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Abstract. In this paper, we derive some Hermite-Hadamard type inequalities via s-convex func-
tions of first and second sense respectively. These inequalities involve k-Riemann-Liouville frac-
tional integrals. We also discuss some special cases.
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1. INTRODUCTION

Theory of convexity has many applications in different fields of pure and applied
sciences. Due to this many researchers have investigated it in different directions.
Resultantly the concept of convexity has been extended and generalized in numerous
ways using novel and innovative ideas, see [1-9, 18].

Theory of convexity also plays significant role in mathematical inequalities. One of
the most famous inequality which provides necessary and sufficient condition for a
function to be convex is Hermite-Hadamard’s inequality. For some recent invest-
igations on Hermite-Hadamard type inequalities interested readers are referred to
[4,6-8,11=17,19-24].

Recently Sarikaya et al. [16] has introduced the notion of k-Riemann-Liouville frac-
tional integrals and discussed some of its interesting properties. It is worth to mention
here that k-Riemann-Liouville fractional integral is the generalized form of classical
Riemann-Liouville fractional integrals as when kK — 1 we get the classical Riemann-
Liouville fractional.

In this paper, we consider the k-Riemann-Liouville fractional integrals and derive
several new Hermite-Hadamard type inequalities via s-convex functions of first and
second sense which involve k-Riemann-Liouville fractional integrals. The ideas and
techniques of this paper may inspire interested readers to explore applications and
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other aspects of Hermite-Hadamard inequalities in other fields of pure and applied
sciences. This is the main motivation of this paper.

2. PRELIMINARIES

In this section we recall some previously known concepts. First of all let I =
[a,b] C R be the interval and R be the set of real numbers.
Let us suppose that s € [0, 1].

Definition 1 ([18]). A function f: I — R is said to be a s-convex function in the
first sense, if

flx+(1—=0)y) < f(x)+(1—)f(y), Vx,yeltelo1]. 2.1)

Definition 2 ([1]). A function f :I — R is said to be a s-convex function in the
second sense (also called Breckner convex), if

flx+(1=10)y) <Ef(x)+(1—=1)°f(y), Vx,yel,tel0,1]. (2.2)

Now, we recall the concept of k-Riemann-Liouville fractional integrals. Let f
be piecewise continuous on I* = (0,c0) and integrable on any finite subinterval of
I = [0,00]. Then for t > 0, we consider k-Riemann-Liouville fractional integral of f
of order o

X

WO (x) = kl“:( )/(x—t)%lf(t)dt, x>ak>0.

a

X) :/tx_ e rdr,
0

is the k-Gamma function. Clearly

I'(x) = im [ (x),

k—1

Note that

and
Te(x+k) = xTi(x).
For more details readers are referred to [16]. Note that when k — 1 k-Riemann-

Liouville fractional integrals become classical Riemann-Liouville fractional integral
[10]. k-Beta function is defined as:

1

/% (1—1)t'dr = M, x>0,y>0.
, Ci(x+y)

Now, we prove Hermite-Hadmard inequality via k-Riemann-Liouville fractional in-
tegrals.



GENERALIZED FRACTIONAL HERMITE-HADAMARD INEQUALITIES 1003

Theorem 1. Let f : [a,b] — R be positive function with0 < a < b and f € Ly[a,b].
If f is convex on [a,b), then, we have

at+b\ _Tila+1) o fla)+f(b)
7(457) < S e )+ fla) < LS
Proof. Since f is convex function, so, we have

F(EEY) < fOHFY)
2 - 2
Letx=rta+ (1—t)bandy= (1 —t)a+1tb, we have

2f (““’) < f(ta+ (1 —1)b)+ f((1 —t)a+1b).

(2.3)

2

Multiplying both sides of above inequality by 1%~ ! and then integrating with respect
to ¢ on [0, 1], we have

1

1 1
+b a_ o o
2f(“ ) (570 < [ 15 frat+ (1 —0)b)dr+ [ 157 (1= 1)a+tb)dr.

2

Now substituting u =ta+ (1 —t)b and v = (1 —t)a+1tb, we have

S (57 = 5 Sz )+ w7 o). @4

Also
flta+(1=0)b)+ f(1 —1)a+1b) < f(a) + f(b)

Multiplying both sides of above inequality pi!

t on [0, 1], we have

and then integrating with respect to

kI k b
MO 18 £(b) 4008 fla) < SLLDLSON, 0.5
(b—a)x o
Combining (2.4) and (2.5) completes the proof. O]

Note that when k£ — 1 in Theorem 1, we have fractional Hermite-Hadamard in-
equality, see [17].

