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QUANTUM HELLINGER DISTANCES REVISITED

JÓZSEF PITRIK AND DÁNIEL VIROSZTEK

ABSTRACT. This short note aims to study quantum Hellinger distances investigated
recently by Bhatia et al. [8] with a particular emphasis on barycenters. We introduce
the family of generalized quantum Hellinger divergences that are of the form φ(A,B) =
Tr((1−c)A+cB − AσB) , where σ is an arbitrary Kubo-Ando mean, and c ∈ (0,1) is the
weight of σ. We note that these divergences belong to the family of maximal quantum
f -divergences, and hence are jointly convex, and satisfy the data processing inequality
(DPI). We derive a characterization of the barycenter of finitely many positive definite
operators for these generalized quantum Hellinger divergences. We note that the char-
acterization of the barycenter as the weighted multivariate 1/2-power mean, that was
claimed in [8], is true in the case of commuting operators, but it is not correct in the
general case.

1. INTRODUCTION

1.1. Motivation, goals. Given a measure space
(

X ,A ,µ
)

and probability measures ρ

and σ that are absolutely continuous with respect to µ, the classical squared Hellinger

distance or Hellinger divergence of ρ and σ is defined as

(1) d2
H

(

ρ,σ
)

=
1

2

∫

X

(

(

dρ

dµ

)
1
2

−
(

dσ

dµ

)
1
2

)2

dµ,

where dρ/dµ and dσ/dµ denote the Radon–Nikodym derivatives [16]. The Hellinger
divergence is a special Csiszár-Morimoto f -divergence [12, 24] generated by the convex
function f (x) =

(p
x −1

)2 , and it has several possible counterparts in quantum infor-
mation theory. One of them is the squared Bures distance or Wasserstein metric, see,
e.g., the most recent works of Bhatia et al. [10], Dinh et al. [13], and Molnár [23].
Another important quantum analogue of the classical Hellinger divergence has been
investigated in [8], namely the quantity

(2) d2
H (A,B) = Tr

(

1

2
(A+B)− A#B

)

,
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where A,B are density operators representing quantum states, or even more generally,
positive operators, and # is the geometric mean introduced by Pusz and Woronowicz

[28], which is a particularly important Kubo-Ando mean [3, 4, 6].
In this note, we introduce a far-reaching generalization of the quantum Hellinger

divergence (2), namely, the family of generalized quantum Hellinger divergences of the
form

(3) φ(A,B) = Tr((1−c)A+cB − AσB) ,

where σ is an arbitrary Kubo-Ando mean, and c ∈ (0,1) is the weight of σ. We will note
that these divergences belong to the family of maximal quantum f -divergences, and
hence are jointly convex, and satisfy the data processing inequality (DPI). Moreover,
we will show an intimate relation between generalized quantum Hellinger divergences
and operator valued Bregman divergences (Claim 2). By this close relation, we verify
in Claim 3, that generalized quantum Hellinger divergences are genuine divergences
in the sense of [1, Sec. 1.2 & 1.3]. Note that this is not the case for maximal quantum
f -divergences in general, see Remark 1. As the main result of this paper, we derive a
characterization of the barycenter of finitely many positive definite operators for these
generalized quantum Hellinger divergences. We will also note that the characteriza-
tion of the barycenter as the weighted multivariate power mean of order 1/2, that was
claimed in the work of Bhatia et al. [8, Thm. 9], is true in the case of commuting oper-
ators, but it is not correct in the general case.

1.2. Basic notions, notation. Operator monotone functions mapping the positive half-
line (0,∞) into itself admit a transparent integral-representation by Löwner’s theory. In
the seminal paper of Kubo and Ando [4], the following integral representation was con-
sidered:

(4) f (x) =
∫

[0,∞]

x(1+ t )

x + t
dm(t ) (x > 0),

where m is some positive Radon measure on the extended half-line [0,∞]. By a simple
push-forward of m by the transformation T : [0,∞] → [0,1]; t 7→ λ := t

t+1 , we get the
following integral-representation of positive operator monotone functions on (0,∞) :

(5) fµ(x) =
∫

[0,1]

x

(1−λ)x +λ
dµ(λ) (x > 0),

where µ= T#m, that is, µ(A) = m
(

T −1(A)
)

for every Borel set A ⊆ [0,1]. This represen-
tation is also well-known and appears — among others — in [15] and [30]. Note that if
m is absolutely continuous with respect to the Lebesgue measure and dm(t ) = ρ(t )dt ,

then the density of µ= T#m is given by dµ(λ) = 1
(1−λ)2 ρ

(

λ
1−λ

)

dλ.

