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Abstract 

This pilot study was implemented to reflect the delivery and the plant availability of nitrogen 

and phosphorus in response to different compositions of fertilisers approved for organic 
farming in Sweden. The experimental approach was to compare the concentration of nitrogen 

and phosphorus in plant sap of Pak choi plants grown in soil treated with different organic 
waste such as aged cattle manure and a liquid retting digest derived from the biogas industry, 

with plants grown in soil treated with a blend of pelleted organic fertilisers derived from the  
Swedish slaughterhouse industry. 

The organic waste materials and fertilisers in this study were selected with respect to 
their nutritional properties: concentration of macro elements and the assumed nitrogen 

accessibility from the organic and inorganic proportion of nitrogen present in these materials. 
All plant tissues and soil samples were analysed for: the nutritional status in soil (all macro 

nutrients) prior to fertiliser application as well as the concentration of nitrogen and 
phosphorus in soil postharvest; plant sap concentration of nitrogen and phosphorus on three 

occasions along six weeks of field cultivation and the concentration of young leaf tissue total 
nitrogen concentration on same occasions. In addition, three days prior to final harvest, the 
treatments were sampled to measure fresh and dry weight of leaves and roots followed by a 
subsequent analysis of total nitrogen accumulation in the same tissues.  

Plant sap concentration of inorganic nitrogen was highest in tissues sampled from Pak 

choi plants grown in soil treated with pelleted slaughterhouse waste in week four, the second 
occasion of sampling. This concentration decreased to the lowest relative to the concentration 
of plants grown in control soil (no fertilisers) and plants grown in soil treated with aged cattle 
manure and retting digestate in week five, which was the last occasion of sampling. 

Soil remaining concentration of inorganic nitrogen postharvest was shown to be the 
highest in soil treated with pelleted fertilisers but the leaf tissue concentration of total 
nitrogen showed the lowest concentrations in plants sampled for dry weight grown in the 
pelleted fertiliser treatment. An opposite pattern was found in soil treated with aged cattle 

manure and retting digestate which is contradictive and further discussed.  
Plant sap concentration of phosphorus showed the highest values for control plants, 

surprisingly during all three occasions of sampling. This relationship indicated that the 

consumption of phosphorus can be limited by a relative low concentration of other macro 
elements, in planta, for the plants grown in the control soil. Moreover, postharvest soil 
remaining phosphorus indicated redundancy in soil treated with aged cattle manure and 
retting digestate, because the plant sap concentration of phosphorus (of plants grown in 

control soil) where similar to the plant sap concentrations of plants grown in soil treated with 
the pelleted fertilisers. The initial amount of added phosphorus were three times less in the 
soil treated with pelleted fertilisers, in comparison to the soil treated with aged cattle manure 
and retting digestate.  
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Introduction 

Field studies of organic fertilisers including market products and industrial waste materials are 

important in order to establish guidelines for efficient utilisation in organic and 

conventional/integrated plant production. The Swedish organic agriculture land area has 

increased in proportion to the total Swedish agriculture land area by approx. 15% from 2005 

– 2019 (SCB 2019). In 2019, fractions of the total agriculture land area, classed as organic 

arable land, covered approx. 19% of total Swedish arable land (SCB 2019). Expansion of 

organic farmland indicates increased usage of organic fertilisers and manure which is a reason 

to apply research for sustainable nutrient utilisation of these materials in organic plant 

production.  

Several types of organic waste such as excrements, urine, bone-, meat-, and blood-

meal generated from the livestock industry is currently utilised as fertilisers and manure in 

Swedish plant production. Industrial waste partially consists of plant macro elements: 

nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg) and sulphur (S). 

These elements are (beyond carbon, oxygen and hydrogen) essential for plant growth, 

development and reproduction. Deficient levels of such elements in plants will cause yield loss 

and lower the quality of produce. Further, microelements (iron, manganese, boron, copper, 

zinc, molybdenum) play different roles in general plant metabolism as well as in plant defence 

(Dordas 2008); deficient levels of microelements will affect the status of growth and quality 

of produce. 

The concept of conventional/integrated (i.e. non-organic) plant production is given to 

distinguish organic plant production from conventional systems in the following text. 

