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Abstract. The sharp upper and lower bounds for the third-order Hermitian-Toeplitz determin-
ant are investigated for the classes of Janowski type starlike and convex functions. The results
presented in this paper generalize several recent works in this direction.
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1. INTRODUCTION

Investigating the sharp bound for the coefficient functionals of normalised analytic
functions defined over the unit disk has gained much focus after the Bieberbach con-
jecture (1916) came into the picture. Even after the historical proof of the Bieberbach
conjecture, in 1984, by L. de Branges, investigation of the bounds for coefficients of
various classes of analytic functions did not stop as the bounds on coefficient also
unfold many geometric properties of analytic functions. For example, the growth and
distortion of an analytic function can be estimated using the bound on the second
coefficient of an analytic univalent function [8]. The Hankel determinants have been
among the most studied topics in Geometric Function Theory (GFT) in recent years;
such studies can be back to the 1960s (see [10,18]). In many of the recently-published
works dealing extensively with the Hankel and Toeplitz determinants, use is made
also of the basic (or q-) calculus (see, for example, [9, 17, 20, 22, 23]; see also a
survey-cum-expository review article by Srivastava [21]).

In this line, using Hankel determinant of coefficients of analytic functions, Can-
tor [4] gave a criterion for rationality of such functions. The results of this kind
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makes the estimation of coefficient functionals much interesting. The following few
paragraphs give a short review of basic notations that we will be using in this paper.

From now on, let A be the class of normalised holomorphic functions defined on
the open unit disk

D := {z : z ∈ C and |z|< 1} .
Also a subclass of A consisting of functions which are also univalent in D shall be
denoted by S . Because of the normalisation f (0) = 0 = f ′(0)− 1, the functions in
the class A have the following form:

f (z) = z+
∞

∑
n=2

anzn (1.1)

and the same for functions in the class S too. For α (05 α < 1), let

pα(z) :=
1+(1−2α)z

1− z
be an analytic function in the unit disk D which maps the unit disk D onto the right of
the line x = α of the complex plane. Robertson [19], in 1936, considered the classes
of starlike and convex functions of order α (05 α < 1) defined as follows:

S ∗(α) :=
{

f : f ∈ S and
z f ′(z)
f (z)

≺ pα(z)
}

and

K (α) :=
{

f : f ∈ S and 1+
z f ′′(z)
f ′(z)

≺ pα(z)
}
.

Let S ∗(0) =: S ∗ and K (0) =: K be the classes of starlike and convex functions,
respectively. Janowski [11] gave a generalisation to the classes of starlike and convex
functions of order α by replacing the function pα with

pA,B(z) :=
1+Az
1+Bz

(−15 B < A5 1).

The classes of Janowski type starlike and Janowski type convex functions are defined,
respectively, by

S ∗[A,B] :=
{

f : f ∈ S and
z f ′(z)
f (z)

≺ pA,B(z)
}

and

K [A,B] :=
{

f : f ∈ S and 1+
z f ′′(z)
f ′(z)

≺ pA,B(z)
}
.

Janowski investigated growth and distortion rates for functions in the classes S ∗[A,B]
and K [A,B]. Several recent investigations involving Janowski type analytic and uni-
valent functions include, for example, those published in [2, 24–26] (see also the
aforementioned review article by Srivastava [21]), in each of which the basic (or q-)
calculus is also used.
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Janteng et al. [12] computed the sharp bound on the second Hankel determinant
for the classes S ∗ and K . Later, Babalola [3] investigated the non-sharp bounds for
third Hankel determinant for these classes. In 2018, Kowalczyk et al. [13] obtained
the sharp bound of third Hankel determinant to be 4/135 for the class of convex
functions. However, the best known estimate for starlike functions till date is 8/9
(see [14]). For more details, we refer the reader to [6,15]. In line of the investigation
on Hankel determinants in recent years, Ali et al. [1] investigated the sharp bound
for the second and third order symmetric Toeplitz determinants. Cudna et al. [7] con-
sidered the qth-order Hermitian-Toeplitz determinants with its entries as coefficients
of the function f (z) given by (1.1) as follows:

Tq,n( f ) =

∣∣∣∣∣∣∣∣∣
an an+1 · · · an+q−1

ān+1 an · · · an+q−2
...

