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Abstract. In this article, we find a condition on α so that if 1+αz z f ′(z)
f (z) ≺

1+Az
1+Bz , then zF ′(z)

F (z) ≺
1+ sin(z) , where

F (z) =
γ+1

zβ

∫ z

0
tγ−1 f (t)dt,

is the well-known Bernardi integral operator. We also study the case zF ′(z)
F (z) ≺ cos(z) . Some

similar implications are also discussed for both functions.
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1. INTRODUCTION AND BASIC NOTIONS

We recall here some basic notions and concepts of geometric function theory which
are essential for clarity and understandings of the upcoming work. We start with the
symbol A which represents the class of analytic functions in D = {z : |z|< 1} and
any function f in A satisfies the conditions f (0) = f ′ (0)−1 = 0. Also let S denote a
subclass of A which contains univalent functions in D . The notion of subordinations
between analytic functions is defined as; If f and g are analytic functions, then f is
subordinated by g, if there exists a Schwarz function w with the properties w(0) = 0
and |w(z)|< |z| such that f (z) = g(w(z)). Further, if the function g is univalent in D,
then we have:

f (z)≺ g(z)⇔ f (0) = g(0), (1.1)

and f (D) ⊂ g(D). Moreover, let P [A,B] denote a family of analytic functions p in
D with p(0) = 1 and satisfy

p(z)≺ 1+Az
1+Bz

, −1≤ B < A≤ 1.
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Geometrically, a function p ∈ P [A,B], if and only if p(0) = 1 and p(D) ⊂ Ω[A,B],
where circular domain Ω[A,B] is defined as:

Ω[A,B] =

{ {
ω :
∣∣∣ω− 1−AB

1−B2

∣∣∣< A−B
1−B2

}
for B 6=−1,

{ω : Re{ω}> (1−A)/2} for B =−1.
(1.2)

The domain Ω[A,B], B 6= −1, represents an open circular disk centered on the real
axis with diameter end points D1 =

1−A
1−B and D2 =

1+A
1+B with 0 < D1 < 1 < D2. This

work was introduced by Janowski [9] and he further defined the class S ∗[A,B] of
Janowski starlike functions as:

S ∗[A,B] =
{

f : f ∈ A and
z f ′ (z)
f (z)

∈ P [A,B], (z ∈D)

}
.

We see that the classes P [1,−1] and S ∗[1,−1] coincides with the well-known classes
P of functions with positive real part and S ∗of starlike functions respectively. Many
researchers introduced and studied various subclasses of analytic functions connected
with different image domains, see the work of Cho et al. [5], Dziok et al. [7], Kumar
and Ravichandran [12], Mediratta et al. [15], Sokół and Stankiewicz [22], Raina and
Sokół [16], Kanas and Răducanu [10], Sharma et al. [17], see also [1, 11, 18–20, 25]
and the references therein.

Recently, Cho et al. [6] have studied a class of starlike functions connected with
sine function and is defined as:

S ∗s =

{
f : f ∈ A and

z f ′ (z)
f (z)

≺ 1+ sin(z) , (z ∈D)

}
.

Analogous to the class S ∗s , Bano and Raza [3] introduced the class S ∗c of starlike
functions associated with cosine functions which is given by:

S ∗c =

{
f : f ∈ A and

z f ′ (z)
f (z)

≺ cos(z) , (z ∈D)

}
.

Integral and differential operators are very useful and are of great importance in
geometric function theory, specially in univalent function theory. Certain differential
and integral operators have been introduced by using convolution of certain analytic
functions. It is observed that this formalism brings an ease in further mathematical
exploration and also helps to understand the geometric properties of analytic and uni-
valent functions. Their study can be traced back to 1916 by Alexander. Later, Libera
and Bernardi introduced certain integral operators to study the classes of starlike,
convex and close-to-convex functions. Recently, many researchers have shown great
interest in studying some properties of integral and differential operators. Srivast-
ava et al. [24] applied the fractional q-calculus operator to define and study a new
class of analytic functions with complex order. Mahmood et al. [13] considered one-
parameter families of integral operators and, studied the classes of uniformly starlike
and uniformly convex functions with respect to symmetric points. Mehmood et al.
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[14] analyzed certain classes of analytic functions defined by using q-integral oper-
ators. Arif et al. [2] introduced a class of multivalent functions by using q-analogue
of the Ruscheweyh type operator. Sim et al. [21] investigated argument properties
of analytic functions defined by the Srivastava-Attiya Operator. Srivastava et al. [26]
found Faber polynomial coefficients for bi-univalent functions defined by using frac-
tional derivative operator. Recently, Srivastava [23] gave brief survey of operators
of basic (or q-) calculus and fractional q-calculus and their applications in geometric
function theory of complex analysis.

