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Abstract. The non-relativistic electronic Hamiltonian, HHne+aHee, is linear in coupling strength parameter (a), but 

its eigenvalues (electronic energies) have only quasi-linear dependence on it. Detailed analysis is given on the 

participation of electron-electron repulsion energy (Vee) in total electronic energy (Etotal electr,k) in addition to the well-

known virial theorem and standard algorithm for vee(a=1)=Vee calculated during the standard- and post HF-SCF 

routines. Using a particular modification in the SCF part of the Gaussian package, we have analyzed the ground state 

solutions via the parameter “a”. Technically, with a single line in the SCF algorithm, operator was changed as 

1/rija/rij with input “a”. The most important findings are, 1, vee(a) is quasi-linear function of “a”, 2, the extension 

of 1st Hohenberg-Kohn theorem (0(a=1)  Hne  Y0(a=0)) and its consequences in relation to “a”. The latter allows 

an algebraic transfer from the simpler solution of case a=0 (where the single Slater determinant Y0 is the accurate 

form) to the physical case a=1. Moreover, we have generalized the emblematic Hund’s rule, virial-, Hohenberg-Kohn- 

and Koopmans theorems in relation to the coupling strength parameter.  
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system (TNRS); Evolution of LCAO parameters in HF-SCF algorithm; Generalization of Hund’s rule, virial-, 
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INTRODUCTION 
 

     The non-relativistic, spinless, fixed nuclear coordinate electronic Schrödinger equation (SE) for molecular 

systems containing M atoms and N electrons with nuclear configuration {RA, ZA}A=1
M in free space is  

H(a)yk(a) (HHne+ aHee) yk(a)  = enrgelectr,k(a) yk(a) .                                      (1)  

Energy operators are the kinetic, H-i=1
Ni

2 /2, nuclear–electron attraction, Hne-i=1
NA=1

M
 ZARAi

-1, and 

electron–electron repulsion, Heei=1
Nj=i+1

Nrij
-1. The (yk(a),enrgelectr,k(a)) is the k-th eigenvalue pair of 

electronic Hamiltonian H(a), for which we use notations (Yk,eelectr,k) if a=0 and (k,Eelectr,k) if a=1. The yk(a) 

is anti-symmetric, well behaving, normalized as <yk|yk>=1 and the one-electron density is k(r1,a)= 

N∫yk
*ykds1dx2…dxN. S0 (generally s0(a)) is a single determinant approximation for 0 (a=1, generally for 

y0(a)) via HF-SCF/basis/a energy minimizing algorithm, enrgelectr,k(a)≤ enrgelectr,k+1(a) for k=0,1,2,.. .The 

ground state (k=0) two-electron density is b(r1,r2,a)= (N(N-1)/2)∫y0
*y0ds1ds2dx3…dxN providing 

∫b(r1,r2,a)dr1dr2= ((N-1)/2)∫0(r1,a)dr1= N(N-1)/2. (∫b(r1,r2,a)dr1dr2= number of electron pairs, and 

∫0(r1,a)dr1= N= number of electrons for any value of a.) The yk(a=0)=Yk has a single determinant form, 

while yk(a≠0) does not. Eelectr,0(method) approximates Eelectr,0 by a certain method: Hartree-Fock Self 

Consistent Field (HF-SCF) and Kohn-Sham (KS) of density functional theory (DFT) for the vicinity of 

stationary (equilibrium or transition state) points, configurations interactions (CI) for any nuclear geometry, 

etc.. The a=1 is the physical (real) case, where k and Eelectr,k are the kth excited state (k=0,1,2,...) anti-

symmetric wave function (with respect to all spin-orbit electronic coordinates xi≡ (ri,si)) and electronic 

energy, resp.; Etotal electr,k=Eelectr,k+Vnn, where Vnn A=1
MB=A+1

M ZAZB/RAB is the nuclear repulsion term. Case 

a=0 mathematically provides a good starting point to solve the very important problem when a=1. The 

physical Vee vee(a=1)= <0|Hee|0> where vee(a)≡ i=1
Nj=i+1

N∫y0*y0(a/rij)dx1dx2…dxN=  
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a(N(N-1)/2) <y0|r12
-1|y0>= a<y0|Hee|y0> with normalized y0. The a<0 would mean “attractive electrons”. The 

dimensionless coupling strength parameter "a" scales the electron-electron interaction energy, vee(a). For 

example, “a” is capable [1-2] to correct the HF-SCF energy remarkably well with scaling “a” a bit below 

unity, as well as it defines the adiabatic connection (AC) in KS formalism. The kinetic energy is 

T≡<0|H|0> and the electron-nuclear attraction is Vne≡<0|Hne|0>.  

     HF-SCF/basis/a=1 procedure minimizes the functional <S0|H|S0> (> <0|H|0>≡ Eelectr,0= T+Vne+Vee) for 

a normalized single Slater determinant approximate wave function (S0) with constrained (ortho-normalized) 

molecular orbitals (MO). The 1% error of <S0|H|S0> (with at least minimal basis set at near stationary 

points) known as correlation energy (Ecorr) is negative by the variation principle (VP), necessary for chemical 

accuracy (CA, 1 kcal/mol). 

     The HF-SCF/basis/a=0 algorithm solves (HHne)Yk= eelectr,kYk for ground- (k=0) and excited states (k>0, 

see trick below), with Slater determinant (correct form) for Yk with numerical (basis set) error and 

Ecorr(a=0,k≥0)=0; we notate energies as t≡<Y0|H|Y0> and vne≡<Y0|Hne|Y0>. The HF-SCF/basis/a=1 or a≠0 

provides S0 or s0(a) determinant (incorrect form) for 0 or y0(a) with Ecorr(a≠0,k=0)<0 and numerical (basis 

set) error, as well as for k>0 the estimation is very weak. Importantly, the S0 is very close to Y0; lima0 or 1 

s0(a)= Y0 or S0. Moreover, calculating Y0 in this way is not restricted to the vicinity of the stationary point, 

while if a≠0 it does. The HF-SCF/basis/a=0 calculation is faster, more stable and less memory taxing in 

comparison to HF-SCF/basis/a=1. Recall the well-known device in the theory of ordinary diff. equations 

when one starts from the elementary homogeneous (e.g. y’’+y=0) vs. non-homogeneous case (e.g. 

y’’+y=f(x)): Here we use similar device for partial diff. eigenvalue Eq.1 via solving with a=0 (simpler task) 

to generate somehow the solution for a=1.  

