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regression model is much harder due to the multiple testing procedure applied hence only the true outliers remain outside 
the data sample. The two phases in each cycle are a good trade-off between the desire to construct a high-quality model 
(i.e. over informative data points) and the desire to use as much data points as possible (thus leaving as much observations 
as possible in the data sample). The number of cycles is user-defined, but the procedures can finalize the analysis in case 
a cycle with no new outliers is detected. We offer one illustrative example and two other practical case studies (from real-
life thrombosis studies) that demonstrate the application and strengths of our algorithms. In the concluding section, we 
discuss several limitations of our approach and also offer directions for future research.  
Keywords: regression analysis, leave-one-out method, degree of membership, multiple testing, Benjamini-Hochberg 
step-up multiple testing, false-discovery rate 
Highlights: 
- We develop algorithms for outlier rejection over fuzzy samples using weighted least squares that operate in a given 
number of cycles 
- Each cycle has two phases – use single testing leave-one-out procedure for initial purging of data, then confirm the 
previous outlier status with multiple testing  
- We offer one illustrative example and two examples from a case study in thrombosis research to show the strength of 
our cycle-based approach 

1. INTRODUCTION 

Regression analysis aims to construct a linear model of a given process that relates to the relationship between a dependent 
(response) variable and one or more independent (explanatory, predictor) variables. Using that linear model, we can then 
make inferences regarding the process. Regression analysis serves for a wide range of predictions and forecasting, as well 
as to infer causal connections between the predictor and the response variables. The adequacy of the model benefits from 
a preliminary screening of the input sample for non-informative, misleading and/or erroneous data points, known as 
outliers [63]. In fact, the proper identification and rejection of outliers contributes to the quality of the regression model 
a lot more than the size of the input sample. Therefore, a procedure that associates with higher rejection rate (thus 
improving the quality of the sample) should be preferred over a procedure that has insufficient rejection of outliers (thus 
aiming to maintain somewhat larger sample size) [29].  
Assume the initial sample has n observations. A typical procedure to detect an outlier is to exclude the i-th observation, 
construct a model on the remaining n–1 data points and measure the difference between the predicted and the observed 
value. If that difference is above a given threshold, the i-th observation is declared an outlier. Then n models test n 
hypotheses regarding the outlier status of an i-th observation. This procedure is in fact a leave-one-out (LOO) routine to 
test the performance of a model [46, 73]. It suffers from several drawbacks:  
• the errors in the observations may vary significantly in scale and order of magnitude;  
• once an observation is detected as an outlier it has no chance to return into the sample;  
• all tests have the same significance level critα , yet multiple testing procedures require to change critα  of the tests. 
In a classical setup, we apply regression analysis over crisp data to study crisp relationships between the predictor and 
response variables [10]. Often, though, we deal with fuzzy data where the data points have some sort of an associated 
degree of membership to a given Population. Various proposals discuss how fuzzy data enters real-life data analysis [21; 
56]. Viertl [70] claims that real-life data rarely comes as precise numbers, but as some form of fuzzy data so statistical 
analysis needs to be adapted to such data. Coppi in [12] introduces the information paradigm to interpret uncertainty and 
accommodate fuzzy-possibilities and probabilities approaches within traditional statistical paradigms. Coppi suggests that 
uncertainty may be associated with the relationship between: a) the response and predictor variables; b) the data sample 
and the underlying population; c) the sample data points themselves. Probabilistic tools are then suggested for the cases 
where uncertainty factors appear in isolation. For the cases where a combination of uncertainty factors appear, Coppi 
suggests the use of fuzzy-possibilistic tools. Those follow the ideas in [23, 24] about possibility theory as the bridging 
concept between fuzzy sets and probability theory. Uncertainty relevant to the second source of uncertainty in [12] is 
explored from a fuzzy perspective in other works. For example, Ruspini in [62] measures the resemblance between two 
worlds by a generalized similarity relation that then allows to interpret the main aspects of fuzzy logic.  
There are many discussions on the way fuzzy data enters and modifies the regression analysis procedures specifically 
(see the work of Chachi and Taheri in [8], as well as the discussion in Section 3). This aspect is greatly emphasized in the 
review work [10], which shows that within regression analysis, the fuzzy uncertainty may be measured by possibility as 
per Dubois, Prade [24] and Klir [39]. It further comments that in traditional fuzzy regression models, both predictor and 
response variables are fuzzy variables, hence their relationship is interpreted by a fuzzy function, using possibilistic tools 
to construct its distribution. Other studies explore the ways to construct a linear regression model that interprets the 
connection between fuzzy response and crisp predictor variables [13]. The work [14] further explores this setting to 
construct an interactive least square based estimation method. Regression analysis is utilized as demonstration of the 
information paradigm under various scenarios of complexity by Coppi in [12]. Suggestions focuses on regression analysis 
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are also offered by Gao and Gao in [30]. They postulate that the deviation between observed and estimated values in 
regression analysis originating from either indefiniteness of the system structure or incompleteness of data should be 
treated as fuzziness and has to be handled by regression analysis with fuzzy data, as proposed by Tanaka et al. in [65, 66].  
Tanaka’s works pioneered the fuzzy regression analysis domain and explored the degree of the fitting and the vagueness 
of the model in the fuzzy linear regression process. They did not stress the issues of best fit by residuals in the fuzzy 
regression setup, which were developed by Diamond’s fuzzy least square approach [22] as the fuzzy version of traditional 
ordinary least squares, and introduced a new distance measure on the space of fuzzy numbers. Jinn et al. [35] elaborated 
on the impact of outliers (and influential observations) on the model and how the fitting process may hide flaws in the 
regression model. They developed outlier detection approaches adaptable to fuzzy linear regression that utilized the Cook 
distance [11; 55]. Their suggestions were best adapted to the general fuzzy linear model, yet for more elaborate cases 
such as the doubly linear adaptive fuzzy regression model of D’Urso and Gataldi [15], and for D’Urso’s fuzzy regression 
model [14], they only arrived at a procedure that rejects outliers and recalculate residuals. 
Our scope of work is to improve the way outlier detection is handles in the presence of fuzzy data. In this paper, we 
develop procedures to adapt the LOO approach over fuzzy data and improve its performance in outlier detection. Our 
scope of analysis refers to fuzzy data originating from setups similar to the second uncertainty type of Coppi [12], where 
each response-predictor pair has a degree of membership to the underlying process of analysis (or to analyzed object). 
The procedures we propose will run in multiple cycles so that we can deal with the various order of magnitude, scale and 
diversity of outliers. Furthermore, each cycle runs in two phases: 
• Phase 1 constructs a LOO model for each observation and uses single testing procedure to declare the outliers. At the 

end of Phase 1, we use the non-outlier data to construct an intermediate regression model.  
• In Phase 2, we test the status of all current outliers based on the intermediate model using multiple testing procedures. 

If an outlier is not confirmed as such in Phase 2, it returns to the non-outlier sample. Finally we use the confirmed 
non-outliers to construct a final model.  

The procedure stops either after a predefined number of cycles are performed (usually defined by the user), or until the 
procedure reaches a cycle that does not reject new outliers. Our proposed approach has two key features: 
• Phase 1 of each cycle relies on a single testing approach, hence it is comparatively easy to purge the dubious 

observations so that to construct a reliable regression model of good quality (i.e. over reliable data points) 
• Phase 2 of each cycle relies on multiple testing procedure, hence it is comparatively hard to keep a previously 

confirmed outlier out of the data sample, hence only those points that are indeed dubious will be left out 
Our proposed methodology incorporates a simple way to reject dubious observations, and a robust way to keep away 
from further analysis only those observations that are indeed dubious and non-informative. At the same time, the 
methodology is flexible in that it adapts to different order of magnitude of outliers, while it also allows observations to 
leave and return the data set as the model develops. Finally, our procedure operates over fuzzy data. These properties are 
a highly desired trade-off between the quality and quantity of sample data that impacts positively the adequacy of the 
regression model.  
We shall develop formalized algorithms that realize our methodology. The first algorithm uses least square (LS) method 
to solve the regression task with fixed outliers. The second algorithm uses the weighted LS (WLS) method for the 
regression task with varying outliers and employs the first algorithm in its steps. We shall use examples of various type 
to demonstrate the applicability of our approaches. Those examples help us demonstrate the strengths and benefits of our 
proposed algorithms for the proper purging of data and the creation of adequate regression models. 
Our paper is organized as follows. In Section 2 we formalize the setup of linear regression analysis. This is then extended 
to the case with fuzzy samples in Section 3 as per our specific setup. Section 4 presents our first algorithm that uses the 
LS solution of the linear regression analysis problem with fixed outliers. It is later utilized within the second algorithm, 
developed in Section 5, which finds the WLS solution of the linear regression analysis problem with varying outliers. 
Section 6 presents three examples – a simple illustrative example and two examples from real-life thrombosis studies, 
where we apply our methodology. Some final discussions and conclusions are offered in Section 7.  

2. CLASSICAL SETUP OF LINEAR REGRESSION ANALYSIS 

In the linear regression analysis, we aim to predict the value y of the response (dependent) random variable (r.v.) Y given 
the observed values z1, z2,…, zp of the directly measurable independent (explanatory, predictor) variables Z1, Z2,…, Zp . 

The linearity only concerns the q unknown parameters of the dependence, organized in a coefficient vector 

( )1 2
T

q, ,...,β β β β=


, but not the values xj of the q predictor variables X1, X2,…,Xq that could be arbitrary complex 

functions of z1, z2,…, zp: 
 

1 1 2 2 q qy x x x uβ β β= + + + +  ,     (1) 
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Here, xj = Fj(z1, z2,…, zp), for j=1, 2, …, q, while u is an unobserved instance of the r.v. U, known as unexplained error. 
The classical linear regression assumption claims that U is normally distributed with mean zero and unknown standard 
deviation σ : ( )20U ~ N ,σ

 
[26].  

Assume we have a sample of n observations (n>>q), where the ith observation contains the measured value mes
iy of Y 

dependent on the corresponding p observed values zi,1, zi,2,…, zi,p of the explanatory variables Z1, Z2,…, Zp. Those can be 
recalculated into the values of the q independent predictor variables xi,j = Fj(zi,1, zi,2,…, zi,p) for j=1, 2,…, q, organized in 

a vector ( )1 2
T

i i , i , i ,qx x ,x ,...,x=
 . According to (1), the data in the ith observation should satisfy (2):  

1 1 2 2
mes T
i i , i , q i ,q i i i i i

ˆˆ ˆ ˆ ˆ ˆ ˆ ˆy x x x u x u y uβ β β β= + + + + = + = +


  , for i= 1, 2, …    (2) 

Here, ( )1 2
T

, , q
ˆ ˆ ˆ ˆ,...,β β β β=


 is the estimate of the vector of coefficients; the estimated value of the response variable is 

( )1 1 2 2
T

i i i , i , q i ,q
ˆŷ x E Y X x X x X xβ= = = ∨ = ∨ ∨ =


  and represents the expected value of Y conditioned on the values 

of the predictors. The quantity iû  is called residual and is an estimate of the unobserved realization ui of U for the ith 
observation. The quantities in (2) can be organized in the following data structures:  

• n-dimensional vector of the measured response values ( )1 2
Tmes mes mes mes

ny y , y , , y=


 ; 

• n-dimensional vector of the estimated response values ( )1 2
T

n
ˆ ˆ ˆ ˆy y , y , , y=


 ; 

• n-dimensional vector of the residuals ( )1 2
T

n
ˆ ˆ ˆ ˆu u ,u , ,u=


 ; 

• n x q dimensional matrix (a.k.a. design matrix) denoted with X, whose i-th row is T
ix .  

