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Abstract. The aim of this paper is to study an optimal control problem governed by a quasi-
hemivariational inequality by using nonlinear Lagrangian methods. We first show the existence
of solutions to the inequality problem, and then, we establish several sufficient conditions for the
zero duality gap property between the optimal control problem and its nonlinear dual problem.
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1. INTRODUCTION

Optimal control problems governed variational inequalities have attracted great
attention in recent years and have many applications in engineering and mechanics,
see, for instance, [1, 5, 20, 25, 27]. Lagrangian methods are useful tools to study con-
strained optimization problems and optimal control problems. The zero duality gap
property in the study of optimization problems, where the optimal values of the prime
and dual problems equal, is an important property to be used in the development of
primal-dual methods. For more details on the zero duality gap property for noncon-
vex optimization problems, we refer to [21, 32] and the references therein. Recently,
Zhou et al. [31] investigated the zero duality gap property for an optimal control
problem governed by a variational inequality and gave several sufficient conditions
for the zero duality gap property between the optimal control problem and its nonlin-
ear Lagrangian dual problem. Later, Wang et al. [24] generalized the results in [31]
and studied an optimal control problem where the state of the system is defined by a
mixed quasi-variational inequality.

In this work, we study a class of quasi-hemivariational inequalities. The hemivari-
ational inequalities were introduced by Panagiotoulos [17,18] for describing a variety
of mechanical problems such as unilateral contact in nonlinear elasticity, adhesive
and friction effects, nonconvex semipermeability, masonry structures, and delamin-
ation in multilayered composites. Quasi-hemivariational inequalities are important
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and useful generalization of variational inequalities and hemivariational inequalit-
ies, and have significant applications in mechanics problems (see [12, 13]). Very re-
cently, many authors studied the existence results for some types of hemivariational
inequalities (see [8, 15, 23, 26, 29, 30]). For some related optimal control problem for
hemivariational inequalities, we refer to [4, 6, 7, 9–11, 14, 19, 22].

The purpose of this paper is to study the optimal control by a quasi-hemivariational
inequality. We first show the set of the solutions to the variational inequality is
nonempty. Then we obtain several sufficient conditions for the zero duality gap
property between the optimal control problem and its nonlinear dual problem. The
main novelties of the paper are following. Instead of equilibrium problems and
variational inequality problems widely used in the literature, we deal with a quasi-
hemivariational inequality problem. The results obtained in this paper improve and
extend many results in equilibrium problems and variational inequalities. To our best
knowledge, it is the first work to study the zero duality gap property between the op-
timal control problem and its nonlinear dual problem for hemivariational inequalities.
Several hemivariational inequality problems can also be further studied.

The rest of this paper is organized as follows. In the next section, we will in-
troduce some useful preliminaries and necessary materials. In Section 3, we show
the existence of solutions to the quasi-hemivariational inequality. In Section 4, we
provide a result for the zero duality gap property between the optimal control prob-
lem and its nonlinear dual problem. Theorem 2 and Theorem 3 are main results in
this part. We also give some deduced theorems in which we consider a special case
of quasi-hemivariational inequalities in the last section.

2. PRELIMINARIES

Let (X ,‖·‖X) be a Banach space, X∗ denote its dual space and 〈·, ·〉X be the duality
pairing between X∗ and X . We denote by “→ ” the strong convergence and by “ ⇀ ”
the weak convergence.

Definition 1. A function f : X → R is said to be

(i) (weakly) upper semicontinuous (u.s.c.) at u0, if any sequence {un} ⊂ X with
(un ⇀ u0) un→ u0, we have limsup f (un)≤ f (u0).

(ii) (weakly) lower semicontinuous (l.s.c.) at u0, if any sequence {un} ⊂ X with
(un ⇀ u0) un→ u0, we have f (u0)≤ liminf f (un).

(iii) f is said to be (weakly) u.s.c. (l.s.c.) on X , if f is (weakly) u.s.c. (l.s.c.) at u
for all u ∈ X .

Definition 2 ([28]). Let D be a nonempty subset of X and let F : D→ X∗ be a
single-valued mapping. F is said to be

(1) continuous if for every u0 ∈ D and any sequence {un} ⊂ D with un→ u0, we
have Fun→ Fu0.
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(2) hemicontinuous if for all u,v,w ∈ D the functional, t→ 〈F(u+ tv),z〉X is con-
tinuous on [0,1].