 

CALCULATING GROUND STATE WITH a=0 
     Totally non-interacting reference system (TNRS) is defined with a=0. For any “a”, Eq.1 is a linear 

partial diff. eigenvalue equation, the VP holds, the 1st (“0(r1,a) defines y0 and the nuclear frame”) and 2nd 

(“VP for 0(r1,a) in the DFT functional”) Hohenberg – Kohn (HK) theorems hold. Furthermore, the DFT 

functional vne[0,trial]= -A=1
MZA∫RA1

-10,trial(r1,a)dr1 is 100 % accurate form, while the kinetic DFT functional 

has the known difficulty for any “a”. The energetically lowest lying eigenvalue pair (eelectr,0,Y0) corresponds 

to (Eelectr,0,0), Eelectr,0 >> eelectr,0 for any molecular system (in stationer or non-stationer geometry, the large 

difference stems from the lack of Vee(a=1) when a=0). The ground state versus the energetically lowest lying 

state with an enforced spin multiplicity feature is also the same for any “a”. However, if spin-spin interaction 

is not considered via Coulomb repulsion, Hund’s rule does not apply for a=0 itself, but extension and 

approximation in e.g. Eq.20 below sets it back on the right track. On the other hand, there are major 

mathematical differences between a=1 and a=0: Operator Hee is very special in the sense that algebraically it 

is the “simplest” term, but in contrast it introduces the most difficult effect in HF-SCF, known as the non-

classical Coulomb effect. Hee operator is responsible that a single Slater determinant S0 for 0 (a=1) is not 

enough for total accuracy, although in the vicinity of stationary points it provides a good approximation, and 

it can provide many characteristic properties of the ground state eigenvalue, however, a=0 eliminates this 

problem. 

     If a=0, Eq.1 becomes (HHne)Yk= i=1
Nhi= eelectr,kYk, where hi≡ -i

2/2 -A=1
MZA RAi

-1 is the one-electron 

operator. It decomposes to one-electron equations with linear dependence on “a” as 

(hi+ aVee,eff(ri))i(ri)= i i(ri)                                                          (2) 

where i(ri) is the ith MO, and technicallyi counts the MOs with the index i, so the notation is reducible 

from (hi, i(ri),i)  to (h1, i(r1),i). Vee,eff is the effective potential from electron-electron repulsion; (other 

way [3] is shifting Hne algebraically into Vee,eff, called Veff). Vee,eff is expressed with the known J and K 

integrals in HF-SCF theory, or Vee,eff(ri)= ∫(r2,KS)ri2
-1dr2 + Vxc(ri) in KS formalism (the 1st term is the 

classical Coulomb term,  the 2nd is the non-classical Coulomb term for “exchange-correlation”). Vee,eff(ri) is 

the term where the N equation in Eq.2 is coupled if a≠0. Eq.2 is coupled, though virtually not coupled, so the 

100% adequate anti-symmetric solution for the equation system in Eq.2 (but not for a≠0 in Eq.1) is a Slater 

det, and this system is known as “non-interacting reference system” [3]. If even a=0 is set, a single Slater 

determinant as anti-symmetric solution is not only 100 % adequate for Eq.2, but also for a=0 in Eq.1, since 

all operators are one-electron operators, and we call a=0 in Eqs.1-2 as TNRS. More simply, Eq.2 should not 

be considered as an equation system containing N equations enumerated by i (hii= ii), but in fact it is a 

single eigenvalue equation (h1i= ii) providing ortho-normality <i|j>= ij, (in HF-SCF/bais/a≠0 the orto-



 3 

normality is enforced). Eigenvalues of Eq.2 are (i, i(r1)) for i=1,2,…, the i=1 is the lowest lying state and 

it is the lowest lying MO for a=0 in Eq.1 in its k=0 ground state. The single Slater determinant for a=0 in 

Eq.1 is accomplished for N electrons from the eigenvaues of Eq.2 (Y0=s0(a=0)), just as in the basic HF-SCF 

theory (S0=s0(a=1)). Eq.2 with the value of N and Eq.1 with a=0 are equivalent, more, it holds for symmetric 

and anti-symmetric Yk as well.  If a=0 and e.g. i= f(r1), g(r1), h(r1) are states of Eq.2 (MO’s of Eq.1) with 

energies 1 ≤ 2 ≤ 3, resp. and N=3, some anti-symmetric eigenfunctions (wave functions) and eigenvalues 

(electronic energies) are Y0=|1f, 2f, 3g> with eelectr,0=21+2, Yk’=|1f, 2g, 3g> with eelectr,k’=1+22 and 

Yk’’=|1f, 2g, 3h> with eelectr,k’’=1+2+3, etc.. The spin multiplicities are 2(1/2 –1/2 +1/2)+1=2, 2, 4, resp.. 

The electronic energy of the system in Eq.1 with a=0 is the sum of energy levels, generally speaking weighted 

as populated: 

{eelectr,k= i ni i    if    a=0}          and        {enrgelectr,k(HF-SCF/basis/a)≠ i ni i    if    a≠0},       (3) 

where ni is the population of the ith energy level: 0, 1 or 2, the lattermost is with opposite spins. Also, i=1
ni=N. 

Eq.3 between MO energies (i) and ground state electronic energy (eelectr,0) holds via HF-SCF/basis/a=0, but 

not via (HF-SCF or KS)/basis/a≠0, in the latter some cross terms must be subtracted [4] (that goes to zero if 

a0). The definition of restricted (RHF) and unrestricted (UHF) form of Slater determinants also lose their 

necessity if a=0. For a value of N and multiplicity 2S+1= 2si+1 in the regular way, the HF-SCF/basis/a=0 

algorithm calculates the lowest lying N/2 or (N+1)/2 energy values (i) and MOs (i), the latter with linear 

combination of atomic orbitals (LCAO) expansion of the basis set for Eq.1 with a=0 or Eq.2.  