Throughout this note, H stands for a finite dimensional complex Hilbert space,
B(H ) denotes the set of all linear operators on H , and B(H )sa and B(H )++ stand
for the set of all self-adjoint and positive definite operators, respectively. On B(H )sa

we consider the usual Löwner order induced by positivity. The Fréchet derivative of a
map ψ : B(H )sa ⊇ U → V at the point X ∈ U is denoted by Dψ(X )[·]. Here, U is an
open subset of B(H )sa , usually the cone of positive definite operators, and the target
space V is usually R or B(H )sa . Note that in the latter case Dψ(X )[·] is a linear map
from B(H )sa into itself. The symbol I denotes the identity operator on H .

For positive definite operators A,B ∈B(H )++, the Kubo-Ando connection generated
by the operator monotone function fµ : (0,∞) → (0,∞) is denoted by Aσ fµB , and is
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defined by

(6) Aσ fµB = A
1
2 fµ

(

A− 1
2 B A− 1

2

)

A
1
2 .

A Kubo-Ando connection σ fµ is a mean if and only if fµ(1) =µ ([0,1]) = 1. In the sequel,
we will restrict our attention to means. We denote by P ([0,1]) the set of all Borel prob-
ability measures on [0,1], and by c

(

µ
)

:=
∫

[0,1]λdµ(λ) the center of mass of µ. There is

a natural way to assign a weight parameter to a mean σ fµ , namely, W
(

σ fµ

)

:= f ′
µ(1) =

c
(

µ
)

. More details about this weight parameter can be found in [30], we only mention
that for the weighted arithmetic, geometric, and harmonic means generated by

aλ(x) = (1−λ)+λx, gλ(x) = xλ, and hλ(x) =
(

(1−λ)+λx−1)−1
,

respectively, we have W
(

σaλ

)

= W
(

σgλ

)

= W
(

σhλ

)

= λ. That is, this weight parameter
coincides with the usual one in the most important special cases.

1.3. Convex order. The convex order is a well-known relation between probability mea-
sures; for µ,ν ∈ P ([0,1]) , we say that µ4 ν if for all convex functions u : [0,1] → R we
have

∫

[0,1] u dµ≤
∫

[0,1] u dν. It is clear that for allµ∈P ([0,1]) with c
(

µ
)

=λwe haveδλ 4

µ4 (1−λ)δ0 +λδ1, where δx denotes the Dirac mass concentrated on x. For any fixed
x > 0, the map λ 7→ x

(1−λ)x+λ is convex. Therefore, if µ4 ν, then fµ(x) ≤ fν(x) for all x >
0, and hence Aσ fµB ≤ Aσ fνB for all A,B ∈B(H )++. Consequently, if ν=

(

1−c
(

µ
))

δ0+
c
(

µ
)

δ1, then Aσ fνB − Aσ fµB is always positive, in particular, Tr
(

Aσ fνB − Aσ fµB
)

≥ 0.

This quantity is exactly the one we are interested in.

2. BASIC PROPERTIES OF QUANTUM HELLINGER DISTANCES

We are interested in divergences of the form

(7) φµ(A,B) := Tr
(

(

1−c
(

µ
))

A+c
(

µ
)

B − Aσ fµB
)

,

where µ ∈P ([0,1]) . To avoid trivialities, we assume in the sequel that the support of µ
is strictly larger than {0,1}, and therefore, fµ is non-affine — in fact, it is strictly concave

If µ is the arcsine distribution, that is, dµ(λ) = 1
π
p
λ(1−λ)

dλ, then

φµ(A,B) = Tr

(

1

2
(A+B)− A#B

)

,

where # is the Pusz-Woronowitz geometric mean [28]. The square root of this quantity
(up to an irrelevant multiplicative constant) was considered in [8] as a possible quan-
tum (or matrix) version of the classical Hellinger distance. Therefore, we will call the
quantities of the form (7) generalized quantum Hellinger divergences.