Lemma 1. Let f : [a,b] — R be a differentiable mapping on (a,b) with a < b. If
f € Li|a,b], then, we have

b—a
2

1
/[t% — (1 =D ((1 = 1)a+tb)dr
0

fla)+f(b) Ti(a+l)
2

oyt WS @ IS0
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Proof. Let

o

1
I:/tk— (1 =) %] f (1 —t)a+tb)dt. (2.6)
0

Now

15 f1((1—1)a+1tb)dt

o—__

15 f((1—1)a+1tb)dt
b—a

1
b a /t%’lf((l ~Da+b)dr
0

G E @, 27)

Similarly

1

/(1—t)‘i‘f’((1—t)a+tb)dt=—f(“) (ot 1) % F(b).  (2.8)

0 b—a (b—a)x Hklﬁ

Using (2.7) and (2.8) in (2.6) and then multiplying both sides by b*T“, completes the
proof. U

Now using Lemma 1 we prove our next result, which plays a key role in the devel-
opment of our next results.

Lemma 2. Ler f: I — R be twice differentiable function. If f" € L[a,b|, then
following equality for fractional integrals hold:

fla)+f(b) Ti(a+1)
2 (b—a)t

g+ f (@) +xJy- f(D)]

1
(Hk /1— (1—0)E = E 17 (1 = t)a+1b)dr.
0

Proof. Now from Lemma 1, we have

1
/n— (1=0))f'(1=1)a+1tb)dt
0
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_t)%+l+t%+1
o+k

/(1 =t)a+1tb)

0

1

l_t +1+tk+1

—(b— 1—¢ th)dt

@) [0 - as )
0

1
_ k / _ (b Y-S0 i1y g1 .
R TAURI ARG a)O/[(l DE (1 atib)d
(2.9)
Also
b 1
- ’a)=/f”(x)dx:(b—a)/f”((l—z)a+zb)dt. (2.10)
a 0
Utilizing (2.9), (2.10) and Lemma 1 completes the proof. i

Note that when k£ — 1 in Lemma 2, we get Lemma 2.1 [21].

3. k-FRACTIONAL HERMITE-HADAMARD INEQUALITIES VIA s-CONVEX
FUNCTIONS OF FIRST SENSE

In this section, we derive some k-fractional estimates of Hermite-Hadamard type
inequalities via s-convex function of first sense.

Theorem 2. Let f : [a,b] — R be twice differentiable on (a,b) with a < b and
f" € Lila,b). If |f"| is s-convex function in the first sense, then

’f(a) +f(6) Ti(a+1)

(b—a)f

[kfﬁf(a>+kf,?f<b>}\

k(b (1) Z /!
< St p) Gk @]+ Gk )l B)]
where
s 2k k
Gi(o,k,s) = P s B + kB (k(s+ 1), 0+ 2k); (3.1)
Go (oL, k,s) = ! k — kB (k(s+1),00+ 2k). (3.2)

s+1  otsk+2k
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Proof. Using Lemma 2, property of the modulus and the fact that | f”| is s-convex
in the first sense, we have

‘f(a)Jrf(b) _ Ti(at+1)

o ag W@ )

1
2
- 2 oc+k) 0/ (1=0) =B (1= t)a+1b)|dt

< %0/ 1= (=0 E B [ =) (@) 2] (0)]

k(b —a)? s 2k k "
= — kB (k 1),004 2k
2(0+ k) {s+1 a2 "otk ok B+ ) o )}’f (@)l
+ L _ k —kBi(k(s+1),00+2k) ¢|f"(b)|
s+1 otskt2k " ’ ‘
This completes the proof. g

Theorem 3. Let f : [a,b] — R be twice differentiable on (a,b) with a < b and
f" € Li[a,b]. If |f"|? is s-convex function in the first sense, where % —I—é =1,qg>1,
then

L0 D) i o )]

(b—a)x
k(b—a)? (p<a+k>k>i (|f"<a>|q+|f"(b>|q)i
~ 2(a+k) \p(ou+k)+k s+1 )

Proof. Using Lemma 2, property of modulus, well-known Holder’s inequality and
the fact that | f”|7 is s-convex in the first sense, we have

fla)+f(b) Tp(a+1

e ORI

_|kb—ap?

1
() T s ey —
2(a+k) 0/1 (1-1) (L —1)a+tb)dt

R

1 P 1
/(1—(1—t)%+1 —tEtPgr /‘f”((l—t)a—l—tb)‘th
0 0

1
/ _ e (%“))dz
0

P

- oc+k<
- 0c+k<
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_ =

1

< | fla=e)s @+l e

0
_ K(b—a)? (p<oc+k>—k>i (sf”(a)rqﬂf"(b)w)é
- 2(a+k) \ pla+k)+k s+1
This completes the proof. g

Theorem 4. Let f : [a,b] — R be twice differentiable on (a,b) with a < b and
f" € Lila,b]. If |f"|7 is s-convex function in the first sense, where q > 1, then

fla)+f(b)  Ti(a+1)

o (@) + iy £ (D)]

2 (b—a)%
—a)? . -4 :
];(fa+13> (aﬂkz;c U) (61(@ks)l " @]+ Gala ko) ' (B)7)

where Gi(0,k,s) and Go (o, k,s) are given by (3.1) and (3.2) respectively.