Then we can represent (2) in a matrix form as follows: 

mes ˆ ˆy X u y uβ= + = +
         (3) 

Classical linear regression has several other assumptions, as follows [45]:  
• the variables Z1, Z2,…, Zp are directly measured without errors;  
• the predictor variables  X1, X2,…, Xq are linearly independent, hence q is the rank of the matrix X;  
• the residual ui at any data point does not depend on the values of the unexplained error at all other data points. 
A widely adopted method to identify the coefficients of the regression is the LS method (see [73]). It aims to identify the 

coefficient estimates LS ,curβ̂


 so that to minimize the sum of squared differences between the measured and the estimated 
response values as per (4): 

( ){ } ( ) ( )
2 22 2

1 1 1

n n nLS mes T mes
i i i i i

ˆ ˆ ˆ ˆi i i

ˆ ˆ ˆ ˆ ˆarg min arg min y x arg min y y arg min u
β β β β

β χ β β
= = =

          = = − = − =     
          
∑ ∑ ∑

   

    (4) 

3. LINEAR REGRESSION ANALYSIS PROBLEM OVER FUZZY DATA 

Many works recognize the necessity to operate with fuzzy data samples in statistical (and regression) analysis, with 
varying interpretations of the degree of membership, caused by the measurement or interpretation process (see Gao and 
Gao in [30]). Practical reasons may cause fuzzy samples to emerge. Viertl in [70] discusses that sometimes the 
membership of a given observation to a given subpopulation is defined using a given classificator (probabilistic, metric, 
neural network, or subjective). Then the confidence in the correctness of the result of the classificator for a given 
observation may be interpreted as a degree of membership to the sample of the subpopulation. In medical analysis, a 
given parameter may be measured in t spatial points (e.g. measurements of different parts of a thrombus) for a given 
patient. Then the degree of membership to the sample for such measurements may be accepted as 1/t so that to provide 
equal weight for each patient. Other examples are also reported, such as the case described by Nikolova et al. in [36], 
where objects are assigned to several groups with a given degree of membership based on how similar they were to the 
descriptors of those groups, utilizing techniques of Denoeux [21] to interpret fuzzy data in experiments with uncertain 
outcomes. 
As the variables in a regression analysis are assumed correlated, if there is a variable represented by a fuzzy sample 
entering the regression analysis, its degree of membership applies to the overall multi-dimensional observation of 
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regression variables. Once fuzzy data is present, we need to utilize fuzzy regression analysis to explore dependencies 
between variables (see Section 1 for further discussion on fuzzy regression analysis). A valuable study on fuzzy regression 
analysis is by Chachi and Taheri in [8], who summarized three classes of approaches to fuzziness in regression analysis. 
The first class is the possibilistic class that stems from the works of Tanaka [65, 66], where the fuzzy regression problem 
is formulated as a mathematical programming problem. Tanaka’s approaches and their sensitivity to outliers was 
discussed in [58], which lead to development of new algorithms of outlier detection for fuzzy regression models as for 
example the ones offered in [71]. The methods in this group investigate and develop ways to minimize the spread of the 
fuzzy parameters under certain constraints. The works [51, 52] developed fuzzy linear regression models linked to varying 
risk relations to minimize the difference between observed and estimates spreads of the output, relying on the concepts 
of necessity and possibility. The possibilistic regression modelling was reviewed in detail in [6]. The second class 
comprises least squares and least absolute methods, which aim to estimate the parameters of the model based on a distance 
on the space of fuzzy numbers. Some of the main works in this class are of D’Urso [14], who proposed regression models 
for crisp/fuzzy input-output data, and D’Urso et al. [16] that proposed robust fuzzy linear regression model using least 
median squares-WLS estimation procedure to deal with data that contains outliers. The work of Dehghan et al. [20] may 
also be attributed to this group as it uses LS and least absolute deviations methods to compare classical and fuzzy 
regressions using numerical examples of geographical data with symmetric fuzzy observations. Another notable work of 
Coppi et al. [13] proposed an iterative procedure with LS estimations for a regression mode to study the connection 
between crisp inputs and fuzzy output observations. D’Urso and Massari [17] explored the iterative WLS domain over a 
general linear regression model that includes a general class of fuzzy response variables on a set of crisp or LR2 fuzzy 
explanatory variables. Bargiela et al. explored iterative techniques to study the coefficients of multiple regressions with 
fuzzy variables in [2]. DUrso et al. [19] also adopt an exploratory approach to find the best fit of a fuzzy linear regression 
using a new coefficient of determination and the Mallows index. For the case of imprecise responses, Ferrano et al. [28] 
proposed ways to construct linear regression models with accompanying hypothesis testing procedures. The third class is 
a heuristic class and it collects hybrid approaches to construct fuzzy regression models. Such are the works of Kao and 
Chyu [36, 37], who employed crisp coefficients and fuzzy error terms in a two-stage LS based procedure for fuzzy 
regression analysis. Lu and Wang [44] developed and improved fuzzy linear regression models that can avoid the spreads 
increasing problem, while Chachi et al. [7] demonstrated various practical applications of hybrid fuzzy regression models. 
The third class may also be expanded with the discussions on how to expand clusterwise regressions (see the works of 
Jajuga [34] and Yank and Ko [74] that introduced and developed the concept) in the fuzzy domain. The work [64] 
discussed this by combining fuzzy clustering and ridge regressions so that to deal with multicollinearity. The works [18, 
25] developed a model for fuzzy linear regression utilizing fuzzy clusterwise linear regression that combined symmetrical 
crisp predictor and fuzzy response variables.   
Another similar classification of fuzzy regression methods was also proposed by Jinn et al [35], who outlined a class of 
approaches utilizing Tanaka’s ideas, and another class that combines the fuzzy least square approaches, pioneered by 
Diamond [22]. The review work of Chukhrova and Johannssen [10] relied on almost 500 sources to encapsulate 
thoroughly the various trends, approaches and applications of fuzzy regression analysis. The work identified the major 
and minor fields of fuzzy regression analysis, and then explored possibilistic approaches as well as fuzzy least square 
approaches. It also stressed the application of machine learning techniques in fuzzy regression analysis. The work also 
outlined several minor fields such as fuzzy probabilistic approaches, fuzzy clusterwise regressions, simulation techniques 
in fuzzy regressions, etc. One of the research questions in [10] was also to investigate the areas of reported practical 
implementations of fuzzy regression analysis. While engineering and environmental research prevail as implementation 
areas, the second largest group is that of business administration and economics. Case studies in that respect range from 
workforce forecasting [43] to project evaluations [33], analysis of macroeconomic parameters [58; 42], analysis of gross 
domenstic product [75], and stock price forecasting [38].  
Other works discuss the impact of outliers in fuzzy regression models. As argued by Gao and Gao [30], sometimes outliers 
or influence points enter the data set for regression due to various unavoidable causes. This impedes the practical 
implications and adequacy of the fuzzy regression methods. Therefore, they investigated outlier detection procedures for 
fuzzy regressions using type-2 trapezoidal fuzzy numbers. Jinn et al. [35] elaborated on the importance of influential 
observations (that includes outliers) in regression analysis, highlighting the hidden flaws from the fitting process affecting 
the quality of the regression model. They further developed procedures for fuzzy regressions using the Cook distance, but 
only adapted those to the general fuzzy regression model, while in other cases their procedures only ended in a simple 
rejection of outliers with no subsequent analysis. Kwong et al. [41] also discuss the inherited fuzziness of experimental 
data and show an application of fuzzy regression in manufacturing processes, accounting for outlier rejection for the 
model accuracy through Peter’s fuzzy regression. The works of Chan et al [9] and Gladysz and Kuchta [31] also 
demonstrate the necessity to reject outliers for fuzzy regression analysis in real-world applications from engineering and 
manufacturing. The proposal introduced by Nasrabadi et al. [54] discusses ways to apply linear programming and fuzzy 
least squares to the outlier detection in fuzzy regression analysis. The importance of outlier detection was also raised by 
Mashinchi et al. [48], where the authors developed two stage LS approach with no user defined variables. The first stage 
detects outliers, while the second stage uses the purged sample to fit a regression model with the model fitting measure 
minimized with a hybrid optimization technique. Yet, this two-stage procedure did not assume that some of the outliers 
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6  

may return to the data set as the model develops. All those works show that regression modelling over fuzzy data is highly 
applicable to many data analysis problems, and the proper rejection of outliers in those procedures are of paramount 
importance for the adequacy and validity of the constructed models in practice.  
When fuzzy data is present, our setup is similar to what we presented in Section 2. Yet, the ith observation ( ); mes

i ix y  of 

the sample now belongs to the Population with a degree of membership [0 1)i ,µ ∈ . We can organize the degrees of 

membership of all the observations in an n-dimensional membership vector ( )21
T

n, , ,µ µ µ µ=


 .  

A suitable method to identify the coefficients of (3) is the WLS method (see [73]). It aims to derive the estimate WLS ,curβ̂


of the coefficients such that to minimize the weighted sum of square differences between the measured and the estimated 
response values, as follows: 

( ){ } ( ) ( )
2 22 2

1 1 1

n n nWLS mes T mes
i i i i i i i i

ˆ ˆ ˆ ˆi i i

ˆ ˆ ˆ ˆ ˆarg min arg min y x arg min y y arg min u
β β β β

β χ β µ β µ µ
= = =

          = = − = − =     
          
∑ ∑ ∑

   

    (5) 

Such a setup imposes several difficulties that we need to address, namely:  
• how to identify and reject the outliers in the sample;  
• how to find the following parameters based on the purged sample: 

o the estimates ( )1 2
T

, , q
ˆ ˆ ˆ ˆ,...,β β β β=


 of the unknown coefficients, their confidence intervals and covariance matrix;  

o the estimate uσ̂  of the standard deviation of the unexplained error and its confidence interval;  

o the pvalue of the hypotheses for nullity of jβ̂  for j=1, 2,…, q and the pvalue of the hypotheses for adequacy of the 
model; 

o the adjusted coefficient of multiple determination 2
adjR , which shows what part of the initial variance of Y is 

explained by the model, considering the count of determined parameters. 

4. LEAST SQUARE SOLUTION OF THE LINEAR REGRESSION PROBLEM WITH 
KNOWN OUTLIERS OVER FUZZY DATA 

Let us first construct a linear model, based on part of the observations (the non-outliers, the others being treated as 
outliers). If flag variable fi for the ith observation equals to 1, then that ith observation ( ); mes

i ix y  is included in the model, 

whereas if fi equals to 0 then that ith observation ( ); mes
i ix y  is considered an outlier. The flag variables could be organized 

in an n-dimensional data flag vector ( )1 2
T

nf f , f , , f=


 . All initially available observations can be denoted as the 

quadruplet ( ); ;mesy X ; fµ
  . In fact, the model is constructed on 

1

ncur
in i

i
n f

=
= ∑  observations, which shall be referred to as 

in-observations. The absolute numbers of the in-observations can be organized in cur
inn -dimensional vector 

( )1 2 cur
in

T
cur cur cur cur
a a, a, a,n

, , ,δ δ δ δ=


 . The count of the outliers is cur cur
out inn n n= −  (which form the set of out-observations) and 

their absolute numbers can be organized in an cur
outn -dimensional vector: ( )1 2 cur

out

T
cur cur cur cur

b b, b, b,n
, , ,δ δ δ δ=


 . We can solve the 

optimization task (4) using singular value decomposition (SVD) [60]. The procedure is realized in Algorithm 1 below, 
based on the quadruplet ( ); ;mesy X ; fµ

  . 