Motivated by the above work, we study the inclusion of Bernardi integral operator
in the classes of starlike functions associated with sine and cosine functions in D .
The Bernardi [4] integral operator is defined as:

F (z) =
γ+1

zβ

∫ z

0
tγ−1 f (t)dt, γ≥ 0. (1.3)

To prove our main results we need the following lemma.

Lemma 1 ([8]). Let w be a non-constant analytic function in D with w(0) = 0. If

|w(z0)|= max{|w(z)| , |z| ≤ |z0|} , z ∈D ,

then there exists a real number m (m≥ 1) such that z0w′ (z0) = mw(z0) .

2. BERNARDI’S INTEGRAL OPERATOR ASSOCIATED WITH SINE FUNCTION

Theorem 1. Assume that

|α| ≥ (A−B)(1+ γ+ sinh(1))
(1−|B|)cos(1)− (1+ |B|)(1+ γ+ sinh(1))(1+ sinh(1))

. (2.1)

If

1+αz
(

z f ′ (z)
f (z)

)
≺ 1+Az

1+Bz
, −1≤ B < A≤ 1, (2.2)

then
zF ′ (z)
F (z)

≺ 1+ sin(z) ,

where F is the Bernardi integral operator defined in (1.3) .

Proof. Let us define a function w as

w(z) = arcsin
(

zF ′ (z)
F (z)

−1
)
, (2.3)

where we have chosen the principle branches of the square root and logarithmic func-
tions. Since arcsin functions is defined as

arcsinz =−i log
[
iz+(1− z2)1/2

]
,
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therefore w is analytic in D with w(0) = 0. To prove our result, we need only to show
that |w(z)|< 1 in D . From (2.3) , we have

zF ′ (z)
F (z)

= 1+ sin(w(z)) .

Logarithmic differentiation of above relation yields

1+
zF ′′ (z)
F ′ (z)

− zF ′ (z)
F (z)

=
zw′ (z)cos(w(z))

1+ sin(w(z))
.

Differentiating (1.3) , we obtain

(γ+1) f (z) = zF ′ (z)+ γF (z) . (2.4)

Differentiating (2.4) logarithmically, we have

z f ′ (z)
f (z)

=
zF ′ (z)
F (z)

1+ zF ′′(z)
F ′(z) −

zF ′(z)
F (z)

zF ′(z)
F (z) + γ

+1


=

zw′ (z)cos(w(z))+(1+ sin(w(z))+ γ)(1+ sin(w(z)))
(1+ sin(w(z))+ γ)

.

Now, we define a function

p(z) = 1+αz
(

z f ′ (z)
f (z)

)
,

where p is analytic in D and p(0) = 1. Also

∣∣∣∣ p(z)−1
A−Bp(z)

∣∣∣∣=
∣∣∣∣∣∣∣∣

1
(A−B)(1+ sin(w(z))+ γ)

αz [zw′ (z)cos(w(z))+(1+ sin(w(z))+ γ)(1+ sin(w(z)))]
+B

∣∣∣∣∣∣∣∣ .
Suppose that there exists a point z0 ∈D such that

max
|z|≤|z0|

|w(z)|= |w(z0)|= 1.

By using Lemma 1, there exists a number m ≥ 1 such that z0w′ (z0) = mw(z0). We
also suppose that w(z0) = eiθ. Then we have

∣∣∣∣ p(z0)−1
A−Bp(z0)

∣∣∣∣=
∣∣∣∣∣∣∣∣

1
(A−B)(1+ sin(w(z0))+ γ)

α [zw′ (z0)cos(w(z0))+(1+ sin(w(z0))+ γ)(1+ sin(w(z0)))]
+B

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
1

(A−B)
(
1+ sin

(
eiθ
)
+ γ
)

α [meiθ cos(eiθ)+(1+ sin(eiθ)+ γ)(1+ sin(eiθ))]
+B

∣∣∣∣∣∣∣∣∣ .
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Let |z|= r, −π≤ θ≤ π. Then after some simplifications, we have∣∣∣sin
(

eiθ
)∣∣∣2 = cos2 (cosθ)sinh2 (sinθ)+ sin2 (cosθ)cosh2 (sinθ) = Ψ(θ) . (2.5)

A simple computation shows that the equation Ψ′ (θ) = 0 has five roots in [−π,π]
namely 0, ±π, ±π

2 . Since Ψ′ (θ) = Ψ′ (−θ) , it is sufficient to consider θ ∈ [0,π] and
we see that

Ψ
′′ (0) = Ψ

′′ (π)≈ 1.090702574 and Ψ
′′
(

π

2

)
≈−1.626860410.

