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Abstract. The concept of P-perturbed systems with respect to given system of ordinary differen-
tial equations is introduced. Certain sufficient conditions for uniform-ultimate Poisson bounded-
ness of solutions of P-perturbed systems are obtained by using the method of Lyapunov func-
tions. In conclusion, an interesting application of the above sufficient conditions to the standard
closed electric RLC circuit with nonlinear elements is given.
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1. INTRODUCTION AND PRELIMINARIES

The theory of boundedness of solutions in the Poisson sense was developed in
[2–5]. It generalizes the usual theory of boundedness of solutions for systems of
differential equations [7]. The concept of Poisson boundedness of solutions is char-
acterized by the fact that the solution may not be completely contained in some ball
in the phase space, but has the property of a countable number of times of recurrence
into this ball.

The paper is devoted to finding sufficient conditions for uniform-ultimate Poisson
boundedness of solutions of P-perturbed systems. By a P-perturbed system we mean
a system whose right-hand side is equal to the right-hand side of a given system mul-
tiplied by the function 1/(g(t)+α(t)), where g(t) is any continuously differentiable
periodic function, for which ming(t) = 0 and maxg(t) > 0, and α(t) is any positive
decreasing differentiable function satisfying the condition α(t)→ 0 for t→+∞. The
need to research P-perturbed systems with respect to given systems occurs when,
under the influence of external forces, the modulus of the vector of the phase velo-
city of a given system begins to perform forced oscillations, the amplitude of which
increases with time indefinitely.

The paper begins with consideration of the necessary information related to the
concept of Poisson uniform-ultimate boundedness of solutions. Next, we introduce
the concept of a P-perturbed system with respect to a given system. A sufficient
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condition is obtained for uniform-ultimate Poisson boundedness of solutions of a P-
perturbed system with respect to any linear system with constant coefficients. Then,
using this sufficient condition and the method of Lyapunov functions, we obtain a
sufficient condition for the uniform-ultimate Poisson boundedness of solutions of a P-
perturbed system with respect to an arbitrary system. In the conclusion of this paper
we give an interesting application of the above sufficient conditions to the standard
closed electric RLC circuit with nonlinear elements. Now let us pass to the exact
definitions and formulations.

We consider a system of differential equations in n> 1 variables

dx
dt

= F(t,x), F(t,x) = (F1(t,x), . . . ,Fn(t,x))T , (1.1)

where F : R+×Rn → Rn is any continuous vector function. Here R+ denotes the
set {t ∈ R | t > 0}. It is assumed that all solutions of system (1.1) are extendable to
the whole semi-axis R+. The uniqueness of the solution of the Cauchy problem for
system (1.1) is not required.

Further, under ‖ · ‖ everywhere, we mean the usual Euclidean norm for vectors
and matrices. The solution x = x(t) of the system (1.1) passing through the point
(t0,x0) ∈ R+×Rn will be written as x = x(t, t0,x0). For any t0 ∈ R+, we will further
denote by R+(t0) the set {t ∈ R | t > t0}. Any non-negative increasing sequence
τ = (τi)i>1 of real numbers for which the condition lim

i→+∞
τi = +∞ is satisfied will

be called a P-sequence. For each P-sequence τ = (τi)i>1, we will further denote by

M(τ) the set
∞⋃

i=1
[τ2i−1,τ2i].

Recall [3] that the solutions of the system (1.1) are said to be uniform-ultimately
Poisson bounded if there exist a number B > 0 and a P-sequence τ = (τi)i>1, such
that for any α> 0 there exist number T > 0 such that for any solution x = x(t, t0,x0)
of system (1.1), where t0 ∈ M(τ) and ‖x0‖ 6 α, the condition ‖x(t, t0,x0)‖ < B is
satisfied for all t ∈ R+(t0 +T )

⋂
M(τ). In the case where it is required to specify the

corresponding P-sequence τ = (τi)i>1, it says that the solutions of the system (1.1)
are uniform-ultimately Poisson bounded with respect to the P-sequence τ = (τi)i>1.