(3) strongly continuous if for every u0 ∈ D and any {un} ⊂ D with un ⇀ u0 in D,
we have Fun→ Fu0.

(4) monotone if for any u1,u2 ∈ D, we have

〈Fu1−Fu2,u1−u2〉X ≥ 0.

(5) pseudomonotone if for every u0 ∈ D and any {un} ⊂ D with un ⇀ u0 and
limsup

n→∞

〈Fun,un−u0〉X ≤ 0, we have

〈Fu0,u0− v〉X ≤ liminf
n→∞

〈Fun,un− v〉X

for all v ∈ D.

Remark 1 ([28]). (1) If F is hemicontinuous and monotone, then F is pseudo-
monotone.

(2) If F : D ⊂ X → X∗ and is hemicontinuous if and only if F is continuous from
the topology of X to the weakly∗ topology of X∗.

(3) Let F1,F2 : D→ X∗ be operators. If F1 is pseudomonotone and F2 is strongly
continuous, then F1 +F2 is pseudomonotone. In addition, if F1 and F2 are pseudo-
monotone, then F1 +F2 is also pseudomonotone.

Definition 3. Let G : X1→ 2X2 be a multivalued mapping from a topological space
X1 into a topological space X2. G is said to be bounded if G(D) is a bounded set for
any bounded subset D of X1.

Definition 4 ([16]). Let D be a nonempty subset of X and K : D→ 2X be a multi-
valued mapping. For any {wn} ⊂ D with wn ⇀ w0 ∈ D, we say that the sequence of
sets K(wn) Mosco-converges to K(w) if the following two conditions hold:

(i) for every sequence {un}, where un ∈ K(wn) , such that un ⇀ u0, then u0 ∈
K(w0);

(ii) for every u0 ∈ K(w0), there exists un ∈ K(wn) (for n large enough) such that
un→ u0.

Lemma 1 ([3]). Let D be a nonempty subset of a reflexive Banach space X, and
let G : D→ 2X be a multivalued mapping satisfying

(a) G is a KKM mapping, that is, for any {v1,v2, ...,vn} ⊂ D, the convex hull

co{v1,v2, · · · ,vn} is contained in
n⋃

i=1
G(vi),

(b) G(v) is closed in X for every v ∈ D,
(c) G(v0) is compact in X for some v0 ∈ D.

Then
⋂

v∈D
G(v) 6=∅.

Next, we present some needed elements of subdifferential calculus for locally
Lipschitz functions (see [2, 12]).
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Given a locally Lipschitz function J : X → R on a Banach space X , we denote by
J◦(u,v) the generalized directional derivative of J at the point u ∈ X in the direction
v ∈ X , that is

J◦(u;v) := limsup
λ→0+;w→u

J(w+λv)+ J(w)
λ

.

The generalized gradient of J : X → R at u ∈ X is defined by

∂J(u) := {ξ ∈ X∗ : J◦(u;v)≥ 〈ξ;v〉X f or all v ∈ X}.

Proposition 1 ([2]). Let J : X →R be locally Lipschitz of rank Lu > 0 near u ∈ X.
Then, there hold the following:

(a) the function v→ J◦(u;v) is positively homogeneous, subadditive and satisfies
|J◦(u;v)| ≤ Lu‖v‖X for all v ∈ X;

(b) J◦(u;v) is u.s.c. as a function of (u,v);
(c) ∂J(u) is a nonempty, convex, weak∗ compact subset of X∗ with ‖ξ‖X∗ ≤ Lu for

all ξ ∈ ∂J(u);
(d) for each v ∈ X, we have J◦(u;v) = max{〈ξ,v〉X : ξ ∈ ∂J(u)}.