This implies that

max{Ψ(θ)}= Ψ

(
π

2

)
= sinh2(1),

min{Ψ(θ)}= Ψ(0) = Ψ(π) = sin2(1).

Also consider∣∣∣cos
(

eiθ
)∣∣∣2 = cos2 (cosθ)cosh2 (sinθ)+ sin2 (cosθ)sinh2 (sinθ) = φ(θ) .

Similarly, after simple calculations the equation φ′ (θ) = 0 has five roots in [−π,π]
namely 0, ±π, ±π

2 . Since φ(θ)= φ(−θ) , it is sufficient to consider those roots which
lies in [0,π] and we see that

φ
′′ (0) = φ(π)≈ 2.909297427 and φ

′′
(

π

2

)
≈−5.626860410.

Therefore

max{φ(θ)}= φ

(
π

2

)
= cosh2(1),

min{φ(θ)}= φ(π) = φ(0) = cos2(1).

This implies that

cos(1)≤
∣∣∣cos

(
eiθ
)∣∣∣≤ cosh(1) and sin(1)≤

∣∣∣sin
(

eiθ
)∣∣∣≤ sinh(1). (2.6)

Now

∣∣∣∣ p(z0)−1
A−Bp(z0)

∣∣∣∣=
∣∣∣∣∣∣∣∣∣

1
(A−B)

(
1+ sin

(
eiθ
)
+ γ
)

α [meiθ cos(eiθ)+(1+ sin(eiθ)+ γ)(1+ sin(eiθ))]
+B

∣∣∣∣∣∣∣∣∣
≥

|α|
[∣∣meiθ cos

(
eiθ
)∣∣− ∣∣(1+ sin

(
eiθ
)
+ γ
)(

1+ sin
(
eiθ
))∣∣]

(A−B) |(1+ sin(eiθ)+ γ)|+ |αB| [|meiθ cos(eiθ)|+ |(1+ sin(eiθ)+ γ)(1+ sin(eiθ))|]

≥ |α| [mcos(1)− (1+ γ+ sinh(1))(1+ sinh(1))]
(A−B)(1+ γ+ sinh(1))+ |αB| [mcos(1)+(1+ γ+ sinh(1))(1+ sinh(1))]

.
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Now let

Φ(m) =
|α| [mcos(1)− (1+ γ+ sinh(1))(1+ sinh(1))]

(A−B)(1+ γ+ sinh(1))+ |αB| [mcos(1)+(1+ γ+ sinh(1))(1+ sinh(1))]
.

Then

Φ
′ (m) ={
(A−B)(1+ γ+ sinh(1))+2 |α|2 |B| [(1+ γ+ sinh(1))(1+ sinh(1))]

}
|α|cos(1)

{(A−B)(1+ γ+ sinh(1))+ |αB| [mcos(1)+(1+ γ+ sinh(1))(1+ sinh(1))]}2 > 0.

This shows that Φ is an increasing function and it has its minimum value at m = 1 so∣∣∣∣ p(z0)−1
A−Bp(z0)

∣∣∣∣≥ |α| [cos1− (1+ γ+ sinh(1))(1+ sinh(1))]
(A−B)(1+ γ+ sinh(1))+ |αB| [cos1+(1+ γ+ sinh(1))(1+ sinh(1))]

.

Now by (2.1) , we have ∣∣∣∣ p(z0)−1
A−Bp(z0)

∣∣∣∣≥ 1,

a contradiction to the hypothesis. Hence we have the required result. �

By choosing A = 1, B = 0, we have the following result.

Corollary 1. Let

|α| ≥ (1+ γ+ sinh(1))
cos(1)− (1+ γ+ sinh(1))(1+ sinh(1))

.

If

1+αz
(

z f ′ (z)
f (z)

)
≺ 1+ z,

then
zF ′ (z)
F (z)

≺ 1+ sin(z) .

By choosing A = 1, B =−1, we have the following result.

Corollary 2. Let |α| ≥ −0.363370517 and

1+αz
(

z f ′ (z)
f (z)

)
≺ 1+ z

1− z
.