     Links between a=1 and a=0 (TNRS) in relation to ground state comes from <0|Hee|Y0>= <0|H – 

(HHne)|Y0>= <0|H|Y0> -<0|(HHne)|Y0>= <Y0|H|0> -eelectr,0<0|Y0>= Eelectr,0<Y0|0> -

eelectr,0<0|Y0> by the hermetic property. Finally, with ≡ <0|r12
-1|Y0>/<0|Y0> one obtains 

Eelectr,0= eelectr,0 + <0|Hee|Y0>/<0|Y0>= eelectr,0 + (N(N-1)/2) .                            (4) 

The  0.3-0.5 h and ratio (Eelectr,0 - eelectr,0)/eelectr,0  -0.4 as functions of molecular frame (Hne) are quasi-

constants. Compare to the exactly constant value 2 in virial theorem: (Vnn+Vne+Vee)/T= –2= (Vnn+vne)/t 

(Vnn+ <Y0|Hne|Y0>)/<Y0|H|Y0> holding for atoms, atomic ions and equilibrium/transition state geometry 

molecules, i.e. the value 2 is invariant on Hne. There is significant difference between Vee≡ <0|Hee|0>= 

(N(N-1)/2)<0|r12
-1|0> and the corresponding <0|Hee|Y0>/<0|Y0>= (N(N-1)/2)<0|r12

-1|Y0>/<0|Y0>. 

The divisor <0|0> comes up in Vee if it is not normalized to unity, making the algebraic analogy even 

closer between Vee and (N(N-1)/2). Vnn is cancelled in Etotal electr,0 - etotal electr,0= Eelectr,0 - eelectr,0. A more general 

expression between k and k’ excited states, coming from the same derivation as  

Eelectr,k= eelectr,k’ + (N(N-1)/2)<k|r12
-1|Yk’>/<k|Yk’>                                        (5) 

and Eqs.4-5 forecast the generalization of 1st HK theorem, detailed later.  

     Obviously Eelectr,k >> eelectr,k by the 1/rij ≥ 0, recall CA. From the VP, let the normalized Y0 be a trial for 

a=1, and one gets Eelectr,0 ≤ <Y0|H|Y0>= <Y0|Hee|Y0> + <Y0|HHne|Y0>= <Y0|Hee|Y0> + eelectr,0, that is 

Eelectr,0 ≤ eelectr,0 + <Y0|Hee|Y0> .                                                      (6) 

The reverse situation, when 0, the solution for a=1 is a trial function for a=0, one gets the simpler 

eelectr,0 ≤ <0|HHne|0>  .                                                         (7) 

In trivial case, 0(N=1)= Y0(N=1). Via a=1, it separates as <0|H|0>= <0|HHne|0> + <0|Hee|0>= 

Eelectr,0, and the right hand side is majored by Eq.6 as <0|HHne|0> + <0|Hee|0> ≤ eelectr,0 + <Y0|Hee|Y0>, 

and with Eq.7 one obtains 

  <0|Hee|0> ≤ <Y0|Hee|Y0>  .                                                        (8) 

The counterpart of Eq.6 comes from Eq.7 as eelectr,0 + <0|Hee|0> ≤ <0|HHne|0> + <0|Hee|0>= 

<0|H|0>= Eelectr,0 which is 

Eelectr,0 ≥ eelectr,0 + <0|Hee|0>  .                                                     (9) 

eelectr,0 << (eelectr,0+<0|Hee|0>) ≤ Eelectr,0= (eelectr,0+<0|Hee|Y0>/<0|Y0>) ≤ (eelectr,0+<Y0|Hee|Y0>)  (10) 

is the full relation in summary, which extends Eq.8 as  

<0|Hee|0>) ≤ <0|Hee|Y0>/<0|Y0> ≤ <Y0|Hee|Y0>  .                              (11) 

     The relationships in Eq.4 to 10 can be developed further with the Hellmann–Feynman theorem [5] 

Eelectr,k/= <k|H()/|k> with normalization <k|k>=1 and :=a. Using the anti-symmetric property 

and H(a)/a= (aHee)/a= Hee for ground state (k=0)       

enrgelectr,0(a)/a= <y0|Hee|y0>= (N(N-1)/2) <y0|r12
-1|y0>                                (12) 

Eelectr,0 - eelectr,0= (N(N-1)/2) ∫ [0,1]<y0|r12
-1|y0>da                                       (13) 

∫ [0,1]<y0|r12
-1|y0>da= <0|r12

-1|Y0>/<0|Y0>                                          (14) 
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where the interval [0,1] can be extended to a general [a1,a2]. (The y0(a) is normalized for all “a”, but <0|Y0> 

in the denominator in Eq.4 or 14 is not necessarily unity.) The right hand side of Eq.12 is  

enrgelectr,0(a)/a= ∫b(r1,r2,a) r12
-1dr1dr2= vee(a)/a ,                                      (15) 

where the linear multiplier “a” in vee has disappeared, it has only effect from inside the normalized y0. The 

a=0 cancels Hee, but the non-vanishing value vee(a)/a is present. Via Eq.15, Eq.13 is alternatively   

Eelectr,0 - eelectr,0= ∫ [0,1] ∫b(r1,r2,a) r12
-1dr1dr2da .                                        (16) 

The classical approximation in KS [5] for exchange-correlation and self-interaction yields enrgelectr,0(a)/a 

(1/2)∫0(r1,a)0(r2,a)r12
-1dr1dr2 and Eelectr,0-eelectr,0 (1/2)∫[0,1]∫0(r1,a)0(r2,a)r12

-1dr1dr2da. Eqs.15-16 do not 

have exchange-correlation effect by the use of b0 [6-7]. The 2nd derivative from Eq.12 for real y0 is 

2enrgelectr,0(a)/a2=N(N-1)<y0|r12
-1|y0/a>=∫(b(r1,r2,a)/a)r12

-1dr1dr2=(/a)∫b(r1,r2,a)r12
-1dr1dr2. (17) 

     Importantly, enrgelectr,0(a)/a const., more, enrgelectr,0(a) is quasi-linear with simple curvature and less 

linear with increasing basis set (Fig.1). The enrgelectr,0(a)/a is a quasi-constant  “linear approximation” is 

possible (Eq.4Eq.20), as well as the LCAO coefficients are close to each other between Y0 and 0. 