 
ALGORITHM 1: CONSTRUCTION OF THE LINEAR REGRESSION MODEL WITH KNOWN OUTLIERS 
STEP A. Separate the initial observations in ( ); ;mesy X ; fµ

   into outliers and in-observations (non-outliers) according 

to the values of f


 based on the following steps: 
A1. Set: i=1, ia=1, and ib=1. 
A2. If fi =1 then set cur

a,iaδ =i, and ia=ia+1. 

A3. If fi = 0 then set cur
b,ibδ =i, and ib=ib+1. 
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A4. Set i=i+1. 
A5. If i≤ n then go to A2. 
A6. Set: 1cur

inn ia= − , and 1cur
outn ib= − . 

A7. Set: ( )1 2 cur
in

T
cur cur cur cur
a a, a, a,n

, , ,δ δ δ δ=


 , and ( )1 2 cur
out

T
cur cur cur cur

b b, b, b,n
, , ,δ δ δ δ=


 . 

A8. Define the current cur
inn q×  dimensional design matrix Xcur, whose rows are all T

i ixµ 
 for which fi=1: 

cur cur
a ,i a ,i

cur
i ix xδ δµ µ=
  , for i=1, 2, …, cur

inn .  

A9. Define the current cur
inn -dimensional vector of response values mes,cury , whose elements are all mes

i iyµ , 

for which fi=1: cur cura ,i a ,i

mes,cur mes
iy yδ δ

µ= , for i=1, 2, …, cur
inn . 

A10. Define the current cur
outn q×  dimensional outlier matrix cur

outX , whose rows are all T
i ixµ 

 for which fi=0: 

cur cur
b ,i b ,i

cur
i out ,ix xδ δµ µ=
 

, for i=1, 2, …, cur
outn .  

A11. Define the current cur
outn -dimensional outlier vector of response values mes,cury , whose elements are all 

mes
i iyµ , for which fi=1: cur cur

b ,i b ,i

mes,cur mes
out ,iy yδ δ

µ= , for i=1, 2, …, cur
outn . 

STEP B. The Xcur could be factored to the product of three matrices using the SVD decomposition: 

cur TX W S V= × ×      (6) 

Here, W is an cur
inn q×  dimensional column-orthonormal matrix with columns jw  (for j=1, 2, …, q); S is an q x q 

dimensional diagonal matrix with non-negative elements sj (for j=1, 2, …, q) on the main diagonal, called singular values; 
V is a q x q dimensional orthonormal matrix with columns jv  (for j=1, 2, …, q).  
STEP C. The SVD decomposition (6) is usually executed by a computer program and is subject to round-off errors. We 
need to define which singular values are in fact small positive real values and which are in fact zeros (but estimated as 
small positive real values due to round-off errors). Therefore we correct the singular values sj to cor

js  (as per [57, 67]) in 
four steps: 

C1. If sj is non-positive, then 0cor
js = . 

C2. If sj is positive, then we compute an estimate of the unit vector jw  as nonzero cur
j j jw X v / s=
 

. 

C3. If the angle between jw  and nonzero
jw  is less or equal to 1 deg, and the length of nonzero

jw  is within [0.99; 1.01], 

then cor
j js s= . 

C4. If the angle between jw  and nonzero
jw  is greater than 1 deg or if the length of nonzero

jw  sits outside of the interval 

[0.99; 1.01], then 0cor
js = . 

STEP D. According to [60] we can solve (4) using the current coefficient vector 
1
0cor

j

T mes,curq jWLS ,cur
jcor

i j
s

w yˆ v
s

β
=
>

 
=   

 
∑

 
   

STEP E. We can calculate consecutively the following parameters that relate to outlier rejection: 

E1. The current vector of estimated response values cur cur WLS ,curˆŷ X β=
 . 

E2. The current vector of the WLS residuals cur mes,cur curˆ ˆu y y= −
   . 

E3. The current residual sum of squares: ( )2
1

inn
cur cur

i
i

ˆRSS u
=

= ∑  . 

E4. The current estimate of the standard deviation of the unexplained error: ( )cur cur cur
u inˆ RSS n qσ = − . 

E5. The current q q×  dimensional covariance matrix of the parameters: 

( )2 1 11
0cor

j

q
cur cur T cor cur

u i i j i , j i q , j qj
s

ˆK v v / s kσ
≤ ≤ ≤ ≤=

>

 = =  ∑
   . 
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E6. The current standard errors of the parameters: 
j

cur cur
j , jˆ kβσ =  for j=1, 2, …, q.  

E7. The current (1-α )-confidence intervals for each of the parameters 

1 1
2 2

cur curj j
in in

LS ,cur cur LS ,cur cur
j j j;n q ;n q

ˆ ˆˆ ˆt , tα αβ ββ β σ β σ
− − − −

 
∈ − +  
 

 for j=1, 2, …, q. Here, 
1

2
cur
in;n q

t α
− −

 is the ( )1 2/α−  

quantile of the t-distribution with cur
inn q−  degrees of freedom [32].   

E8. The current p-values of the hypotheses for nullity of jβ̂ : ( )2 curj jin

cur cur cur
jvalue, t ,n q ˆp CDF /β ββ σ−= × − , for j=1, 

2, …, q. Here, ( )cur
int ,n qCDF .−  is the cumulative distribution function of the t-distribution with cur

inn q−  degrees of 

freedom (see [32]). 
E9. The current (1-α )-confidence intervals of the standard deviation of the unexplained error: 

1
2 2

cur cur
in in

cur cur cur cur
in u in ucur

u

,n q ,n q

ˆ ˆn q n q
,

α α

σ σ
σ

χ χ
− − −

 
 − −

∈ 
  
 

. Here, cur
in,n qγχ −  is the γ -quantile of the 2χ -distribution with cur

inn q−  

degrees of freedom (see [32]). 

E10. The current total sum of squares: 
2

1 1

cur cur
in inn n

cur mes,cur mes,cur cur
ini i

i i
TSS y y / n

= =

 
 = −
 
 

∑ ∑  . 

E11. The current adjusted coefficient of multiple determination: 
( )
( )

2
1

1
cur
in,cur

adj cur
in

n RSS
R

n q TSS

−
= −

−
 . 

E12. The current ANOVA test pvalue for overall adequacy of the model: 

( )( )
( )11

1
cur
in

cur
incur

value,ad F,q ,n q

n q TSS RSS
p CDF

q RSS− −

 − −
 = −
 −
 

. Here, ( )1 cur
inF,q ,n qCDF .− −  is the cumulative distribution 

function of the F-distribution with q-1 and cur
inn q−  degrees of freedom (see [32]). 

STEP F. To test if any of the in-observations is an outlier, we need to calculate the externally Studentized residuals. The 
pvalue for the hypothesis H0 that a particular observation is not an outlier can be calculated since given H0 its externally 
Studentized residual follows a t-distribution with 1cur

inn q− −  degrees of freedom. The required pvalue may be found using 
ideas from [53] by calculating consecutively: 

F1. The current cur cur
in inn n×  dimensional hat matrix of the parameters: 

( ) ( )2 1 1cur cur
in in

Tcur cur cur cur cur cur
u i , j i n , j n

ˆH X K X / hσ
≤ ≤ ≤ ≤

 = =   . 

F2. The current predicted residuals: ( )1pred ,cur cur cur
i i ,iî ˆr u / h= − , for i=1, 2, …, cur

inn .  

F3. The current estimate of the standard deviation of the predicted residuals: 

( )
( ) ( ) ( )

2

1 1
1

cur
ipred ,cur cur cur cur

in i ,ii cur
i ,i

û
ŝ RSS / n q / h

h

 
 = − − − − − 
 

, for i=1, 2, …, cur
inn .  

F4. The externally Studentized residuals: pred ,cur pred ,cur pred ,cur
i i iˆ ˆ ˆt r / s= , for i=1, 2, …, cur

inn . 

F5. The current pvalue of the hypotheses that the observations ( );cur mes,cur
i ix y  are not outliers: 

( )12 cur
in

pred ,curcur
value,in,i it ,n q

ˆp CDF t− −= × − , for i=1, 2, …, cur
inn . Here, ( )1cur

int ,n qCDF .− −  is the cumulative distribution 

function of the t-distribution with 1cur
inn q− −  degrees of freedom (see [53]). 

STEP G. To confirm that the outliers (i.e. the data points, where fi equals to 0) are indeed outliers, we need to calculate 
their Studentized residuals. We can calculate the pvalue for H0: “A particular observation initially declared outlier is not an 
outlier”, since, given H0 its Studentized residual follows a t-distribution with cur

inn q−  degrees of freedom. The count of 

observations declared outliers is cur cur
out inn n n= − . If cur

outn >0, we can find the pvalue by calculating consecutively [53]: 

G1. The current estimated predicted response values: cur T LS ,cur
out ,i out ,i

ˆŷ x β=
 , for i=1, 2, …, cur

outn . 
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G2. The current estimate of the standard deviation of the predicted response values: 

( )2pred ,cur cur T cur
u out ,i out ,iout ,iˆ ˆs x K xσ= +

  , for i=1, 2, …, cur
outn .  

G3. The current pvalue for the hypothesis H0 that observations ( );cur mes,cur
out ,i out ,ix y  are not outliers: 

2 cur
in

cur mes,cur
out ,i out ,icur

value,out,i t ,n q pred ,cur
out ,i

ŷ y
p CDF

ŝ−

 −
 = × −
 
 

, for i=1, 2, …, cur
outn . Here, ( )cur

int ,n qCDF .−  is the cumulative 

distribution function of the t-distribution with cur
inn q−  degrees of freedom (see [32]). 

 
Algorithm 1 allows to reject outliers from the initial sample (in step F), but also in step G it tests to confirm the outlier 
status of those data points identified as such in Step F. This makes Algorithm 1 flexible and allows it to contribute to the 
proper quality and quantity of data for fuzzy regression analysis. The model is constructed only on the predefined set of 
in-observations (i.e. non-outliers). Importantly, Algorithm 1 gives as an output the pvalue of a hypothesis test for outliers 
of each measurement in the dataset. We use different approaches to calculate the pvalue for the in-observations (i.e. the 
data points, where fi=1) and for the outliers (i.e. the data points, where fi=0). This algorithm will later become a working 
engine in a large procedure that works on varying outliers (see Section 5).  
The rationale of steps C1-C4 comes from the basic property of SVD decomposition cur

j j jX v s w=
 

 (see [67]). If the 

singular value is positive, then both sides of the equation could be divided to sj, and nonzero
jw  would be almost a perfect 

estimate of jw . If the singular value is zero, then the basic property of the SVD decomposition degenerates to equality of 

two null vectors ( 0 0cur
j jX v w= =

 
). Then obviously the nonzero

jw  would be an estimate of a null vector divided by zero, 

hence it should be quite different from jw . 