Then
zF ′ (z)
F (z)

≺ 1+ sin(z) .

Theorem 2. Assume that

|α| ≥ (A−B)(γ+1)
(1−|B|)cos(1)− (1+ |B|)(1+ γ)(1+ sinh(1))

. (2.7)
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If

1+α f (z)≺ 1+Az
1+Bz

, (2.8)

then
F (z)

z
≺ 1+ sin(z) ,

where F is the Bernardi integral operator defined in (1.3) .

Proof. Let a function w be defined by

w(z) = arcsin
(

F (z)
z
−1
)
, (2.9)

where we have chosen the principle branches of the square root and logarithmic func-
tions. Then w is analytic in D with w(0) = 0. We need only to show that |w(z)|< 1
in D . From (2.9) , we have

F (z)
z

= 1+ sin(w(z)) . (2.10)

Also we define a function
p(z) = 1+α f (z) , (2.11)

where p is analytic in D with p(0) = 1. Now by using (2.10), (2.4) and (2.11) , we
have∣∣∣∣ p(z)−1
A−Bp(z)

∣∣∣∣= ∣∣∣∣ αz [zw′ (z)cos(w(z))+(1+ γ)(1+ sin(w(z)))]
(A−B)(1+ γ)+αBz [zw′ (z)cos(w(z))+(1+ γ)(1+ sin(w(z)))]

∣∣∣∣ .
Suppose that there exists a point z0 ∈D such that

max
|z|≤|z0|

|w(z)|= |w(z0)|= 1.

By using Lemma 1, there exists a number m ≥ 1 such that z0w′ (z0) = mw(z0). We
also suppose that w(z0) = eiθ. Then we have∣∣∣∣ p(z0)−1

A−Bp(z0)

∣∣∣∣= αz0
[
meiθ cos

(
eiθ
)
+(1+ γ)

(
1+ sin

(
eiθ
))]

(A−B)(1+ γ)+αBz0 [meiθ cos(eiθ)+(1+ γ)(1+ sin(eiθ))]

≥
|α|
[∣∣meiθ cos

(
eiθ
)∣∣− ∣∣(1+ γ)

(
1+ sin

(
eiθ
))∣∣]

(A−B) |(1+ γ)|+ |αB| [|meiθ cos(eiθ)|+ |(1+ γ)(1+ sin(eiθ))|]

≥ |α| [mcos(1)− (1+ γ)(1+ sinh(1))]
(A−B)(1+ γ)+ |αB| [mcos(1)+(1+ γ)(1+ sinh(1))]

.

Now let

Θ(m) =
|α| [mcos(1)− (1+ γ)(1+ sinh(1))]

(A−B)(1+ γ)+ |αB| [mcos1+(1+ γ)(1+ sinh(1))]
.
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Then

Θ
′ (m) =

((A−B)+2 |α| |B|(1+ sinh(1))) |α|(γ+1)cos(1)

{(A−B)(1+ γ)+ |αB| [mcos(1)+(1+ γ)(1+ sinh(1))]}2 > 0,

which shows that Θ is an increasing function and it has its minimum value at m = 1,
so ∣∣∣∣ p(z0)−1

A−Bp(z0)

∣∣∣∣≥ |α| [cos(1)− (1+ γ)(1+ sinh(1))]
(A−B)(1+ γ)+ |αB| [cos(1)+(1+ γ)(1+ sinh(1))]

.

Now by (2.7) , we have ∣∣∣∣ p(z0)−1
A−Bp(z0)

∣∣∣∣≥ 1,

a contradiction to the hypothesis. Hence

1+α f (z)≺ 1+Az
1+Bz

.

�

By choosing A = 1, B = 0, we have the following result.

Corollary 3. Let |α| ≥ (γ+1)
cos(1)− (1+ |B|)(1+ γ)(1+ sinh(1))

and

1+α f (z)≺ 1+ z.

Then
F (z)

z
≺ 1+ sin(z) .

By choosing A = 1, B =−1, we have the following result.

Corollary 4. Let |α| ≥ −1
1+ sinh(1)

and

1+α f (z)≺ 1+ z
1− z

.

Then
F (z)

z
≺ 1+ sin(z) .

Theorem 3. Assume that

|α| ≥ (A−B)(γ+1)
(1−|B|)cos(1)− (1+ |B|)(1+ γ)(1+ sinh(1))

. (2.12)

If

1+αz f ′ (z)≺ 1+Az
1+Bz

, (2.13)

then
F ′ (z)≺ 1+ sin(z) ,
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where F is the Bernardi integral operator defined in (1.3) .