Generalization of Eq.4 comes from <y0(a2)|(a2-a1)Hee|y0(a1)>= <y0(a2)|H(a2)–H(a1)|y0(a1)>= 

<y0(a2)|H(a2)|y0(a1)> - <y0(a2)|H(a1)|y0(a1)>= (enrgelectr,0(a2) -enrgelectr,0(a1))<y0(a2)|y0(a1)>, from which  

 enrgelectr,0(a2)= enrgelectr,0(a1) + (a2-a1)(N(N-1)/2)<y0(a2)|r12
-1|y0(a1)>/<y0(a2)|y0(a1)>         (18) 

with (a1,a2)≡ <y0(a2)|(a2-a1)r12
-1|y0(a1)>/<y0(a2)|y0(a1)> and similarly for excited states. If a1=0 and a2=a 

enrgelectr,0(a) = eelectr,0 + (N(N-1)/2)<y0|ar12
-1|Y0>/<y0|Y0> .                             (19) 

The lima1a2=a in Eq.18 yields Eqs.12 or 15. Although vee(a=0)=0 is trivial, but (vee(a)/a)|a=0 0   

enrgelectr,0(a)/a|a=0= (N(N-1)/2)<Y0|r12
-1|Y0> 0 in Eqs.12,15 (Fig.1). On Fig.1 the relative (enrgelectr,0(a)- 

eelectr,0)/eelectr,0= <y0|aHee|Y0>/(<y0|Y0><Y0|H+Hne|Y0>) value from Eq.19 is plotted, wherein y0(a) is 

approximated with s0(a) from a HF-SCF/basis/a algorithm, the slope at a=0 is ((enrgelectr,0(a)-

eelectr,0)/eelectr,0)/a|a=0= (enrgelectr,0(a)/a)|a=0/eelectr,0= <Y0|Hee|Y0>/<Y0|H+Hne|Y0> varying weakly with “a”. 

     Eq.17 yields near zero value, because 1= <y0|y0>  0= 1/a= <y0|y0>/a= 2<y0|y0/a>  vee(a) 

a<y0|Hee|y0> is large, while <y0|r12
-1|y0/a> in Eq.17 is small  2enrgelectr,0(a)/a2 0  Eqs.18-19 are about 

straight lines with respect to “a”, see Fig.1  Eq.19 with Eq.12 or 15 yields enrgelectr,0(a)  eelectr,0 + 

[(enrgelectr,0(a)/a)|a=0]a= eelectr,0 + a[(N(N-1)/2)<Y0|r12
-1|Y0>], and at a=1 

Eelectr,0 ≈ Eelectr,0(TNRS)  eelectr,0 + (N(N-1)/2)<Y0|r12
-1|Y0>  .                          (20) 

More generally, the right side is eelectr,0 + (vee(a)/a)|a=0 for which Eq.10 gives the lower boundary. The last 

term in Eq.20 is 2J – K, the known Coulomb- and exchange integrals well known in HF-SCF formalism for 

S0(a=1), here for Y0(a=0). KS approx. in Eq.20 yields (N(N-1)/2)<Y0|r12
-1|Y0>≈ ½0(r1,a=0)0(r2,a=0)r12

-1 

dr1dr2, very generally, (N(N-1)/2)<yk(a)|r12
-1|yk(a)> = bk(r1r2,a)r12

-1dr1dr2 ≈ ½k(r1,a)k(r2,a)r12
-1dr1dr2. 

The latter suffers from exchange-correlation like Eq.20, (recall if one omits the term r12
-1 (changing the 

repulsion op. to electron counting) one obtains N(N-1)/2 ≈ N2/2, indeed, not equal). From the VP, the S0 from 

HF-SCF/basis/a=1 is energetically better than Y0 from HF-SCF/basis/a=0 to use in Eq.1 with a=1, that is 

Eelectr,0    <    <S0|H|S0>    ≤    eelectr,0 + (N(N-1)/2)<Y0|r12
-1|Y0>  .                        (21) 

In Eq.21 (more general than Eq.6) equality may come up in “≤” when small e.g., STO-3G basis set is used 

(a fortunate coincidence). Finishing this section from a mathematical point of view, if an additional operator 

is in effect beside Hee referring to e.g., external forces, the algorithm or procedure is exactly the same as the 

one leading to Eq.20 and its discussion; the operator Hee must be changed or to be extended accordingly.   

     Virial theorem at any value of “a”, especially at a=1 and a=0 (TNRS), holds as  

(Vnn + <y0|Hne|y0> + a<y0|Hee|y0>)/<y0|H|y0>= -2                                    (22) 

for atoms (Vnn=0) and stationary molecules. For a=1, it is (Vnn + Vne + Vee)/T= -2, while for a=0, (Vnn+vne)/t= 

-2. Because Etotal electr,0= T+Vne+Vee+Vnn and etotal lectr,0= t+vne+Vnn, the virial theorem provides for atoms and 

stationary molecules that Etotal electr,0= -T and etotal electr,0= -t. While Eq.4 holds anywhere on the PES; the simpler 

form of virial theorem in Eq.22 is restricted to atoms and stationary points. As a consequence, Eq.4 can be 

expanded with the virial theorem with the restriction of Eq.22 for difference t-T as 

t-T= Etotal electr,0–etotal electr,0=  Eelectr,0-eelectr,0= <0|Hee|Y0>/<0|Y0>= (N(N-1)/2) .            (23) 

Eelectr,0 - eelectr,0 >> 0 (Eq.10) with Eq.23 yields t >> T.  

Important “back restrictions” of Eq.23 is that only atoms strictly obey Eq.23, the reason: If parameter “a” 

alters, the stationary geometries for t, T, or equivalently for eelectr,0 and Eelectr,0, are not the same; but still the 

t > T is true for any geometry. This argument via Eq.23 is valid not only for [0,1] but for the end points of  

any [a1,a2]. 
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     Generalization of 1st Hohenberg-Kohn theorem (1964) from a=1 to a=0 (TNRS) and general “a”:  

Beside 0{0, Eelectr,0, all properties}, the 1st HK theorem [3, 5], 0{N,ZA,RA}H0Eelectr,0, all 

properties}, provides that 0  H  HHne  Y0, finally, Y0(a=0)  Hne  0(a=1) or  

0(r1,a1)    or     y0(a1)    0(r1,a2)    or     y0(a2) ,                                       (24) 

0(r1,a=0)  from H+Hne     Eelectr,0 from H+Hne+Hee .                                  (25) 

The latter is very important in DFT practice (see Eqs.4, 5, 20). The generalization of a 2nd HK theorem is in 

fact trivial, since H+Hne+aHee is linear not only for the a=1 (source of 2nd HK) but also for a≠1. The HK 

theorems for excited states are still problematic for any “a” not only for a=1.  