5. LEAST SQUARE SOLUTION OF THE LINEAR REGRESSION PROBLEM WITH 
UNKNOWN OUTLIERS OVER FUZZY DATA 

In Section 4 we offered a procedure that constructed a regression model by finding the coefficients (5) using the WLS 
method. However, this algorithm did not change the status of the data points, i.e. the initial separation to in-observations 
and out-observations (outliers) remained unchanged. In this section, we shall develop another approach that relies and 
uses Algorithm 1, yet its task is to assess the outliers and to find the characteristics of the model for different samples 
iteratively in several cycles. The main reason to use cycles is that as a rule the outliers appear in the initial sample due to 
some sort of errors in the measurement process (e.g. equipment failure, human error, etc.). As those errors are of 
miscellaneous nature, the outliers may have varying order of magnitude. Those outliers with higher order can then hide 
(mask) the ones of smaller order making the latter look as legitimate in-observations in the outliers detection procedure. 
Therefore, in each cycle we remove only the outliers with the highest order of deviation from the data sample. Initial 
results from this approach for the case of crisp data samples is reported by Tenekedjiev and Radoinova in [68].  
Assume that the maximum count of cycles permitted is Cmax. The first cycle would start by declaring all data points as in-
observations. Alternatively, we can think that the 0th cycle has identified no outliers in the data set. The cth cycle would 
then start by constructing a model using the in-observations after the (c–1)th cycle. We will calculate the adjusted 
coefficient of multiple determination for this model. All the outliers can be purged with independent statistical tests for 
each of the in-observations. The purged observations are added to those declared outliers from the (c–1)th cycle. Then an 
intermediate model is constructed, based on the current in-observations. At the end of the cth cycle, outliers are only those 
observations, where the null hypothesis was rejected. All the other observations are added back to the in-observations 
after the cth cycle. 
We can perform the Benjamini-Hochberg step-up multiple testing procedure controlling the false discovery rate (FDR) 
for independent test statistics to confirm the status of each observation declared outlier (see [4, 5] for discussion of the 
method). The FDR should be less or equal to a predetermined FDRmax (see also [3] for discussion on FDR). Unlike the p-
value in the single testing procedure, which measures the number of false rejections out of all cases where H0 was true, 
the FDR measures the number of false rejections out of all rejections of H0. The procedures that utilize FDR deal with 
the expected proportion of false discoveries and were elaborated as an alternative to extremely demanding controlling 
procedures in multiple testing, such as the Bonferroni correction (for discussion on the Bonferroni approach see [49, 50, 
61]). The following considerations justify the deployment of FDR-based multiple testing procedure:  
a) The outliers rarely exceed 20% of the data points;  
b) If a small amount (e.g 10%) of the declared outliers are in fact legitimate, then the in-observation set will change 

insignificantly (e.g. from 80% to 78%, i.e. 80% – 10% × 20%=78%);  
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c) The derived regression model will not be drastically affected although losing any legitimate measurement is not too 
desired;  

d) The application of a Bonferroni-like method implies that a substantial percentage of the true outliers (at least 50%) will 
not be identified;  

e) The resulting regression model will use almost all legitimate in-observation, but also a substantial amount of outliers 
(e.g. 10%, which is 50% of the 20%);  

f) If the regression model is constructed over a data set with substantial amount of outliers, then its quality would be 
substandard and will eventually make it useless.  

 
In our approach, the cth cycle will be considered incomplete if either the count of observations in the intermediate model 
is less or equal to the count of regressors, or if after the cycle the outliers were the same as those from any of the previous 
cycles. If the cth cycle was unsuccessful, then the true count of cycles Ctrue=c–1. If the Cmax-th cycle was successful, then 
a model based on the in-observations is constructed and the adjusted coefficient of multiple determination is calculated. 
Then Ctrue=Cmax. Each cycle gives different set of outliers. The cycle that maximized the adjusted coefficient of multiple 
determination is considered to give the correct answer for the outliers. The resulting model along with its group of outliers 
should be adequate and with significant regression coefficients. If any of the coefficients was not significant, then the 
regressor corresponding to the coefficient with maximal pvalue is deleted from the model and we repeat the whole procedure 
again. All these ideas are incorporated into Algorithm 2 below, which runs in three main steps.  
 

ALGORITHM 2: CONSTRUCTION OF THE LINEAR REGRESSION MODEL WITH UNKNOWN OUTLIERS 
STEP A. Initiation of the first cycle 

A1. Define the data flag vector before the first cycle ( )0 1 1 1 Tf , , ,=


  that consists of n values of 1.  

A2. Initialize the set of data flag vectors F={ 0f


}. 
A3. Initialize the set of coefficients of multiple determination A={ }. 
A4. Define the initial cycle to be executed: c=1. 

STEP B. Execution of the cth cycle 

B1. Define the count of in-observations from the previous cycle: 1

1

ncur c
in i

i
n f −

=
= ∑ . 

B2. Construct the linear model with data ( )1; ; ; mes cy X fµ −
   using Algorithm 1. 

B3. Find the adjusted coefficient of multiple determination: 2 2
1

,cur
adj ,c adjR R− = . 

B4. Update the set of coefficients of multiple determination: { }2
1adj ,cA A R −= ∪ . 

B5. Initialize 1c cf f −=
 

. 
B6. Perform cur

inn  independent statistical tests, with H0: “Each of the in-observations is not an outlier” at a 

significance level α : if cur
value,in,ip α≤  then set 0cur

a ,i

cf
δ

= , for i=1, 2, …, cur
inn . 

B7. Count the in-observations in the intermediate model of the cth cycle: 
1

nc,int c
iin

i
n f

=
= ∑ . 

B8. Declare the cycle unsuccessful if there is not enough in-observations: if c,int
inn q<= , set Ctrue=c–1,  go to C1. 

B9. Count the outliers in the intermediate model of the cth cycle: c,int c,int
out inn n n= − . 

B10. Finish the cth cycle if there are no outliers: if 0c,int
outn = then go to B16. 

B11. Construct the linear model with data ( ); ; ; mes cy X fµ
   using Algorithm 1. 

B12. Sort the current pvalue values cur
value,out,ip (for i=1, 2, …, cur

outn ) for the H0 that observations ( );cur mes,cur
out ,i out ,ix y  are 

not outliers. Let [sout(1), sout(2), …, sout( cur
outn )] be a permutation of the set {1,2,…, cur

outn } such that: 

( ) ( ) ( )1 2 curout out out out

cur cur cur
value,out,s value,out,s value,out,s n

p p ... p≤ ≤ ≤ . 

B13. Perform the Benjamini-Hochberg step-up multiple testing procedure controlling FDR for independent test 
statistics, to test the cur

outn  hypothesis that each observation declared outlier is in fact not an outlier at a maximum 

false discovery rate FDRmax: find the maximum imax=i where ( )out

cur
maxvalue,out,s i cur

out

ip FDR
n

≤ , for i=1, 2, …, cur
outn . If 

such i does not exist, then set imax=0. 
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B14. Declare as an in-observation any outlier for which H0 (“the observation is not in fact an outlier”) is not 
rejected: set 

( )
1cur

b ,s iout

cf
δ

= , for i=imax+1,imax+2,…, cur
outn . 

B15. Declare the cycle unsuccessful if the estimated data flag vector after the cth cycle coincides with the estimated 
data flag vector after any former cycle: if c k cf f− =

 
for any k=1,2,…, c then set Ctrue=c–1 and go to step C1. 

B16. Update the set of data flag vectors { }cF F f= ∪


.  

B17. If c<Cmax then set c=c+1 and go to step B1. 
B18. Construct the linear model with quadruplets ( ); ; ; maxmes Cy X fµ

   using Algorithm 1. 

B19. Find the adjusted coefficient of multiple determination: 2 2
max

,cur
adjadj ,CR R= . 

B20. Update the set of coefficients of multiple determination: { }2
maxadj ,CA A R= ∪ . 

B21. Set: Ctrue=Cmax. 
STEP C. Selection and construction of the model 

C1. Find the cycle number with the maximum adjusted coefficient of multiple determination: 
find cresult such that 2 2

results
,cur

adj ,cadj ,cR R≥ , for c=1, 2, …, Ctrue. 

C2. Find the "best" data flag vector resultsbest cf f=
 

. 

C3. Construct the "best" linear model with quadruplet ( ); ; ; mes besty X fµ
   using Algorithm 1. 

C4. Define the following parameters:  
a) the count of outliers is cur

out outn n=  with absolute numbers in cur
b bδ δ=
 

; 
b) the count of in-observations is cur

in inn n=  with absolute numbers in cur
a aδ δ=
 

; 

c) the estimate of the unknown coefficients is LS LS ,curˆ ˆβ β=
 

; 
d) the confidence interval for the jth coefficient (for j=1, 2, …, q) is 

1 1
2 2

j j
in in

LS LS
j j j;n q ;n q

ˆ ˆˆ ˆt , tα β α ββ β σ β σ
− − − −

 
∈ − +  
 

, where 
j j

curˆ ˆβ βσ σ= , for j=1, 2, …, q; 

e) the covariance matrix of the unknown coefficients is K=Kcur; 
f) the estimate of the standard deviation of the unexplained error is cur

u uˆ ˆσ σ= ; 
g) the confidence interval of the standard deviation of the unexplained error is: 

1
2 2in in

in u in u
u

,n q ,n q

ˆ ˆn q n q
,

α α

σ σ
σ

χ χ
− − −

 
 − −

∈ 
  
 

; 

h) the pvalue of the hypotheses for nullity of jβ̂  (for j=1, 2, …, q) is 
j j

cur
value, value,p pβ β= ; 

i) the pvalue of the hypothesis for adequacy of the model is cur
value,ad value,adp p= ; 

j) the adjusted coefficient of multiple determination is 2 2,cur
adj adjR R= . 

 
The Benjamini-Hochberg step-up multiple testing procedure is implemented in  steps B12, B13 and B14 of Algorithm 2. 
In steps B and C, Algorithm 2 uses Algorithm 1 as a working engine. As a result, Algorithm 2 runs only in 3 steps and is 
simpler (unlike Algorithm 1 that runs in seven steps and multiple sub-procedures). It realizes the construction of the fuzzy 
regression model in several cycles, thus accounting for the order of magnitude of the outliers. The number of cycles may 
be predefined by the user. Alternatively, the procedure will end once there were no new outliers detected. In such way, 
sometimes the cycle will finish before the maximum allowed number of cycles are executed.  

6. NUMERICAL EXAMPLES 

In this section, we will demonstrate how we apply Algorithms 1 and 2 in three examples. We shall start from an illustrative 
numerical example in Section 6.1. Afterwards, in Section 6.2 we shall offer two other examples related to data analysis 
in thrombosis case studies.  
 
6.1. Illustrative numerical example 
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Table 1 presents the values of the predictor variable X, response variable Y and the degrees of membership of 12 records. 
 
INITIAL ANALYSIS 
Initially, without any outlier rejection, the model was constructed using the 12 in-observations as y= –0.1823x+20.74+e. 
In the terminology of Section 2, we have the response variable Y , while the directly measured independent variable Z1 is 
X (obviously p=1). The q=2 predictor variables are: X1=1, X2= X (that is, F1(z1)=1, F2(z1)= z1). The 95%-confidence 
intervals of the model’s coefficients are from –3.093 to 2.728 and from –7.447 to 48.92. The estimated standard error is 
in a 95%-confidence interval from 13.43 to 33.74. The adjusted coefficient of multiple determination is calculated to be 

2
adjR = –0.09568 . The regression parameters are not significant (all tests with pvalue>>0.05) and the model is not adequate 

(ANOVA with pvalue=0.8467). The results of the initial analysis are presented in Fig. 1.  
The following results were achieved using Algorithms 1 and 2 with maximal number of cycles Cmax= 6. Table 1 presents 
the results from the outlier detection through the three sub-columns of the parameter “Outliers after each cycle”. 
 