Conventional plant producers have the ability to optimise their fertiliser regimes due to a 

broader assortment of different products containing crop specific concentrations of plant 

growth essential elements, or by compiling customised concentrations for each crop. On the 

other hand, organic producers are relatively restricted when it comes to crop specific 

fertilisers, however, the assortment of processed products expands on the market. Farmyard 

manure, industrial waste and/or any other soil amendments suited for application as fertilisers 

craves some experience to gain as much as possible of their nutritional capacity. For instance, 

some elements can be overrepresented for the plant while others are present in relative low 

concentrations when it comes to industrial waste. Moreover, organic fertilisers and waste 
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materials are allowed in conventional plant production but conventional products are 

prohibited in organic production. Inappropriate application of different industrial waste 

materials and farmyard manure affects the environment around arable land regardless of the 

production system (conventional or organic). In this study, some of the most common waste 

materials and manure will be presented and assayed. 

 

Aged cattle manure (ACM) 

Aged cattle manure is composed of cattle excrements/urine, straw and hay. The straw and 

hay are added frequently to the flooring in barns in order to mix with droppings from the 

animals which are kept in the barns during the winters. This mixture can be stacked in piles 

and covered to reduce losses of N through gasification. These piles can be aged (decomposed) 

over the summer season and winter, followed by field application in spring the year after. This 

strategy of manure recycling with subsequent field application is important to maintain soil 

fertility and to avoid soil depletion of organic matter in both organic and conventional crop 

production. Manure application supplies the soil with macro/micro elements and enriches the 

concentration of carbon-containing molecules. 

 

Pelleted slaughterhouse waste (PSW) 

Organic waste derived from the slaughter industry can be compressed to pellets and applied 

as fertilisers in organic plant production. These pellets can be composed of both 

slaughterhouse waste and farmyard manure to balance their nutritional proportions which 

broadens the product for a wider range of crop specific application. Pelleted slaughterhouse 

waste can be used by organic plant producers that lacks animal holding and other sources of 

materials used as organic fertilisers. However, the content of carbon is relatively low in such 

products. Pelleted fertilisers are, in general, comprehensive in nutritional composition since 

they are composed of mixed materials and uniform in size which simplifies application.  

 

Biogas retting digestate (BRD) 

Retted plant- and animal-based digestate has a high concentration of (inorganic) ammonium-

N. The high ammonium-N concentration is due to the fact that most of the carbon (C) is 

released as carbon dioxide and methane during the retting process. This process lowers the 
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ratio of C to N (C/N) since the relative N concentration increases in the BRD as a result from 

the gasification of carbon. The BRD is further separated into two different fraction sizes, 

however, the dry substance in BRD is very low (< 3%) which means that most of the N-content 

is dissolved in the solution. This fertiliser is a rapid source of ammonium-N and approved for 

application in organic plant production, but there are some varieties of BRD that are not 

approved for organic crop production depending on the origin of the input material. 

 

Soil organic matter (SOM)  

In this thesis soil organic matter (SOM) is used in following context: organic matter associated 

with human inputs to maintain target levels of carbon and nutrients in arable land. Organically 

bound N can be released to soil from SOM as inorganic N through a process called 

mineralisation, a microbial activity in which carbon bound N like amino acids (AA) is converted 

to ammonium N. The C/N ratio of different soil amendments impacts N mineralisation, where 

materials with high C/N releases N slowly because the proportion of carbon is relatively high 

compared to the proportion of N. Moreover, available soil N is partly targeted for microbial 

consumption which is crucial to maintain further decomposition of SOM with continuous 

release of N. The microbial sequestration of soil N is named immobilisation which means that 

the inorganic-N is fixed back into organic forms, i.e. to serve microbial metabolism. Plants and 

microorganisms compete for soil N. 

Inorganic N (ammonium and nitrate) is just a part of all plant absorbable forms of N in 

soil because organic molecules of N like AA and peptides are also absorbable by plant roots. 

For instance, organic forms of N have shown to be absorbable by ‘Bok choy’ roots (Watanabe 

et al. 2012); ‘Bok choy’ is another name for Pak choi (Brassica rapa subsp. chinensis L.H. 

Bailey). Moreover, Arabidopsis thaliana a model plant for research which belongs to the same 

family as Pak choi (Brassicaceae) was able to grow/develop receiving AA as the only source of 

N (Hirner et al. 2006). Mutant plants for the AA transporter Lysine Histidine Transporter1 

(LHT1) which is the protein that mediates AA uptake in roots failed to absorb AA (Hirner et al. 

