

Miskolc Mathematical Notes Vol. 21 (2020), No. 2, pp. 897–909 HU e-ISSN 1787-2413 DOI: 10.18514/MMN.2020.2836

ON *H_vBE*-ALGEBRAS

F. IRANMANESH, M. GHADIRI, AND A. BORUMAND SAEID

Received 29 January, 2019

Abstract. In this paper, we introduce the notion of H_vBE -algebra and investigate the some properties of it. Also some types of H_vBE -algebras are studied and the relationship between them are stated. We try to show that these notions are independent, by some examples. In addition we show that H_vBE -algebra is an extension of hyper *BE*-algebra and compute the number of H_vBE -algebras in cases |H| = 2 and 3. Furthermore, we study several kinds of homomorphisms on H_vBE -algebras.

2010 Mathematics Subject Classification: 06F35; 03G25.

Keywords: $(H_v)BE$ -algebra, Hyper *BE*-algebra, H_v (weak)filter, H_v group

1. INTRODUCTION AND PRELIMINARIES

The theory of hyper structures was introduced by Marty in 1934 during the 8th congress of the Scandinavian Mathematicians[8]. A hyper structure is a non-empty set H, together with a function $\circ : H \times H \longrightarrow P^*(H)$ called hyper operation, where $P^*(H)$ denotes the set of all non-empty subsets of H. Marty introduced hypergroups as a generalization of groups. Some basic definitions and the theorems about hyper-structures can be found in [4, 5]. The concept of H_v structures constitute a generalization of well known algebraic hyper structures where the axioms are replaced by the weak ones. H_v structures were first introduced by Vougiouklis in the forth AHA congress(1990)[14].

H. S. Kim and Y. H. Kim introduced the notation of the *BE*-algebra as a generalization of dual *BCK* algebra[7]. Using the notation of upper sets, they gave an equivalent condition of upper sets in *BE*-algebras and discussed some properties of them. A. Rezaei et al. in [11, 12] show that commutative implicative *BE*-algebra is equivalent to the commutative self distributive *BE*-algebra.

Recently R. A. Borzooei et al. introduced the notation of pseudo *BE*-algebra which is a generalization of *BE*-algebra[3]. They defined the basic concepts of pseudo subalgebras and pseudo filters, and proved that under some conditions, pseudo subalgebra can be a pseudo filter[3].

The goal of this paper is combine the concepts H_v structure with *BE*-algebra and introducing the H_vBE -algebra as a generalization of hyper *BE*-algebra,

© 2020 Miskolc University Press

defining the H_v filter and subalgebra in this structure, also it is defined the some types of H_vBE -algebras and described the relationship between them. Finally present the homomorphisms on H_vBE -algebras with considering properties of them.

Definition 1 ([7]). Let X be a non-empty set and let "*" be a binary operation on X, $1 \in X$. An algebra (X, *, 1) of type (2, 0) is called a *BE*-algebra if the following axioms hold:

 $\begin{array}{l} (BE1) \ x*x = 1, \\ (BE2) \ x*1 = 1, \\ (BE3) \ 1*x = x, \\ (BE4) \ x*(y*z) = y*(x*z), \ \text{for all } x, y, z \in X. \end{array}$

We introduce the relation " \leq " on *X* by $x \leq y$ if and only if x * y = 1.

Proposition 1 ([7]). *Let X be a BE-algebra. Then* (*i*) x * (y * x) = 1. (*ii*) y * ((y * x) * x) = 1, for all $x, y \in X$.

Example 1 ([2]). Let $X = \{1, 2, ...\}$ and the operation "*" be defined as follows:

$$x * y = \begin{cases} 1 & if \quad y \le x \\ y & otherwise \end{cases}$$

Then (X, *, 1) is a *BE*-algebra.