     Particular functional link between a=1 and a=0 (TNRS) in ground state (k=0): The LCAO 

coefficients do not differ significantly (at least not in the vicinity of stationary points), so we can assume  

w(r1,r2,…rN) r-symmetric to improve 0≈ S0 by 0= w(r1,r2,…rN)Y0. Analytical form of w is not simple 

and unknown. For example, using w=i=1…Np(ri) with a high enough quality LCAO for p, the Y0 becomes 

energetically better, but remains a single Slater determinant belonging to a better basis set, and this 

(i=1…Np(ri))Y0 still cannot totally reach 0, because of its single determinant nature. If w is good enough, 

wY0 may approach 0 more efficiently than S0. With basis set limit and general “a”, the link with r-symmetric 

w is 

y0(a)= w(r1,r2,…rN,a)Y0 ,                                                           (26) 

between two y0(a0), particularly between y0(a=1)=0 and y0(a=0)=Y0. Spin-orbit coordinates (xi) is not 

necessary in w, since the pre-calculated Y0(a=0) already contains it. Furthermore,  

0(r1,a=1)= N||2 := Nw2|Y0|2= Nw2(|Y0| ds1…dsN)dr2…drN vs. 0(r1,a=0)= N|Y0|2ds1dx2…dxN  (27) 

with normalization <y0(a)|y0(a)>= <wY0|wY0>= 1= <Y0|Y0>, and changing from Y0 to wY0 may need 

renormalization. A DFT version with wDFT(r1) between the physical and TNRS one-electron densities is 

0(r1,a=1)= [wDFT(r1)]20(r1,a=0),                                                  (28) 

the square ensures 0≥0, the normalization is N= 0(r1,a=1)dr1= [wDFT(r1)]20(r1,a=0)dr1, see more in 

Appendix 1 and 2. Aside from <w|w>=, wY0 must be well behaved x-anti-symmetric function with 

normalization constraint <wY0|wY0>=1. As a counterpart of Eqs.19-20, with a pre-calculated Y0 at a=0 the 

variation equation for “a” (multiplying Eq.35 of Appendix 1 with (wY0)* from the left and integrating) is  

enrgelectr,0(a)= eelectr,0  -(N/2)<wY0|Y01
2 w> -N<wY0|1Y01w> + a<wY0|Hee|wY0> ,          (29) 

wherein the equality holds with the minimizing r-symmetric w via VP. If a=0  w(a=0)=1 and 

enrgelectr,0(a=0)= eelectr,0, if a=1  enrgelectr,0(a=1)=Eelectr,0, as well as if 0Y0 i.e., w(a=1)1 crude 

approximation is taken, then Eq.29 reduces to Eq.20 (simply because 1w=0). Comparing Eq.29 to Eq.20 

with a=1, the N{(<wY0|Y01
2w>/2 + <wY0|1Y01w>} converts (corrects) the t+vne to T+Vne. 

 

COMPUTATION PROPERTIES OF TNRS (a=0)  
     The quasi-constant property of  in Eq.4 is illustrated with Eelectr,0(G3) [8-9] of 149 ground state 

equilibrium neutral (ZA=N) molecules (max(ZA)<11, N≤68, order # increases with N). Fundamental 

property is that the TNRS (a=0) has similar LCAO coefficients to that of HF-SCF/basis/a with any “a” for 

the same molecular system on the same basis level, most importantly at a=1. Generally, LCAO coefficients 

are quasi-independent on “a”. The electron-electron repulsion energy (Eelectr,0-eelectr,0 in Eq.4) is quasi-linear 

w/r to the number of electron pairs N(N-1)/2, and enrgelectr,0(a) is quasi-linear w/r to “a” (Fig.1). Finally,  is 

roughly a quasi-constant irrespective of molecular frames (Hne i.e. {RA,ZA}A=1
M) and the number of electrons 

(N) in atoms and in equilibrium molecular systems, recall e.g. the (exact) value 2 of virial theorem. This 

quasi-constant cannot provide enough accuracy in particular calculations, because its fluctuation (Fig.2) with 

Hne causes error larger than CA: If it was a rigorous constant, Eelectr,0 (a=1) could be extrapolated simply and 

directly from eelectr,0(a=0) by Eq.20. The two curves, Eelectr,0(G3) and eelectr,0 run together like the same 

fingerprints as a function of molecular frame supporting that case a=0 has rich pre-information for a=1.  

     Via Eq.4, for (these 149 neutral) equilibrium molecules form the ratio 

(Eelectr,0-eelectr,0)/eelectr,0= (Eelectr,0/eelectr,0) -1= <0|Hee|Y0>/[<0|Y0><Y0|H+Hne|Y0>] .         (30) 

Inspecting Fig.2, recall the robust change in energies Eelectr,0 and eelectr,0 as a function of nuclear frame (not 

plotted) and the definitely non-robust change in the interval  –0.4 < (Eelectr,0-eelectr,0)/eelectr,0 < -0.3 (standard 

dev. 0.04 which decreases with increasing N) of the lower curve plotted, as well as the 0.9 value of the 

upper curve proves Eq.20. In Eq.30 not the exact functions, but the Eelectr,0(G3) and eelectr,0(HF-SCF/basis/a=0) 

values are used for Fig.2. By Eq.20 or lima0 0Y0, Eq.30 reduces to  

(Eelectr,0(TNRS)-eelectr,0)/eelectr,0= <Y0|Hee|Y0>/<Y0|H+Hne|Y0> ,                          (31) 
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as well as 

 (Eelectr,0-eelectr,0)/(Eelectr,0(TNRS)-eelectr,0)= <0|Hee|Y0>/[<0|Y0><Y0|Hee|Y0>] .           (32) 

We have demonstrated the behavior of (N(N-1)/2)<0|r12
-1|Y0>/<0|Y0> in Eqs.1 and 4 introduced via  as 

the counterpart of the similar but not the same quantity Vee (N(N-1)/2)<0|r12
-1|0>. The N(N-1)/2 is the 

exact difference between the ground state electronic energy (Eelectr,0) of the real energy operator or 

Hamiltonian, HHne+Hee, with a ground state wave function 0 and the ground state energy (eelectr,0) of 

energy operator HHne with ground state eigenfunction Y0, while Vee is the energy part electron-electron 

repulsion in the Eelectr,0 value coming from the operator part Hee.  