We easily get that

(8) φµ(A,B) = Tr
{

A ·gµ

(

A− 1
2 B A− 1

2

)}

,

where gµ : (0,∞)→ [0,∞) is defined by

(9) gµ(x) =
(

1−c
(

µ
))

+c
(

µ
)

x − fµ(x).

Remark 1. We note that gµ is operator convex as fµ is operator concave, and hence
generalized quantum Hellinger divergences belong to the family of maximal quantum

f -divergences studied for example in [17, 19, 22, 26]. This latter divergence class con-

sists of quantities of the form S f (A,B) = Tr A f
(

A− 1
2 B A− 1

2

)

, where A,B ∈B(H )++, and
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f : (0,∞) → R is operator convex [17, 26]. However, this level of generality may lead
to counter-intuitive phenomena. For instance, the maximal quantum f -divergence
can be negative (see, e.g., [17, Example 4.4], where f (x) = x log x, and S f

(

I ,e−1I
)

=
−dim(H )e−1 < 0); and it may happen that S f (A, A) > 0 for all A ∈ B(H )++ (see, e.g.,
[17, Example 4.2], where f (x) = x2, and S f (A, A) = Tr A > 0 for all A ∈ B(H )++). That
is, maximal quantum f -divergences are not divergences in the sense of [1, Sec. 1.2 &
1.3] in general. In particular, they are not necessarily positive definite. (We call a di-
vergence D positive definite, if D(A,B) ≥ 0 for every A,B ∈B(H )++, and D(A,B) = 0 if
and only if A = B.)

Now we check that generalized quantum Hellinger divergences are intimately re-
lated to operator valued Bregman divergences, and hence are reasonable measures of
dissimilarity and genuine divergences in the sense of [1, Sec. 1.2 & 1.3].

2.1. The relation with Bregman divergences. Note that hµ :=− fµ is an operator con-
vex function, and that

gµ(x) =
(

1−c
(

µ
))

+c
(

µ
)

x +hµ(x) = hµ(x)−hµ(1)−h′
µ(1)(x −1).

The operator valued Bregman divergence generated by the operator convex function
hµ reads as follows:

H
(op)
hµ

(X ,Y ) = hµ(X )−hµ(Y )−Dhµ(Y )[X −Y ].

In particular,

H
(op)
hµ

(

A− 1
2 B A− 1

2 , I
)

= hµ(A− 1
2 B A− 1

2 )−hµ(I )−Dhµ(I )
[

A− 1
2 B A− 1

2 − I
]

.

As Dhµ(I ) coincides with the multiplication by the constant−c
(

µ
)

, and h′
µ(I )=−c

(

µ
)

I ,
we get that

H
(op)
hµ

(

A− 1
2 B A− 1

2 , I
)

= gµ(A− 1
2 B A− 1

2 ).

Therefore, we obtain the following claim.

Claim 2. The generalized quantum Hellinger divergence φµ defined in (7) can be ex-

pressed by an operator valued Bregman divergence as follows:

(10) φµ(A,B) = Tr
{

A ·H
(op)
hµ

(

A− 1
2 B A− 1

2 , I
)}

(

A,B ∈B(H )sa
)

.

For a detailed study of Bregman divergences on matrices we refer to [27].
Now we are in the position to check that generalized quantum Hellinger divergences

are genuine divergences in the sense of Amari [1, Sec. 1.2 & 1.3].

Claim 3. For any µ ∈P [0,1], the map

(11) φµ : ++×B(H )++ → [0,∞); (A,B) 7→φµ(A,B)

satisfies the followings.

(i) φµ(A,B) ≥ 0 and φµ(A,B) = 0 if and only if A = B.
(ii) The first derivative of φµ in the second variable vanishes at the diagonal, that is,

D
(

φµ(A, ·)
)

(A) = 0 ∈ Lin(B(H )sa ,R) for all A ∈B(H )++.
(iii) The second derivative of Φµ in the second variable is positive at the diagonal,

that is, D2
(

φµ(A, ·)
)

(A)[Y ,Y ] ≥ 0 for all Y ∈B(H )sa .

