ON $H_{v} B E$-ALGEBRAS

F. IRANMANESH, M. GHADIRI, AND A. BORUMAND SAEID
Received 29 January, 2019

Abstract

In this paper, we introduce the notion of $H_{v} B E$-algebra and investigate the some properties of it. Also some types of $H_{v} B E$-algebras are studied and the relationship between them are stated. We try to show that these notions are independent, by some examples. In addition we show that $H_{v} B E$-algebra is an extension of hyper $B E$-algebra and compute the number of $H_{\nu} B E$-algebras in cases $|H|=2$ and 3. Furthermore, we study several kinds of homomorphisms on $H_{v} B E$-algebras.

2010 Mathematics Subject Classification: 06F35; 03G25.
Keywords: $\left(H_{v}\right) B E$-algebra, Hyper $B E$-algebra, $H_{v}($ weak $)$ filter, H_{v} group

1. Introduction and preliminaries

The theory of hyper structures was introduced by Marty in 1934 during the $8^{\text {th }}$ congress of the Scandinavian Mathematicians[8]. A hyper structure is a non-empty set H, together with a function $\circ: H \times H \longrightarrow P^{*}(H)$ called hyper operation, where $P^{*}(H)$ denotes the set of all non-empty subsets of H. Marty introduced hypergroups as a generalization of groups. Some basic definitions and the theorems about hyperstructures can be found in $[4,5]$. The concept of H_{v} structures constitute a generalization of well known algebraic hyper structures where the axioms are replaced by the weak ones. H_{v} structures were first introduced by Vougiouklis in the forth AHA congress(1990)[14].
H. S. Kim and Y. H. Kim introduced the notation of the $B E$-algebra as a generalization of dual $B C K$ algebra[7]. Using the notation of upper sets, they gave an equivalent condition of upper sets in $B E$-algebras and discussed some properties of them. A. Rezaei et al. in [11,12] show that commutative implicative $B E$-algebra is equivalent to the commutative self distributive $B E$-algebra.

Recently R. A. Borzooei et al. introduced the notation of pseudo $B E$-algebra which is a generalization of $B E$-algebra[3]. They defined the basic concepts of pseudo subalgebras and pseudo filters, and proved that under some conditions, pseudo subalgebra can be a pseudo filter[3].

The goal of this paper is combine the concepts H_{v} structure with $B E$ algebra and introducing the $H_{v} B E$-algebra as a generalization of hyper $B E$-algebra,
defining the H_{v} filter and subalgebra in this structure, also it is defined the some types of $H_{v} B E$-algebras and described the relationship between them. Finally present the homomorphisms on $H_{v} B E$-algebras with considering properties of them.

Definition 1 ([7]). Let X be a non-empty set and let " $*$ " be a binary operation on $X, 1 \in X$. An algebra $(X, *, 1)$ of type $(2,0)$ is called a $B E$-algebra if the following axioms hold:
(BE1) $x * x=1$,
(BE2) $x * 1=1$,
(BE3) $1 * x=x$,
$(B E 4) x *(y * z)=y *(x * z)$, for all $x, y, z \in X$.
We introduce the relation " \leq " on X by $x \leq y$ if and only if $x * y=1$.

Proposition 1 ([7]). Let X be a BE-algebra. Then
(i) $x *(y * x)=1$.
(ii) $y *((y * x) * x)=1$, for all $x, y \in X$.

Example 1 ([2]). Let $X=\{1,2, \ldots\}$ and the operation "*" be defined as follows:

$$
x * y=\left\{\begin{array}{lll}
1 & \text { if } & y \leq x \\
y & & \text { otherwise }
\end{array}\right.
$$

Then $(X, *, 1)$ is a $B E$-algebra.
Definition 2 ([5]). Let H be a non-empty set and $\circ: H \times H \longrightarrow P^{*}(H)$ be a hyper operation. Then (H, \circ) is called an $H_{v^{-}}$group if it satisfies the following axioms:
$(H 1) x \circ(y \circ z) \cap(x \circ y) \circ z \neq \phi$,
(H2) $a \circ H=H \circ a=H$, for all $x, y, z, a \in H$,
where $a \circ H=\bigcup_{h \in H} a \circ h, H \circ a=\bigcup_{h \in H} h \circ a$.
Definition 3 ([10]). Let H be a non-empty set and $\circ: H \times H \longrightarrow P^{*}(H)$ be a hyperoperation. Then $(H, \circ, 1)$ is called a hyper BE-algebra if satisfies the following axioms:
(HBE1) $x<1$ and $x<x$,
$(H B E 2) x \circ(y \circ z)=y \circ(x \circ z)$,
(HBE3) $x \in 1 \circ x$,
(HBE4) $1<x$ implies $x=1$, for all $x, y, z \in H$,
where the relation " $<$ " is defined by $x<y \Longleftrightarrow 1 \in x \circ y$.