     Quick power series estimation for ground state (k=0) from a=0 (TNRS) to a=1 is possible for 

example, because Eq.20 recovers the large part of energy difference (Eelectr,0-eelectr,0), although still far from 

CA. One can rewrite every density functional as a function of the moments of the electron density [7], n, 

making sure the moments are complete. It allows to replace the functional analysis in DFT with a simple 

multivariate calculus, which is a huge formal advantage. It assumes that quantities can be written as a linear 

function of the moments, e.g. the Thomas-Fermi (T cFdr1) or Weizsacker approximation (T 

(1/8)|1|2/dr1), Dirac formula (Vee BDdr1), Parr terms cAB(dr1)B with wisely chosen A and B 

keeping it scaling correct up to infinity for both, T and Vee, as well as Kristyan’s approximation Ecorr 

kc<S0|H|S0>+kee<S0|Hee|S0>, wherein a=1+kee corrects the HF-SCF/basis/a=1 calculation for Eelectr,0. In the 

latter, 0<|kc|,|kee|<0.01 is quasi-universal for stationer/equilibrium nuclear frames. (If all energy correction is 

only attributed to electron–electron interaction (kc:=0), the HF-SCF/6-31G**/a=0.99353272 improves the 

average deviation of HF-SCF/6-31G**/a=1 from 0.7851 h to 0.1255 h on average in approximating Eelectr,0.) 

Common in these formulas that, the first main terms come from plausible assumptions and derivations, but 

secondary and higher terms (with empirical parameters) definitely necessary for CA, (e.g. the Thomas-Fermi 

alone for T fails to describe chemical bonds, etc.). A drawback is that increasing the power decreases the 

range of molecular systems in terms of accuracy, so moment expansion has not come before DFT correlation 

calculations; not being as fortunate as in DFT formulas wherein the expressions are more compact (and not 

sums, see e.g. generalized gradient approximations (GGA)).  

     With the idea of TNRS, Eq.20 can be corrected using the pre-calculated t <Y0|H|Y0>, vne <Y0|Hne|Y0> 

and z a<Y0|Hee|Y0> in an Lth order power series (“a” is not to be confused with coefficients aj’s) as 

Eelectr,0≈ eelectr,0 + j=1
L(ajtj+bjvne

 j+cjzj)= Eelectr,0(TNRS)+ (a1t+b1vne+(c1-1)z)+ j=2
L(ajtj+bjvne

j+cjzj) .  (33) 

Moller-Plesset perturbation uses the excited states (Yk) in the expansion (“vertical” algebraic way), while 

Eq.33 uses only Y0 (“horizontal” algebraic way). 2nd order (L=2) coefficients in Eq.33 (by least square fitting 

to 149 ground state G3 molecular energies to minimize the average absolute deviation) are    
a1= -0.761233,      b1= -0.448435,      c1= 0.430207      

a2=  2.270220E-004, b2= -5.068453E-005, c2= 1.678742E-004 

while the 3rd order (L=3) coefficients are  
a1= -0.853118,      b1= -0.519268,      c1=  0.289831     

a2=  5.224182E-004, b2= -1.321651E-004, c2=  6.744563E-004 

a3= -2.026111E-007, b3= -2.221198E-008, c3= -4.823247E-007. 

The average absolute deviation in h and % and the maximum absolute deviation in h from G3 values are 
L=2 in Eq.33     : 1.615905 h or 1.02 %,  7.015398 h 

L=3 in Eq.33     : 1.563234 h or 1.06 %,  7.270620 h   

HF-SCF/STO-3G/a=1: 3.497650 h or 1.88 %, 11.976560 h. 

The correlation effect in HF-SCF/basis/a=1 is indeed corrected by Eq.33 (about 3.51.6 or 127), but the 

L=3rd order does not yield much better improvement over L=2nd order expansion for Ecorr, a typical problem 

of this method. More, larger L yields not-realistic (very small) values (with alternating sign) for coefficients. 

Negative a1 and |a1|<1 is necessary to subtract a part of kinetic energy away (T is targeted) because t>>T 

(Eq.23), also for b1 to keep the virial theorem hold, as well as 0<c1<1 should be to be plausible with Eq.11. 

Approximate value of ratio in Eq.32 is 0.8-0.9 (Fig.2) showing plausible correspondence with c1. While HF-

SCF/STO-3G/a=1 is variational (Ecorr<0), the Eq.33 is not (positive and negative deviation from Eelectr,0), a 

known fact in DFT. (For magnitude, Ecorr c(N-1) in HF-SCF/basis/a=1, i.e. mainly and quasi-linearly 

depends on N in molecular systems, but it depends on Hne also and -0.045<c[h]<-0.035 [10] for basis= STO-

3G or 6-31G*; for large molecules, macroscopic media, crystals and metals it reads as (Ecorr/N)Hne c, but 

this crude estimation is below CA, however, weighting with partial charges, CA can be reached.) 

     The general linear moment expansion, e.g. for Vee(a=1) is Vee C0
Jdr1+j=1

ncj0
jdr1, where term with 

C comes from plausible derivation, the others with cj are empirical from a fit. For example, Parr scaling 
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correct series are Vee CJ[0
6/5dr1]5/3+j=1

nCxj[0
 [1+1/(3j)]dr1]j and an algebraically similar for T, but these 

forms have problem described above. More powerful forms are based on Padé approximation, e.g. the two  

Vee Vee
Padé-1 [ (i ai0

i)/(1+ j bj0
j) ]dr1  or  Vee Vee

Padé-2 (i ai0
i dr1)/(1+ j bj0

j dr1).     (34) 

In the right in Eq.34, 0dr1=N is consistent with the normalization and analytical evaluation is possible with 

GTO, but numerical integration is necessary for STO, while the left one needs numerical integration in both 

basis sets, as well as the right equation can be linearized for parameter fit. In these formulas the 0 0(r1,HF-

SCF/basis/a), Parr worked directly with a=1, but a= 0 (TNRS) is also a choice to estimate for a=1.  