Proof. Bregman divergences are clearly divergences (see, e.g., [8, Sec. 1]).That is,
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(i) H
(op)
hµ

(

A− 1
2 B A− 1

2 , I
)

≥ 0 ∈ B(H ), and H
(op)
hµ

(

A− 1
2 B A− 1

2 , I
)

= 0 if and only if A =
B ,

(ii) D
(

H
(op)
hµ

(

A− 1
2 · A− 1

2 , I
))

(A) = 0 ∈ Lin(B(H )sa ) for every A ∈B(H )++,

(iii) D2
(

H
(op)
hµ

(

A− 1
2 · A− 1

2 , I
))

(A)[Y ,Y ] ≥ 0 ∈B(H ) for all Y ∈B(H )sa .

Now Claim 3 follows from Claim 2. �

2.2. Joint convexity, data processing inequality. As generalized quantum Hellinger
divergences belong to the family of maximal quantum f -divergences, they are jointly
convex and they satisfy the data processing inequality, which is particularly important
from the quantum information theory viewpoint. For details, see [17, 19, 22, 26]. We
recall these important properties for convenience.

Property 4 (Joint convexity). The generalized quantum Hellinger divergenceφµ defined

in (7) is jointly convex on B(H )++×B(H )++.

Property 5 (Data processing inequality). Let T : B(H ) → B(H ) be a quantum chan-
nel, that is, a completely positive and trace preserving (CPTP) map. Let µ ∈ P [0,1] be

arbitrary. Then

(12) φµ (T (A),T (B)) ≤φµ (A,B)

holds for every A,B ∈B(H )++.

3. BARYCENTERS

The notion of barycenter (or least squares mean) plays a central role in averaging
procedures related to various topics in mathematics and mathematical physics. Given
a metric space

(

X ,ρ
)

and an m-tuple a1, . . . , am in X with positive weights w1, . . . , wm

such that
∑m

j=1 w j = 1, the barycenter (or Fréchet mean or Karcher mean or Cartan
mean) is defined to be

arg min
x∈X

m
∑

j=1
w jρ

2 (

a j , x
)

.

In our setting, X = B(H )++, and the generalised quantum Hellinger divergence φµ

plays the role of the squared distanceρ2, although it is not the square of any true metric
in general.

That is, we consider the optimization problem

(13) arg min
X∈B(H )++

m
∑

j=1
w jφµ

(

A j , X
)

,

where the positive definite operators A1, . . . , Am and the weights w1, . . . wm are fixed. By
the strict concavity of fµ, the function

X 7→φµ (A, X ) = Tr
(

(

1−c
(

µ
))

A+c
(

µ
)

X − A
1
2 fµ

(

A− 1
2 X A− 1

2

)

A
1
2

)

is strictly convex on B(H )++, see, e.g., [11, 2.10. Thm.]. Therefore, there is a unique so-
lution X0 of (13), and it is necessarily a critical point of the function X 7→

∑m
j=1 w jφµ

(

A j , X
)

.
That is, it satisfies

(14) D

(

m
∑

j=1
w jφµ

(

A j , ·
)

)

(X0)[Y ] = 0
(

Y ∈B(H )sa
)

.
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Easy computations give that

(15) D

(

m
∑

j=1
w jφµ

(

A j , ·
)

)

(X )[Y ] = c
(

µ
)

TrY −
m
∑

j=1
w j TrDFµ,A j

(X )[Y ],

where for a positive definite operator A, the map Fµ,A : B(H )++ →B(H )++ is defined
by

(16) Fµ,A(X ) := Aσ fµX = A
1
2 fµ

(

A− 1
2 X A− 1

2

)

A
1
2 .