2. On $H_{v} B E$-ALGEBRAS

Definition 4. Let H be a non-empty set and $\circ: H \times H \longrightarrow P^{*}(H)$ be a hyperoperation. Then $(H, \circ, 1)$ is called a $H_{v} B E$-algebra if satisfies the following axioms:
$\left(H_{v} B E 1\right) x<1$ and $x<x$,
$\left(H_{v} B E 2\right) x \circ(y \circ z) \bigcap y \circ(x \circ z) \neq \phi$,
$\left(H_{v} B E 3\right) x \in 1 \circ x$,
$\left(H_{v} B E 4\right) 1<x$ implies $x=1$, for all $x, y, z \in H$,
where the relation " $<$ " is defined by $x<y \Longleftrightarrow 1 \in x \circ y$.
Also $A<B$ if and only if there exist $a \in A$ and $b \in B$ such that $a<b$.
Example 2. (i)Let $(H, *, 1)$ be a $B E$-algebra. We know that $\circ: H \times H \longrightarrow P^{*}(H)$ with $x \circ y=\{x * y\}$ is a hyperoperation. Then $(H, \circ, 1)$ is a trivial hyper $B E$-algebra and a $H_{v} B E$-algebra.
(ii) Let $H=\{1, \mathrm{a}, \mathrm{b}\}$. Define a hyperoperation " \circ " as follows:

\circ	1	a	b
1	$\{1\}$	$\{\mathrm{a}, \mathrm{b}\}$	$\{\mathrm{b}\}$
a	$\{1\}$	$\{1, \mathrm{a}\}$	$\{1, \mathrm{~b}\}$
b	$\{1\}$	$\{1, \mathrm{a}, \mathrm{b}\}$	$\{1\}$.

Then $(H, \circ, 1)$ is a $H_{v} B E$-algebra.
(iii) Define a hyper operation " \circ " on \mathbb{R} as follows:

$$
x \circ y=\left\{\begin{array}{lll}
\{y\} & \text { if } & x=1 \\
\mathbb{R} & & \text { otherwise }
\end{array}\right.
$$

Then $(\mathbb{R}, \circ, 1)$ is a $H_{v} B E$-algebra.
Proposition 2. Any hyper BE-algebra is a $H_{v} B E$-algebra.
Proof. It is clear.
In the following example we show that the converse of Proposition 2 is not true.
Example 3. Define a hyperoperation " \circ " on the set $H=\{1, \mathrm{a}, \mathrm{b}\}$ as follows:

\circ	1	a	b
1	$\{1\}$	$\{\mathrm{a}\}$	$\{\mathrm{b}\}$
a	$\{1, b\}$	$\{1\}$	$\{1, \mathrm{a}, \mathrm{b}\}$
b	$\{1\}$	$\{1, \mathrm{~b}\}$	$\{1, \mathrm{~b}\}$.

Then $(H, \circ, 1)$ is an $H_{v} B E$-algebra. And we have that: $a \circ(b \circ b)=a \circ(\{1, b\})=\{1, a, b\} \neq\{1, b\}=b \circ(\{1, a, b\})=b \circ(a \circ b)$.
So $(H, \circ, 1)$ does not satisfy $(H B E 2)$, and $(H, \circ, 1)$ is not a hyper $B E$-algebra.
Theorem 1. Let $(H, \circ, 1)$ be an $H_{v} B E$-algebra. Then
(i) $A \circ(B \circ C) \cap B \circ(A \circ C) \neq \phi$ for every $A, B, C \in P^{*}(H)$,
(ii) $A<A$,
(iii) $1<A$ implies $1 \in A$,
(iv) $1 \in x \circ(x \circ x)$,
(v) $x<x \circ x$.

Proof. (i) Let $a \in A, b \in B, c \in C$. Then $a \circ(b \circ c) \subseteq A \circ(B \circ C), b \circ(a \circ c) \subseteq$ $B \circ(A \circ C)$, by $\left(H_{v} B E 2\right)$, we have $a \circ(b \circ c) \bigcap b \circ(a \circ c) \neq \phi$. therefore $A \circ(B \circ C) \bigcap B \circ$ $(A \circ C) \neq \phi$.
(ii) Let $a \in A$. Then by $\left(H_{v} B E 1\right) A<A$.
(iii) Let $1<A$. Then there exists an element $a \in A$ such that $1<a$ by using $\left(H_{v} B E 4\right) a=1$ and so $1 \in A$.
(iv) Let $x \in H$. Then $x<x$, by definition $1 \in x \circ x$ therefore $x \circ 1 \subseteq x \circ(x \circ x)$. Also by $\left(H_{v} B E 1\right), x<1$, so by definition $1 \in x \circ 1$ and then $1 \in x \circ(x \circ x)$.
(v) By (iv) $1 \in x \circ(x \circ x)$. Then there exists $b \in x \circ x$ such that $1 \in x \circ b$ and so $x<b$.

In the following proposition we compute the number of $H_{v} B E$-algebras in two cases.