Next, we introduce the framework of this paper. We assume that X , V and E
are reflexive Banach spaces, U is a nonempty closed convex subset of V and K :
U → 2X is a multivalued mapping with nonempty values. Let J : X ×V → R and
A : X → X∗,B : U → X∗,J : E→ R,γ : X → E be given mappings, f : X×X → R :=
R∪{±∞} be a function such that f (u,u) = 0 for every u∈ X . Consider the following
optimal control problem governed by a quasi-variational inequality: Find w∗ ∈U and
u ∈ S(w∗) such that {

minJ (u,w)
subject to (w,u) ∈U×S(w), (2.1)

where S(w) is the set of solutions to the following quasi-hemivariational inequality
corresponding to w: find u ∈ K(w) such that

〈Au+Bw,v−u〉X + f (u,v)+ J◦(γu;γv− γu)≥ 0, ∀v ∈ K(w). (2.2)

For any w ∈U , we define

gw(u) = sup
v∈K(w)

〈Au+Bw,v−u〉X + f (u,v)+ J◦(γu;γv− γu), (2.3)

Kw(y) = {u ∈ K(w) : gw(u)≤ y}. (2.4)

Thus, gw(u)≥ 0 and Kw(0)= {u∈K(w) : gw(u)= 0}= S(w). Define the perturbation
function β as

β(y) = inf
w∈U,u∈Kw(y)

J (w,u). (2.5)

It is easy to see that β(0) is the optimal value of problem (2.1).
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Definition 5 ([1]). Let R+ = [0,+∞) and P : R×R+→ R be a function. A non-
linear Lagrangian function Lp : U ×K(U)×R+ → R for problem (2.1) is defined
as

LP(w,u,d) = P(J (w,u),dgw(u)).
The function

FP(d) = inf
w∈U,u∈K(w)

LP(w,u,d)

is called its nonlinear Lagrangian dual function. The equality

β(0) = sup
d∈R+

FP(d) (2.6)

is called the zero duality gap property.

Assumption 1. (Pi) If y1 ≤ y2, then P(y1,z)≤ P(y2,z), ∀z ∈ R+.
(Pii) p(y,0) = y, ∀y ∈ R.
(Piii) There exists a number a> 0, such that P(y,z)≥max{y,az}, ∀(y,z)∈R×R+.

Lemma 2 ([21]). Suppose that P is a continuous function satisfying Pi and Pii. If
the zero duality gap property (2.6) holds, then the perturbation function β is l.s.c. at
the origin.

Lemma 3 ([21]). Suppose that P satisfies (Pi),(Pii),(Piii). If−∞< β(0)<+∞ and
the perturbation function β is l.s.c. at the origin, then the zero duality gap property
(2.6) holds.

3. EXISTENCE OF SOLUTIONS

In this section, we give an existence result for the quasi-hemivariational inequality
(2.2).

Consider the following hypotheses on the data of (2.2).
(HK) : K : U → 2X is such that for each w ∈U , 0 ∈ K(w) and the set K(w) is closed
and convex in X .
(HA) : A : K(U)→ X∗ is hemicontinuous and monotone.
(H f ) : f : X×X → R is a mapping satisfying the following conditions:
(i) D( f ) = {u ∈ K(U) : f (u,v) 6=−∞, ∀v ∈ K(U)} is nonempty,
(ii) f (u,u) = 0 for all u ∈ K(U),
(iii) f (u,v)+ f (v,u) = 0 for all u,v ∈ K(U),
(iv) for every v ∈ K(U), f (·,v) is weakly u.s.c.,
(v) for every u ∈ K(U), f (u, ·) is convex.
(HJ) : J : E→ R is a locally Lipschitz function.
(Hγ) : γ : X → E is a linear, bounded and compact operator.
(H0) :

lim
u∈X ,‖u‖X→∞

〈Au,u〉X + infηu∈∂J(γu)〈ηu,γu〉E + f (0,u)
‖u‖X

=+∞. (3.1)
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Theorem 1. Assume that (HK),(HA),(H f ),(HJ),(Hγ),(H0) are satisfied. Then
S(w) 6=∅.

Proof. (i) At first, we suppose that K(w) is bounded in X . Introduce the multival-
ued mapping G : K(w)→ 2K(w) as follows:

G(v) := {u ∈ K(w) : 〈Av+Bw,v−u〉X + f (u,v)+ J◦(γu;γv− γu)≥ 0}, ∀v ∈ K(w).

We claim that G(v) is weakly closed in V . If for {un} ⊂ G(v) one has un ⇀ u, then
u ∈ K(w) and, for each n ∈ N

〈Av+Bw,v−un〉X + f (un,v)+ J◦(γun;γv− γun)≥ 0.