For comparison, it is also useful to recall [7] that the solutions of the system (1.1)
are said to be uniform-ultimately bounded if for the system (1.1) there is a number
B > 0, and for any α> 0 there exists a number T > 0 such that for any solution x =
x(t, t0,x0) of system (1.1), where t0 ∈R+ and ‖x0‖6 α, the condition ‖x(t, t0,x0)‖<
B is satisfied for all t ∈ R+(t0 +T ).

It can be seen that if the solutions of the system (1.1) are uniform-ultimately
bounded, then they are uniform-ultimately Poisson bounded.

In [5], based on the Lyapunov vector function method [6], the following sufficient
condition for the uniform-ultimate Poisson boundedness of solutions of the system
(1.1) was obtained.
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Theorem 1. Suppose that for system (1.1) there exist a P-sequence τ = (τi)i>1,
continuously differentiable function V : R+×Rn → R+, an increasing function a :
R+→ R+, a non-decreasing function b : R+→ R+, which has the property b(r)→
+∞ for r→+∞, and continuous function f : R+×R→ R that satisfy the following
conditions:

(1) b(‖x‖)6V (t,x)6 a(‖x‖) for all (t,x) ∈M(τ)×Rn.
(2) V̇ (t,x)6 f (t,V (t,x)) for all (t,x) ∈ R+×Rn.
(3) The solutions of the equation ξ̇ = f (t,ξ), called the comparison equation for

the system (1.1), are uniform-ultimately Poisson bounded with respect to the
P-sequence τ = (τi)i>1.

Then the solutions of the system (1.1) are uniform-ultimately Poisson bounded.

2. RESULTS

We now introduce the concept of a P-perturbed system with respect to the sys-
tem (1.1). Let g(t) be any continuously differentiable periodic function defined on
R+ satisfying the conditions ming(t) = 0 and maxg(t) > 0. From properties of the
function g(t), it follows that g′(t) is a continuous periodic function for which the con-
ditions maxg′(t) > 0 and ming′(t) < 0 are satisfied. Moreover, let α(t) > 0 be any
differentiable decreasing function defined on R+ for which the condition α(t)→ 0
is fulfilled as t → +∞. Simple examples of such functions are g(t) = 1+ sin(t) and
α(t) = e−t .

We will call a system that has the form
dx
dt

=
1

g(t)+α(t)
F(t,x), (2.1)

where g(t) and α(t) are any of the above functions, a P-perturbed system with respect
to the system (1.1) or, if misunderstandings are excluded, just a P-perturbed system.

Consider a P-perturbed system with respect to an arbitrary linear system ẋ = Ax,
x ∈ Rn, n> 1, i.e., consider the system

dx
dt

=
1

g(t)+α(t)
Ax, (2.2)

where A is a constant real (n×n) - matrix.

Theorem 2. If the eigenvalues λ1, . . . ,λn of the matrix A on the right-hand side
of the P-perturbed system (2.2) satisfy the condition Re(λi) < −maxg′(t) for all
1 6 i 6 n, then solutions of this P-perturbed system are uniform-ultimately Poisson
bounded.

Proof. First we define the Lyapunov function V (t,x). To do this, we will make
the change of variables x = Sy, where y = (y1, . . . ,yn)

T ∈Cn, S is a complex (n×n)-
matrix for which S−1AS = B is an upper triangular complex matrix, on the main
diagonal of which are the eigenvalues λ1, . . . ,λn of matrix A. Note that the above
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change of variables x = Sy is equivalent to changing the variables x = Sy, where y is a
complex number conjugate to y and S = (si j) is the matrix conjugate to S = (si j). It is
clear that for the above replacement of variables x = Sy, the equality (S)−1AS = B is
true, where B = (bi j) is an upper triangular matrix, conjugate to the matrix B = (bi j).
It is known (see, for example, [1]), that for any real number b > 0 there exists a
change of variables x = Sy such that for all 1 6 i < j 6 n the inequality |bi j| < b
is valid, where |bi j| is the modulus of the complex number bi j. Define the function
V : R+×Rn→ R by

V (t,x) = (g(t)+α(t)) · (S−1x,(S)−1x) = (g(t)+α(t)) · (y,y)