...
...

...
ān+q−1 ān+q−2 · · · an

∣∣∣∣∣∣∣∣∣ .
There it is reported that Tq,n( f ) is rotationally invariant and if an’s are real, then
Tq,n( f ) is Hermitian and, therefore, the determinant Tq,n( f ) is a real number. They
obtained the sharp lower and upper bound for the third-order Hermitian-Toeplitz de-
terminants for the classes of starlike and convex functions of order α (0 5 α < 1).
Inspired by their work, Cho and Kumar [5] investigated the sharp lower and upper
bounds of the third-order Hermitian-Toeplitz determinants for the class of analytic
functions with bounded turning.

In this paper, the authors aim to generalise the work of Cudna et al. [7] for the
class of Janowski type starlike and convex functions.

2. JANOWSKI TYPE STARLIKE FUNCTIONS

This section gives the estimation for lower and upper bounds of the third-order
Hermitian-Toeplitz determinant T3,1( f ) for Janowski type starlike functions. From
the definition, it is easy to verify that T2,1( f ) = 1−|a2|2 and

T3,1( f ) =

∣∣∣∣∣∣
1 a2 a3
ā2 1 a2
ā3 ā2 1

∣∣∣∣∣∣= 2ℜ(a2
2ā3)−2|a2|2−|a3|2 +1.

Estimating the coefficient bounds in many cases, in our case too, depends on the
comparison coefficients of functions under consideration with that of the functions
with positive real part. For this reason, let P denotes the class of analytic functions
p : D→ C with p(0) = 1 and ℜ p(z)> 0.

To keep the proof brief and avoid repetitions, let us note that for any function
f ∈ S ∗[A,B], there is a function with positive real part p(z) = 1+∑

∞
n=1 pnzn ∈ P such
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that
z f ′(z)
f (z)

=
(1+A)p(z)+1−A
(1+B)p(z)+1−B

. (2.1)

On expanding in the Taylors series and comparing the coefficients, we get

a2 =
A−B

2
p1, and a3 =

A−B
8

[
(A−2B−1)p2

1 +2p2
]
. (2.2)

Theorem 1. Let f ∈ S ∗[A,B]. Then, the following sharp estimation holds

1− (A−B)2 5 T2,1( f )5 1.

Proof. Since f ∈ S ∗[A,B], in view of the known fact |pn|5 2, we get |a2|5 A−B
and thus T2,1( f ) = 1−|a2|2 = 1− (A−B)2 and T2,1( f ) = 1−|a2|2 5 1. The extremal
functions for lower and upper bounds are, respectively

h̃0(z) =
{

z(1+Bz)
A−B

B , B 6= 0;
zeAz, B = 0

(2.3)

and

h̃1(z) =

{
z(1+Bz2)

A−B
2B , B 6= 0;

zeAz2/2, B = 0.
(2.4)

This ends the proof. �

Before we proceed further in this section, let Ω1 be the set of points (A,B) such
that(
−15 B5−1

2
and 0 < A5

4B+2
√

B2 +6
3

)
or
(
−1

2
< B5 0 and 0 < A5 1

)
.

Further, let Ω2,Ω3 and τ be the set of points (A,B) satisfying

Ω2 :=

{
−15 B5−1

2
and

4B+2
√

B2 +6
3

< A5 1

}
,

Ω3 :=

{
−15 B < 0 and δ1 :=

√
16B2−16B+49+8B−1

6
< A5 1

}
and

τ :=

(
3A2−5AB+2B2−2

)(
A2−3AB+2B2−2

)
4

.

Theorem 2. Let f ∈ S ∗[A,B]. Then, the following best possible estimations hold:

T3,1( f )5
{

τ, (A,B) ∈Ω1;
1, (A,B) ∈Ω2 or −15 B < A5 0
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and

T3,1( f )=

{
− (A2−2AB+A+B2−1)

2

(A−2B+1)(3A−2B−1) , (A,B) ∈Ω3;
τ, −15 B5 0 < A5 δ1 or −15 B < A5 0.