By differentiating (5), we have

(17) D fµ(X )[Y ] =
∫

[0,1]
λ ((1−λ)X +λI )−1 Y ((1−λ)X +λI )−1 dµ(λ)

for X ∈B(H )++, Y ∈B(H )sa . Consequently,

DFµ,A j
(X )[Y ]

=
∫

[0,1]
λA

1
2
j

(

(1−λ)A
− 1

2
j

X A
− 1

2
j

+λI

)−1

A
− 1

2
j

Y A
− 1

2
j

(

(1−λ)A
− 1

2
j

X A
− 1

2
j

+λI

)−1

A
1
2
j

dµ(λ)

(18) =
∫

[0,1]
λ

(

(1−λ)X A−1
j +λI

)−1
Y

(

(1−λ)A−1
j X +λI

)−1
dµ(λ).

By the linearity and the cyclic property of the trace, we get from (15) and (18) that
(14) is equivalent to

(19) Tr

[

Y

(

c
(

µ
)

I −
m
∑

j=1
w j

∫

[0,1]
λ

∣

∣

∣(1−λ)A−1
j X +λI

∣

∣

∣

−2
dµ(λ)

)]

= 0
(

Y ∈B(H )sa
)

,

where | · | stands for the absolute value of an operator, that is, |Z | = (Z∗Z )
1
2 . This latter

equation amounts to

(20) c
(

µ
)

I =
m
∑

j=1
w j

∫

[0,1]
λ

∣

∣

∣(1−λ)A−1
j X +λI

∣

∣

∣

−2
dµ(λ).

So we obtained the following characterization of the barycenter.

Theorem 6. Let µ ∈P [0,1] and let φµ be the generalized quantum Hellinger divergence

generated by µ, that is,

φµ (A,B) = Tr
(

(

1−c
(

µ
))

A+c
(

µ
)

B − Aσ fµB
)

(

A,B ∈B(H )++
)

.

Then the barycenter (or Cartan mean or Fréchet mean or Karcher mean) of the positive

definite operators A1, . . . , Am with positive weights w1, . . . , wm with respect to φµ, i.e.,

arg min
X∈B(H )++

m
∑

j=1
w jφµ

(

A j , X
)

coincides with the unique positive definite solution of the matrix equation

(21) c
(

µ
)

I =
m
∑

j=1
w j

∫

[0,1]
λ

∣

∣

∣(1−λ)A−1
j X +λI

∣

∣

∣

−2
dµ(λ).
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4. THE COMMUTATIVE CASE

In this section we show that in the commutative case formula (21) can be greatly
simplified (see (28) later), furthermore, the conditions on f can be relaxed. Recall
that in the general non-commutative case, the generating function f was operator
monotone (or equivalently, operator concave), and hence smooth (C∞), see (4) and
(5). When dealing with commuting operators, we need concavity only in the classical
one-variable sense, and hence we require much less regularity on f . For now, we only
require that f : (0,∞) →R is a strictly concave C 1 function.

Let A ⊂B(H ) be a maximal Abelian subalgebra (MASA). In this commutative case,
the proper analogue of the generalized quantum Hellinger divergence (7) is

φ f (A,B) := Tr
(

(

f (1)− f ′(1)
)

A+ f ′(1)B − A
1
2 f

(

A− 1
2 B A− 1

2

)

A
1
2

)

(22) = Tr
((

f (1)− f ′(1)
)

A+ f ′(1)B − A f
(

A−1B
)) (

A,B ∈A ∩B(H )++
)

.

Note that now there is no underlying measure involved and the function class that we
choose the f ′s from is much larger than that in the general non-commutative case.
Also note that

(23) φ f (A,B) = Tr A ·g
(

A− 1
2 B A− 1

2

)

= Tr A ·g
(

A−1B
)

= Tr A ·g
(

B
1
2 A−1B

1
2

)

,

where g (x) = f (1)+ f ′(1)(x −1)− f (x). We easily get that for A, X ∈ A ∩B(H )++ and
Y ∈A ∩B(H )sa we have

(24) D
(

φ f (A, ·)
)

(X )[Y ] = Tr
(

f ′(I )− f ′
(

X
1
2 A−1X

1
2

))

Y = Tr
(

f ′(I )− f ′ (A−1X
))

Y ,

and therefore,

D

(

m
∑

j=1
w jφ f

(

A j , ·
)

)

(X )[Y ] = Tr

(

f ′(I )−
m
∑

j=1
w j f ′

(

X
1
2 A−1

j X
1
2

)

)

Y

(25) = Tr

(

f ′(I )−
m
∑

j=1
w j f ′

(

A−1
j X

)

)

Y .