= (g(t)+α(t))
n
∑

i=1
yiyi = (g(t)+α(t))‖y‖2 = (g(t)+α(t))

n
∑

i=1
|yi|2 > 0,

where ( , ) is a scalar multiplication in Cn. Consider, for any fixed 0 < γ < maxg(t),
an increasing sequence ϑ1 < ϑ2 < · · · < ϑi < .. . of all roots of the equation g(t)+
α(t) = γ. Let ϑk be the first root for which on the segment [ϑk,ϑk+1] the condition
g(t)+α(t) > γ is satisfied. Define the increasing sequence τ1 < τ2 < · · · < τi < .. . ,
assuming τi = ϑi+k−1, i > 1. From the properties of the functions g(t) and α(t), it
follows that lim

i→+∞
τi = +∞ and, therefore, τ = (τi)i>1 is a P-sequence. It is easy to

check that for any t ∈R+(τ1) and x∈Rn, the inequality V (t,x)6 a(‖x‖) holds, where
a(r) = (maxg(t) +maxα(t))(‖S−1‖r)2. Since on each closed interval [τ2i−1,τ2i],
i> 1, γ6 g(t)+α(t), then for all (t,x) ∈M(τ)×Rn we get b(‖x‖)6V (t,x), where
b(r) = γ · (r/‖S‖)2. It follows that the double inequality b(‖x‖) 6 V (t,x) 6 a(‖x‖)
holds for all (t,x)∈M(τ)×Rn. For the derivative V̇ (t,x) of the function V (t,x) along
solutions of the of the system (2.2), we have the following equalities:

V̇ (t,x) = (g′(t)+α
′(t))‖y‖2 +(S−1Ax,(S)−1x)+(S−1x,(S)−1Ax)

= (g′(t)+α
′(t))‖y‖2 +(S−1ASy,(S)−1Sy)+(S−1Sy,(S)−1ASy)

= (g′(t)+α
′(t))‖y‖2 +(By,y)+(y,By) = (g′(t)+α

′(t))‖y‖2

+

(
n

∑
i=1

λiyiyi + ∑
16i< j6n

bi jy jyi

)
+

(
n

∑
i=1

λiyiyi + ∑
16i< j6n

bi jy jyi

)

= (g′(t)+α
′(t))‖y‖2 +

n

∑
i=1

(λi +λi)yiyi + ∑
16i< j6n

(bi jy jyi +bi jy jyi).

Since α′(t)< 0 for all t > 0 and maxg′(t)> 0, we have g′(t)+α′(t)< maxg′(t) for
all t > 0. Under the conditions of the theorem, Re(λi)<−maxg′(t) for any 16 i6 n.
Therefore, we have λi +λi = 2Re(λi)<−2maxg′(t). Because bi jy jyi = bi jy jyi, we
get

∑
16i< j6n

(bi jy jyi +bi jy jyi) = ∑
16i< j6n

2Re(bi jy jyi)6 ∑
16i< j6n

2|bi jy jyi|
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= ∑
16i< j6n

2|bi j| |y j| |yi|6 ∑
16i< j6n

|bi j|(|y j|2 + |yi|2)6 ∑
16i< j6n

|bi j|‖y‖2 6

6 ∑
16i< j6n

µ‖y‖2 =
1
2

n(n−1)µ‖y‖2,

where µ > 0 is a preassigned number for which |bi j|< µ. From the above inequalities
we get V̇ (t,x) 6 (−maxg′(t)+ (1/2)n(n− 1)µ)‖y‖2. If we choose the number µ >
0 so that µ < (2maxg′(t))/(n(n− 1)), then we get V̇ (t,x) 6 −ψ‖y‖2, where ψ =
maxg′(t)− (1/2)n(n− 1)µ > 0. From the inequality V̇ (t,x) 6 −ψ‖y‖2, it follows
that

V̇ (t,x)6− ψ

g(t)+α(t)
V (t,x).