     Speed of convergence in HF-SCF/basis/a can be represented e.g. with hydrogen-fluorid: 1 step (a=0, 

TNRS) vs. 5 steps (a=1). HF-SCF/basis/a=0 needs only two steps, more exactly one, after setting up an initial 

guess for LCAO parameters, the eigensolver yields the Y0 in the next step, irrespectively of molecular size, 

(in fact HF-SCF convergence is not needed at all, only one step engensolving). Starting with the commonly 

used Harris approximation for initial LCAO parameters for performing HF-SCF/basis/a=1 and finishing the 

convergence, or starting with LCAO from a converged one step HF-SCF/basis/a=0 and finishing the 

convergence for a=1, the final Eelectr,0(HF-SCF/basis/a=1) and LCAO parameters will be strictly the same via 

the VP (Eq.21) kept by the subroutine (e.g. Gaussian 09). Generally, the HF-SCF/basis/a with a=0 can be 

achieved in basically one step for molecules of any size via a HF-SCF algorithm, while for a≠0, the number 

of convergence is always much more than one and increases with molecular size, as well as larger molecular 

systems may have problems such as break down in convergence in later steps, experienced since long in 

practice wherein a=1. This only one step (a=0) is a benefit if a good Eq.33 or 34 (both based on Eq.20) 

follows to finish the calculation for a=1. The commonly used Harris approximation makes a crude initial 

guess for one-electron density, 0(r1,a=1), using spherical atoms in a molecular frame, while TNRS yields 

the 0(r1,HF-SCF/basis/a=0) which includes a crude estimation for chemical bond and density around the 

atoms in the molecule deformed from the atomic spherical shape in the particular molecular environment. 

     Generalization of Koopmans’ theorem (1934) from HF-SCF/basis/a=1 can be done for a general “a” as 

follows. For a=1 it states [4] that according to the closed-shell HF-SCF theory, the first ionization energy of 

a molecular system is equal to the negative of the orbital energy of the highest occupied molecular orbital 

(HOMO). Seemingly it is trivial, but in practice, if a system is given by Hne and N, one does not have to make 

two HF-SCF/basis/a=1 calculations for  an (S0, Eelectr,0(HF-SCF)) pair with N and N-1, and taking the energy 

difference for estimating ionization energy, but one calculation for N is enough, because one of its intrinsic 

energy values, of the HOMO, is about the same (but not exactly the same) as the difference in Etotal electr,0(HF-

SCF) for N and N-1. The equilibrium geometry, encapsulated in Hne and Hnn, differs slightly between N and 

N-1, because there is a shrink in the lowest lying doubly occupied MOs in S0 if N is reduced to N-1 by the 

stronger effect of the nuclear frame (which slightly expands) if the number of electrons decreases, - 

Koopmans’ theorem comes from a purely mathematical derivation in HF-SCF formalism. Here we introduce 

a similar mathematical situation: If a system is given by operator Hnn or Hne and N, then a=0 determines a=1 

“somehow” via the coupling strength parameter. After finishing algorithm HF-SCF/basis/a=0, there exists an 

algorithm transferring the energy to a=1, e.g. the crude Eq.20, or the more accurate Eqs.33-34, etc..  

     The generalization of Koopmans’ theorem: It holds for any coupling strength parameter “a”, the proof [4] 

is exactly the same. Moreover, it is trivial for a=0, because in Y0 the MOs from Eq.2 do not change if N 

decreases to N-1, which is not the case if a≠0, more, it holds for open-shell systems as well if a=0. As an 

example of Ne, the ionization energy is –f5(a=1)= 0.54305 h from HF-SCF/STO-3G/a=1, the accurate CI 

calculation for a=1 and the experimental values are 0.7946 h and 0.79248 h, resp.. The error from STO-3G 

basis set is large (0.79248 -0.54305= 0.24943), because this basis set is designed for energy differences and 

not for absolute values. On the other hand, the large –f5(a=0)= 10.22405 h from a HF-SCF/STO-3G/a=0 

comes from not involving Vee in TNRS (a=0), but importantly, Eq.20 re-corrects the value to 0.54305 as the 

–f5(a=1), the accurate back transfer up to 5 digits is accidental and originates from the now fortunate, rigid 

STO-3G basis set. 

     The Hund’s rule (1927) in relation to a=0 (TNRS) must be commented. Hund's rules refer to a set of 

three rules, which are used to determine the term symbol that corresponds to the ground state of a multi-

electron atom. It was first empirically established and then later proven in HF-SCF theory [4], but generally 

it has not yet been proven for Eq.1 only for HF-SCF/basis/a=1. The first rule states for a given electron 

configuration, that the term with maximum multiplicity has the lowest energy. Therefore, the term with 

lowest energy is also the term with maximum S=si. It tells us something about how the electronic structure 

builds up as N increases; however, contradictions may arise.   
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     We analyze how Eq.20 obeys Hund’s rule. In relation to the coupling strength parameter “a”, the case of 

a=0 manifests for Hund’s rule, since it annihilates in eigenvalues (eelectr,k,Yk) for any k≥0. (It means that in 

degenerate states, e.g., atomic p orbitals, the high spin fill up is energetically the same as the lower spin fill 

up.) Table 1 lists some ground state cases, HF- SCF/6-31G**/a=1 in 4th column obeys Hund’s rule, i.e., all 

high spins are more stable (square brackets), 5th column with a=0 (TNRS) does not obey Hund’s rule, (zeros 

in square brackets), and 6th column with the promising Eq.20 obeys Hund’s rule again and close in values to 

4th column (a=1). In the square brackets the important energy differences are between the high and low spin 

states of the same atom (negative sign means more stable). The order of the values for the energy gap between 

high and low spin states is in agreement between columns 4th and 6th. X= number of convergence steps in 

HF-SCF and Y= sources of error in the column. The high spin CI calculations have also been listed in h for 

C, N and O atoms under the multiplicity 2S+1 in the 3rd column to compare to columns 4th, 5th and 6th. (Using 

STO-3G minimal basis set, this energy gap shown in square brackets for C, N and O atoms is 0.10881, 

0.16447, 0.14233 h, resp. for both 4th and 6th columns, i.e., there is no difference between the two columns 

in these values. The reason is that the STO-3G basis set contains one branch of Gaussians and is not flexible 

enough to change the LCAO parameters in this respect, yet yields reasonable values; an overlap like this is 

characteristic of TNRS via HF-SCF/STO-3G/a=1 vs. HF-SCF/STO-3G/a=0 with Eq.20, not an accidental 

coincidence.) From an analytical point of view, Hund’s rule applies if a≠0, but not if a=0; the energy gap 

between high and low spin states goes to zero if a0 and Hund’s rule annihilates in this respect.  