Definition 2 ([5]). Let H be a non-empty set and $\circ : H \times H \longrightarrow P^*(H)$ be a hyper operation. Then (H, \circ) is called an H_{ν} - group if it satisfies the following axioms: (H1) $x \circ (y \circ z) \cap (x \circ y) \circ z \neq \phi$, (H2) $a \circ H = H \circ a = H$, for all $x, y, z, a \in H$,

where
$$a \circ H = \bigcup_{h \in H} a \circ h, H \circ a = \bigcup_{h \in H} h \circ a.$$

Definition 3 ([10]). Let H be a non-empty set and $\circ : H \times H \longrightarrow P^*(H)$ be a hyperoperation. Then $(H, \circ, 1)$ is called a hyper BE-algebra if satisfies the following axioms:

(HBE1) x < 1 and x < x, $(HBE2) x \circ (y \circ z) = y \circ (x \circ z),$ $(HBE3) x \in 1 \circ x,$ $(HBE4) 1 < x implies x = 1, for all <math>x, y, z \in H$,

where the relation " < " is defined by $x < y \iff 1 \in x \circ y$.

2. On $H_v BE$ -ALGEBRAS

Definition 4. Let H be a non-empty set and $\circ : H \times H \longrightarrow P^*(H)$ be a hyperoperation. Then $(H, \circ, 1)$ is called a $H_{\nu}BE$ -algebra if satisfies the following axioms:

$$(H_v BE1) x < 1 \text{ and } x < x,$$

$$(H_v BE2) x \circ (y \circ z) \bigcap y \circ (x \circ z) \neq \phi,$$

 $(H_v BE3) x \in 1 \circ x,$

$$(H_v BE4)$$
 1 < x implies $x = 1$, for all $x, y, z \in H$,

where the relation " < " is defined by $x < y \iff 1 \in x \circ y$.

Also A < B if and only if there exist $a \in A$ and $b \in B$ such that a < b.

Example 2. (i)Let (H, *, 1) be a *BE*-algebra. We know that $\circ : H \times H \longrightarrow P^*(H)$ with $x \circ y = \{x * y\}$ is a hyperoperation. Then $(H, \circ, 1)$ is a trivial hyper *BE*-algebra and a $H_v BE$ -algebra.

(ii) Let $H = \{1,a,b\}$. Define a hyperoperation " \circ " as follows:

0	1	а	b
1	{1}	{a,b}	{b}
а	{1}	{1,a}	{1,b}
b	{1}	$\{1,a,b\}$	{1}.

Then $(H, \circ, 1)$ is a $H_v BE$ -algebra.

(iii) Define a hyper operation " \circ " on \mathbb{R} as follows:

$$x \circ y = \begin{cases} \{y\} & if \quad x = 1\\ \mathbb{R} & otherwise \end{cases}$$

Then $(\mathbb{R}, \circ, 1)$ is a $H_v BE$ -algebra.

Proposition 2. Any hyper BE-algebra is a H_vBE -algebra.

Proof. It is clear.

In the following example we show that the converse of Proposition 2 is not true.

Example 3. Define a hyperoperation " \circ " on the set $H = \{1,a,b\}$ as follows:

0	1	а	b
1	{1}	{a}	{b}
а	$\{1, b\}$	{1}	$\{1,a,b\}$
b	{1}	{1,b}	{1,b}.

Then $(H, \circ, 1)$ is an $H_{\nu}BE$ -algebra. And we have that: $a \circ (b \circ b) = a \circ (\{1, b\}) = \{1, a, b\} \neq \{1, b\} = b \circ (\{1, a, b\}) = b \circ (a \circ b)$. So $(H, \circ, 1)$ does not satisfy (HBE2), and $(H, \circ, 1)$ is not a hyper *BE*-algebra.

Theorem 1. Let $(H, \circ, 1)$ be an $H_{\nu}BE$ -algebra. Then

- (*i*) $A \circ (B \circ C) \cap B \circ (A \circ C) \neq \phi$ for every $A, B, C \in P^*(H)$,
- (ii) A < A,
- (iii) 1 < A implies $1 \in A$,
- (*iv*) $1 \in x \circ (x \circ x)$,
- (v) $x < x \circ x$.

Proof. (*i*) Let $a \in A, b \in B, c \in C$. Then $a \circ (b \circ c) \subseteq A \circ (B \circ C), b \circ (a \circ c) \subseteq B \circ (A \circ C)$, by $(H_v BE2)$, we have $a \circ (b \circ c) \cap b \circ (a \circ c) \neq \phi$. therefore $A \circ (B \circ C) \cap B \circ (A \circ C) \neq \phi$.

(*ii*) Let $a \in A$. Then by $(H_v BE1) A < A$.

(*iii*) Let 1 < A. Then there exists an element $a \in A$ such that 1 < a by using $(H_v BE4) a = 1$ and so $1 \in A$.