CYCLE 1 
A total of 2 outliers were identified and rejected from the original sample (rows 3 and 7 of Table 1). This can be traced 
in the first sub-column of columns 2 and 7 in Table 1 (shaded rows), where those two observations have a value of 1 
(indicating they were identified as outliers in cycle 1). The model was constructed using the remaining 10 in-observations 
as y= –1.371x+23.65 +e. The 95%-confidence intervals of the model’s coefficients are from –3.649 to 0.9064 and from 
4.310 to 43.00. The estimated standard error is in a 95%-confidence interval from 6.597 to 18.71. The adjusted coefficient 
of multiple determination is 2

adjR = 0.09370. The regression parameters are with varying significance (first parameter not 
significant with pvalue=0.2025, second parameter significant with pvalue=0.02250). The model is not adequate (ANOVA 
with pvalue=0.2022). The results of the analysis after cycle 1 are presented in Fig. 2. 
 
CYCLE 2 
A new outlier was identified and rejected from the original sample (row 10 of Table 1). This can be traced in the second 
sub-column of columns 2 and 7 in Table 1 (shaded rows), where this observation has a value of 2 (indicating it was 
identified as an outlier in cycle 2). The previous two outliers were confirmed again as outliers (their second sub-column 
in columns 2 and 7 has the value of 1 indicating their status from cycle 1 was confirmed in cycle 2). The model was 
constructed using the remaining 9 in-observations as y= –1.37x+26.30+e. The 95% confidence intervals of the model’s 
coefficients are from –2.526 to –0.2145 and from 16.40 to 36.19. The estimated standard error is in a 95% confidence 
interval from 3.204 to 9.863. The adjusted coefficient of multiple determination is 2

adjR =0.4616. The regression 
parameters are statistically significant (all tests with pvalue<0.05). The model is adequate (ANOVA with pvalue=0.0264). 
The results of the analysis after cycle 2 are presented in Fig. 3.  
 
CYCLE 3 
A new outlier was identified and rejected from the original sample (row 12 of Table 1). This can be traced in the third 
sub-column of columns 2 and 7 in Table 1 (shaded rows), where this observation has a value of 3 (indicating it was 
identified as an outlier in cycle 3). Two previous outliers were confirmed (rows 3 and row 10 of Table 1). Their third sub-
column of columns 2 and 7 has the value of either 1 or 2 indicating their status from cycle 1 or 2 was confirmed in cycle 
3. One observation returned to the original sample (row 7 of Table 1, from cycle 1). Its third sub-column of “Outliers 
after each cycle” has the value of 0 indicating the outlier status was rejected in cycle 3. The model was constructed using 
the newly identified 9 in-observations as y=1.958x+5.128+e. The 95% confidence intervals of the model’s coefficients 
are from 1.825 to 2.09 and from 3.917 to 6.34. The estimated standard error is in a 95% confidence interval from 0.4439 
to 1.367. The adjusted coefficient of multiple determination is 2

adjR =0.9937. The regression parameters are statistically 
significant (all tests with pvalue<<0.05). The model is adequate (ANOVA with pvalue<<0.0005). The results of the analysis 
after cycle 3 are presented in Fig. 4. 
 
CYCLE 4 
No new outliers were identified so the 4th cycle is considered incomplete. The true number of cycles is Ctrue=3 and there 
is no need for cycles 5 and 6 either. The algorithm exits the cycle loop.  
 
“BEST” LINEAR MODEL SELECTION 
As expected, the “best” linear model is the one after cycle 3 because it has the largest adjusted coefficient of multiple 
determination 2 0 9937adjR .= (larger than the second cycle  2 0 4616adjR .= , and the first cycle 2 0 09370adjR .= ). 
 
The example results show that throughout the cycles we observed new outliers being identified, and some of the initially 
identified ones returning to the original sample as the model developed. The results from the initial analysis were 
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unacceptable overall. We can compare cycle 1 (which is the result of procedure for outlier rejection with no cycles) and 
cycle 3 (which is the result of the multi-cycle procedures proposed earlier in the paper) and see that the significance of 
the regression parameters improved substantially, and the adequacy of the model became very high, with 2

adjR  going from 
0.0937 up to 0.9937, which is more than a ten-fold increase. This demonstrates the importance of using cycles in outlier 
rejection. 
 
6.2. Applications to Real Life Medical Data  
Thrombosis is a major cause of death, killing 1 person every 6 seconds world-wide. The evolution of thrombi in the 
arteries causes tissue damage. For example, thrombotic occlusion of the coronary arteries causes acute myocardial 
infarction. Fibrin formed from the blood plasma protein fibrinogen is a long-known structure founding the scaffold of 
thrombi [1] and the presence of cells (platelets, white blood cells – primarily neutrophils) significantly impacts the course 
of the disease (e.g. affecting the size of myocardial infarction [47]). Medical research needs to investigate if the cellular 
composition of thrombi could be predicted from easily accessible biomarkers circulating in the blood. We shall apply our 
algorithms to this medical prediction task. 
In a recent work [27] we analyzed the connection between routinely available clinical data and structural characteristics 
of thrombi (with other similar analyses also reported in Kovacs et al. [40]). Particularly, we tried to find the statistical 
connection between the relative surface occupied by platelets in the thrombi (sPlt, in %) and the fibrinogen blood levels 
(Fibrinogen, in g/l). We also tried to predict the relative surface occupied by white blood cells in the thrombi (sWBC, in 
%) based on the white blood cell count (WBC, in 1000/μl) in the blood and the C-reactive protein (CRP) as one of the 
soluble inflammatory markers. However, due to the high degree of heterogeneity of the thrombus structure (for discussion 
see [69; 72]), the sPlt and the sWBC were measured on up to 6 regions of the retrieved thrombi with scanning electron 
microscope, whereas the other parameters (Fibrinogen, WBC, CRP) are characteristics of the patient. If for a patient, we 
have m regions measured for the thrombi, we have in fact created m records for each patient, where the patient-specific 
parameters are the same.  
If we assume that we deal with a crisp sample of records, then the patient-specific parameters will be heavily distorted 
because the patients with more regions measured on the thrombi will participate with higher weight into the estimated 
sample characteristics. In other words, we have a practical need to fuzzify the sample to avoid biased analysis. Therefore 
we apply a fuzzy sample approach and assume that the m records for a given patient belong to the general population with 
degree of membership 1/m. For example, the 5 records for patient 07 (see Table 2) obtain a degree of membership of 
1/5=0.20, while the 4 records for patient 06 obtain a degree of membership of 1/4=0.25. If other considerations are present, 
each record may receive different degrees of membership, so this is only one possible approach, chosen here for 
simplicity.  
 
6.2.1. Practical example 1 
We shall first study the dependence of sPlt from Fibrinogen. Table 2 presents the measurement data, with a total of 59 
records for a total of 13 patients (patient codes given in columns 1, 6, 11, and 16). Patients were selected so that for all 
records, Fibrinogen>4.2 g/l. Columns 5, 10, 15 and 20 of Table 2 show the degrees of membership of each patient record.  
 
INITIAL ANALYSIS 
Initially, without any outlier rejection, we construct a quadratic regression model for sPlt on the predictor Fibrinogen, 
using the 59 in-observations as follows: sPlt=218.9–76.5×Fibrinogen+6.885×Fibrinogen2+e. In the terminology of 
Section 2, the response variable Y is sPlt and the directly measured independent variable Z1 is Fibrinogen (evidently, 
p=1). The q=3 predictor variables are: X1=1, X2= Z1 and X3= 2

1Z  (that is, F1(z1)=1, F2(z1)= z1, and F3(z1)= 2
1z ). The 95%-

confidence intervals of the model’s coefficients are from –81.98 to 519.8, from –192.6 to 39.6, and from –4.13 to 17.9. 
The estimated standard error is in a 95%-confidence interval from 17.46 to 25.37. The adjusted coefficient of multiple 
determination is 2 0 02073adjR .= . The regression parameters are not significant (all tests with pvalue>>0.05) and the model 
is not adequate (ANOVA with pvalue=0.2082). 
The following results were achieved using Algorithms 1 and 2 with maximal number of cycles Cmax=3. Table 2 also 
presents the results from the outlier detection through the three sub-columns of “Outliers after each cycle” (columns 2, 7, 
12 and 17).  
 
CYCLE 1 
A total of 5 outliers were identified and rejected from the original sample: observation 1 for patient 05, observation 2 for 
patient 34, observations 4 and 5 for patient 35, and observation 5 for patient 56. This can be traced in the first sub-column 
of “Outliers after each cycle” in Table 2 (rows shaded), where those five observations have a value of 1 (indicating they 
were identified as outliers in cycle 1). The model was constructed using the remaining 54 in-observations as: sPlt=165.7 
– 60.37×Fibrinogen+5.539×Fibrinogen2+e. The 95%-confidence intervals of the model’s coefficients are from 77.06 to 
254.4, from –94.41 to –26.32, and from 2.321 to 8.756. The estimated standard error is in a 95%-confidence interval from 
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4.947 to 7.321. The adjusted coefficient of multiple determination is 2 0 2095adjR .= . The regression parameters are 
significant (all tests with pvalue<<0.05). The model is adequate (ANOVA with pvalue<<0.05). 
 
CYCLE 2 
A new outlier was identified and rejected from the original sample: observation 2 for patient 05. This can be traced in the 
second sub-column of “Outliers after each cycle” in Table 2 (row shaded), where this observation has a value of 2 
(indicating it was identified as an outlier in cycle 2). The previous 5 observations were confirmed again as outliers (their 
second sub-column of “Outliers after each cycle” has the value of 1 indicating their status from cycle 1 was confirmed in 
cycle 2). The model was constructed using the remaining 53 in-observations: sPlt=95.84 – 
35.82×Fibrinogen+3.401×Fibrinogen2+e. The 95% confidence intervals of the model’s coefficients are from 49.43 to 
142.2, from –53.55 to –18.08, and from 1.731 to 5.07. The estimated standard error is in a 95% confidence interval from 
2.535 to 3.766. The adjusted coefficient of multiple determination is 2 0 2246adjR .= . The regression parameters are 
statistically significant (all tests with pvalue<<0.005). The model is adequate (ANOVA with pvalue<<0.05). 
 
CYCLE 3 
Two new outliers were identified and rejected from the original sample: observation 1 for patient 10 and observation 1 
for patient 18. This can be traced in the third sub-column of “Outliers after each cycle” in Table 2 (rows shaded), where 
these observations have a value of 3 (indicating they were identified as outliers in cycle 3). The previous 6 observations 
were confirmed again as outliers (their third sub-column of “Outliers after each cycle” has the value of either 1 or 2 
indicating their status from either cycle 1 or 2 was confirmed in cycle 3). The model was constructed using the remaining 
51 in-observations as sPlt=128.7 – 48.92×Fibrinogen+4.683×Fibrinogen2+e. The 95% confidence intervals of the 
model’s coefficients are from 84.75 to 172.6, from –65.83 to –32.01, and from 3.079 to 6.288. The estimated standard 
error is in a 95% confidence interval from 2.217 to 3.321. The adjusted coefficient of multiple determination is 

2 0 3985adjR .= . The regression parameters are statistically significant (all tests with pvalue<<0.0005). The model is 
adequate (ANOVA with pvalue<<0.05). The third cycle is complete, and the true number of cycles is Ctrue=Cmax=3. The 
algorithm exits the cycle loop.  
 