Proof. Using Lemma 2, property of modulus, well-known power-mean inequality
and the fact that | f”|7 is s-convex in the first sense, we have

L) D) i o )]

(b—a)*
k 1
= 2((oc+13 0/1‘ (1= ) 59 (1 = r)a+ 1b)dr
1
(1—0) e+t —EH1]q,
- 0c+k O/ e

Q=

x /(1—(l—t)%“—t%“)\f”((l—t)a+tb)|th
0
_a)? D\ 1
<o () (Gekslr @l + Galak )l er)

This completes the proof. U

4. k-FRACTIONAL HERMITE-HADAMARD INEQUALITIES VIA s-CONVEX
FUNCTIONS OF SECOND SENSE

In this section, we derive some k-fractional estimates of Hermite-Hadamard type
inequalities via s-convex function of second sense.
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Theorem 5. Let f : [a,b] — R be twice differentiable on (a,b) with a < b and
f" € Lila,b]. If |f"| is s-convex function in the second sense, then

H@EfB) Lot D) sapiy e rp)

2 (b—a)t
—a)?
< S k) @)+ 1 0]
where
H(akys) = — N iBu(at 2k k(s +1)). @1

st1  otskd2k

Proof. Using Lemma 2, property of modulus and the fact that |f”| is s-convex in
the second sense, we have

'f(a)+f(b) _ Ti(a+ 1)
(b—a)t

% (a) +kJ§°f<b>]'
1

< 2 (Hk / (=0T 8 (1~ r)a+ 1b)

0

L Mb-a)® / 1= =D T = [0y @)+ (0)]]

~ 2(o+k) /
Mot L K a2tk )] 1@ 6]
2(oe+k) Ls+1 o+ sk+2k ’ '
This completes the proof. O

Theorem 6. Let f : [a,b] — R be twice differentiable on (a,b) with a < b and
f" € Lyla,b]. If |f"| is s-convex function in the second sense, where %%—% =1,
q > 1, then

‘ fla)+f(b) Ti(a+ (11) [ f(a) + i f(D)] ’

2 (b—a)k
k(b—a)® ( pla+k) —k\7 (| @]9+ (B)|7\
= 2(ath) <p(0c+k)+k) ( st )

Proof. Using Lemma 2, property of modulus, well-known Holder’s inequality and

the fact that | f”|7 is s-convex in the second sense, we have
fla)+f(b) TIi(a+1
e S LSO 0)
(b—a)r
1

k a

_|kb=a) a)? / (1—0)F — 217 (1 —t)a+tb)dt

2(o+k)
0
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==
Q=

X 1
< ’m /(1 —(1—p)EH — it hyPay /‘f”((l —t)a-+b)|"dr
, 0

1
P

(1 — (1 —p)PE _,p(%m)d,

|
,'3%
2 |
_I_
~|&
S— [}
o—__

1
| 1= 17 @l o1 @) ar
0

_ k(b—a)’ <p<oc+k> k)i (!f”( )!"+|f”(b)|”>f"
2(0+k) \ pla+k)+k s+1 '

This completes the proof. O

Theorem 7. Let f : [a,b] — R be twice differentiable on (a,b) with a < b and
f" € Lila,b). If |f"|? is s-convex function in the second sense where q > 1, then

’f(a)Jrf() Fk((Hl)
(b—a)

[ f (@) + 1y f(b)]’
—a)® 1
= mﬂ"(%kaﬁﬁf"(aﬂu LF" (b)),
where H (o, k,s) is given by (4.1).

Proof. Using Lemma 2, property of modulus, well-known power-mean inequality
and the fact that | f”|7 is s-convex in the second sense, we have

‘f(a)+f( ) _THOE Dy e pa) 4+ 0 £(0)]

(b—a)
1
0c+1<))2/1_ 1—0) 8 — 8 (1 = f)a+tb)dr
0
Kp-a? [ i)
0

1
q

1
x /(1—(1—t)%+1—t%“)\f”((1—z)a+tb)yqdz
0
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k(b—a)? [o+2(k—1)\""s
S2(oc+k)( o+ 2k )

1

(o e - o 2k 1)) (@40

(b_a)2 o lié 1 11 1/ é
Dot (25) ek (7 @0+ )"

This completes the proof. O

Q=

Remark 1. We would like to point out that for s = 1 results obtained in section 3
and 4 reduces to the result for classical convexity. The results for classical convexity
also appear to be new in the literature.
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