(*iv*) Let $x \in H$. Then x < x, by definition $1 \in x \circ x$ therefore $x \circ 1 \subseteq x \circ (x \circ x)$. Also by $(H_v BE1)$, x < 1, so by definition $1 \in x \circ 1$ and then $1 \in x \circ (x \circ x)$.

(v) By (iv) $1 \in x \circ (x \circ x)$. Then there exists $b \in x \circ x$ such that $1 \in x \circ b$ and so x < b.

In the following proposition we compute the number of H_vBE -algebras in two cases.

Proposition 3. For a set H if (i) |H| = 2, there exist precisely 2^4 different H_vBE -algebras $(H, \circ, 1)$, (ii) |H| = 3, there exist at most $4^7 \times 7^2$ different H_vBE -algebras $(H, \circ, 1)$.

Proof. (*i*) Let |H| = 2 and $(H, \circ, 1)$ be a H_vBE -algebra. Then $H = \{1, a\}$. Consider the following table:

$$(I) \begin{array}{c|c} \circ & 1 & a \\ \hline 1 & A & B \\ a & C & D \end{array}$$

By $(H_v BE1)$ and $(H_v BE3)$, we have $A, C, D \in \{\{1\}, \{1,a\}\}$ and $B \in \{\{a\}, \{1,a\}\}$. Thus the cardinality of A, B, C, D is at most 2.

So the number of $H_{\nu}BE$ -algebras $(H, \circ, 1)$ is at most 2^4 .

Now, to determine the number of H_vBE -algebras $(H, \circ, 1)$, we must consider the condition of H_vBE -algebra on table (I) for different A, B, C, D, when $A, C, D \in \{\{1\}, \{1,a\}\}$ and $B \in \{\{a\}, \{1,a\}\}$, that gives 2⁴ different tables.One can see that every table introduce a H_vBE -algebra.

In the following we consider two cases of tables:

			а			
(1)	1	{1}	$\{1,a\}$ (2)	1	$\{1, a\}$	$\{1, a\}$
	a	$\{1, a\}$	$\{1, a\}$	a	$ \{1,a\}$	$\{1,a\}$.

In any table, we see that $(H_v BE1)$, $(H_v BE3)$ and $(H_v BE4)$ are obvious. In tables, we choose x, y, z from $\{1, a\}$ and conclude $x \circ (y \circ z) \cap y \circ (x \circ z) \neq \phi$. For example in (1): $a \circ (1 \circ 1) = 1 \circ (a \circ 1) = \{1\}$. Similarly in (2): $a \circ (1 \circ 1) = \{1, a\} = 1 \circ (a \circ 1)$.

(*ii*): In the following, we compute the number of H_vBE -algebras in three cases: Case 1: a and b are arbitrary, Case 2: a < b,

Case 3: b < a.

Case 1. Let $H = \{1,a,b\}$ and $(H,\circ,1)$ be a H_vBE -algebra. Consider $a \circ a$, we have $1 \in a \circ a$ and $a \circ a \in \{\{1\}, \{1,a\}, \{1,b\}, \{1,a,b\}\}$. Therefore $|a \circ a| \leq 4$. Similarly, we obtain:

$$max|x \circ y| = \begin{cases} 4 & for \quad x = y = a \\ 7 & for \quad x = a, y = b \\ 4 & for \quad x = a, y = 1 \\ 7 & for \quad x = b, y = a \\ 4 & for \quad x = b, y = b \\ 4 & for \quad x = b, y = 1 \\ 4 & for \quad x = 1, y = a \\ 4 & for \quad x = 1, y = b \\ 4 & for \quad x = 1, y = 1 \end{cases}$$

.

So the number of different $H_{\nu}BE$ -algebra is at most $4^7 \times 7^2$.

Case 2. If a < b, then $1 \in a \circ b$

$$a \circ b \in \{\{1\}, \{1,a\}, \{1,b\}, \{1,a,b\}\}.$$
 (1)

The following array obtained

$$max|x \circ y| = \begin{cases} 4 & for \quad x = y = a \\ 4 & for \quad x = a, y = b \\ 4 & for \quad x = a, y = 1 \\ 7 & for \quad x = b, y = a \\ 4 & for \quad x = b, y = b \\ 4 & for \quad x = b, y = 1 \\ 4 & for \quad x = 1, y = a \\ 4 & for \quad x = 1, y = b \\ 4 & for \quad x = 1, y = 1. \end{cases}$$

Therefore the number of $H_v BE$ -algebras $(H, \circ, 1)$ is at most $4^8 \times 7$.