We owe to Libera and Zlotkiewicz for a result related to the class P :

Lemma 1 ([16, Lemma 3, p. 254]). Let p(z) = 1+ p1z+ p2z2 + p3z3 + · · · ∈ P .
Then 2p2 = p2

1 +(4− p2
1)ζ for some ζ ∈ D.

Proof of Theorem 2. The well-known fact about the class of functions with pos-
itive real part is that it is rotationally invariant and for this reason, we shall limit
ourselves to a consideration of non–negative value of p1 and since |p1| 5 2, we can
let 0 5 p1 5 2 and hereafter we use x := p2

1 ∈ [0,4] and y := |ζ| ∈ [0,1]. Keeping
these in mind from (2.2), a computation gives

T3,1( f ) = 1+
1
64

(A−2B)(3A−2B)(A−B)2 p4
1−

(A−B)2

2
p2

1

− (A−B)2

64
(4− p2

1)
2|ζ|2 + 1

32
A(A−B)2(4− p2

1)p2
1 ℜζ (2.5)

=: Ψ
(

p2
1, |ζ|,ℜζ

)
. (2.6)

We proceed in the proof in various cases.
Case I. If −15 B < A = 0, then from (2.5), we have

T3,1( f ) =
1
16

(4−B2 p2
1)

2− B2

64
(4− p2

1)
2|ζ|2

5
1
16

(4−B2 p2
1)

2

5 1

and the minimum is given by

T3,1( f )=
1
16

(4−B2 p2
1)

2− B2

64
(4− p2

1)
2

=
4−B2

4
.

Case II. If −15 B5 0 < A5 1, then with the settings p2
1 =: x ∈ [0,4] and |ζ|=: y ∈

[0,1], we have

T3,1( f ) = Ψ(p2
1, |ζ|,ℜζ)5Ψ(p2

1, |ζ|, |ζ|) = Ψ(p2
1, |ζ|) = G(x,y).

Note that G is a continuously differentiable function of two variables x and y defined
over the rectangular region [0,4]× [0,1] and is given by

G(x,y) := 1+
1

64
(A−2B)(3A−2B)(A−B)2x2− (A−B)2

2
x
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− (A−B)2

64
(4− p2

1)
2y2 +

1
32

A(A−B)2(4− x)xy. (2.7)

On the boundary lines of the rectangular region [0,4]× [0,1], we see that

G(0,y) = 1− 1
4

y2(A−B)2 5 1,

G(4,y) =
1
4
(
3A2−5AB+2B2−2

)(
A2−3AB+2B2−2

)
=: τ

and

G(x,0) = 1− 1
2

x(A−B)2 +
1
64

x2(A−2B)(3A−2B)(A−B)2 =: f1(x). (2.8)

Now the positivity of the second derivative f ′′1 (x)> 0 assures that there is no maxima
of f1 for 0 < x < 4. Therefore, the possibilities left are the end points and we have

f1(x)5max{ f1(0), f1(4)}= f1(4) = τ.

Thus, for −15 B5 0 < A5 1, we have

G(x,y) = max{1,τ}=
{

1, (A,B) ∈Ω1;
τ, (A,B) ∈Ω2.

To find the lower bound, we write

T3,1( f ) = Ψ(p2
1, |ζ|,ℜζ)= F(p2

1, |ζ|,−|ζ|)= F(p2
1,1,−1) = f2(x),

where the function f2 : [0,4]→ R is defined by

f2(x) := 1− (A−B)2

4
− (A+3)(A−B)2

8
x

+
(A−2B+1)(3A−2B−1)(A−B)2

64
x2. (2.9)

At the end points, we see that

f2(0) = 1− 1
4
(A−B)2

and

f2(4) =
1
4
(
3A2−5AB+2B2−2

)(
A2−3AB+2B2−2

)
= τ.

Now f ′′2 (x)> 0 holds for(
−15 B5−1

2
and 0 < A5 1

)
or
(
−1

2
< B5 0 and

1
3
(2B+1)< A5 1

)
and the only critical point of f2 is

x = x∗ =
4(A+3)

(A−2B+1)(3A−2B−1)
.
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A computation shows that x∗ ∈ (0,4) if and only if (A,B) ∈Ω3. But, since

2(2B+1)5
√

16B2−16B+49+8B−1

holds for all −15 B5 0 < A5 1, it follows that the minimum of f2 attains at x∗ for
(A,B) ∈Ω3 and

f2(x∗) =−
(
A2−2AB+A+B2−1

)2

(A−2B+1)(3A−2B−1)
.