Proposition 3. For a set H if
(i) $|H|=2$, there exist precisely 2^{4} different $H_{v} B E$-algebras $(H, \circ, 1)$,
(ii) $|H|=3$, there exist at most $4^{7} \times 7^{2}$ different $H_{v} B E$-algebras $(H, \circ, 1)$.

Proof. (i) Let $|H|=2$ and $(H, \circ, 1)$ be a $H_{v} B E$-algebra. Then $H=\{1, a\}$. Consider the following table:

(I) | \circ | 1 | a |
| :---: | :---: | :---: |
| 1 | A | B |
| a | C | D |

By $\left(H_{v} B E 1\right)$ and $\left(H_{v} B E 3\right)$, we have $A, C, D \in\{\{1\},\{1, a\}\}$ and $B \in\{\{a\},\{1, a\}\}$. Thus the cardinality of A, B, C, D is at most 2 .
So the number of $H_{v} B E$-algebras $(H, \circ, 1)$ is at most 2^{4}.
Now, to determine the number of $H_{v} B E$-algebras $(H, \circ, 1)$, we must consider the condition of $H_{v} B E$-algebra on table (I) for different A, B, C, D, when $A, C, D \in\{\{1\},\{1, a\}\}$ and $B \in\{\{a\},\{1, a\}\}$, that gives 2^{4} different tables. One can see that every table introduce a $H_{v} B E$-algebra.
In the following we consider two cases of tables:
(1)

\circ	1	a
1	$\{1\}$	$\{1, a\}$
a	$\{1, a\}$	$\{1, a\}$

(2)

\circ	1	a
1	$\{1, a\}$	$\{1, a\}$
a	$\{1, a\}$	$\{1, a\}$.

In any table, we see that $\left(H_{v} B E 1\right),\left(H_{v} B E 3\right)$ and $\left(H_{v} B E 4\right)$ are obvious.
In tables, we choose x, y, z from $\{1, a\}$ and conclude $x \circ(y \circ z) \cap y \circ(x \circ z) \neq \phi$.
For example in (1): $a \circ(1 \circ 1)=1 \circ(a \circ 1)=\{1\}$. Similarly in (2): $a \circ(1 \circ 1)=$ $\{1, a\}=1 \circ(a \circ 1)$.
(ii): In the following, we compute the number of $H_{v} B E$-algebras in three cases:

Case 1: a and b are arbitrary,
Case 2: $a<b$,
Case 3: $b<a$.

Case 1. Let $H=\{1, \mathrm{a}, \mathrm{b}\}$ and $(H, \circ, 1)$ be a $H_{v} B E$-algebra. Consider $a \circ a$, we have $1 \in a \circ a$ and $a \circ a \in\{\{1\},\{1, a\},\{1, b\},\{1, a, b\}\}$. Therefore $|a \circ a| \leq 4$.
Similarly, we obtain:

$$
\max |x \circ y|=\left\{\begin{array}{llc}
4 & \text { for } & x=y=a \\
7 & \text { for } & x=a, y=b \\
4 & \text { for } & x=a, y=1 \\
7 & \text { for } & x=b, y=a \\
4 & \text { for } & x=b, y=b \\
4 & \text { for } & x=b, y=1 \\
4 & \text { for } & x=1, y=a \\
4 & \text { for } & x=1, y=b \\
4 & \text { for } & x=1, y=1
\end{array}\right.
$$

So the number of different $H_{v} B E$-algebra is at most $4^{7} \times 7^{2}$.
Case 2. If $a<b$, then $1 \in a \circ b$

$$
\begin{equation*}
a \circ b \in\{\{1\},\{1, a\},\{1, b\},\{1, a, b\}\} . \tag{1}
\end{equation*}
$$

The following array obtained

$$
\max |x \circ y|=\left\{\begin{array}{llc}
4 & \text { for } & x=y=a \\
4 & \text { for } & x=a, y=b \\
4 & \text { for } & x=a, y=1 \\
7 & \text { for } & x=b, y=a \\
4 & \text { for } & x=b, y=b \\
4 & \text { for } & x=b, y=1 \\
4 & \text { for } & x=1, y=a \\
4 & \text { for } & x=1, y=b \\
4 & \text { for } & x=1, y=1
\end{array}\right.
$$

Therefore the number of $H_{v} B E$-algebras $(H, \circ, 1)$ is at most $4^{8} \times 7$.
Case 3. If $b<a$, in a similar way, we conclude that the number of $H_{v} B E-$ algebras $(H, \circ, 1)$ is at most $4^{8} \times 7$.

Notation 1 . We see that 1 belongs to any triple combination elements of $\{1, \mathrm{a}, \mathrm{b}\}$ in Case 2, for example: $1 \in b \circ(a \circ b) \bigcap a \circ(b \circ b)$ because $1 \in a \circ b$ then $b \circ 1 \subseteq b \circ(a \circ b)$ and $1 \in b \circ 1$ therefore $1 \in b \circ(a \circ b)$. Also, $1 \in b \circ b$ then $1 \in a \circ 1 \subseteq a \circ(b \circ b)$, therefore $1 \in b \circ(a \circ b) \bigcap a \circ(b \circ b) \neq \phi$.