 

APPENDICES 
Appendix 1. With an input a≠0 of interest and pre-calculated Y0(a=0) substitute Eq.26 into Eq.1 and use 

1
2(wY0)= w(1

2Y0)+ 21Y01w+ Y01
2w. Hne formally disappears, but it is inherently included in Y0 as 

-(1/2)Y0 i=1
Ni

2w -i=1
NiY0iw + aHeewY0= (enrgelectr,0(a)- eelectr,0)wY0 .               (35) 

It provides the variation equation Eq.29 for r-symmetric w, Y0 separates it term by term. The Y0 has an exact 

Slater determinant form, all N! terms are different but algebraically equivalent, so it is enough to consider 

the first, or the diagonal. For example, for N=2 the Y0= |1f1,2f2>= 12f1f2 - 21f1f2 splits to N!=2 parts, 

and equality holds for the terms with the same spin parts, now both terms yield the same: (1/2)(1
2w+ 2

2w) 

–(1lnf11w+ 2lnf22w) + aw/r12= (enrgelectr,0(a) - eelectr,0)w after dividing by the spatial part f1f2. As a 

particular example, consider (non-relativistic calculation for) an atom (1≤Z≤18, M=a=1) with N=2 electrons: 

Y0(a=0) contains i(1s)= fi=2Z3/2exp(-Z|ri|) with i=-Z2/2 in a.u. for i=1,2 (no basis set error), yielding the 

exact  

-(1/2)(1
2+2

2)w +Z(1|r1|1w+2|r2|2w) +w/r12= (Eelectr,0+Z2)w.                     (36) 

Appendix 2. The simplest “eigenvalue diff. equation” in Eq.1 comes from M=0, N=2, a=1 as [(-1
2-2

2)/2 

+ r12
-1]z= z with analytical solution [11] for the lowest  value as z(r1,r2)= exp(r12/2) with =-0.25. (Z:=0 in 

Eq.36 reduces to this “diff. equation” also.) Its spatial part shows why simple Hartree product z= exp(r12/2) 

p(r1)p(r2) cannot be accurate, moreover, Slater determinant cannot be an analytic solution. The necessity of 

a correlation calculation manifests in the anti-symmetrized form 0 (12-21)exp(r12/2) S0(12-

21)p(r1)p(r2). Approximating the spatial part with one Gaussian (STO-1G basis set) yields exp(r12/2) 

c.exp(r12
2/2)= c.exp(r1

2/2)exp(r2
2/2)exp(-(x1x2+y1y2+z1z2)), where  p(ri):= exp(ri

2/2) for i=1,2 (recall the 1s 

type AOs), and the role of r-symmetric w in Eq.26 can be recognized as w(r1,r2,a=1,N=2,M=0):= exp(-

(x1x2+y1y2+z1z2)) acting as a correlation function. Its energy equivalent is the correlation energy, Ecorr, from 

[(-1
2-2

2)/2 +r12
-1](exp(r12/2)- p(r1)p(r2)). Approximation only, because Gaussian basis set was involved, as 

well as for Ecorr normalized <|> integral average must be calculated, since p(r1)p(r2) is not an eigenfuntion. 

The w accounts for the Fermi and Coulomb hole, the STO-GTO type difference exp(r12/2)-c.exp(r12
2/2) is 

responsible for the basis set error, which goes to basis set limit if many GTO are used (here 0 is 

approximated, but in practice it is the S0), and exp(r12/2)-p(r1)p(r2) is responsible for the basis set and 

correlation error. In this simple example a quasi-accurate Ecorr can be evaluated, because the accurate wave 

function is known, but for physically important cases (N>1, M>0) in Eq.1, the 0 (a=1) is unknown. (Notice 

that exp(r12/2) is not well behaving since its integral over dr1dr2 is infinite.) More sophisticated model, called 

“uniform electron gas” (defined as a large N in a cube of volume V, but finite =N/V, throughout 

which there is a uniform spread of positive charge sufficient to make the system neutral) has led to serious 

correlation calculations. Furthermore, for real ground- and excited states as well as HF-SCF ground state 

one-electron density 1
2r1)dr1= 0 holds, allowing tricky manipulations in correlation calculations [6].  
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TABLE 1: Exhibiting how Hund’s rule applies as coupling strength parameter “a” alters  

Atom Configuration 

above [1s22s2]          

2S+1, 

Eelectr,0(CI) 

a=1,  

Eelectr,0<S0|H|S0> 

a=0 (TNRS) 

eelectr,0  

    

a=0,   

Eelectr,0(TNRS) 

from Eq.20 

C 2px2py
 3, triplet, 

    -37.8450 

-37.680860 

[-0.09230] 

-53.106285 

[0] 

-35.971284 

[-0.14335]  

C 2px
2 1, singlet -37.588558 -53.106285 -35.827936 

N 2px2py2pz 4, quadruplet, 

    -54.5893 

-54.385442 

[-0.13966] 

-77.929276 

[0]  

-52.145336 

[-0.22481] 

N 2px
22py 2, dublet -54.245778 -77.929276 -51.920527 

O 2px
22py2pz 3, triplet, 

    -75.0674 

-74.783934 

[-0.12733] 

-109.338617 

[0]  

-71.698628 

[-0.19431] 

O 2px
22py

2 1, singlet -74.656604 -109.338617 -71.504319 

X - - 7-11 1 1 

Y - - basis set, Ecorr basis set basis set, Ecorr 
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FIGURE 1 (left): Plot of enrgelectr,0(a) in Eq.19 as quasi-linear function of coupling strength 

parameter “a”. The slope at a=0 is <Y0|Hee|Y0>/<Y0|H+Hne|Y0> suffering from basis set error only, 

y0(a)s0(a) from HF-SCF/STO-3G/a, larger basis set yields slightly larger curvature (not shown). 

FIGURE 2 (right): Eelectr,0(G3) includes Ecorr and correction for basis set error, but eelectr,0 from HF-

SCF/basis/a=0 suffers from basis set error. The robust change in Eelectr,0 or eelectr,0 as a function of 

nuclear frame (order #) has disappeared in this plot, and the quasi-constant character of  on nuclear 

frame follows as the small H2 (N=2) and large naphthalene (N=68) have about the same energy ratios 

(using 0(a=1, Vee included) and TNRS Y0(a=0, no Vee) in Eqs.31-32). Vnn is not included at all. 
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