From the above analysis, we conclude that

T3,1( f )=

{
− (A2−2AB+A+B2−1)

2

(A−2B+1)(3A−2B−1) , (A,B) ∈Ω3;
τ, −15 B5 0 and 0 < A5 δ1.

Case III. Let −1 5 B < A < 0. Then, using (2.5) and the notations p2
1 =: x ∈ [0,4]

and |ζ|=: y ∈ [0,1], we can write

T3,1( f ) = F(p2
1, |ζ|,ℜζ)5 F(p2

1, |ζ|,−|ζ|) = H(x,y),

where H : [0,4]× [0,1]→ R is defined by

H(x,y) := 1+
1
64

(A−2B)(3A−2B)(A−B)2x2− (A−B)2

2
x

− (A−B)2

64
(4− p2

1)
2y2− 1

32
A(A−B)2(4− x)xy. (2.10)

Now, at the boundary lines, we see that

H(0,y) = 1− 1
4
(A−B)2y2 5 1, H(4,y) = τ,

H(x,0) = 1− 1
2
(A−B)2x+

1
64

(A−2B)(3A−2B)(A−B)2x2 = f3(x)

and H(x,1) = f2(x), where f2 is as defined in (2.9). The first derivative of f3 vanishes
for x = x2 = 16/(A−2B)(3A−2B) and since (A−2B)(3A−2B)< 4 for −15 B <
A < 0, it follows that x2 /∈ (0,4) and therefore it is sufficient to consider the values of
f3 at the end points of the interval (0,4). Further, as previous, we see that f ′2(x) = 0
holds for x = x1 and further, for −1 5 B < A < 0, it can be verified that x1 /∈ (0,4).
Thus the above discussion make us to write

T3,1( f )5max{1,τ}= 1.

Now it remains to look for the claimed lower bound in the case −15 B < A < 0.
For this purpose, we write

T3,1( f ) = F(p2
1, |ζ|,ℜζ)= F(p2

1, |ζ|, |ζ|)= F(p2
1,1,1) = f1(x),

where f1 is defined by (2.8). As before, we see at the end points of [0,4] that

f1(0) = 1− 1
4
(A−B)2 and f1(4) = τ.
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Also f1 has no critical points inside the interval (0,4) and therefore,

T3,1( f )=min
{

1− 1
4
(A−B)2,τ

}
= τ.

Case IV. In this case, we consider the situation when −15 B < A = 0. Upon setting
A = 0 in (2.5), we have

T3,1( f ) =
(4−Bp2

1)
2

16
− B2(4− p2

1)
2

64
|ζ|2

5
(4−Bp2

1)
2

16
5 1

and

T3,1( f ) =
(4−Bp2

1)
2

16
− B2(4− p2

1)
2

64
|ζ|2

=
(4−Bp2

1)
2

16
− B2(4− p2

1)
2

64

=
(4−B)2

4
.

The functional T3,1( f ) equals τ in case of the function h̃0 defined in (2.3). Further
T3,1( f ) equals τ for the function

h̃2(z) =

{
z(1+Bz3)

A−B
3B , B 6= 0;

zeAz3/3, B = 0.
(2.11)

For (A,B) ∈ Ω3, the extremal function h̃3 satisfying (2.1) with the function p is re-
place by p̃ defined as

p̃(z) =
1− z2

1−2
√

t z+ z2
, t := x∗/4.

The Taylor series of h̃3 is given by

h̃3(z) = z+
√

t(A−B)z2 +
(A−B)((A−2B+1)t−1)

2
z3 + · · ·

and thus we have

T3,1( f ) = 1+2a2
2a3−|a2|2−|a3|2 =−

(
A2−2AB+A+B2−1

)2

(A−2B+1)(3A−2B−1)
.