“BEST” LINEAR MODEL SELECTION 
As expected, the “best” linear model is the one after the cycle 3 because it has the largest adjusted  coefficient of multiple 
determination 2 0 3985adjR .= (larger than the second cycle 2 0 2246adjR .= , and larger than the first cycle 2 0 2095adjR .= ). 
The results from the example show that throughout the cycles we observed new outliers being identified, but none of the 
initially identified ones returned to the original sample. We would usually expect that with each cycle, less outliers will 
be identified. On the contrary – in this example we saw that the rejection of the sixth outlier in cycle 2 was crucial for the 
rejection of the last two outliers in cycle 3, which were somewhat hidden up until after cycle 2. This well demonstrates 
the benefits of having cycles in our approach to allow thorough analysis and purging of the data from non-representative 
measurements.  
The importance of using cycles in outlier rejection can also be seen by comparing cycle 1 (which is the result of no-cycle 
procedure for outlier rejection) and cycle 3 (which is the result of multiple cycle procedure developed in this paper). The 
results from the initial analysis were unacceptable. The significance of the regression parameters improved substantially 
between cycles 1 and 3, and the adequacy of the model increased substantially, with 2

adjR  going from 0.2095 up to 0.3985, 
which is almost a two-fold increase. The final model after cycle 3 is presented in Fig. 5, demonstrating a strong 
dependence of sPlt on Fibrinogen. This example illustrates that the fuzzy sample approach in combination with outlier 
rejection in cycles is a helpful tool in medical studies of biological systems that helps us minimize the effect of intra-
individual sample heterogeneity on the conclusions based on inter-individual diversity. 
 
6.2.2. Practical example 2 
In this example, we explore the dependence of sWBC on WBC and CRP. Table 3a and Table 3b present the measurement 
data, with a total of 296 records for 61 patients (patient codes given in columns 1, 7, 13, and 19). There is no limitation 
that we imposed on which patients to include in the data set. Columns 6, 12, 18 and 24 of Table 3a and Table 3b show 
the degrees of membership of each patient record. 
 
INITIAL ANALYSIS 
Initially, without any outlier rejection, we constructed a partial quadratic regression model (step-wise regression analysis 
was utilized to identify that only 2 of the 6 coefficients are not zero) for sWBC on the predictors WBC and CRP, using 
the 296 in-observations as follows: sWBC=0.005376×WBC2+0.0002298×CRP2+e. In the terminology of Section 2, the 
response variable Y is sWBC and the directly measured independent variables are the following: Z1 is WBC and Z2 is CRP 
(obviously, p=2). The q=2 predictor variables are: X1= 2

1Z , and X2= 2
2Z  (that is, F1(z1, z2)= 2

1z , and F2(z1, z2)= 2
2z ). The 
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95%-confidence intervals of the model’s coefficients are from 0.004057 to 0.006695, and from 0.000172 to 0.0002877. 
The estimated standard error is in a 95%-confidence interval from 2.125 to 2.498. The adjusted coefficient of multiple 
determination is 2 0 1966adjR .= . The regression parameters are significant (all tests with pvalue<<0.05) and the model is 
adequate (ANOVA with pvalue=0). 
The following results were achieved using Algorithms 1 and 2 with Cmax=3. Table 3a and Table 3b present the results 
from the outlier detection through the two sub-columns of the parameter “Outliers after each cycle”.  

 
CYCLE 1 
A total of 16 outliers were identified and rejected from the original sample: observation 1 for patient 15, observation 5 
for patient 15, observation 1 for patient 29, observation 2 for patient 38, observations 3 and 5 for patient 42, observations 
3 and 4 for patient 43, observations 1, 3 and 5 for patient 46, observation 4 for patient 47, observation 5 for patient 49, 
observation 4 for patient 54, and observations 1 and 2 for patient 55. This can be traced in the first sub-column of “Outliers 
after each cycle” in Table 3a and Table 3b (shaded rows), where those 16 observations have a value of 1 (indicating they 
were identified as outliers in cycle 1). The model was constructed using the remaining 280 in-observations as: 
sWBC=0.003075×WBC2+0.0002514×CRP2+e. The 95%-confidence intervals of the model’s coefficients are from 
0.002393 to 0.003757 and from 0.0002167 to 0.0002862. The estimated standard error is in a 95%-confidence interval 
from 1.046 to 1.235. The adjusted coefficient of multiple determination is 2 0 4282adjR .= . The regression parameters are 
significant (all tests with pvalue<<0.05). The model is adequate (ANOVA with pvalue=0). 
 
CYCLE 2 
A total of 21 new outliers were identified and rejected from the original sample: observation 4 for patient 03, observation 
4 for patient 12, observation 1 for patient 17, observation 2 for patient 21, observation 2 for patient 22, observation 4 for 
patient 32, observation 3 for patient 34, observation 3 for patient 35, observations 1 and 4 for patient 38, observation 2 
for patient 43, observation 1 for patient 49, observation 5 for patient 50, observation 4 for patient 51, observation 2 for 
patient 52, observation 1 for patient 53, observation 5 for patient 55, observation 5 for patient 56, observation 2 for patient 
57, observation 2 for patient 62, and observation 5 for patient 64. This can be traced in the second sub-column of “Outliers 
after each cycle” in Table 3a and Table 3b (shaded rows), where those 21 observations have a value of 2 (indicating they 
were identified as outliers in cycle 2). The previous 16 observations were confirmed again as outliers (their second sub-
column of “Outliers after each cycle” has the value of 1 indicating their status from cycle 1 was confirmed in cycle 2). 
The model was constructed using the remaining 259 in-observations as: sWBC=0.001997×WBC2+0.0002191×CRP2+e. 
The 95%-confidence intervals of the model’s coefficients are from 0.001501 to 0.002494 and from 0.0001915 to 
0.0002467. The estimated standard error is in a 95%-confidence interval from 0.7193 to 0.8553. The adjusted coefficient 
of multiple determination is 2 0 4942adjR .= . The regression parameters are significant (all tests with pvalue<<0.05). The 
model is adequate (ANOVA with pvalue=0). 
 
CYCLE 3 
No new outliers were identified, and the third cycle is incomplete. The true number of cycles is Ctrue=2. The algorithm 
exits the cycle loop.  
 
“BEST” LINEAR MODEL SELECTION 
As expected, the “best” linear model is the one after cycle 2 because it has the largest adjusted coefficient of multiple 
determination 2 0 4942adjR .= (larger than the first cycle 2 0 4282adjR .= ).  

 
The model after cycle 2 is final. In this way, we demonstrate another benefit of our algorithms, namely that sometimes 
we will achieve ultimate outlier detection that does not depend from the permitted count of cycles. In the example we 
also observed that throughout the two cycles, we identified new outliers, but none of the initially identified ones returned 
to the original sample. Hence, with the rejection of outliers in cycle 1 we were able to better detect new outliers in cycle 
2. Even though the results from the initial analysis were acceptable (coefficients were significant and the model was 
adequate), we can see the importance of using cycles in outlier rejection by comparing cycle 1 (which is the result of no-
cycle procedure for outlier rejection) and cycle 2 (which is the result of multiple cycle procedure developed in this paper), 
as 21 new outliers were purged from the data set and the adequacy of the model increased with 2

adjR  going from 0.4282 
to 0.4942 (and being 0.1966 for the initial model with no outlier rejection).  
The final model after cycle 2 is presented in Fig. 6, demonstrating a strong dependence of sWBC on WBC and CRP. Thus, 
this case again illustrates that the fuzzy sample approach in combination with outlier rejection in cycles based on the 
multiple testing paradigm in medical studies of biological systems helps us minimize the effect of intra-individual sample 
heterogeneity on conclusions based on inter-individual diversity. 
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7. DISCUSSION AND CONCLUSIONS 

In this paper, we focused on ways of improving detection and rejection of outliers in cycles over fuzzy data with 
subsequent construction of a linear regression model. To do so, we have defined two algorithms. The Algorithm 1 builds 
a linear regression model using n fuzzy in-observations. It relied on SVD decomposition to improve the quality of the 
linear regression model as it allowed eliminating multicollinearity in the predictor variables. Algorithm 1 helps identify 
the true zero values among the singular values automatically and in such a way is self-protected against singularities in 
the data. We employed a LOO approach with single testing procedure for each of the in-observations to calculate the pvalue 
of statistical hypotheses that each of the in-observations is an outlier. The Algorithm 2 operated over fuzzy data and 
utilizes repeatedly Algorithm 1 as a working engine to identify the outliers in the data set. Algorithm 2 operated in 
predefined number of cycles, where some in-observations became outliers, and some outliers could then return to the set 
of in-observations. In such a way, Algorithm 2 accounted for the varying order of magnitude that outliers may have which 
could hide some of the outliers from the detection procedure. Each cycle in Algorithm 2 ran in two phases:  
a) The first phase developed a high-quality intermediate model on a given set of in-observations by easily purging 

the potential outliers using single testing LOO procedure. 
b) The second phase sought stringent confirmation for the outlier status of each current outlier from all cycles using 

Benjamini-Hochberg step-up multiple testing procedure controlling the FDR. All observations with non-confirmed 
outlier status were brought back to the in-observations data set. A final model was then constructed as an outcome 
of each cycle.  

Algorithm 2 stops either when the predefined number of cycles is completed or when a cycle did not add new outliers. 
Our approach has an advantage in that it allowed in phase 2 of each cycle for the earlier declared outliers to potentially 
return to the data sample. In light of the discussions in Sections 1 and 3 regarding fuzzy regression models, we can see 
this is a rare feature of fuzzy regression procedures, yet desired one as it contributes to the quality and quantity of 
information for adequate regression analysis.  
The usefulness of the proposed algorithms is demonstrated by means of three examples with fuzzy data. The first is a 
small illustrative case. The benefits of using cycles in our procedure was well demonstrates in this example, since in each 
cycle we had new outliers identified, while some returned to the data sample. We observed a ten-fold improvement of the 
significance of regression parameters between the first and the last cycle in the procedure.  
Our other two examples are both related to a case study in medical research (namely, thrombosis research). The medical 
setup of those two examples necessitated the use of fuzzy data in order to avoid distortions in characteristics calculated 
from the data. Therefore, we constructed two quadratic linear regression models over the dependence between routinely 
available clinical data and structural characteristics of thrombi. In the first example, we observed that some outliers may 
hide or prevent other data points to be revealed as outliers (see Section 6.2.1), which was a particularly strong point in 
favor of our cycle-based approach. The second practical example in Section 6.2.2 demonstrates that the algorithms avoid 
calculations (cycles) that would not add up to the overall quality of the model and constructs the final model in a smaller 
number of cycles.  
In all three examples, we observed that initial analysis constructed mostly unacceptable models, which subsequently are 
improved significantly (up to ten-fold) after the implementation of our algorithms, as indicated by their 2

adjR . We observed 
that each cycle in our examples added new outliers, with only one cycle in the illustrative example returning an outlier to 
the original data set (so the outliers from previous steps were in overall confirmed). 
Our approach has certain limitations. First of all, we relied in our constructions on the classical linear regression 
assumption that the unexplained error U is normally distributed: ( )20U ~ N ,σ  (see [45]), which may not always be the 

case. Simulation techniques may allow to explore other setups for U. Secondly, our procedures (both Algorithm 1 and 2) 
are computationally complex and without software implementation they may impose significant challenge to implement. 
All proposed algorithms from this work, along with the example results were performed using original software codes in 
MATLAB R2019a © (that are available free of charge upon request from the authors). In such a way we have alleviated 
this limitation of our work. Finally, the strength of Algorithm 2 (i.e. that it allows to reject outliers in layers, accounting 
for the order of magnitude of outliers) may sometimes become problematic. If we perform way too many cycles, the 
procedure may (in some limited cases) lead to rejecting way too many of the initial observations as outliers. This is 
particularly true if the underlying model is quadratic or cubic, but the user employs a linear model in the procedure. To 
overcome this, it is recommended to run a default count of 3-4 cycles (which was demonstrated in the examples) and 
predefine the user input on the count of cycles. 
We can outline several directions of future research. To overcome the limitation of our procedure only assuming normality 
of the unexplained error, we shall aim to utilize simulation techniques (e.g. Bootstrap simulations, see [26; 59] for 
discussion on simulation modelling with Bootstrap) to explore the nature of U. Another direction of future studies is to 
seek implementation of our algorithms in other practical case studies in management, economics, supply chain 
management, environmental research and engineering. Also, in our future research we shall aim to explore case studies 
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and/or numerical examples where we will be able to compare the performance of our method versus other similar cycle-
based outlier detection procedures over fuzzy data.  
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77.  
 