Proposition 1(b) and (H f )(iii) imply

0≤ limsup
n→∞

〈Av+Bw,v−un〉X + f (un,v)+ J◦(γun;γv− γun)

≤〈Av+Bw,v−u〉X + f (u,v)+ J◦(γu;γv− γu),

which proves that u ∈ G(v), thus G(v) is weakly closed in V . We continue with the
proof by arguing separately in two cases: (a) G is a KKM mapping. (b) G is not a
KKM mapping. Assume case (a). Since K(w) is bounded, closed and convex in the
reflexive Banach space V , it is weakly compact. Due to the assertion above, for every
v ∈ K(w) G(v) is weakly compact too. Lemma 1 with respect to the weak topology
of X yields ⋂

v∈K(w)

G(v) 6=∅.

Taking u0 ∈
⋂

v∈K(w) G(v), we have

〈Av+Bw,v−u0〉X + f (u0,v)+ J◦(γu0;γv− γu0)≥ 0, ∀v ∈ K(w).

Let an arbitrary v′ ∈ K(w) and let vn := 1
n v′+(1− 1

n)u0 ∈ K(w). Then we have

〈Avn +Bw,vn−u0〉X + f (u0,vn)+ J◦(γvn;γvn− γu0)≥ 0.

Then

0≤〈Avn +Bw,
1
n

v′+(1− 1
n
)u0−u0〉X + f (u0,

1
n

v′+(1− 1
n
)u0)

+ J◦(γvn;γ
1
n

v′+(1− 1
n
)u0− γu0)

≤1
n
[〈Avn +Bw,v′−u0〉X + f (u0,v′)+ J◦(γvn;γv′− γu0)].

Multiplying the last inequality by n and letting n→ ∞, we have

〈Au0 +Bw,v′−u0〉X + f (u0,v′)+ J◦(γu0;γv′− γu0)> 0, ∀v′ ∈ K(w),

which concludes u0 ∈ S(w).
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Now, admit case (b). Then, one can find v1,v2, ...,vN ∈ K(w) and u0 =
N
∑
j=1

λ jvi

with λi ∈ [0,1] and
N
∑
j=1

λi = 1 such that

u0 *
N⋃

j=1

G(v j),

which expresses that

〈Av j +Bw,v j−u0〉X + f (u0,v j)+ J◦(γu0;γv j− γu0)< 0.

Claim. There exists a neighborhood O of u0 in X such that whenever v∈O
⋂

K(w),
there holds

〈Av j +Bw,v j− v〉X + f (v,v j)+ J◦(γv;γv j− γv)< 0. (3.2)
Arguing by contradiction, let us assume that there exist un ∈K(w) and jn ∈{1,2, ...,N}
such that un→ u0 and, for each n,

〈Av jn +Bw,v jn−un〉X + f (un,v jn)+ J◦(γun;γv jn− γun)≥ 0.

Then, there exists j0 ∈ {1,2, ...,N} such that for all n

〈Av jn +Bw,v j0−un〉X + f (un,v j0)+ J◦(γun;γv j0− γun)≥ 0.

Passing to the limit gives

0≤ limsup
n→∞

〈Av j0 +Bw,v j0−un〉X + f (un,v j0)+ J◦(γun;γv j0− γun)

≤〈Av j0 +Bw,v j0−u0〉X + f (u0,v j0)+ J◦(γun;γv j0− γu0),

which contradicts (3.2). The claim is proven.
Using Claim, we have for each j ∈ {1,2, ...,N} that

〈Av j +Bw,v j− v〉X + f (v,v j)+ J◦(γv;γv j− γv)< 0, ∀v ∈ O
⋂

K(w).

It follows from the monotonicity of A that

〈Av+Bw,v j− v〉X + f (v,v j)+ J◦(γv;γv j− γv)≤ 0.

Furthermore, on the basis of Proposition 2.13(d) and the convexity of f (v, ·), we note
that

〈Av+Bw,v−u0〉X + f (v,u0)+ J◦(γv;γu0− γv)

=〈Av+Bw,
N

∑
j=1

λ jv j− v〉X + f (v,
N

∑
j=1

λ jv j)+ J◦(γv;γu0− γv)

≤
N

∑
j=1

λ j[〈Av+Bw,v j− v〉X + f (v,v j)+ J◦(γv;γv j− γv)]

≤0
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for all v ∈ O
⋂

K(w). Since

J◦(γv;γu0− γv)+ J◦(γv;γv− γu0)≥ J◦(γv;γ0) = 0,

we obtain

〈Av+Bw,v−u0〉X + f (u0,v)+ J◦(γv;γv− γu0)> 0, ∀v ∈ O
⋂

K(w). (3.3)

To prove that u0 ∈ S(w), let an arbitrary y∈K(w) and consider yn := 1
n y+(1− 1

n)u0 ∈
O
⋂

K(w). Hence, (3.3) can be used to obtain

〈Ayn +Bw,yn−u0〉X + f (u0,yn)+ J◦(γyn;γyn− γu0)≥ 0.