Because −ψ/(g(t)+α(t))6−ψ/max(g(t)+α(t)), we obtain the inequality

V̇ (t,x)6−cV (t,x),

where c = ψ/max(g(t) +α(t)) > 0. This inequality suggests that the comparison
equation for the system (2.2) is ξ̇=−cξ. We can establish by the Lyapunov functions
method that the solutions of equation ξ̇ =−cξ are uniform-ultimately bounded. For
example, we can take the function W (ξ) = ξ2 as a Lyapunov function for the equa-
tion ξ̇ = −cξ. Since the solutions of the equation ξ̇ = −cξ are uniform-ultimately
bounded, then they are uniform-ultimately Poisson bounded with respect to the above
P-sequence τ = (τi)i>1. Thus, for the P-perturbed system (2.2), all conditions of
Theorem1 are fulfilled and, therefore, the solutions of this P-perturbed system are
uniform-ultimately bounded. �

Obviously, if in the conditions of Theorem 1 we take n = 1, then we obtain the
following statement.

Corollary 1. Suppose that for P-perturbed equation
dx
dt

=
1

g(t)+α(t)
ax

with respect to linear equation ẋ= ax, where a∈R satisfies condition a<−maxg′(t).
Then solutions of this P-perturbed equation is uniform-ultimately Poisson bounded.

We obtain, using the method of Lyapunov functions and Corollary 1, the sufficient
condition for uniform-ultimate Poisson boundedness of solutions of P-perturbed sys-
tem (2.1).

Theorem 3. Suppose that for the P-perturbed system (2.1) there exists a differen-
tiable function V : R+×Rn→R, constants c1 > 0, c2 > 0, c3 > 0, a continuously dif-
ferentiable periodic function g : R+→ R+, satisfying the requirements ming(t) = 0,
maxg(t)> 0, and a differentiable decreasing function α :R+→R+, α(t)> 0, t ∈R+

satisfying α(t)→ 0 with t→+∞. For all t ∈R+ and x ∈Rn the following conditions
are assumed:
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(1) c1‖x‖2 6V (t,x)6 c2‖x‖2;

(2) (g(t)+α(t))
∂V (t,x)

∂t
+

(
∂V (t,x)

∂x
, F(t,x)

)
6−c3‖x‖2;

(3) maxg′(t)<
c3

2c2
.

Then solutions of the P-perturbed system (2.1) are uniform-ultimately Poisson bounded.

Proof. We define the function W : R+×Rn→ R by

W (t,x) = (g(t)+α(t))V (t,x)

. For any fixed 0 < γ < maxg(t) we consider an increasing sequence ϑ1 < ϑ2 < · · ·<
ϑi < .. . of all roots of the equation g(t)+α(t) = γ. Let ϑk be the first of the above
roots, for which on the segment [ϑk,ϑk+1] the condition g(t)+α(t) > γ is satisfied.
We define an increasing sequence τ1 < τ2 < · · · < τi < .. . by setting τi = ϑi+k−1,
i > 1. From the properties of functions g(t) and α(t), it follows that lim

i→+∞
τi = +∞

and, therefore, τ = (τi)i>1 is a P-sequence. Condition (1) of the theorem follows that
the inequality W (x, t) 6 a(‖x‖) holds for any t ∈ [τ1,∞] and x ∈ Rn, where a(r) =
max(g(t)α(t))c2r2. It is easy to see that on each closed interval [τ2i−1,τ2i], i> 1, the
inequality γ 6 g(t)α(t) holds. Therefore, by using condition (1) of the theorem, we
obtain that the inequality b(‖x‖) 6W (t,x) is true for all (t,x) ∈ M(τ)×Rn, where
b(r) = γc1r2, it follows that the double inequality

b(‖x‖)6W (t,x)6 a‖x‖)

holds for all (t,x) ∈M(τ)×Rn. The derivative Ẇ (t,x) of W (t,x) along solutions of
the system (2.1) becomes

Ẇ (t,x) =
∂W (t,x)

∂t
+

(
∂W (t,x)

∂x
,

F(t,x)
g(t)+α(t)

)
= (g′(t)+α

′(t))V (t,x)+(g(t)+α(t))
∂V (t,x)

∂t
+

(
∂V (t,x)

∂x
, F(t,x)

)
.

Using conditions (1) and (2) of the theorem, and also considering that α′(t)< 0, we
obtain the inequality

Ẇ (t,x)6 (maxg′(t))V (t,x)− c3‖x‖2 6
1

g(t)+α(t)
(maxg′(t))− c3

c2
)W (t,x).