2006). Furthermore, roots of A. thaliana have shown a 6 to 10-fold increase of AA uptake, over 

nitrate-N, when both nitrate-N and AA were present simultaneously (Jämtgård 2010). This 

uptake ratio was shown to depend on 24 h root pre-exposure to AA indicating that A. thaliana 

adapts N absorption to N conditions in soil (Jämtgård 2010). 
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Retting digests, farmyard manure and other sources of soil amendments enriches soil 

with organic acids, humus and different mono- and polymers (SOM) in addition to the plant 

absorbable macro and micro elements. Deng et al. (2019) showed that addition of a 

commercial retting solution to soil increased the Shannon Diversity (a mathematical function 

used to characterise species diversity in a community) of bacterial species inside the roots of 

strawberries, compared to the species diversity found in soil and rhizosphere. Diverse soil 

microbial communities have been discussed to suppress soil borne pathogens to a higher 

extent than communities with less diversity (Fukui et al. 2003). The abundancy and diversity 

of soil bacterial communities are affected by different soil parameters, including pH and soil 

carbon levels (Liao et al. 2018; Lauber et al. 2009); inputs of SOM alter the given parameters. 

Soil microorganisms generate important compounds which react with plant elements in a 

molecular process called chelating (Ahmed 2015). Microbial secretion of natural chelating 

agents (siderophores) enable uptake of different microelements by forming complexes which 

are absorbable by plant roots. Iron is a microelement which chelates with siderophores 

produced by both bacterial and plant species (Albelda-Berenguer et al. 2019). In summary, the 

diversity of soil microbes can be altered depending on man-made inputs of SOM which can 

affect the suppression of soilborne pathogens as well as promoting soil fertility in several 

ways. 

 

Fertiliser management & soil properties  

Soil organic matter promote soil with important molecules, ions, structure and aeration. Plant 

cells require oxygen (O2) for aerobic metabolism driven by respiration and ATP biosynthesis 

specially to maintain stable absorption of macro and micro elements into roots. This has been 

demonstrated in an experiment where waterlogging of spring wheat and barley caused 

lowered absorption of macro and micro elements, revealed by measuring the concentration 

of these elements in shoot tissues under stress conditions (Steffens et al. 2005). Soil physical 

condition determines the level of drainage which is associated with O2 mobilisation in the top 

soil layers.  

In modern agriculture, a sustainable approach to decrease eutrophication in 

watercourses, lakes and oceans is to make a batch specific nutritional analysis of any material 

prior to soil application. Plug plants of leafy vegetables demand relatively high levels of 

nutrition (for yield maximisation) instantly in connection to field transplantation while others 
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like trees, shrubs and directly seeded plants cultivated for fruits can be slightly different in the 

growth-stage dependent nutritional demand for fruit maximisation. The plant available 

elements present in a specific material do not necessarily correspond to the demand of a 

certain crop. The material specific rate of nitrogen release through mineralisation will alter 

the proportions of inorganically- to organically-bound N which determines the accessibility of 

N for the plant through the growing season. Hirner et al. (2006) showed that the LHT1 is 

present in the mesophyll cells where they assist AA uptake. The mesophyll cells are located in 

the leaves and the AA can be transported in vascular tissues by other transporter proteins, 

indicating a long-distance transport from the roots to the leaves. In fact, the LHT1 protein has 

shown to be expressed in every tissue of A. thaliana (Chen & Bush 1997). The absorption 

property of AA is not equal for all plant species. Different plant species show different traits 

in N absorption depending on root specific properties, which is a species dependent 

adaptation – a result of plant evolution in different environments. For instance, the study 

performed by Watanabe et al. (2012) showed that roots of Bok choy plants can absorb a 

significant higher proportion of organic N when present together with ammonium-sulphate, 

in comparison to tomato plants. The results in Watanabe et al. (2012) indicate that the levels 

and forms of N (organic and inorganic) is important to consider for efficient species dependent 

fertiliser management in agriculture since different plant species exhibits different 

adaptations of N absorption. 