Table 1. Set of 12 observations of the predictor variable X and the response variable Y for 
the illustrative example in Section 6.1. The degrees of membership are given in columns 5 
and 10 for each record. The sub-columns of “Outliers after each cycle” indicate whether the 
observation was declared outlier (shaded rows), and at which cycle. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2. Set of 59 observations of Fibrinogen and sPlt for a total of 13 patients for practical example 1 from 
Section 6.2.1. The degrees of membership are given in columns 5, 10, 15 and 20 for each record. The sub-
columns of “Outliers after each cycle” indicate whether the observation was declared outlier (shaded rows), 
and at which cycle.  
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05 1 1 1 65 4.26 0.50 18 0 0 3 8.9 5.6 0.20 34 0 0 0 2.4 5.3 0.20 54 0 0 0 0 5.3 0.20 
05 0 2 2 31.1 4.26 0.50 18 0 0 0 3.7 5.6 0.20 34 1 1 1 63.5 5.3 0.20 54 0 0 0 0.6 5.3 0.20 
06 0 0 0 7.5 5.95 0.25 18 0 0 0 0.7 5.6 0.20 34 0 0 0 3.6 5.3 0.20 54 0 0 0 0.3 5.3 0.20 
06 0 0 0 0 5.95 0.25 18 0 0 0 0 5.6 0.20 34 0 0 0 0.5 5.3 0.20 54 0 0 0 0.6 5.3 0.20 
06 0 0 0 0.6 5.95 0.25 18 0 0 0 0.7 5.6 0.20 34 0 0 0 0.7 5.3 0.20 54 0 0 0 2 5.3 0.20 
06 0 0 0 0 5.95 0.25 20 0 0 0 6.1 4.3 0.20 35 0 0 0 3.1 5.95 0.20 56 0 0 0 0.2 4.42 0.20 
07 0 0 0 9.8 4.26 0.20 20 0 0 0 1.5 4.3 0.20 35 0 0 0 3.2 5.95 0.20 56 0 0 0 0 4.42 0.20 
07 0 0 0 3.8 4.26 0.20 20 0 0 0 9 4.3 0.20 35 0 0 0 4.6 5.95 0.20 56 0 0 0 6.7 4.42 0.20 
07 0 0 0 5 4.26 0.20 20 0 0 0 0.3 4.3 0.20 35 1 1 1 81 5.95 0.20 56 0 0 0 2.8 4.42 0.20 
07 0 0 0 6.5 4.26 0.20 20 0 0 0 5.8 4.3 0.20 35 1 1 1 73.7 5.95 0.20 56 1 1 1 73.6 4.42 0.20 
07 0 0 0 3.6 4.26 0.20 33 0 0 0 0.9 6 0.20 49 0 0 0 5.9 5.27 0.20 62 0 0 0 0.7 4.64 0.20 
10 0 0 3 1.5 6.58 0.33 33 0 0 0 1.4 6 0.20 49 0 0 0 6.9 5.27 0.20 62 0 0 0 0.5 4.64 0.20 
10 0 0 0 10.6 6.58 0.33 33 0 0 0 2.2 6 0.20 49 0 0 0 1.9 5.27 0.20 62 0 0 0 0.2 4.64 0.20 
10 0 0 0 12.6 6.58 0.33 33 0 0 0 3.4 6 0.20 49 0 0 0 1.5 5.27 0.20 62 0 0 0 7.8 4.64 0.20 
     33 0 0 0 0.1 6 0.20 49 0 0 0 1.5 5.27 0.20 62 0 0 0 5 4.64 0.20 
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1 0 0 0 7.1 18.6 1 7 1 1 0 17 38.6 1 