That is, the derivative D
(

∑m
j=1 w jφ f

(

A j , ·
)

)

(X ) vanishes if and only if

(26)
m
∑

j=1
w j f ′

(

A−1
j X

)

=
m
∑

j=1
w j f ′

(

X
1
2 A−1

j X
1
2

)

= f ′(I ),

or equivalently,

(27) X =
1

f ′(1)

m
∑

j=1
w j X f ′

(

A−1
j X

)

=
1

f ′(1)

m
∑

j=1
w j X

1
2 f ′

(

(

X − 1
2 A j X − 1

2

)−1
)

X
1
2 .

We obtained the following

Proposition 7. The critical point of the function X 7→
∑m

j=1 w jφ f

(

A j , X
)

is the unique

solution X ∈A ∩B(H )++ of the equation

(28) X =
1

f ′(1)

m
∑

j=1
w j X f ′

(

A−1
j X

)

=
1

f ′(1)

m
∑

j=1
w j X

1
2 f ′

(

(

X − 1
2 A j X − 1

2

)−1
)

X
1
2 .
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So in the commutative case, the equation characterizing the barycenter (28) is sim-
pler than that in the non-commutative case (21). Note that if all the A j ’s are in the
same MASA A ⊂ B(H ), then the barycenter is also in A , and hence it has the form
described in Proposition 7. One way to show this is to use the data processing inequal-
ity (DPI) for the orthogonal projection onto A which is completely positive and trace
preserving, and which is denoted by EA to express the analogy with the classical con-
ditional expectation. So let X0 be the unique minimizer of X 7→

∑m
j=1 w jφµ

(

A j , X
)

.
Now

m
∑

j=1
w jφµ

(

A j ,EA (X0)
)

=
m
∑

j=1
w jφµ

(

EA

(

A j

)

,EA (X0)
)

≤
m
∑

j=1
w jφµ

(

A j , X0
)

,

hence EA (X0) = X0 which means that X0 ∈A . We also note that under the assumption
A j X = X A j for all j ′s, (21) clearly coincides with (28), because c

(

µ
)

= f ′
µ(1), and in this

case, by the identity

(29) f ′
µ(x) =

d

dx

(
∫

[0,1]

x

(1−λ)x +λ
dµ(λ)

)

=
∫

[0,1]

λ

((1−λ)x +λ)2 dµ(λ)

we have
m
∑

j=1
w j

∫

[0,1]
λ

∣

∣

∣(1−λ)A−1
j X +λI

∣

∣

∣

−2
dµ(λ) =

m
∑

j=1
w j

∫

[0,1]
λ

(

(1−λ)A−1
j X +λI

)−2
dµ(λ)

(30) =
m
∑

j=1
w j f ′

µ

(

A−1
j X

)

.

Example 8. Let ft (x) = xt for t ∈ (0,1). Then φ ft
is of the form

(31) φ ft
(A,B) = Tr

(

(1− t )A+ tB − A1−t B t
)

= Tr((1− t )A+ tB − A#t B) ,

and the barycenter equation (28) reads as

(32) X =
m
∑

j=1
w j A1−t

j X t =
m
∑

j=1
w j A j #t X =

m
∑

j=1
w j X #1−t A j .

That is, the barycenter coincides with the weighted power mean of order 1− t , which is
by definition the unique positive definite solution of the equation X =

∑m
j=1 w j X #1−t A j ,

see [21, Def. 3.2]. This example does not contain new results, the above characteriza-
tion of the barycenter as weighted power mean can be found, e.g., in [2] or in [29].

Remark 9. By the special choice t = 1/2 in Example 8, we get that the claim of Bhatia et
al. saying that the barycenter and the weighted power mean of order 1/2 coincide [8,
Thm. 9] is true in the commutative case.

Example 10. Set f (x) = log x. Then φ f is the relative entropy, that is,

(33) φlog(A,B) = Tr
(

A
(

log A− logB
)

+B − A
)

,

and the barycenter equation (28) reads as

(34) X =
m
∑

j=1
w j X

(

A−1
j X

)−1
=

m
∑

j=1
w j A j .