Case 3. If b < a, in a similar way, we conclude that the number of $H_{\nu}BE$ - algebras $(H, \circ, 1)$ is at most $4^8 \times 7$.

Notation 1. We see that 1 belongs to any triple combination elements of $\{1,a,b\}$ in Case 2, for example: $1 \in b \circ (a \circ b) \cap a \circ (b \circ b)$ because $1 \in a \circ b$ then $b \circ 1 \subseteq b \circ (a \circ b)$ and $1 \in b \circ 1$ therefore $1 \in b \circ (a \circ b)$. Also, $1 \in b \circ b$ then $1 \in a \circ 1 \subseteq a \circ (b \circ b)$, therefore $1 \in b \circ (a \circ b) \cap a \circ (b \circ b) \neq \phi$.

3. Some types of $H_v BE$ -algebras

In this section, we introduce some types of $H_{\nu}BE$ algebras.

Definition 5. A $H_v BE$ -algebra is said to be

(i)a row H_vBE -algebra (briefly, $R - H_vBE$ -algebra), if $1 \circ x = \{x\}$, for all $x \in H$, (ii)a column H_vBE -algebra (briefly, $C - H_vBE$ -algebra), if $x \circ 1 = \{1\}$, for all $x \in H$,

(iii)a diagonal H_vBE -algebra (briefly, $D - H_vBE$ -algebra), if $x \circ x = \{1\}$, for all $x \in H$,

(iv)a thin H_vBE -algebra (briefly, $T - H_vBE$ -algebra), if it is an $RC - H_vBE$ -algebra ($RC - H_v$ means $R - H_v$ and $C - H_v$),

(v)a very thin H_vBE -algebra (briefly, $V - H_vBE$ -algebra), if it is an $RCD - H_vBE$ algebra ($RCD - H_v$ means $R - H_v$, $C - H_v$ and $D - H_v$).

Example 4. (i) Every BE-algebra as (H, *, 1) with hyperoperation $x \circ y = \{x * y\}$ is an $RCD - H_yBE$ -algebra.

(ii) Let $H = \{1, a\}$ and $H' = \{1, a, b\}$. Define the hyperoperations \circ_1 and \circ_2 correspond to H and hyperoperations \circ_3 and \circ_4 correspond to H' as follows:

ON HvBE-ALGEBRAS

$\begin{array}{c ccc} \circ_1 & 1 & a \\ \hline 1 & \{1\} & \{a\} \\ a & \{1,a\} & \{1\} \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Then $(H, \circ_1, 1)$ is a $R - H_\nu BE$ -algebra, $(H, \circ_2, 1)$ is an $T - H_\nu BE$ -algebra, $(H', \circ_3, 1)$ is a $D - H_\nu BE$ -algebra and $(H', \circ_4, 1)$ is a $V - H_\nu BE$ -algebra.

Theorem 2. Let $(H, \circ, 1)$ be a $D - H_v BE$ - algebra. Then (*i*) $1 \in x \circ a$, for some $a \in 1 \circ x$, (*ii*) if H be a $C - H_v BE$ algebra, then $1 \in y \circ (x \circ y)$, for all $x, y \in H$.

Proof. (*i*) By Definition 5, $1 = 1 \circ (x \circ x)$ and by $(H_v BE2)$ we have $1 \circ (x \circ x) \cap x \circ (1 \circ x) \neq \phi$ and $1 \circ (x \circ x)$ is singleton, then $1 \in x \circ (1 \circ x) = \bigcup_{a \in 1 \circ x} x \circ a$

and $1 \in x \circ a$ for some $a \in 1 \circ x$.

(*ii*) By $(H_v BE2)$ and Definition 5, we obtain, $\phi \neq y \circ (x \circ y) \cap x \circ (y \circ y) = y \circ (x \circ y) \cap x \circ 1 = y \circ (x \circ y) \cap \{1\}$ Hence $1 \in y \circ (x \circ y)$.