2 0 0 0 7.6 19.7 0.75 8 0 0 0 4.4 14.5 0.4 

3 1 1 1 3.64 70.7 0.5 9 0 0 0 5.7 15.5 0.25 

4 0 0 0 7.6 18.7 0.5 10 0 2 2 7.9 –9.8 0.75 

5 0 0 0 6.2 18.1 1 11 0 0 0 7.8 20.5 1 

6 0 0 0 3.49 12.1 0.5 12 0 0 3 15 2 1 
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Table 3a. Set of 296 observations of WBC, CRP and sWBC for a total of 61 patients for practical example 2 from Section 
6.2.2. The degrees of membership are given in columns 6, 12, 18 and 24 for each record. The sub-columns of “Outliers 
after each cycle” indicate whether the observation was declared outlier (shaded rows), and at which of the two cycles 
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01 0 0 0 10.7 1.35 0.20 13 0 0 1.4 16.4 5.5 0.20 23 0 0 0.6 10.9 3.65 0.20 33 0 0 0 11.1 4.2 0.20 
01 0 0 0.8 10.7 1.35 0.20 13 0 0 0.3 16.4 5.5 0.20 23 0 0 0 10.9 3.65 0.20 33 0 0 0 11.1 4.2 0.20 
01 0 0 0.6 10.7 1.35 0.20 13 0 0 0 16.4 5.5 0.20 23 0 0 0 10.9 3.65 0.20 33 0 0 0 11.1 4.2 0.20 
01 0 0 0 10.7 1.35 0.20 13 0 0 0 16.4 5.5 0.20 23 0 0 0 10.9 3.65 0.20 33 0 0 0 11.1 4.2 0.20 
01 0 0 0.3 10.7 1.35 0.20 13 0 0 0 16.4 5.5 0.20 23 0 0 0 10.9 3.65 0.20 33 0 0 0 11.1 4.2 0.20 
02 0 0 1.4 10.8 16.7 0.20 14 0 0 0 9.7 15 0.25 24 0 0 0 9.3 4.3 0.20 34 0 0 0 5 9.4 0.20 
02 0 0 0.9 10.8 16.7 0.20 14 0 0 0 9.7 15 0.25 24 0 0 0 9.3 4.3 0.20 34 0 0 0 5 9.4 0.20 
02 0 0 0 10.8 16.7 0.20 14 0 0 0 9.7 15 0.25 24 0 0 0 9.3 4.3 0.20 34 0 2 2.8 5 9.4 0.20 
02 0 0 0 10.8 16.7 0.20 14 0 0 0 9.7 15 0.25 24 0 0 0 9.3 4.3 0.20 34 0 0 0 5 9.4 0.20 
02 0 0 0 10.8 16.7 0.20 15 1 1 5.6 11.6 0.22 0.20 24 0 0 0 9.3 4.3 0.20 34 0 0 0 5 9.4 0.20 
03 0 0 0.9 9.9 8.3 0.20 15 0 0 0 11.6 0.22 0.20 25 0 0 0 8.09 0.46 0.20 35 0 0 0 19.5 44.6 0.20 
03 0 0 0 9.9 8.3 0.20 15 0 0 1.6 11.6 0.22 0.20 25 0 0 0 8.09 0.46 0.20 35 0 0 0 19.5 44.6 0.20 
03 0 0 0 9.9 8.3 0.20 15 0 0 0 11.6 0.22 0.20 25 0 0 0 8.09 0.46 0.20 35 0 2 4.3 19.5 44.6 0.20 
03 0 2 3.4 9.9 8.3 0.20 15 1 1 6.4 11.6 0.22 0.20 25 0 0 0 8.09 0.46 0.20 35 0 0 0 19.5 44.6 0.20 
03 0 0 0 9.9 8.3 0.20 16 0 0 0 11.6 1.9 0.20 25 0 0 0 8.09 0.46 0.20 35 0 0 0 19.5 44.6 0.20 
04 0 0 3.1 10 58.6 0.25 16 0 0 0 11.6 1.9 0.20 26 0 0 0 8.4 17 0.25 37 0 0 0 8.03 0.42 0.20 
04 0 0 0 10 58.6 0.25 16 0 0 0 11.6 1.9 0.20 26 0 0 0 8.4 17 0.25 37 0 0 0 8.03 0.42 0.20 
04 0 0 1.5 10 58.6 0.25 16 0 0 0 11.6 1.9 0.20 26 0 0 0 8.4 17 0.25 37 0 0 0 8.03 0.42 0.20 
04 0 0 0 10 58.6 0.25 16 0 0 0 11.6 1.9 0.20 26 0 0 0 8.4 17 0.25 37 0 0 0 8.03 0.42 0.20 
05 0 0 0 16.7 1.22 0.50 17 0 2 2.5 6.8 1.3 0.20 27 0 0 0 7.6 3.4 0.20 37 0 0 0 8.03 0.42 0.20 
05 0 0 0 16.7 1.22 0.50 17 0 0 0 6.8 1.3 0.20 27 0 0 1.2 7.6 3.4 0.20 38 0 2 3.5 14.57 4.26 0.20 
06 0 0 0 16.9 14.5 0.25 17 0 0 0 6.8 1.3 0.20 27 0 0 0 7.6 3.4 0.20 38 1 1 5.8 14.57 4.26 0.20 
06 0 0 0 16.9 14.5 0.25 17 0 0 0 6.8 1.3 0.20 27 0 0 0 7.6 3.4 0.20 38 0 0 0 14.57 4.26 0.20 
06 0 0 0 16.9 14.5 0.25 17 0 0 0 6.8 1.3 0.20 27 0 0 0 7.6 3.4 0.20 38 0 2 3.5 14.57 4.26 0.20 
06 0 0 0 16.9 14.5 0.25 18 0 0 0 15.9 5.12 0.20 28 0 0 0 9.5 24.9 0.20 38 0 0 2.1 14.57 4.26 0.20 
07 0 0 0 15.4 7.48 0.20 18 0 0 0 15.9 5.12 0.20 28 0 0 0 9.5 24.9 0.20 39 0 0 0 12.8 4.9 0.17 
07 0 0 0 15.4 7.48 0.20 18 0 0 0 15.9 5.12 0.20 28 0 0 0 9.5 24.9 0.20 39 0 0 0 12.8 4.9 0.17 
07 0 0 0 15.4 7.48 0.20 18 0 0 0 15.9 5.12 0.20 28 0 0 1.4 9.5 24.9 0.20 39 0 0 0 12.8 4.9 0.17 
07 0 0 0 15.4 7.48 0.20 18 0 0 0.8 15.9 5.12 0.20 28 0 0 1 9.5 24.9 0.20 39 0 0 0 12.8 4.9 0.17 
07 0 0 0 15.4 7.48 0.20 19 0 0 0 12.8 21.3 0.20 29 1 1 9.6 8.8 4.3 0.20 39 0 0 0.9 12.8 4.9 0.17 
09 0 0 0 17.9 23.8 0.20 19 0 0 0 12.8 21.3 0.20 29 0 0 1.3 8.8 4.3 0.20 39 0 0 0.7 12.8 4.9 0.17 
09 0 0 1.5 17.9 23.8 0.20 19 0 0 0 12.8 21.3 0.20 29 0 0 0 8.8 4.3 0.20 41 0 0 1.2 16.7 34.8 0.20 
09 0 0 0 17.9 23.8 0.20 19 0 0 0 12.8 21.3 0.20 29 0 0 0.5 8.8 4.3 0.20 41 0 0 1.5 16.7 34.8 0.20 
09 0 0 0.8 17.9 23.8 0.20 19 0 0 0 12.8 21.3 0.20 29 0 0 0 8.8 4.3 0.20 41 0 0 2.1 16.7 34.8 0.20 
09 0 0 1.6 17.9 23.8 0.20 20 0 0 0 21.3 4.2 0.20 30 0 0 0 10.8 3.8 0.20 41 0 0 1.7 16.7 34.8 0.20 
10 0 0 0 9.01 12 0.33 20 0 0 0 21.3 4.2 0.20 30 0 0 0 10.8 3.8 0.20 41 0 0 0 16.7 34.8 0.20 
10 0 0 0 9.01 12 0.33 20 0 0 0 21.3 4.2 0.20 30 0 0 1 10.8 3.8 0.20 42 0 0 0 10.9 1.3 0.20 
10 0 0 0 9.01 12 0.33 20 0 0 0 21.3 4.2 0.20 30 0 0 0 10.8 3.8 0.20 42 0 0 0.6 10.9 1.3 0.20 
11 0 0 2.3 12.3 1.33 0.20 20 0 0 0 21.3 4.2 0.20 30 0 0 0 10.8 3.8 0.20 42 1 1 8.1 10.9 1.3 0.20 
11 0 0 2.7 12.3 1.33 0.20 21 0 0 0 12.3 2.57 0.20 31 0 0 0 7.96 1.25 0.20 42 0 0 2.1 10.9 1.3 0.20 
11 0 0 0 12.3 1.33 0.20 21 0 2 2.8 12.3 2.57 0.20 31 0 0 0 7.96 1.25 0.20 42 1 1 8.1 10.9 1.3 0.20 
11 0 0 0 12.3 1.33 0.20 21 0 0 1.7 12.3 2.57 0.20 31 0 0 0 7.96 1.25 0.20 43 0 0 5.4 11.1 188 0.17 
11 0 0 1.7 12.3 1.33 0.20 21 0 0 0 12.3 2.57 0.20 31 0 0 0 7.96 1.25 0.20 43 0 2 13.3 11.1 188 0.17 
12 0 0 0 13.3 22.1 0.20 21 0 0 0 12.3 2.57 0.20 31 0 0 0 7.96 1.25 0.20 43 1 1 0.9 11.1 188 0.17 
12 0 0 0 13.3 22.1 0.20 22 0 0 0 8.9 6.08 0.20 32 0 0 0 19.24 40 0.20 43 1 1 15.4 11.1 188 0.17 
12 0 0 1.2 13.3 22.1 0.20 22 0 2 2.8 8.9 6.08 0.20 32 0 0 1.2 19.24 40 0.20 43 0 0 12 11.1 188 0.17 
12 0 2 3 13.3 22.1 0.20 22 0 0 0 8.9 6.08 0.20 32 0 0 0 19.24 40 0.20 43 0 0 6.5 11.1 188 0.17 
12 0 0 0 13.3 22.1 0.20 22 0 0 0 8.9 6.08 0.20 32 0 2 4.1 19.24 40 0.20 44 0 0 0 17.7 0.65 0.25 
      22 0 0 0 8.9 6.08 0.20 32 0 0 3.4 19.24 40 0.20 44 0 0 0.8 17.7 0.65 0.25 
                  44 0 0 0.9 17.7 0.65 0.25 
                  44 0 0 2.5 17.7 0.65 0.25 
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Table 3b. Set of 296 observations of WBC, CRP and sWBC for a total of 61 patients for practical example 2 from Section 
6.2.2. The degrees of membership are given in columns 6, 12, 18 and 24 for each record. The sub-columns of “Outliers 
after each cycle” indicate whether the observation was declared outlier (shaded if so), and at which of the two cycles 
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45 0 0 1.3 9.97 4.94 0.20 51 0 0 1.3 6.85 4.4 0.20 56 0 0 0 10.23 24.3 0.20 61 0 0 2.5 19.5 7.6 0.20 
45 0 0 0.7 9.97 4.94 0.20 51 0 0 2.4 6.85 4.4 0.20 56 0 0 0 10.23 24.3 0.20 61 0 0 0.6 19.5 7.6 0.20 
45 0 0 0 9.97 4.94 0.20 51 0 0 0.7 6.85 4.4 0.20 56 0 0 0 10.23 24.3 0.20 61 0 0 2.3 19.5 7.6 0.20 
45 0 0 0 9.97 4.94 0.20 51 0 2 3.2 6.85 4.4 0.20 56 0 0 0 10.23 24.3 0.20 61 0 0 1.5 19.5 7.6 0.20 
45 0 0 0 9.97 4.94 0.20 51 0 0 0 6.85 4.4 0.20 56 0 2 3.9 10.23 24.3 0.20 61 0 0 2.3 19.5 7.6 0.20 
46 1 1 6.8 3.3 19.5 0.20 52 0 0 0 5.2 7.7 0.20 57 0 0 0.9 15.4 4.8 0.20 62 0 0 0 10.2 9.7 0.20 
46 0 0 0.1 3.3 19.5 0.20 52 0 2 3.6 5.2 7.7 0.20 57 0 2 3.6 15.4 4.8 0.20 62 0 2 2.8 10.2 9.7 0.20 
46 1 1 6.1 3.3 19.5 0.20 52 0 0 0 5.2 7.7 0.20 57 0 0 0 15.4 4.8 0.20 62 0 0 0 10.2 9.7 0.20 
46 0 0 0 3.3 19.5 0.20 52 0 0 0 5.2 7.7 0.20 57 0 0 0 15.4 4.8 0.20 62 0 0 0 10.2 9.7 0.20 
46 1 1 7.8 3.3 19.5 0.20 52 0 0 0 5.2 7.7 0.20 57 0 0 0 15.4 4.8 0.20 62 0 0 0 10.2 9.7 0.20 
47 0 0 0 5.8 1.8 0.20 53 0 2 3.1 9.7 1.56 0.20 58 0 0 0 9 1.8 0.20 63 0 0 0 11 5.6 0.25 
47 0 0 0 5.8 1.8 0.20 53 0 0 0.5 9.7 1.56 0.20 58 0 0 1.5 9 1.8 0.20 63 0 0 0 11 5.6 0.25 
47 0 0 0 5.8 1.8 0.20 53 0 0 2 9.7 1.56 0.20 58 0 0 2.4 9 1.8 0.20 63 0 0 1.6 11 5.6 0.25 
47 1 1 12.5 5.8 1.8 0.20 53 0 0 0.8 9.7 1.56 0.20 58 0 0 0 9 1.8 0.20 63 0 0 0 11 5.6 0.25 
47 0 0 1.4 5.8 1.8 0.20 53 0 0 0 9.7 1.56 0.20 58 0 0 0 9 1.8 0.20 64 0 0 0 14.97 4.1 0.20 
49 0 2 3.4 8.7 6.43 0.20 54 0 0 0 11 4.9 0.20 59 0 0 0 11.6 59 0.20 64 0 0 1.5 14.97 4.1 0.20 
49 0 0 0 8.7 6.43 0.20 54 0 0 0.7 11 4.9 0.20 59 0 0 2.3 11.6 59 0.20 64 0 0 0 14.97 4.1 0.20 
49 0 0 0 8.7 6.43 0.20 54 0 0 0 11 4.9 0.20 59 0 0 3.2 11.6 59 0.20 64 0 0 2.9 14.97 4.1 0.20 
49 0 0 0 8.7 6.43 0.20 54 1 1 10.6 11 4.9 0.20 59 0 0 0 11.6 59 0.20 64 0 2 3.2 14.97 4.1 0.20 
49 1 1 5.3 8.7 6.43 0.20 54 0 0 0.6 11 4.9 0.20 59 0 0 1.6 11.6 59 0.20 65 0 0 0.6 15.9 9.2 0.20 
50 0 0 0 16.11 5.82 0.20 55 1 1 20.8 25.9 16.6 0.20 60 0 0 0 11 0.31 0.20 65 0 0 0 15.9 9.2 0.20 
50 0 0 0 16.11 5.82 0.20 55 1 1 13.8 25.9 16.6 0.20 60 0 0 0 11 0.31 0.20 65 0 0 0 15.9 9.2 0.20 
50 0 0 0 16.11 5.82 0.20 55 0 0 3.7 25.9 16.6 0.20 60 0 0 1.2 11 0.31 0.20 65 0 0 0 15.9 9.2 0.20 
50 0 0 0 16.11 5.82 0.20 55 0 0 2.4 25.9 16.6 0.20 60 0 0 0.6 11 0.31 0.20 65 0 0 1.7 15.9 9.2 0.20 
50 0 2 3.5 16.11 5.82 0.20 55 0 2 7.3 25.9 16.6 0.20 60 0 0 0 11 0.31 0.20       

 
 
 

  
Fig. 1. Regression model y= –0.1823x+20.74+e and outliers 
(no such identified) from the initial cycle in the illustrative 
example from Section 6.1, the parameters are not significant 
(all tests with pvalue>>0.05) and the model is inadequate 
(ANOVA with pvalue=0.8467) 

Fig. 2. Regression model y= –1.371x+23.65 +e and outliers (2 identified) 
from cycle 1 in the illustrative example in Section 6.1, the parameters 
are with varying significance (first with pvalue=0.2025 and insignificant, 
second with pvalue=0.02250 and significant), and the model is not 
adequate (ANOVA with pvalue=0.2022) 
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Fig. 3. Regression model y= –1.37x+26.30 +e and outliers 
(1 new and 2 from cycle 1) from cycle 2 of the illustrative 
example in Section 6.1, the parameters are significant (all 
tests with pvalue<0.05), and the model is adequate 
(ANOVA with pvalue=0.0264) 

Fig. 4. Regression model y=1.958x+5.128 +e and outliers (1 
new, 2 from cycle 1 and 2, and 1 from cycle 1 returned to 
original sample) from cycle 3 of the illustrative example in 
Section 6.1, the parameters are significant (all tests with 
pvalue<<0.05), and the model is adequate (ANOVA with 
pvalue<<0.0005) 

 

  
Fig. 5. Regression model for practical example 1 in Section 6.2.1  

with 59 initial observations in a fuzzy sample, with a total  
of 8 utliers rejected in 3 cycles 

 

 
Fig. 6. Regression model for practical example 2 in Section 6.2.2 with 296 initial  

observations in a fuzzy sample, with a total of 37 utliers rejected in 2 cycles 
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