Proof. Let a function w be defined by

w(z) = arcsin
(
F ′ (z)−1

)
, (2.14)

where we have chosen the principle branches of the square root and logarithmic func-
tions. It is clear that w is an analytic function in D with w(0) = 0. We need only to
show that |w(z)|< 1 in D . From (2.14) , we have

F ′ (z) = 1+ sin(w(z)) . (2.15)

Differentiating (2.4) , we get

f ′ (z) = F ′ (z)+
zF ′′ (z)

γ+1
. (2.16)

Also we define a function
p(z) = 1+αz f ′ (z) , (2.17)

where p is analytic with p(0) = 1. Now by using (2.15), (2.16) and (2.17) , we have∣∣∣∣ p(z)−1
A−Bp(z)

∣∣∣∣= ∣∣∣∣ αz [zw′ (z)cos(w(z))+(1+ γ)(1+ sin(w(z)))]
(A−B)(1+ γ)+αBz [zw′ (z)cos(w(z))+(1+ γ)(1+ sin(w(z)))]

∣∣∣∣ .
Suppose that there exists a point z0 ∈D such that

max
|z|≤|z0|

|w(z)|= |w(z0)|= 1.

By using Lemma 1, there exists a number m ≥ 1 such that z0w′ (z0) = mw(z0). We
also suppose that w(z0) = eiθ. Then we have∣∣∣∣ p(z0)−1

A−Bp(z0)

∣∣∣∣=
∣∣∣∣∣ αz0

[
meiθ cos

(
eiθ
)
+(1+ γ)

(
1+ sin

(
eiθ
))]

(A−B)(1+ γ)+αBz0 [meiθ cos(eiθ)+(1+ γ)(1+ sin(eiθ))]

∣∣∣∣∣
≥

|α|
[∣∣meiθ cos

(
eiθ
)∣∣− ∣∣(1+ γ)

(
1+ sin

(
eiθ
))∣∣]

(A−B) |(1+ γ)|+ |αB| [|meiθ cos(eiθ)|+ |(1+ γ)(1+ sin(eiθ))|]

≥ |α| [mcos(1)− (1+ γ)(1+ sinh(1))]
(A−B)(1+ γ)+ |αB| [mcos(1)+(1+ γ)(1+ sinh(1))]

.

Now let

Ξ(m) =
|α| [mcos(1)− (1+ γ)(1+ sinh(1))]

(A−B)(1+ γ)+ |αB| [mcos(1)+(1+ γ)(1+ sinh(1))]
.

Then

Ξ
′ (m) =

((A−B)+2 |α| |B|(1+ sinh(1))) |α|(γ+1)cos(1)

{(A−B)(1+ γ)+ |αB| [mcos(1)+(1+ γ)(1+ sinh(1))]}2 > 0,
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which shows that Ξ is an increasing function and it has its minimum value at m = 1
so ∣∣∣∣ p(z0)−1

A−Bp(z0)

∣∣∣∣≥ |α| [cos(1)− (1+ γ)(1+ sinh(1))]
(A−B)(1+ γ)+ |αB| [cos(1)+(1+ γ)(1+ sinh(1))]

.

Now by (2.12) , we have ∣∣∣∣ p(z0)−1
A−Bp(z0)

∣∣∣∣≥ 1,

a contradiction to the hypothesis

1+αz f ′ (z)≺ 1+Az
1+Bz

.

Hence we have the required result. �

By choosing A = 1, B = 0, we have the following result.

Corollary 5. Assume that

|α| ≥ (γ+1)
cos(1)− (1+ γ)(1+ sinh(1))

.

If
1+αz f ′ (z)≺ 1+ z,

then
F ′ (z)≺ 1+ sin(z) .

By choosing A = 1, B =−1, we have the following result.

Corollary 6. Assume that |α| ≥ −1
(1+ sinh(1))

and if

1+αz f ′ (z)≺ 1+ z
1− z

,

then
F ′ (z)≺ 1+ sin(z) .

3. BERNARDI’S INTEGRAL OPERATOR ASSOCIATED WITH COSINE FUNCTION

Theorem 4. Assume that

|α| ≥ (A−B)(γ+1)
(1−|B|)sin(1)− (1+ |B|)(cosh(1)+ γ)cosh(1)

. (3.1)

If

1+αz
(

z f ′ (z)
f (z)

)
≺ 1+Az

1+Bz
, (3.2)

then
zF ′ (z)
F (z)

≺ cos(z) ,
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where F is the Bernardi integral operator defined in (1.3) .