3. SOME TYPES OF $H_{v} B E$-ALGEBRAS

In this section, we introduce some types of $H_{v} B E$ algebras .
Definition 5. A $H_{v} B E$-algebra is said to be
(i)a row $H_{v} B E$-algebra (briefly, $R-H_{v} B E$-algebra), if $1 \circ x=\{x\}$, for all $x \in H$,
(ii)a column $H_{v} B E$-algebra (briefly, $C-H_{v} B E$-algebra), if $x \circ 1=\{1\}$, for all $x \in$ H,
(iii)a diagonal $H_{v} B E$-algebra (briefly, $D-H_{v} B E$-algebra), if $x \circ x=\{1\}$, for all $x \in H$,
(iv) a thin $H_{v} B E$-algebra (briefly, $T-H_{v} B E$-algebra), if it is an $R C-H_{v} B E$-algebra $\left(R C-H_{v}\right.$ means $R-H_{v}$ and $\left.C-H_{v}\right)$,
(v)a very thin $H_{v} B E$-algebra (briefly, $V-H_{v} B E$-algebra), if it is an $R C D-H_{v} B E$ algebra $\left(R C D-H_{v}\right.$ means $R-H_{v}, C-H_{v}$ and $\left.D-H_{v}\right)$.

Example 4. (i) Every BE-algebra as $(H, *, 1)$ with hyperoperation $x \circ y=\{x * y\}$ is an $R C D-H_{v} B E$-algebra.
(ii) Let $H=\{1, a\}$ and $H^{\prime}=\{1, a, b\}$. Define the hyperoperations \circ_{1} and \circ_{2} correspond to H and hyperoperations \circ_{3} and \circ_{4} correspond to H^{\prime} as follows:

\circ_{1}	1	a
1	$\{1\}$	$\{a\}$
a	$\{1, a\}$	$\{1\}$

\circ_{2}	1	a
1	$\{1\}$	$\{a\}$
a	$\{1\}$	$\{1, a\}$

\circ_{3}	1	a	b
1	$\{1\}$	$\{a\}$	$\{\mathrm{b}\}$
a	$\{1, b\}$	$\{1\}$	$\{1\}$
b	$\{1, b\}$	$\{1\}$	$\{1\}$

\circ_{4}	1	a	b
1	$\{1\}$	$\{a\}$	$\{b\}$
a	$\{1\}$	$\{1\}$	$\{b\}$
b	$\{1\}$	$\{1, a\}$	$\{1\}$

Then $\left(H, \circ_{1}, 1\right)$ is a $R-H_{v} B E$-algebra, $\left(H, \circ_{2}, 1\right)$ is an $T-H_{v} B E$-algebra, $\left(H^{\prime}, \circ_{3}, 1\right)$ is a $D-H_{v} B E$-algebra and $\left(H^{\prime}, \circ_{4}, 1\right)$ is a $V-H_{v} B E$-algebra.

Theorem 2. Let $(H, \circ, 1)$ be a $D-H_{v} B E$-algebra. Then
(i) $1 \in x \circ a$, for some $a \in 1 \circ x$,
(ii) if H be a $C-H_{v} B E$ algebra, then $1 \in y \circ(x \circ y)$, for all $x, y \in H$.

Proof. (i) By Definition 5, $1=1 \circ(x \circ x)$ and by $\left(H_{v} B E 2\right)$ we have $1 \circ(x \circ x) \bigcap x \circ(1 \circ x) \neq \phi$ and $1 \circ(x \circ x)$ is singelton, then $1 \in x \circ(1 \circ x)=\bigcup_{a \in 1 \circ x} x \circ a$ and $1 \in x \circ a$
for some $a \in 1 \circ x$.
(ii) $\mathrm{By}\left(H_{v} B E 2\right)$ and Definition 5, we obtain,
$\phi \neq y \circ(x \circ y) \bigcap x \circ(y \circ y)=y \circ(x \circ y) \bigcap x \circ 1=y \circ(x \circ y) \bigcap\{1\}$
Hence $1 \in y \circ(x \circ y)$.
Proposition 4. Let $H=\{1, a, b\}$ and $(H, \circ, 1)$ be an $H_{v} B E$-algebra.
Determine the number of non-isomorphic $(H, \circ, 1)$ in the following cases.
(i) $(H, \circ, 1)$ is an $R-H_{v} B E$-algebra,
(ii) $(H, \circ, 1)$ is a $C-H_{v} B E$-algebra,
(iii) $(H, \circ, 1)$ is a $D-H_{v} B E$-algebra,
(iv) $(H, \circ, 1)$ is a $T-H_{v} B E$-algebra,
(v) $(H, \circ, 1)$ is a $V-H_{v} B E$-algebra.