Cases I to IV, together, bring the proof to an end. �

Remark 1. For A = 1− 2α and B = −1, Theorems 1 and 2 reduce to the results
[7, Theorem 2] and [7, Theorem 3], respectively.
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3. JANOWSKI TYPE CONVEX FUNCTIONS

In this section, the sharp bounds for the Hermitian-Toeplitz determinant of the
third order for the classes of Janowski type convex functions are investigated.

For any function f ∈ K [A,B], there is a function with positive real part p(z) =
1+∑

∞
n=1 pnzn ∈ P such that

1+
z f ′′(z)
f ′(z)

=
(1+A)p(z)+1−A
(1+B)p(z)+1−B

. (3.1)

Expanding both sides of the above in Taylor series and comparing the coefficients of
similar terms, we get

a2 =
A−B

4
p1 and a3 =

A−B
4

[(A−2B−1)p2
1 +2p2]. (3.2)

Clearly, since |a2|5 (A−B)/2, it follows that (4−(A−B)2)/45 T3,1( f )5 1. These
lower bound is sharp in case of the function k0 satisfying (3.1) with p(z) = (1+
z)/(1− z) and that the upper bound is sharp in case of the function k1 satisfying (3.1)
with p(z) = (1+ z2)/(1− z2)). Thus, we have the following:

Theorem 3. Let f ∈K [A,B]. Then, the following best possible estimations hold:

4− (A−B)2

4
5 T2,1( f )5 1.

Theorem 4. Let f ∈K [A,B]. Then, the following best possible estimations hold:

σ5 |T3,1( f )|5 1,

where

σ :=
1
36
(
2A2−3AB+B2−6

)(
A2−3AB+2B2−6

)
.

Proof. Using (3.2) computations give

T3,1( f ) = 1+
(A−B)2(A−2B)(2A−B)

576
p4

1−
(A−B)2

8
p2

1−
(A−B)2

576
(4− p2

1)
2|ζ|2

+
(A−B)2(A+B)

576
(4− p2

1)p2
1 ℜζ =: ϒ(p2

1, |ζ|,ℜζ). (3.3)

Now the proof will be completed in a few cases.
Case I. Let A+B > 0. Then, since the coefficient of ℜζ is positive or equal to zero,
it follows that

ϒ(p2
1, |ζ|,ℜζ)5 ϒ(p2

1, |ζ|, |ζ|) = G(x,y),

where x = p2
1,y = |ζ| and the function G : [0,4]× [0,1]→ R is defined by

G(x,y) := 1− (A−B)2

8
x+

(2A−B)(A−2B)(A−B)2

576
x2
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+
(A+B)(A−B)2

576
(4− x)xy− (A−B)2

576
(4− x)2y2.

Now on the boundary lines of the rectangular region [0,4]× [0,1], we see that

G(0,y) = 1− 1
36

y2(A−B)2,

G(4,y) =
1
36
(
2A2−3AB+B2−6

)(
A2−3AB+2B2−6

)
=: σ,

G(x,0) = 1− (A−B)2

8
x+

(2A−B)(A−2B)(A−B)2

576
x2 =: g1(x) (3.4)

and

G(x,1) = 1− 1
36

(A−B)2 +
1

144
(A+B−16)(A−B)2x

+
1

576
(2A−B+1)(A−2B−1)(A−B)2x2 =: g2(x). (3.5)

Consider the functions g1 and g2. The first derivative of these functions, namely
g′1(x) and g′2(x) vanish for x = x3 = 36/(A− 2B)(2A− B) and x = x4 = −2(A +
B− 16)/(A− 2B− 1)(2A−B+ 1), respectively. Since (A− 2B)(2A−B) < 9 and
−(A− 2B− 1)(2A−B+ 1) < 9, it folows that none of the x3 and x4 lie inside the
interval (0,4). At the end points, we have g1(0) = 1, g1(4) = σ = g2(4) and g2(0) =
1− (A−B)2/36. Therefore, we conclude that

T3,1( f )5max
{

1,σ,1− (A−B)2

36

}
= 1.