Proof. Let a function w be defined by

w(z) = cos−1
(

zF ′ (z)
F (z)

)
. (3.3)

where we have chosen the principle branches of the square root and logarithmic func-
tions. Since arccos function is defined as

arccosz =−i log
[
z+ i(1− z2)1/2

]
,

therefore w is an analytic function in D with w(0) = 0. To prove our result, we need
only to show that |w(z)|< 1 in D . From (3.3) , we have

zF ′ (z)
F (z)

= cos(w(z)) .

Logarithmic differentiation of above relation yields

1+
zF ′′ (z)
F ′ (z)

− zF ′ (z)
F (z)

=
−zw′ (z)sin(w(z))

cos(w(z))
.

Using (1.3) , we have

(γ+1) f (z) = zF ′ (z)+ γF (z) .

Differentiating logarithmically, we have

z f ′ (z)
f (z)

=
zF ′ (z)
F (z)

1+ zF ′′(z)
F (z) −

zF ′(z)
F (z)

zF ′(z)
F (z) + γ

+1


=
−zw′ (z)sin(w(z))+(cos(w(z))+ γ)cos(w(z))

cos(w(z))+ γ
.

Now we define a function

p(z) = 1+αz
(

z f ′ (z)
f (z)

)
,

where p is analytic in D with p(0) = 1. Also it is easy to see that∣∣∣∣ p(z)−1
A−Bp(z)

∣∣∣∣=∣∣∣∣ αz [−zw′ (z)sin(w(z))+(cos(w(z))+ γ)(cos(w(z)))]
(A−B)(cos(w(z))+ γ)+αBz [−zw′ (z)sin(w(z))+(cos(w(z))+ γ)(cos(w(z)))]

∣∣∣∣ .
Suppose that there exists a point z0 ∈D such that

max
|z|≤|z0|

|w(z)|= |w(z0)|= 1.
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By using Lemma 1, there exists a number m ≥ 1 such that z0w′ (z0) = mw(z0). We
also suppose that w(z0) = eiθ and using (2.6), we have∣∣∣∣ p(z0)−1

A−Bp(z0)

∣∣∣∣=∣∣∣∣ αz0 [−z0w′ (z0)sin(w(z0))+(cos(w(z0))+ γ)(cos(w(z0)))]

(A−B)(cos(w(z0))+ γ)+αBz0 [−z0w′ (z0)sin(w(z0))+(cos(w(z0))+ γ)(cos(w(z0)))]

∣∣∣∣
=

∣∣∣∣∣ αz0
[
−meiθ sin

(
eiθ
)
+
(
cos
(
eiθ
)
+ γ
)(

cos
(
eiθ
))]

(A−B)(cos(eiθ)+ γ)+αBz0 [−meiθ sin(eiθ)+(cos(eiθ)+ γ)cos(eiθ)]

∣∣∣∣∣
≥

α
[∣∣meiθ sin

(
eiθ
)∣∣− ∣∣(cos

(
eiθ
)
+ γ
)

cos
(
eiθ
)∣∣]

(A−B)(cos(eiθ)+ γ)+ |αB| [|m(eiθ)sin(eiθ)|+ |(cos(eiθ)+ γ)cos(eiθ)|]

≥ α [msin(1)− (cosh(1)+ γ)cosh(1)]
(A−B)(cosh(1)+ γ)+ |αB| [msin(1)+(cosh(1)+ γ)cosh(1)]

.

Now let

Φ1 (m) =
α [msin(1)− (cosh(1)+ γ)cosh(1)]

(A−B)(cosh(1)+ γ)+αB [msin(1)+(cosh(1)+ γ)cosh(1)]
.

Then

Φ
′
1 (m) =

|α|sin(1)(A−B)(cosh(1)+ γ)+2 |α|2 |B|(cosh(1)+ γ)cosh(1)

{(A−B)(cosh(1)+ γ)+ |α| |B| [msin(1)+(cosh(1)+ γ)cosh(1)]}2 > 0,

which shows that Φ1 is an increasing function and has its minimum value at m = 1
so∣∣∣∣ p(z0)−1

A−Bp(z0)

∣∣∣∣≥ |α| [sin(1)− (cosh(1)+ γ)cosh(1)]
(A−B)(cosh(1)+ γ)+ |α| |B| [sin(1)+(cosh(1)+ γ)cosh(1)]

.