That is, the barycenter coincides with the weighted sum of the A j ’s. This is well-known,
see, e.g., the remarks after Theorem 4 in [8].
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Note that we get Example 10 from Example 8 if we take the limit t → 0. Indeed,

(35) lim
t→0

1

t
φ ft

(A,B) = lim
t→0

1

t
Tr A ·g t

(

A−1B
)

,

where g t (x) = 1+ t (x−1)−xt , and limt→0
1
t

(

1−xt
)

= log x in the locally uniform topol-
ogy.

5. REMARKS

5.1. A note on a paper of Bhatia et al. In our view, Theorem 9 in [8] is not true in
general. The proof contains a gap, namely, using their notation, the fact that I is a
critical point for g does not imply that X0 is a critical point for f , although formula (54)
in [8] is correct.

It is true, that for commuting operators, (21) and (28) coincide. However, these
equations are different without the assumption of commutativity. To demonstrate the
difference, we take the following example. Let µ be the arcsine distribution, dµ(λ) =

1
π
p
λ(1−λ)

dλ, let m = 2, w1 = w2 = 1
2 , and

A1 :=
[

4 0
0 1

]

, A2 := 4

[

1/2 1/2
1/2 1/2

]

+1

[

1/2 −1/2
−1/2 1/2

]

=
1

2

[

5 3
3 5

]

.

Then numerical optimization performed by Wolfram Mathematica [31] shows that

X̂0 := arg min
X∈B(H )++

2
∑

j=1

1

2
φµ

(

A j , X
)

(36) = arg min
X∈B(H )++

1

2
Tr

(

1

2
(A1 + A2)+X − (A1#X + A2#X )

)

=
[

2.99035 0.634419
0.634419 1.72151

]

.

Note that both A1 and A2 have real entries. Therefore, A j #X = A j #X , and hence

φµ

(

A j , X
)

= φµ

(

A j , X
)

holds for every X ∈ B(H )++ and j ∈ {1,2}, where X denotes

the entrywise complex conjugate of X . Consequently, the strict convexity of the func-
tions X 7→ φµ

(

A j , X
)

, j ∈ {1,2} implies that arg minX∈B(H )++
∑2

j=1
1
2φµ

(

A j , X
)

has real
entries. So it is enough to minimize numerically over the cone of positive definite 2×2
matrices with real entries [31].

However, the barycenter obtained numerically in (36) does not coincide with the
weighted power mean of order 1/2 as

(37)
1

2

(

A1#X̂0 + A2#X̂0
)

=
[

3.02915 0.673215
0.673215 1.68272

]

6= X̂0.

Note that after the publication of our manuscript on arXiv.org, a correction of [8] ded-
icated to this problem was released [9].

5.2. A possible measure of non-commutativity. Motivated by the observations above,
we introduce a function that quantifies the noncommutativity of the positive definite
operators A1, . . . , Am .

Definition 11. Given A = (A1, . . . , Am) ∈
(

B(H )++
)m , w = (w1, . . . , wm) ∈ (0,1]m with

∑m
j=1 w j = 1, µ ∈P ([0,1]) , and a convenient metricρ on B(H )++, the

(

w,µ,ρ
)

-dependent

measure of the non-commutativity of A1, . . . , Am is defined as

(38) ρ
(

BC
(

A,w,µ
)

,M
(

A,w,µ
))
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where

BC
(

A,w,µ
)

= arg min
X∈B(H )++

m
∑

j=1
w jφµ

(

A j , X
)

,

i.e., BC
(

A,w,µ
)

is the solution of (21), and M
(

A,w,µ
)

is a µ-dependent w-weighted

mean of A1, . . . , Am defined as the unique solution of the matrix equation (28) that we

recall here for convenience:

X =
1

c
(

µ
)

m
∑

j=1
w j X

1
2 f ′

µ

(

(

X − 1
2 A j X − 1

2

)−1
)

X
1
2 .

The detailed study of the quantity (38) is beyond the scope of this paper, however, it
may be the subject of subsequent works.
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