Proposition 4. Let $H = \{1, a, b\}$ and $(H, \circ, 1)$ be an H_vBE -algebra. Determine the number of non-isomorphic $(H, \circ, 1)$ in the following cases. (i) $(H, \circ, 1)$ is an $R - H_vBE$ -algebra, (ii) $(H, \circ, 1)$ is a $C - H_vBE$ -algebra, (iii) $(H, \circ, 1)$ is a $D - H_vBE$ -algebra, (iv) $(H, \circ, 1)$ is a $T - H_vBE$ -algebra, (v) $(H, \circ, 1)$ is a $V - H_vBE$ -algebra.

Proof. (*i*) By Proposition 3 and $1 \circ x = \{x\}$, for all $x \in H$, we have the following array:

$$max|x \circ y| = \begin{cases} 4 & for \quad x = y = a \\ 7 & for \quad x = a, y = b \\ 4 & for \quad x = a, y = 1 \\ 7 & for \quad x = b, y = a \\ 4 & for \quad x = b, y = b \\ 4 & for \quad x = b, y = b \\ 4 & for \quad x = 1, y = a \\ 1 & for \quad x = 1, y = b \\ 1 & for \quad x = 1, y = 1. \end{cases}$$

Therefore the number of $R - H_v BE$ - algebras is at most $4^4 \times 7^2$. (*iv*) Since $1 \circ x = \{x\}$ and $x \circ 1 = \{1\}$ for all $x \in H$. We have the following array:

$$max|x \circ y| = \begin{cases} 4 & for \quad x = y = a \\ 7 & for \quad x = a, y = b \\ 1 & for \quad x = a, y = 1 \\ 7 & for \quad x = b, y = a \\ 4 & for \quad x = b, y = b \\ 1 & for \quad x = b, y = 1 \\ 1 & for \quad x = 1, y = a \\ 1 & for \quad x = 1, y = b \\ 1 & for \quad x = 1, y = 1 \end{cases}$$

Hence the number of $T - H_v BE$ - algebras is at most $4^2 \times 7^2$. Similarly, for (*ii*), (*iii*) and (*v*) we obtain the numbers $T - H_v BE$ - algebras ($4^5 \times 7$), ($4^5 \times 7$) and (7^2) respectively.

In the next example we explain some relationship among $(R, C, D, T) - H_{\nu}BE$ -algebras.

Example 5. (i) Every $R - H_v BE$ -algebra need not be a $D - H_v BE$ -algebra, because, in Example 4, $(H, \circ_2, 1)$ is an $R - H_v BE$ -algebra but it is not a $D - H_v BE$ -algebra.

(ii) Every $RD - H_vBE$ -algebra need not be a $C - H_vBE$ -algebra, because, in 4 we consider that $(H', \circ_3, 1)$ is an $RD - H_v$ BE-algebra, but it is not a $C - H_vBE$ -algebra. (iii) Every $T - H_vBE$ - algebra need not be a $D - H_vBE$ -algebra, because in 4, we

see that $(H, \circ_2, 1)$ is a $T - H_\nu BE$ -algebra but it is not a $D - H_\nu BE$ -algebra.

4. WEAK FILTERS IN $H_{\nu}BE$ -ALGEBRAS

In [10] it is defined the concept of hyper filters in the hyper *BE*-algebras. In this section we introduce filters and subalgebras in $H_{\nu}BE$ -algebras and state the relationship between them .

Definition 6. Let F be a non-empty subset of a $H_{\nu}BE$ -algebra H and $1 \in F$. Then F is said to be

(i) a *weak* H_v *filter* of H if $x \circ y \subseteq F$ and $x \in F$ imply $y \in F$, for all $x, y \in H$. (ii) a H_v *filter* of H if $x \circ y \approx F(i.e., \phi \neq (x \circ y) \cap F)$ and $x \in F$ imply $y \in F$, for all $x, y \in H$.

Example 6. Define hyperoperations " \circ_1 " and " \circ_2 " on $H = \{1,a,b\}$ as follows:

°1	1	а	b	°2	1	а	b
1	{1}	{a,b}	{b}	1	{1}	{a,b}	{b}
а	{1}	{1,a}	{1,b}	а	{1}	$\{1,a,b\}$	{b}
b	{1}	$\{1,a,b\}$	{1}	b	$\{1,b\}$	{1,a,b}	$\{1,a,b\}.$

We see that $(H, \circ_1, 1)$ is an H_vBE -algebra and $F_1 = \{1, a\}$ is a weak H_v filter of H. Also $(H, \circ_2, 1)$ is an H_vBE -algebra and $F_2 = \{1, a\}$ is an H_v filter of H.