Next we find the minimum for T3,1( f ). For A+B > 0, with the setting p2
1 = x, we

can write

ϒ(p2
1, |ζ|,ℜζ)= ϒ(p2

1, |ζ|,−|ζ|)= ϒ(p2
1,1,−1) = g3(x),

where the function g2 : [0,4]→ R is defined by

g3(x) := 1− (A−B)2

36
− (A+B+16)(A−B)2

144
x

+
(2A−B−1)(A−2B+1)(A−B)2

576
x2. (3.6)

The first derivative of g3 vanishes for x = x5 = 2(A+B+16)/(A−2B+1)(2A−B−
1). But since 2(A+B+16)> 32 and (A−2B+1)(2A−B−1)< 8, we conclude that
x5 /∈ (0,4) and therefore, it is suffices to consider the values of g3 at the end points of
the interval [0,4], and we get

g3(0) = 1− (A−B)2

36
and g3(4) = σ.
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From the above discussion, we conclude that

T3,1( f )=min
{

σ,1− (A−B)2

36

}
= σ.

Case II. Let A+B < 0. Then, since the coefficient of ℜζ is negative or equal to zero,
it follows that

ϒ(p2
1, |ζ|,ℜζ)5 ϒ(p2

1, |ζ|,−|ζ|) = H(x,y),

where x = p2
1,y = |ζ| and the function H : [0,4]× [0,1]→ R is defined by

H(x,y) = 1− (A−B)2

8
x+

(2A−B)(A−2B)(A−B)2

576
x2

− (A+B)(A−B)2

576
(4− x)xy− (A−B)2

576
(4− x)2y2.

Now on the boundary of the rectangular region [0,4]× [0,1], we have

H(0,y) = 1− (A−B)2

36
y2 5 1, H(4,y) = σ, H(x,0) = g1(x) and H(x,1) = g3(x),

where the functions g1 and g3 are defined by (3.4) and (3.6), respectively. Note that
at the end point of [0,4], g1(0) = 1 = g3(0), g1(4) = σ = g3(4) and g′1(x) = 0 has no
critical point inside the interval (0,4) as (A−2B)(2A−B)< 9 for all−15B<A5 1.
Similarly, it can be proved that the function g′3(x) = 0 has no root inside the interval
(0,4). From the above discussion, for A+B < 0, we conclude that

T3,1( f )5max
{

1,σ,1− (A−B)2

36

}
= 1.

We now proceed to find the minimum of T3,1( f ) for the case −15 B < A < 0. For
this, with the setting x = p2

1, we can write

ϒ(p2, |ζ|,ζ)= ϒ(p2, |ζ|, |ζ|)= ϒ(p2,1,1) = g2(x),

where the function g3 is defined by (3.6). As in the Case II, it can be established that
g2 has no root in the interval (0,4) and g2(0) = 1−(A−B)2/36 and g2(4) = σ. Thus,
for −15 B < A < 0, we have

|T3,1( f )|=min
{

1− (A−B)2

36
,σ

}
= σ.

Case III. Let A+B = 0. Then, from (3.3), we get

T3,1( f ) = 1− A2

2
x+

A4

16
x2− A2

144
(4− x)2y2

5
1

16
(
A2x−4

)2

5 1.
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We also have

T3,1( f ) = 1− A2

2
x+

A4

16
x2− A2

144
(4− x)2y2

= 1− A2

9
− 4A2

9
x+

(
9A2−1

)
A2

144
x2.

=: h(x).

The first derivative of h vanishes only at x = x5 = 32/(9A2− 1) and x5 /∈ (0,4). At
the end points of the interval (0,4), we have h(0) = 1−A2/9 and h(4) = (A2−1)2.
Thus for A+B = 0, we conclude that

(A2−1)2 5 |T3,1( f )|5 1, or equivalently (B2−1)2 5 |T3,1( f )|5 1.

We put together the results discussed in the above three cases to conclude the asser-
tion of the theorem. These lower bound is sharp in case of the function k0 satisfying
(3.1) with p(z) = (1+ z)/(1− z) and that the upper bound is sharp in case of the
function k1 satisfying (3.1) with p(z) = (1+ z2)/(1− z2)). This ends the proof. �

Remark 2. For A = 1− 2α and B = −1, Theorems 3 and 4 reduce to the results
[7, Theorem 4] and [7, Theorem 5], respectively.
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