Proof. (i) By Proposition 3 and $1 \circ x=\{x\}$, for all $x \in H$, we have the following array:

Therefore the number of $R-H_{v} B E$ - algebras is at most $4^{4} \times 7^{2}$.
(iv) Since $1 \circ x=\{x\}$ and $x \circ 1=\{1\}$ for all $x \in H$. We have the following array:

$$
\max |x \circ y|=\left\{\begin{array}{lll}
4 & \text { for } & x=y=a \\
7 & \text { for } & x=a, y=b \\
1 & \text { for } & x=a, y=1 \\
7 & \text { for } & x=b, y=a \\
4 & \text { for } & x=b, y=b \\
1 & \text { for } & x=b, y=1 \\
1 & \text { for } & x=1, y=a \\
1 & \text { for } & x=1, y=b \\
1 & \text { for } & x=1, y=1
\end{array}\right.
$$

Hence the number of $T-H_{v} B E$ - algebras is at most $4^{2} \times 7^{2}$.
Similarly, for $(i i),(i i i)$ and (v) we obtain the numbers $T-H_{v} B E$ - algebras $\left(4^{5} \times\right.$ 7), $\left(4^{5} \times 7\right)$ and $\left(7^{2}\right)$ respectively.

In the next example we explain some relationship among $(R, C, D, T)-H_{v} B E-$ algebras.

Example 5. (i) Every $R-H_{v} B E$-algebra need not be a $D-H_{v} B E$-algebra, because, in Example 4, $\left(H, \circ_{2}, 1\right)$ is an $R-H_{v} B E$-algebra but it is not a $D-H_{v} B E$-algebra.
(ii) Every $R D-H_{v} B E$-algebra need not be a $C-H_{v} B E$-algebra, because, in 4 we consider that $\left(H^{\prime}, \circ_{3}, 1\right)$ is an $R D-H_{v}$ BE-algebra, but it is not a $C-H_{v} B E$-algebra.
(iii) Every $T-H_{v} B E$ - algebra need not be a $D-H_{v} B E$-algebra, because in 4, we see that $\left(H, \circ_{2}, 1\right)$ is a $T-H_{v} B E$-algebra but it is not a $D-H_{v} B E$-algebra.

4. WEAK FILTERS IN $H_{v} B E$-algebras

In [10] it is defined the concept of hyper filters in the hyper $B E$-algebras. In this section we introduce filters and subalgebras in $H_{v} B E$-algebras and state the relationship between them .

Definition 6. Let F be a non-empty subset of a $H_{v} B E$-algebra H and $1 \in F$. Then F is said to be
(i) a weak H_{v} filter of H if $x \circ y \subseteq F$ and $x \in F$ imply $y \in F$, for all $x, y \in H$.
(ii) a H_{v} filter of H if $x \circ y \approx F($ i.e., $\phi \neq(x \circ y) \bigcap F)$ and $x \in F$ imply $y \in F$, for all $x, y \in H$.

Example 6. Define hyperoperations " $\circ_{1} "$ and $"{ }_{2} "$ on $H=\{1, \mathrm{a}, \mathrm{b}\}$ as follows:

\circ_{1}	1	a	b
1	$\{1\}$	$\{\mathrm{a}, \mathrm{b}\}$	$\{\mathrm{b}\}$
a	$\{1\}$	$\{1, \mathrm{a}\}$	$\{1, \mathrm{~b}\}$
b	$\{1\}$	$\{1, \mathrm{a}, \mathrm{b}\}$	$\{1\}$

\circ_{2}	1	a	b
1	$\{1\}$	$\{\mathrm{a}, \mathrm{b}\}$	$\{\mathrm{b}\}$
a	$\{1\}$	$\{1, \mathrm{a}, \mathrm{b}\}$	$\{\mathrm{b}\}$
b	$\{1, b\}$	$\{1, \mathrm{a}, \mathrm{b}\}$	$\{1, \mathrm{a}, \mathrm{b}\}$.

We see that $\left(H, \circ_{1}, 1\right)$ is an $H_{v} B E$-algebra and $F_{1}=\{1, a\}$ is a weak H_{v} filter of H . Also $\left(H, o_{2}, 1\right)$ is an $H_{v} B E$-algebra and $F_{2}=\{1, a\}$ is an H_{v} filter of H .

In Example 6, F_{1} is not an H_{v} filter, because $a \circ_{1} b \approx F_{1}$ and $a \in F_{1}$, but $b \notin F_{1}$.
Theorem 3. Every H_{v} filter is a weak H_{v} filter.
Proof. It is straightforward.
Notation: By Example 6, we can see that the notion of a• weak H_{v} filter and a - H_{v} filter are different in $H_{v} B E$-algebras.

Theorem 4. Let F be a subset of an $H_{v} B E$-algebra H and $1 \in F$. If $x \circ y<F$ and $x \in F$ implies $y \in F$, for all $x, y \in H$, then $F=H$.