Now by (3.1) , we have ∣∣∣∣ p(z0)−1
A−Bp(z0)

∣∣∣∣≥ 1,

a contradiction to the hypothesis. Hence the result is complete. �

By choosing A = 1, B = 0, we have the following result.

Corollary 7. Assume that

|α| ≥ (γ+1)
sin(1)− (cosh(1)+ γ)cosh(1)

.

If

1+αz
(

z f ′ (z)
f (z)

)
≺ 1+ z,

then
zF ′ (z)
F (z)

≺ cos(z) ,
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where F is the Bernardi integral operator defined in (1.3) .

By choosing A = 1, B =−1, we have the following result.

Corollary 8. Assume that

|α| ≥ −(γ+1)
(cosh(1)+ γ)cosh(1)

.

If

1+αz
(

z f ′ (z)
f (z)

)
≺ 1+ z

1− z
,

then
zF ′ (z)
F (z)

≺ cos(z) .

Theorem 5. Assume that

α≥ (A−B)(γ+1)
(1−|B|)sin(1)− (1+ |B|)(cosh(1)+ γ)cosh(1)

. (3.4)

If

1+α f (z)≺ 1+Az
1+Bz

, (3.5)

then
F (z)

z
≺ cos(z) ,

where F is the Bernardi integral operator defined in (1.3) .

Proof. Let a function w be defined by

w(z) = arccos
(

F (z)
z

)
, (3.6)

where we have chosen the principle branches of the square root and logarithmic func-
tions. Therefore w is an analytic function in D with w(0) = 0. We need only to show
that |w(z)|< 1 in D . From (3.6) , we have

F (z)
z

= cosw(z) . (3.7)

Also we define a function
p(z) = 1+α f (z) , (3.8)

where p is analytic in D with p(0) = 1. Now by using (3.7), (2.4) and (3.8) we have∣∣∣∣ p(z)−1
A−Bp(z)

∣∣∣∣=
∣∣∣∣∣ α

[
−z2w′ (z)sin(w(z))+ z(1+ γ)cos(w(z))

]
(A−B)(1+ γ)+αB [−z2w′ (z)sin(w(z))+ z(1+ γ)cos(w(z))]

∣∣∣∣∣ .
Suppose that there exists a point z0 ∈D such that

max
|z|≤|z0|

|w(z)|= |w(z0)|= 1.
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By using Lemma 1, there exists a number m ≥ 1 such that z0w′ (z0) = mw(z0). We
also suppose that w(z0) = eiθ and by using (2.6) , we have∣∣∣∣ p(z0)−1

A−Bp(z0)

∣∣∣∣=
∣∣∣∣∣ α

[
−z0meiθ sin

(
eiθ
)
+ z0 (1+ γ)cos

(
eiθ
)]

(A−B)(1+ γ)+αB [−z0meiθ sin(eiθ)+ z0 (1+ γ)cos(eiθ)]

∣∣∣∣∣
≥

|α|
[∣∣meiθ sin

(
eiθ
)∣∣− ∣∣(1+ γ)cos

(
eiθ
)∣∣]

(A−B) |(1+ γ)|+ |αB| [|meiθ sin(eiθ)|+ |(1+ γ)cos(eiθ)|]

≥ |α| [msin(1)− (1+ γ)cosh(1)]
(A−B)(1+ γ)+ |αB| [msin(1)+(1+ γ)cosh(1)]

.

Now let

Θ1 (m) =
|α| [msin1− (1+ γ)cosh1]

(A−B)(1+ γ)+ |αB| [msin1+(1+ γ)cosh1]
.

Then

Θ
′
1 (m) =

(A−B)(1+ γ)sin(1)+2 |α|2 |B|(1+ γ)cosh(1)sin(1)

{(A−B)(1+ γ)+ |αB| [msin(1)+(1+ γ)cosh(1)]}2 > 0,

which shows that Θ1 is an increasing function and has its minimum value at m = 1 so∣∣∣∣ p(z0)−1
A−Bp(z0)

∣∣∣∣= |α| [sin(1)− (1+ γ)cosh(1)]
(A−B)(1+ γ)+ |αB| [sin(1)+(1+ γ)cosh(1)]

.

Now by (3.4) , we have ∣∣∣∣ p(z0)−1
A−Bp(z0)

∣∣∣∣≥ 1,

a contradiction to the hypothesis. Hence it completes the proof. �

By choosing A = 1, B = 0, we have the following result.

Corollary 9. Assume that

|α| ≥ (γ+1)
sin(1)− (cosh(1)+ γ)cosh(1)

.