Appropriate fertiliser management decrease the loss of N from field soil to the 

atmosphere. For instance, the proportion of ammonium to ammonia is partially driven by the 

soil pH, where alkaline soils (pH > 7) risks the ammonium (NH4) to lose a proton and become 

ammonia (NH3). Ammonia can be lost through a process called ammonia volatilisation which 

implies loss of ammonia from the soil to the atmosphere, especially if the ammonia-N is 

present in the surface of the topsoil where wind is present. Moreover, nitrification (a series of 

microbial activity) can turn ammonium-N into nitrate-N (NO3
-), which is another form of plant 

available inorganic-N and this process is affected by the levels of moisture, pH and O2 present 

in the soil. Furthermore, the nitrate-N can get lost through a sequence of microbial processes 

called denitrification, in which nitrate-N is converted to nitrogen gas (N2) as well as other 

gaseous forms of N (like NO and N2O) and emitted to the atmosphere (Schlüter et al. 2018). 

In brief, soil fertility is a concept of several factors: soil pH, soil temperature, the 

proportion of negatively charged clay particles (called soil colloids), the concentration of 
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different elements present per volume of soil, the level of moisture in the soil which alters the 

concentration of dissolved elements and the soil flow of O2; soil porosity determines the flow 

of O2 and the water holding capacity. Inputs of SOM in soil alters the proportion of soil macro 

and micro pores. If a clay soil low in SOM is completely dried, dense clods will be formed as a 

consequence of tillage, and soil cracking will appear during the season.  

The size and composition of soil particles determines the physical and chemical 

properties in different soil types. Clay rich soils can hold cations and water to a higher extent 

compared to sandy soils. Clay soils attract ammonium-N to a higher extent than sandy soils; 

sandy soils drain water to a higher extent than clay soils. This means that clay soils are less 

sensitive to percolation of dissolved N and P. On the other hand, sandy soils dry out faster and 

have larger pores which enables efficient penetration of O2 (oxygenation). However, 

regardless of soil particle size nitrate and nitrite (both anions) do not add to negatively charged 

soil colloids and for this reason negatively charged N as well as P compounds are sensitive to 

percolation/leaching since phosphates are also anions. Since loam and clay soils hold water to 

a higher extent than sandy soils, anions are relatively less subjected to percolation and 

leaching.  

 

Aim 

The aim of this work was to investigate the nutrient delivery of N and P from different 

fertilisers in two nutritionally balanced treatments by analysing the difference of plant 

accumulated total N and plant sap levels of N and P in plants grown in these treatments. Pak 

choi was assayed to mirror the nutritional delivery from the treatments through sampling of 

plant tissues and analysis of plant sap. Soil samples were taken postharvest to determine soil 

remaining levels of N and P. This work is dedicated to a growing segment of young farmers 

that needs to understand the properties of different fertilisers and soil amendments in order 

to practice appropriate fertiliser management. Compositions and forms of nutrient rich 

organic matter can be optimised to treat growth stage dependent crops with the right 

concentration at the right time of application. Since materials release nutrients at different 

rates composition is crucial to achieve precision in application.  
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Hypothesis 

Pak choi was grown in two different compositions of fertilisers approved for organic plant 

production, in replicated experimental units (plots). The details of each treatment are 

described in material and methods. Null hypothesis will be true if elements are balanced 

properly according to assumed release rates.  

 

Null hypothesis 1 & 2 

H0(1): There will be no statistical difference between estimated mean values of above ground 
harvest (the canopy) measured on plants grown in the nutritionally balanced treatments of 
fertilisers. 
 
H0(2): There will be no statistical difference between estimated mean values of fresh weight 
and dry weight of leaves and roots sampled from the treatments prior to the canopy harvest 

- described in H0(1).  
 

Limitations 

The individual plants in each treatment were most likely affected by the heterogeneity of soil 

nutrition (i.e. variation of macro elements in each plot) and other random biotic and abiotic 

factors such as pests, differences in physical and chemical soil properties, edge effects etc. For 

this reason, it is important to spread the errors as much as possible by using many replicated 

plots for each treatment in a total randomised experimental design (without blocks). 

Drip irrigation was installed to provide a similar supply of water in each plot but 

differences in soil structure may affect the water holding capacity in the soil of each treatment, 

since incorporation of different materials in the soil affects soil structure on treatments 

specific level. 

Precipitation was not monitored, however, soil moisture at two depths were 

monitored to reduce flushing of anions/nutrients to deeper soil layers. All nutritional analysis 

data will be based on pooled samples from each treatment. 

The pooling method returns a single value of each element, within each treatment, 

and the drawback here is that no statistical variance can be predicted from the underlying 

samples in the pool. Pooling will return a good approximation of different parameters from 

the replicated plants in each treatment. 