In Example 6, F_1 is not an H_v filter, because $a \circ_1 b \approx F_1$ and $a \in F_1$, but $b \notin F_1$.

Theorem 3. Every H_v filter is a weak H_v filter.

Proof. It is straightforward.

Notation: By Example 6, we can see that the notion of $a \bullet weak H_v$ filter and a $\bullet H_v$ filter are different in $H_v BE$ -algebras.

Theorem 4. Let *F* be a subset of an H_vBE -algebra *H* and $1 \in F$. If $x \circ y < F$ and $x \in F$ implies $y \in F$, for all $x, y \in H$, then F=H.

Proof. Let *x* be an arbitrary element of *H*, by $(H_v B E 1)$ and by $(H_v B E 3)$, we obtain $x \in 1 \circ x$. Since $1 \in F$ and x < 1, we have $1 \circ x < F$. By hypothesis, $x \in F$, i.e., $H \subseteq F$, This prove that F = H.

Definition 7. A subset S of a H_vBE algebra H is said to be a •*subalgebra*, if $x \circ y \subseteq S$, for all $x, y \in S$.

Example 7. In Example 6, $\{1,b\}$ is a subalgebra of $(H,\circ_1,1)$, but $\{1,a\}$ is not a subalgebra of $(H,\circ_1,1)$ because $1 \circ a \notin \{1,a\}$.

Theorem 5. Let H be an H_vBE -algebra and S be a subalgebra of H. Then (i) S is a weak H_v filter of H if and only if for all $x \in S$ and

 $y \in H \diagdown S, x \circ y \nsubseteq S.$

(ii) *S* is an H_v filter of *H* if and only if for all $x \in S$ and $y \in H \setminus S$, $x \circ y \not\approx S$.

Proof. (*i*) Let S be a weak H_v filter of $H, x \in S$, and $y \in H \setminus S$ and $x \circ y \subseteq S$. Since S is a weak filter and $x \in H$, we have $y \in S$, which is a contradiction.

Conversely, let $x \circ y \not\subseteq S$ where $x \in S$ and $y \in H \setminus S$. Let $x \circ y \subseteq S$ and $x \in S$. If $y \notin S$, then by assumption, $x \circ y \not\subseteq S$, which is a contradiction.

(*ii*) Let S be an H_v filter of $H, x \in S$ and $y \in H \setminus S$, and $x \circ y \approx S$. Since S is an H_v filter and $x \in S$ we have $y \in S$ which is a contradiction.

Conversely, let $x \circ y \not\approx S$ where $x \in S$ and $y \in H \setminus S$. If $x \circ y \approx S$, $x \in S$ and $y \notin S$, then by assumption, $x \circ y \not\approx S$, which is a contradiction.

In the next examples we show that in general every (weak) H_v filter of H is not a subalgebra and conversely.

Example 8. In Example 6, F_1 and F_2 are both weak H_v filters and H_v filters of H but these are not subalgebras of H.

Example 9. (i) Define a hyperoperation " \circ " on $H = \{1, a, b\}$, as follows:

0	1	а	b
1	{1}	{a}	{b}
a	$\{1, a, b\}$	{1}	$\{a,b\}$
b	$\{1, a, b\}$	$\{1,a,b\}$	{1}.

We see that $(H, \circ, 1)$ is a $D - H_v - BE$ algebra and $F_1 = \{1, a\}$ is a weak H_v filter. Since $a \circ 1 = \{1, a, b\} \notin \{1, a\}$, $\{1, a\}$ is not a subalgebra of H.

(iii) Let $H = \{1, a, b\}$ and " \circ " be a hyperoperation as follows:

0	1	а	b
1	{1}	{a,b}	{b}
а	{1}	$\{1,a,b\}$	{b}
b	$\{1,b\}$	{1,a,b}	$\{1,a,b\}$.

We see that $(H, \circ, 1)$ is an H_vBE -algebra and $F_2 = \{1, b\}$ is a subalgebra of H. F_2 is not an H_v filter because $b \circ a = \{1, a, b\}$ and $(b \circ a) \cap F_2 \neq \phi, b \in F_2$ but $a \notin F_2$.