Proof. Let x be an arbitrary element of H, by $\left(H_{v} B E 1\right)$ and by $\left(H_{v} B E 3\right)$, we obtain $x \in 1 \circ x$. Since $1 \in F$ and $x<1$, we have $1 \circ x<F$. By hypothesis, $x \in F$, i.e., $H \subseteq F$, This prove that $F=H$.

Definition 7. A subset S of a $H_{v} B E$ algebra H is said to be a \bullet subalgebra, if $x \circ y \subseteq S$, for all $x, y \in S$.

Example 7. In Example $6,\{1, \mathrm{~b}\}$ is a subalgebra of $\left(H, \circ_{1}, 1\right)$, but $\{1, \mathrm{a}\}$ is not a subalgebra of $\left(H, \circ_{1}, 1\right)$ because $1 \circ a \nsubseteq\{1, a\}$.

Theorem 5. Let H be an $H_{v} B E$-algebra and S be a subalgebra of H. Then
(i) S is a weak H_{v} filter of H if and only if for all $x \in S$ and $y \in H \backslash S, x \circ y \nsubseteq S$.
(ii) S is an H_{v} filter of H if and only if for all $x \in S$ and $y \in H \backslash S$, $x \circ y \not \approx S$.

Proof. (i) Let S be a weak H_{v} filter of $H, x \in S$, and $y \in H \backslash S$ and $x \circ y \subseteq S$. Since S is a weak filter and $x \in H$, we have $y \in S$, which is a contradiction.

Conversely, let $x \circ y \nsubseteq S$ where $x \in S$ and $y \in H \backslash S$. Let $x \circ y \subseteq S$ and $x \in S$. If $y \notin S$, then by assumption, $x \circ y \nsubseteq S$, which is a contradiction.
(ii) Let S be an H_{v} filter of $H, x \in S$ and $y \in H \backslash S$, and $x \circ y \approx S$. Since S is an H_{v} filter and $x \in S$ we have $y \in S$ which is a contradiction.

Conversely, let $x \circ y \not \approx S$ where $x \in S$ and $y \in H \backslash S$. If $x \circ y \approx S, x \in S$ and $y \notin S$, then by assumption, $x \circ y \not \approx S$, which is a contradiction.

In the next examples we show that in general every (weak) H_{v} filter of H is not a subalgebra and conversely.

Example 8. In Example 6, F_{1} and F_{2} are both weak H_{v} filters and H_{v} filters of H but these are not subalgebras of H .

Example 9. (i) Define a hyperoperation " \circ " on $H=\{1, a, b\}$, as follows:

\circ	1	a	b
1	$\{1\}$	$\{\mathrm{a}\}$	$\{\mathrm{b}\}$
a	$\{1, a, b\}$	$\{1\}$	$\{\mathrm{a}, \mathrm{b}\}$
b	$\{1, a, b\}$	$\{1, \mathrm{a}, \mathrm{b}\}$	$\{1\}$.

We see that $(H, \circ, 1)$ is a $D-H_{v}-B E$ algebra and $F_{1}=\{1, a\}$ is a weak H_{v} filter. Since $a \circ 1=\{1, a, b\} \nsubseteq\{1, a\},\{1, a\}$ is not a subalgebra of H .
(iii) Let $H=\{1, a, b\}$ and " \circ " be a hyperoperation as follows:

\circ	1	a	b
1	$\{1\}$	$\{\mathrm{a}, \mathrm{b}\}$	$\{\mathrm{b}\}$
a	$\{1\}$	$\{1, \mathrm{a}, \mathrm{b}\}$	$\{\mathrm{b}\}$
b	$\{1, b\}$	$\{1, \mathrm{a}, \mathrm{b}\}$	$\{1, \mathrm{a}, \mathrm{b}\}$.

We see that $(H, \circ, 1)$ is an $H_{v} B E$-algebra and $F_{2}=\{1, b\}$ is a subalgebra of H. F_{2} is not an H_{v} filter because $b \circ a=\{1, a, b\}$ and $(b \circ a) \bigcap F_{2} \neq \phi, b \in F_{2}$ but $a \notin F_{2}$.

5. Homomorphisms on $H_{v} B E$-ALGEbras

Homomorphisms of algebraic hyperstructures are studied by Dresher, Ore, Krasner, Kuntzman, Koskas, Jantosciak, Corsini, Davvaz and many others [1, 5, 6, 9, 13]. In this section, we study several kinds of homomorphisms on $H v$ BE-algebras.

Definition 8. Let $\left(H_{1}, o, 1\right)$ and $\left(H_{2}, *, 1^{\prime}\right)$ be two $H_{v} B E$-algebras.
A map $f: H_{1} \rightarrow H_{2}$ is said to be:
(1) a \bullet homomorphism or \bullet inclusion homomorphism if $f(x \circ y) \subseteq(f(x) * f(y))$ and $f(1)=1^{\prime}$, for all $x, y \in H_{1}$,
(2) a \bullet good homomorphism if for all x, y of H_{1}, we have $f(x \circ y)=f(x) * f(y)$ and $f(1)=1^{\prime}$,
(3)an •isomorphism if it be an one to one and onto good homomorphism. If f is an \bullet isomorphism, then H_{1} and H_{2} are said to be •isomorphic, which is denoted by $H_{1} \cong H_{2}$,
(4) a •weak homomorphism if $f(x \circ y) \bigcap(f(x) * f(y)) \neq \phi, f(1)=1^{\prime}$, for all $x, y \in$ H_{1}.