If
1+α f (z)≺ 1+ z,

then
F (z)

z
≺ cos(z) .

By choosing A = 1, B =−1, we have the following result.

Corollary 10. Assume that

|α| ≥ −(γ+1)
(cosh(1)+ γ)cosh(1)

.
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If

1+α f (z)≺ 1+ z
1− z

,

then
F (z)

z
≺ cos(z) .

Theorem 6. Assume that

|α| ≥ (A−B)(γ+1)
(1−|B|)sin(1)− (1+ |B|)(1+ γ)cosh(1)

. (3.9)

If

1+αz f ′ (z)≺ 1+Az
1+Bz

, (3.10)

then
F ′ (z)≺ cos(z) ,

where F is the Bernardi integral operator defined in (1.3) .

Proof. Let a function w be defined by

w(z) = arccosF ′ (z) , (3.11)

where we have chosen the principle branches of the square root and logarithmic func-
tions. It is clear that w is an analytic function in D with w(0) = 0. We need only to
show that |w(z)|< 1 in D . From (3.11) , we have

F ′ (z) = cos(w(z)). (3.12)

Differentiating (2.4) , we get

f ′ (z) = F ′ (z)+
zF ′′ (z)

γ+1
. (3.13)

Also we define a function
p(z) = 1+αz f ′ (z) , (3.14)

where p is analytic and p(0) = 1. Now by using (3.12), (3.13) and (3.14) , we have∣∣∣∣ p(z)−1
A−Bp(z)

∣∣∣∣= ∣∣∣∣ αz [−zw′ (z)sin(w(z))+(γ+1)cos(w(z))]
(A−B)(1+ γ)+αBz [−zw′ (z)sin(w(z))+(γ+1)cos(w(z))]

∣∣∣∣ .
Suppose that there exists a point z0 ∈D such that

max
|z|≤|z0|

|w(z)|= |w(z0)|= 1.

By using Lemma 1, there exists a number m ≥ 1 such that z0w′ (z0) = mw(z0). We
also suppose that w(z0) = eiθ. Then we have∣∣∣∣ p(z0)−1

A−Bp(z0)

∣∣∣∣=
∣∣∣∣∣ αz0

[
−meiθ sin

(
eiθ
)
+(γ+1)cos

(
eiθ
)]

(A−B)(1+ γ)+αBz0 [−meiθ sin(eiθ)+(γ+1)cos(eiθ)]

∣∣∣∣∣
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≥
|α|
[∣∣meiθ sin

(
eiθ
)∣∣− ∣∣(γ+1)cos

(
eiθ
)∣∣]

(A−B)(1+ γ)+ |αB| [|meiθ sin(eiθ)|+ |(γ+1)cos(eiθ)|]

≥ |α| [msin(1)− (1+ γ)cosh(1)]
(A−B)(1+ γ)+ |αB| [msin(1)+(1+ γ)cosh(1)]

.

Now let

Ξ1 (m) =
|α| [msin(1)− (1+ γ)cosh(1)]

(A−B)(1+ γ)+ |αB| [msin [1]+ (1+ γ)cosh(1)]
.

Then

Ξ
′
1 (m) =

(A−B)(1+ γ) |α|sin(1)+2(1+ γ) |α|2 |B|cosh(1)sin(1)

{(A−B)(1+ γ)+ |αB| [msin(1)+(1+ γ)cosh(1)]}2 > 0,

which shows that Ξ1 is an increasing function and has its minimum value at m = 1 so∣∣∣∣ p(z0)−1
A−Bp(z0)

∣∣∣∣≥ |α| [sin(1)− (1+ γ)cosh(1)]
(A−B)(1+ γ)+ |αB| [sin(1)+(1+ γ)cosh(1)]

.

Now by (3.9) , we have ∣∣∣∣ p(z0)−1
A−Bp(z0)

∣∣∣∣≥ 1,

a contradiction to the hypothesis. Hence we have the required result. �

By choosing A = 1, B = 0, we have the following result.

Corollary 11. Assume that

|α| ≥ (γ+1)
sin(1)− (1+ γ)cosh(1)

.

If
1+αz f ′ (z)≺ 1+ z,

then
F ′ (z)≺ cos(z) .

By choosing A = 1, B =−1, we have the following result.

Corollary 12. Assume that

|α| ≥ −(γ+1)
(1+ γ)cosh(1)

.

If

1+αz f ′ (z)≺ 1+ z
1− z

,

then
F ′ (z)≺ cos(z) .
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