5. Homomorphisms on $H_v BE$ -Algebras

Homomorphisms of algebraic hyperstructures are studied by Dresher, Ore, Krasner, Kuntzman, Koskas, Jantosciak, Corsini, Davvaz and many others [1, 5, 6, 9, 13]. In this section, we study several kinds of homomorphisms on Hv BE-algebras.

Definition 8. Let $(H_1, o, 1)$ and $(H_2, *, 1')$ be two H_vBE -algebras.

A map $f: H_1 \to H_2$ is said to be:

(1) a •homomorphism or •inclusion homomorphism if $f(x \circ y) \subseteq (f(x) * f(y))$ and f(1) = 1', for all $x, y \in H_1$,

(2) a •good homomorphism if for all x, y of H_1 , we have $f(x \circ y) = f(x) * f(y)$ and f(1) = 1',

(3)an •*isomorphism* if it be an one to one and onto good homomorphism. If f is an •*isomorphism*, then H_1 and H_2 are said to be •*isomorphic*, which is denoted by $H_1 \cong H_2$,

(4) a •weak homomorphism if $f(x \circ y) \cap (f(x) * f(y)) \neq \phi, f(1) = 1'$, for all $x, y \in H_1$.

Example 10. Let $H_1 = \{1, a, b\}, H_2 = \{1', a', b'\}$. Define hyperoperations " \circ_1 " and " \circ_2 " as follows:

°1	1	а	b		-		a'	
1	{1}	$\{a,b\}$	{b}	-	1'	$\{1'\}$	${a',b'}$	$\{b'\}$
а	{1}	{1,a}	{1,b}		a'	$\{1',b'\}$	$\{1, a', b'\}$	$\{1',b'\}$
b	{1}	$\{1,a,b\}$	{1}		b'	${1',b}$	$\{1', a', b'\}$	$\{1, a', b'\}.$

We see that $(H_1, \circ_1, 1)$ and $(H_2, \circ_2, 1')$ are H_vBE -algebras. Let $f: H_1 \to H_2$ be defined by f(1) = 1', f(a) = a', f(b) = b'. Clearly, f is an inclusion homomorphism, but it is not a good homomorphism, because $f(a \circ_1 1) = f(\{1\}) = \{1'\}, f(a) \circ_2 f(1) = a' \circ_2 1' = \{1', b'\}.$

Proposition 5. Let $f : H_1 \to H_2$ be a one to one and onto map, $(H_1, \circ, 1)$ and $(H_2, *, 1')$ are H_vBE -algebras. If we have $f(x \circ y) = f(x) * f(y)$, then f(1) = 1'.

Proof. By (H_vBE4) we know that the element 1 in every H_vBE -algebra is unique. We must prove that : (i) $f(1) \in x' * f(1), f(1) \in x' * x',$ (ii) $x' \in f(1) * x',$ (iii) f(1) < x' implies x' = f(1), for all $x' \in H_2$.

Since $x' \in H_2$ and f is onto, there exists $x \in H_1$ such that f(x) = x'. By (HvBE1), x < 1 and hence $1 \in x \circ 1$. Moreover

$$f(1) \in f(x \circ 1) = f(x) * f(1) = x' * f(1)$$

Therefore $f(1) \in x' * f(1)$. The proof of other parts is similar.

Notation 2. We can see that any *homomorphism* is a *weak homomorphism*, but conversely need not be true.

Example 11. Let $H_1 = \{1, a, b\}, H_2 = \{1', a', b'\}$. Define hyperoperations " \circ " and "*" as follows:

0	1	а	b	*	1'	a'	b'
1	{1}	{a,b}	{b}	1'	$\{1'\}$	$\{a',b'\}$	$\{b'\}$
a	{1}	$\{1,a,b\}$	{b}	a'	$\{1'\}$	$\{1', a'\}$	$\{1', b'\}$
b	$\{1,b\}$	$\{1,a,b\}$	$\{1,a,b\}$	b'	$\{1'\}$	$\{1',a',b'\}$	$\{1'\}.$

We see that $(H_1, \circ, 1), (H_2, *, 1')$ are H_vBE algebras. Let $f: H_1 \to H_2$ be defined by f(1) = 1', f(a) = a', f(b) = b'. Then f is a *weak homo-morphism*, but it is not an *inclusion homomorphism*, because $f(b \circ 1) = f(\{1, b\}) = \{1', b'\}$, Then $f(b) * f(1) = b' * 1' = \{1'\}$, therefore $f(b \circ 1) \cap (f(b) * f(1)) \neq \phi$, But $f(b \circ 1) \nsubseteq f(b) * f(1)$.