Then

0≤〈Ayn +Bw,
1
n

y+(1− 1
n
)u0−u0〉X + f (u0,

1
n

y+(1− 1
n
)u0)

+ J◦(γyn;γ(
1
n

y+(1− 1
n
)u0)− γu0)

≤1
n
[〈Ayn +Bw,y−u0〉X + f (u0,y)+ J◦(γyn;γy− γu0)].

Multiplying the last inequality by n and letting n→ ∞, we have

〈Au0 +Bw,y−u0〉X + f (u0,y)+ J◦(γu0;γy− γu0)> 0, ∀y ∈ K(w),

which concludes u0 ∈ S(w).
(ii) Now, we assume that K(w) is unbounded. For any given w ∈U , letting Br =

{v ∈ X : ‖v‖ ≤ r} and Kr = Br
⋂

K(w), we get that Kr is a bounded, closed and
convex subset of X . According to the assumptions, Remark 1 implies that A+B is
demicontinuous and pseudomonotone. By (i), we know there exists ur ∈Kr such that

〈Aur +Bw,v−ur〉+ f (ur,v)+ J◦(γur;γv− γur)≥ 0, ∀v ∈ Kr. (3.4)

In particular, taking v = 0 in (3.4), there exists ur ∈ Kr such that

〈Aur +Bw,ur〉− f (ur,0)− J◦(γur;γ0− γur)≤ 0, ∀v ∈ Kr.

it follows from (H0) that {ur} is bounded. So ‖ur‖ ≤M for some real number M > 0.
Let r = M +1. For each v ∈ K(w), we can choose t ∈ (0,1) small enough such that
vr = ur + t(v−ur) ∈ Kr. Substituting vr into (3.4), we obtain that

〈Aur +Bw,ur + t(v−ur)−ur〉+ f (ur,ur + t(v−ur))

+ J◦(γur;γ(ur + t(v−ur))− γur)〉 ≥ 0.

Then

0≤〈Aur +Bw,ur + t(v−ur)−ur〉+ f (ur,ur + t(v−ur))

+ J◦(γur;γ(ur + t(v−ur))− γur)〉
≤t[〈Aur +Bw,v−ur〉+ f (ur,v)+ J◦(γur;γv− γur)].
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Dividing by t, it follows that

〈Aur +Bw,v−ur〉+ f (ur,v)+ J◦(γur;γv− γur)≥ 0, ∀v ∈ K(w),

and hence ur ∈ S(w). The proof is completed. �

Remark 2. From the theorem above, it is clear that hypothesis (H0) can be omitted
if K is bounded.

4. OPTIMAL CONTROL

In this section, we establish several conditions to guarantee the zero duality gap
property for the optimal control problem governed by quasi-hemivariational inequal-
ities and its dual problem.

Theorem 2. Assume that (HK),(HA),(H f ),(HJ),(Hγ) are satisfied. Suppose that,
in addition, K : U → 2X is bounded, A : K(U)→ X∗ is bounded, f (u, ·) is u.s.c. for
every u ∈ K(U), J : U ×K(U)→ R is weakly l.s.c. function, B : U → X∗ is strongly
continuous from the weak topology of V to the topology of X∗ and the following
conditions are satisfied

(i) for any w ∈U, u ∈ K(w), lim‖w‖→+∞J (w,u) = +∞,
(ii) for all wn ∈U with wn ⇀ w, K(wn) Mosco-converges to K(w).

Then −∞ < β(0)<+∞.

Proof. From Theorem 1, it follows that for each w∈U , S(w) 6=∅. Let {(wn,un)}⊂
U×K(U) be a sequence satisfying un ∈ S(wn) such that

J (wn,un)≤ inf
w∈U,u∈S(w)

J (w,u)+
1
n
= β(0)+

1
n
, n = 1,2, ....