Example 10. Let $H_{1}=\{1, a, b\}, H_{2}=\left\{1^{\prime}, a^{\prime}, b^{\prime}\right\}$. Define hyperoperations $" \circ_{1} "$ and " O_{2} " as follows:

\circ_{1}	1	a	b
1	$\{1\}$	$\{\mathrm{a}, \mathrm{b}\}$	$\{\mathrm{b}\}$
a	$\{1\}$	$\{1, \mathrm{a}\}$	$\{1, \mathrm{~b}\}$
b	$\{1\}$	$\{1, \mathrm{a}, \mathrm{b}\}$	$\{1\}$

\circ_{2}	1^{\prime}	a^{\prime}	b^{\prime}
1^{\prime}	$\left\{1^{\prime}\right\}$	$\left\{a^{\prime}, b^{\prime}\right\}$	$\left\{b^{\prime}\right\}$
a^{\prime}	$\left\{1^{\prime}, b^{\prime}\right\}$	$\left\{1, a^{\prime}, b^{\prime}\right\}$	$\left\{1^{\prime}, b^{\prime}\right\}$
b^{\prime}	$\left\{1^{\prime}, b\right\}$	$\left\{1^{\prime}, a^{\prime}, b^{\prime}\right\}$	$\left\{1, a^{\prime}, b^{\prime}\right\}$.

We see that $\left(H_{1}, \circ_{1}, 1\right)$ and $\left(H_{2}, \circ_{2}, 1^{\prime}\right)$ are $H_{v} B E$-algebras.
Let $f: H_{1} \rightarrow H_{2}$ be defined by $f(1)=1^{\prime}, f(a)=a^{\prime}, f(b)=b^{\prime}$. Clearly, f is an inclusion homomorphism, but it is not a good homomorphism, because $f\left(a \circ_{1} 1\right)=$ $f(\{1\})=\left\{1^{\prime}\right\}, f(a) \circ_{2} f(1)=a^{\prime} \circ_{2} 1^{\prime}=\left\{1^{\prime}, b^{\prime}\right\}$.

Proposition 5. Let $f: H_{1} \rightarrow H_{2}$ be a one to one and onto map, $\left(H_{1}, \circ, 1\right)$ and $\left(H_{2}, *, 1^{\prime}\right)$ are $H_{v} B E$-algebras.
If we have $f(x \circ y)=f(x) * f(y)$, then $f(1)=1^{\prime}$.
Proof. By $\left(H_{v} B E 4\right)$ we know that the element 1 in every $H_{v} B E$-algebra is unique. We must prove that :
(i) $f(1) \in x^{\prime} * f(1), f(1) \in x^{\prime} * x^{\prime}$,
(ii) $x^{\prime} \in f(1) * x^{\prime}$,
(iii) $f(1)<x^{\prime}$ implies $x^{\prime}=f(1)$, for all $x^{\prime} \in H_{2}$.

Since $x^{\prime} \in H_{2}$ and f is onto, there exists $x \in H_{1}$ such that $f(x)=x^{\prime}$.
By ($H v B E 1$), $x<1$ and hence $1 \in x \circ 1$.Moreover

$$
f(1) \in f(x \circ 1)=f(x) * f(1)=x^{\prime} * f(1)
$$

Therefore $f(1) \in x^{\prime} * f(1)$. The proof of other parts is similar.
Notation 2. We can see that any homomorphism is a weak homomorphism, but conversely need not be true.

Example 11. Let $H_{1}=\{1, a, b\}, H_{2}=\left\{1^{\prime}, a^{\prime}, b^{\prime}\right\}$. Define hyperoperations " \circ " and " $*$ " as follows:

\circ	1	a	b
1	$\{1\}$	$\{\mathrm{a}, \mathrm{b}\}$	$\{\mathrm{b}\}$
a	$\{1\}$	$\{1, \mathrm{a}, \mathrm{b}\}$	$\{\mathrm{b}\}$
b	$\{1, b\}$	$\{1, \mathrm{a}, \mathrm{b}\}$	$\{1, \mathrm{a}, \mathrm{b}\}$

$*$	1^{\prime}	a^{\prime}	b^{\prime}
1^{\prime}	$\left\{1^{\prime}\right\}$	$\left\{a^{\prime}, b^{\prime}\right\}$	$\left\{b^{\prime}\right\}$
a^{\prime}	$\left\{1^{\prime}\right\}$	$\left\{1^{\prime}, a^{\prime}\right\}$	$\left\{1^{\prime}, b^{\prime}\right\}$
b^{\prime}	$\left\{1^{\prime}\right\}$	$\left\{1^{\prime}, a^{\prime}, b^{\prime}\right\}$	$\left\{1^{\prime}\right\}$.