6. CONCLUSION

In this present paper, we have introduced the concept of $H_{\nu}BE$ -algebras and investigated some of their useful properties.

This work focused on some types of $H_v BE$ -algebras. Also we discuss on H_v filters in this structure and present some fundamental properties that compute number of particular $H_v BE$ -algebras.

In our future work, we will get more results in H_vBE -algebras with applications, and we will define concepts as a quotient, a center in H_vBE -algebras and construct new *BE*-algebra or H_vBE -algebra.

ACKNOWLEDGEMENT

The authors are very indepted to the referees for valuable suggestions that improved the readability of the paper.

REFERENCES

- [1] B. Davvaz and V.-F. Leoreanu, Hypering theory and Applications. Hadronic Press, 2007.
- [2] A. B. Akbar Rezaei, "On fuzzy subalgebras of be-algebras," *Afrika Mathematika*, vol. 22, pp. 115–127, 2011, doi: 10.1007/s13370-011-0011-4.
- [3] R. Borzooei, A. Saeid, A. Rezaei, A. Radfar, and R. Ameri, "On pseudo BE-algebras," *Discussiones Mathematicae General Algebra and Applications*, vol. 33, no. 1, p. 95, 2013, doi: 10.7151/dmgaa.1193.
- [4] P. Corsini, *Prolegomena of hypergroup theory and Applications*, 2nd ed. Aviani Editore, 1993.
- [5] P. Corsini and V. Leoreanu, Applications of hyperstructure theory. Springer Science & Business Media, 2013, vol. 5, doi: 10.1007/978-1-4757-3714-1.
- [6] B. Davvaz and M. Ghadiri, "Weak equality and exact sequence in Hv-modules," Southest Asian Bull Math, vol. 25, pp. 403–411, 2001, doi: 10.1007/s10012-001-0403-8.
- [7] H. S. Kim and Y. H. Kim, "On be-algebras," *Scientiae Mathematicae Japonicae*, vol. 66, no. 1, pp. 113–116, 2007.
- [8] F. Marty, "Sur une generalization de la notion de groupe," in 8th congress Math. Scandinaves, 1934, pp. 45–49.
- [9] W. Prenowitz and J. Jantosciak, Join geometries. Springer, 1979.
- [10] A. Radfar, A. Rezaei, and A. B. Saeid, "Hyper be-algebras," Novi Sad J. Math, vol. 44, no. 2, pp. 137–147, 2014.
- [11] A. Rezaei, A. Borumand Saeid, and R. A. Borzooei, "Relation between Hilbert algebras and BEalgebras," *Appl. Math*, vol. 8, pp. 573–584, 2013, doi: 10.715/dmgaa.1285.
- [12] A. Rezaei and A. Borumand Saeid, "Commutative ideals in BE-algebras," *Kyungpook Mathematical Journal*, vol. 52, no. 4, pp. 483–494, 2012, doi: 10.5666/KMJ.2012.52.4.483.
- [13] Y. Vaziri, M. Ghadiri, and B. Davvaz, "The m [-] and-[m] functors and five short lemma in h_v-modules," *Turkish Journal of Mathematics*, vol. 40, no. 2, pp. 397–410, 2016, doi: 10.3906/mat-1502-75.
- [14] T. Vougiouklis, *The fundamental relation in hyperings*. Tea-neck, NJ:World Sci Publishing, 1990.

Authors' addresses

F. Iranmanesh

Yazd University, Dept. of Math, P. O. Box 89195, -741 Yazd, Iran *E-mail address:* Farzad.Iranmanesh67@Gmail.com

M. Ghadiri

Yazd University, Dept. of Math, P. O. Box 89195, -741 Yazd, Iran *E-mail address:* mghadiri@yazd.ac.ir

A. Borumand Saeid

Shahid Bahonar University of Kerman, Dept. of Pure Math. Faculty of Mathematics and Computer, P. O. Box76175, -133 Kerman, Iran

E-mail address: arsham@uk.ac.ir