Condition (i) implies that {wn} is bounded. Since K is bounded and un ∈ S(wn) ⊂
K(wn), {un} is a bounded sequence, and hence {(wn,un)} is bounded.

By the reflexivity of V and X , there exists a weakly convergent subsequence of
{(wn,un)}. Without loss of generality, we can assume that wn ⇀ w0 in V and un ⇀ u0
in X as n→+∞.

Since U is closed and convex, U is a weakly closed set and so w0 ∈U . By the
assumptions, we know that K(wn) Mosco-converges to K(w0) and so u0 ∈ K(w0).
According to Definition 4, there exists u′n ∈ K(wn) such that u′n→ u0. By un ∈ S(wn),
we know that un ∈ K(wn) such that

〈Aun +Bwn,v−un〉X + f (un,v)+ J◦(γun;γv− γun)≥ 0, ∀v ∈ K(wn),

and so
〈Aun +Bwn,u′n−un〉X + f (un,u′n)+ J◦(γun;γu′n− γun)≥ 0. (4.1)

Since B is strongly continuous from the weak topology of V to the topology of X∗,
Bwn → Bw0. Moreover, note that A is bounded. Without loss of generality, we can
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assume that Aun ⇀ u∗. By the hypotheses, (4.1) implies that

limsup
n→∞

〈Aun,un−u0〉X = limsup
n→∞

〈Aun,un−u0〉X + lim
n→∞
〈Aun,u0−u′n〉X

+ lim
n→∞
〈Bwn,un−u′n〉X

= limsup
n→∞

〈Aun +Bwn,un−u′n〉X

≤ limsup
n→∞

( f (un,u′n)+ J◦(γun;γu′n− γun))

≤ lim
n→∞

f (un,u′n)+ limsup
n→∞

J◦(γun;γu′n− γun)

≤0.

It follows from (HA) and Remark 1(i) that A is pseudomonotone. Fixing any v′ ∈
K(w0), we have

〈Au0,u0− v′〉X ≤ liminf
n→∞

〈Aun,un− v′〉X .

According to wn ⇀ w0 and condition (ii), there exists vn ∈ K(wn) such that vn→ v′.
Since Aun ⇀ u∗, it follows that

liminf
n→∞

〈Aun,un− v′〉X = liminf
n→∞

〈Aun,un〉X + lim
n→∞
〈Aun,−v′〉X

= liminf
n→∞

〈Aun,un〉X + 〈u∗,−v′〉X
= liminf

n→∞
〈Aun,un〉X + lim

n→∞
〈Aun,−vn〉X

= liminf
n→∞

〈Aun,un− vn〉X .

Thus,

〈Au0,u0− v′〉X + 〈Bw0,u0− v′〉X + f (v′,u0)+ J◦(γu0;γu0− γv′)

≤ liminf
n→∞

〈Aun,un− v′〉X + lim
n→∞
〈Bwn,un− vn〉X

+ liminf
n→∞

f (vn,un)+ lim
n→∞

J◦(γun;γun− γv′)

= liminf
n→∞

〈Aun,un− vn〉X + lim
n→∞
〈Bwn,un− vn〉X

+ liminf
n→∞

f (vn,un)+ lim
n→∞

J◦(γun;γun− γvn)

≤ liminf
n→∞

〈Aun +Bwn,un− vn〉X + f (vn,un)+ J◦(γun;γun− γvn).

This implies that

〈Au0 +Bw0,v′−u0〉X + f (u0,v′)+ J◦(γu0;γv′−u0)≥ 0, ∀v′ ∈ K(w0).

Therefore, u0 ∈ S(w0).
Since J (w,u) is a weakly l.s.c. function, it follows from (2.5) that

J (w0,u0)≤ liminf
n→∞

J (wn,un) = β(0),
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and so
J (w0,u0) = β(0).

Therefore, −∞ < β(0)<+∞. This completes the proof. �

Theorem 3. Assume that all the hypotheses of Theorem 2 are satisfied. If P satis-
fies (Pi),(Pii),(Piii), then the zero duality gap property (2.6) holds.

Proof. From Theorem 2, −∞ < β(0)<+∞, By Lemma 3, we only need to prove
that the perturbation function β is l.s.c. at the origin.

On the contrary, assume that there exists an ε0 > 0 such that

liminf
y→0

β(y)≤ β(0)− ε0.

