel systems,” Parallel
Computing, vol. 39, no. 11, pp. 669 – 692, 2013.

[23] “Scotch and PT-Scotch,” 2013, http://www.labri.fr/perso/pelegrin/
scotch/.

[24] “UK National Supercomputing Service - ARCHER,” 2020. [Online].
Available: https://www.archer.ac.uk/about-archer/