We see that $\left(H_{1}, \circ, 1\right),\left(H_{2}, *, 1^{\prime}\right)$ are $H_{v} B E$ algebras.
Let $f: H_{1} \rightarrow H_{2}$ be defined by $f(1)=1^{\prime}, f(a)=a^{\prime}, f(b)=b^{\prime}$. Then f is a weak homomorphism, but it is not an inclusion homomorphism, because $f(b \circ 1)=f(\{1, b\})=$ $\left\{1^{\prime}, b^{\prime}\right\}$, Then $f(b) * f(1)=b^{\prime} * 1^{\prime}=\left\{1^{\prime}\right\}$, therefore $f(b \circ 1) \bigcap(f(b) * f(1)) \neq \phi$, But $f(b \circ 1) \nsubseteq f(b) * f(1)$.

6. CONCLUSION

In this present paper, we have introduced the concept of $H_{v} B E$-algebras and investigated some of their useful properties.

This work focused on some types of $H_{v} B E$-algebras. Also we discuss on H_{v} filters in this structure and present some fundamental properties that compute number of particular $H_{v} B E$-algebras.
In our future work, we will get more results in $H_{v} B E$-algebras with applications, and we will define concepts as a quotient, a center in $H_{v} B E$-algebras and construct new $B E$-algebra or $H_{v} B E$-algebra.

Acknowledgement

The authors are very indepted to the referees for valuable suggestions that improved the readability of the paper.

REFERENCES

[1] B. Davvaz and V.-F. Leoreanu, Hypering theory and Applications. Hadronic Press, 2007.
[2] A. B. Akbar Rezaei, "On fuzzy subalgebras of be-algebras," Afrika Mathematika, vol. 22, pp. 115-127, 2011, doi: 10.1007/s13370-011-0011-4.
[3] R. Borzooei, A. Saeid, A. Rezaei, A. Radfar, and R. Ameri, "On pseudo BE-algebras," Discussiones Mathematicae - General Algebra and Applications, vol. 33, no. 1, p. 95, 2013, doi: 10.7151/dmgaa. 1193.
[4] P. Corsini, Prolegomena of hypergroup theory and Applications, 2nd ed. Aviani Editore, 1993.
[5] P. Corsini and V. Leoreanu, Applications of hyperstructure theory. Springer Science \& Business Media, 2013, vol. 5, doi: 10.1007/978-1-4757-3714-1.
[6] B. Davvaz and M. Ghadiri, "Weak equality and exact sequence in Hv-modules," Southest Asian Bull Math, vol. 25, pp. 403-411, 2001, doi: 10.1007/s10012-001-0403-8.
[7] H. S. Kim and Y. H. Kim, "On be-algebras," Scientiae Mathematicae Japonicae, vol. 66, no. 1, pp. 113-116, 2007.
[8] F. Marty, "Sur une generalization de la notion de groupe," in 8th congress Math. Scandinaves, 1934, pp. 45-49.
[9] W. Prenowitz and J. Jantosciak, Join geometries. Springer, 1979.
[10] A. Radfar, A. Rezaei, and A. B. Saeid, "Hyper be-algebras," Novi Sad J. Math, vol. 44, no. 2, pp. 137-147, 2014.
[11] A. Rezaei, A. Borumand Saeid, and R. A. Borzooei, "Relation between Hilbert algebras and BEalgebras," Appl. Math, vol. 8, pp. 573-584, 2013, doi: 10.715/dmgaa. 1285.
[12] A. Rezaei and A. Borumand Saeid, "Commutative ideals in BE-algebras," Kyungpook Mathematical Journal, vol. 52, no. 4, pp. 483-494, 2012, doi: 10.5666/KMJ.2012.52.4.483.
[13] Y. Vaziri, M. Ghadiri, and B. Davvaz, "The m [-] and-[m] functors and five short lemma in $h_{-} v$ modules," Turkish Journal of Mathematics, vol. 40, no. 2, pp. 397-410, 2016, doi: 10.3906/mat-1502-75.
[14] T. Vougiouklis, The fundamental relation in hyperings. Tea-neck, NJ:World Sci Publishing, 1990.

Authors' addresses

F. Iranmanesh

Yazd University, Dept. of Math, P. O. Box 89195, -741 Yazd, Iran
E-mail address: Farzad.Iranmanesh67@Gmail.com

M. Ghadiri

Yazd University, Dept. of Math, P. O. Box 89195, -741 Yazd, Iran
E-mail address: mghadiri@yazd.ac.ir
A. Borumand Saeid

Shahid Bahonar University of Kerman, Dept. of Pure Math. Faculty of Mathematics and Computer,
P. O. Box76175, -133 Kerman, Iran

E-mail address: arsham@uk.ac.ir