This inequality means that the equation

ξ̇ =
1

g(t)+α(t)
(maxg′(t))− c3

c2
)ξ (2.3)

is the comparison equation for system (2.1). Since maxg′(t))−(c3/c2)<−maxg′(t))
holds by condition (3) of the theorem, using Corollary1 we find that solutions of the
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comparison equation (2.3) are uniform-ultimately Poisson bounded. Thus, all condi-
tions of Theorem 1 are fulfilled and, therefore, solutions of P-perturbed system (2.1)
are uniform-ultimately Poisson bounded. �

Let us consider an interesting application of Theorem 3 to the standard closed
electric RLC circuit with nonlinear elements. The equation of the charge x (with x′

being the current) is the following nonlinear ordinary differential equation of second
order:

Lx′′+Rx′+
1
C

x+ f (x) = 0, (2.4)

where R > 0 is the resistance, L > 0 is the inductance, C > 0 is the capacitance, and f
is a continuously differentiable function with respect to the charge x. Equation (2.4)
can be transformed to the following equivalent systemx′1 = x2,

x′2 =−
1

LC
x1−

R
L

x2−
1
L

f (x1).
(2.5)

We now make the linear change of the variables as{
y = x1,

z = x2 + x1.
(2.6)

Then, by using (2.6), the system (2.5) can be written asy′ = z− y,

z′ =
(
− 1

LC
+

R
L
−1
)

y+
(
−R

L
+1
)

z− 1
L

f (y).
(2.7)

Now we assume that the condition 0 <C(R−L)< 1 holds. Then, it can be checked
that

1
LC
− R

L
+1 > 0 and 1− R

L
< 0.

Moreover, we also assume that

f (0) = 0, and 0 <
f (y)

y
< 2AL, if y 6= 0,

where A > 0 is a constant. Then we have

06
1
L

y∫
0

f (η)dη =
1
L

y∫
0

f (η)
η

ηdη6
2
L

y∫
0

(AL)ηdη = Ay2.

Define a Lyapunov function by

V (y,z) =
1
2

(
1

LC
− R

L
+1
)

y2 +
1
2

z2 +
1
L

y∫
0

f (η)dη.
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It is clear that

1
3

(
1

LC
− R

L
+1
)

y2 +
1
3

z2 6V (y,z)6
(

1
LC
− R

L
+A+1

)
y2 + z2.

If we put

c1 = min
(

1
3

(
1

LC
− R

L
+1
)
,
1
3

)
, c2 = max

((
1

LC
− R

L
+A+1

)
,1
)
,

then we have

c1‖(y,z)T‖2 6V (t,y,z)6 c2‖(y,z)T‖2.

For the time derivative V̇ (y,z) of the Lyapunov function V (y,z) along the solutions of
system (2.7), we obtain

V̇ (y,z) =−
(

1
LC
− R

L
+1
)

y2 +

(
1− R

L

)
z2 +

1
L
(−g(y)y).

Since g(y)y> 0 and L > 0, we have

V̇ (t,y,z)6−
(

1
LC
− R

L
+1
)

y2−
(

R
L
−1
)

z2 6−c3(y2 + z2) =−c3‖(y,z)T‖2,

where

c3 = min
((

1
LC
− R

L
+1
)
,

(
R
L
−1
))

.

Now, for the system (2.7) and the functions g(t) = 1+ sin(t) and α(t) = e−t , we
consider the P-perturbed system

y′ =
1

1+ sin(t)+ e−t (z− y),

z′ =
1

1+ sin(t)+ e−t

((
− 1

LC
+

R
L
−1
)

y+
(
−R

L
+1
)

z− 1
L

f (y)
)
.

(2.8)

If we assume that c3/(2c2) > 1 = max(cos(t)) = g′(t), then by using Theorem 3
we can conclude the solutions of the system (2.8) are uniform-ultimately Poisson
bounded. Since (2.6) is a linear change of the variables, the solutions of the P-
perturbed system

x′1 =
1

1+ sin(t)+ e−t x2,

x′2 =
1

1+ sin(t)+ e−t

(
− 1

LC
x1−

R
L

x2−
1
L

f (x1)

)
with respect to the system (2.5) are uniform-ultimately Poisson bounded.
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