Then, there exists a sequence {yk} ⊂ R, wk ∈U and uk ∈ Kwk(yk) such that

J (wk,uk)≤ β(0)− 1
2

ε0, k = 1, ...

hold.
From the proof of Theorem 2, the sequence {(wk,uk)} is bounded and we can

assume that wk ⇀ w0 ∈ V and uk ⇀ u0 ∈ X as k→ +∞. Similarly, we can also get
u0 ∈ S(w0), and so u0 ∈ Kw0(0). Since J (w,u) ia weakly l.s.c. function, it follows
that

β(0)≤ J (w0,u0)≤ liminf
k→∞

J (wk,uk)≤ β(0)− 1
2

ε0,

which is impossible. Therefore, β is l.s.c. at the origin. The proof is complete. �

5. COROLLARIES

In this section, we consider a special case in which f (u,v) = ϕ(v)−ϕ(u) for all
u,v ∈ X .

Find w∗ ∈U and u ∈ S(w∗) such that{
minJ (u,w)
subject to (w,u) ∈U×S′(w), (5.1)

where S′(w) is the set of solutions to the following quasi-hemivariational inequality
corresponding to w: find u ∈ K(w) such that

〈Au+Bw,v−u〉X +ϕ(v)−ϕ(u)+ J◦(γu;γv− γu)≥ 0, ∀v ∈ K(w),

where ϕ : X → R∪ {+∞} is a convex and l.s.c. function such that Kϕ = K(U)∩
domϕ 6=∅.

For any w ∈U , we define

g′w(u) = sup
v∈K(w)

〈Au+Bw,v−u〉X +ϕ(v)−ϕ(u)+ J◦(γu;γv− γu),

K′w(y) = {u ∈ K(w) : g′w(u)≤ y}.
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Thus, g′w(u)≥ 0 and K′w(0) = {u ∈ K(w) : g′w(u) = 0}= S′(w). Define the perturba-
tion function β′ as

β
′(y) = inf

w∈U,u∈K′w(y)
J (w,u).

It is easy to see that β′(0) is the optimal value of problem (5.1).

Definition 6. Let P : R×R+→R be a function. A nonlinear Lagrangian function
Lp : U×K(U)×R+→ R for problem (5.1) is defined as

L′P(w,u,d) = P(J (w,u),dg′w(u)).

The function

F ′P(d) = inf
w∈U,u∈K(w)

L′P(w,u,d)

is called its nonlinear Lagrangian dual function. The equality

β
′(0) = sup

d∈R+

F ′P(d) (5.2)

is called the zero duality gap property.

Consider the following hypothesis on functional ϕ.
(Hϕ) : ϕ : X → R∪{+∞} is a convex and l.s.c. function such that Kϕ 6=∅.
(H1) :

lim
u∈X ,‖u‖X→∞

〈Au,u〉X + infηu∈∂J(γu)〈ηu,γu〉E +ϕ(u)−ϕ(0)
‖u‖X

=+∞.

We have the following results.

Theorem 4. Assume that (HK),(HA),(HJ),(Hγ),(Hϕ),(H1) are satisfied. Then
S′(w) 6=∅.

Theorem 5. Assume that (HK),(HA),(HJ),(Hγ),(Hϕ) are satisfied. Suppose that,
in addition, ϕ is continuous, K : U → 2X is bounded, J : U ×K(U)→ R is weakly
l.s.c. function, B : U → X∗ is strongly continuous from the weak topology of V to the
topology of X∗ and the following conditions are satisfied

(i) for any w ∈U, u ∈ K(w), lim‖w‖→+∞J (w,u) = +∞,
(ii) for all wn ∈U with wn ⇀ w, K(wn) Mosco-converges to K(w).

Then −∞ < β′(0)<+∞.

Theorem 6. Assume that all the hypotheses of Theorem 5 are satisfied. If P satis-
fies (Pi),(Pii),(Piii), then the zero duality gap property (5.2) holds.
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[10] S. Migórski, “A note on optimal control problem for a hemivariational inequality modeling fluid
flow,” Discrete and Continuous Dynamical Systems, vol. 2013, pp. 533–542, 2013.

[11] S. Migórski and A. Ochal, “Optimal control of parabolic hemivariational inequalities,” J. Glob.
Optim., vol. 17, pp. 285–300, 2000.
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