Several greenhouse studies under controlled conditions can be conducted prior to a 

study like this, to develop references of plant nutrient levels in controlled environments. This 
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can help with interpreting the results of nutrient concentrations obtained at field conditions. 

On the other hand, the drawback with greenhouse studies is that the field soil is only present 

at the field, not in the greenhouse. Peat is not the same as field soil. Abiotic and biotic factors 

can be mimicked close to field conditions and field soil can be transferred to a closed system 

for running environmentally controlled assays. However, the field will always be the most 

accurate environment to consider for comprehensive studies to optimise field grown crops. 
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Material and methods 

This experiment was conducted in the south of Sweden at the property of SLU in Alnarp. The 

fertilisers described in the introduction (BRD, ACM and PSW) were tested for nutrient delivery 

in this project. They contained both inorganic-N and organic-N in different proportions. Their 

relative contribution of N in each treatment was computed with respect to their proportional 

amount of organic-N. An estimation was made of the amount of N that could be available from 

the proportion of organic-N in BRD, ACM and PSW: 

10% N of the proportion of organic-N in ACM were estimated to be plant available (Sullivan 

2020, see table 2 for dairy cattle compost); 75% N of the proportion of organic-N in PSW were 

estimated to be plant available (SJV 2019); BRD was assumed to have its total-N content 

(100%) available in connection to application (SJV 2016). 

Liquid ammonium containing fertilisers, like the BRD, transports the ammonium for some 

depth into the soil. Post application of water through irrigation or from precipitation lowers 

the exposure of ammonium to air exchange. This study selected two PSW products based on 

Pak choi (in fact Chinese cabbage) nutritional recommendations which was obtained from 

agricultural advisors. All treatments in this experiment are listed below: 

 

T0. Null treatment (the control) without fertilisers + tillage 

T1. PSW + additional fertilisers + tillage 

T2. BRD + ACM + additional fertilisers + tillage 

 

Field location & soil conditions & soil tillage 

Treatment 1, treatment 2 and treatment 3 were assayed in a loam soil (19% clay content) 

located in zone 1 (Latitude 55.661073191301064 N, Longitude 13.078488124569668 E). The 

field had been in fallow for three years (2017, 2018, 2019) prior to this experiment and it held 

an organic content of < 3%. In 2016 (the last year of cultivation in this field site), field beans 

and spring-wheat were intercropped. 

The soil was tilled with a rotary cultivator at a depth of approx. 15 cm, one week prior 

to fertiliser application and field transplantation of Pak choi plug plants (seedlings having three 

to four developed true leaves). This tillage was done mostly to loosen the soil and disturb 
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weeds; a second tillage was carried out to mix the soil with the fertilisers in connection with 

fertiliser application. 

 

Division of field area 

A total area of 10 m (width) x 20 m (length) = 200 m2 was set aside for this experiment. A 

subdivision was made of 10 rows across the length of that area and each row got a width of 1 

m and a length of 10 m. Each of these 10 rows was further divided into three experimental 

units (i.e. plots). Each plot got an area of 2,2 m (length) x 1 m (width) = 2,2 m2. Margins for 

spacing were set at 0.5 m on both sides of all plots. In total, 30 plots were established for T1, 

T2 and T0 - which is 10 plots per treatment.  

 

Soil sampling - initial 

The soil was sampled at 30 points (one sample taken from the midpoint of each plot) from a 

cross section of 20 cm. All these soil samples were pooled (mixed together) and one 

representative sample of this soil pool was then analysed with a method called the Modified 

Spurway. The Modified Spurway method reflects the easily soluble plant macro and micro 

element concentration present in the soil and available for plants over a relatively short period 

of time; in contrast to an AL-analysis. This pooling method returned a single result 

representative for the nutritional concentration of macro elements in the field soil. The 

amount of application of ACM, PSW and BRD were computed with respect to the present 

concentration of macro elements in soil. 

 

Fertiliser analysis 

The ACM and the BRD were used mainly to balance for K and N, respectively, in T2. Prior to 

computation of fertiliser application, these two waste materials were analysed (method: 

Kjeldahl+dewardas) for macro element concentrations and with two specifications of N (total -

N + ammonium-N). The ACM were further analysed for nitrate-N (method: QuAAtro) because 

‘Kjeldahl+dewardas’ only specifies total-N subdivided into ammonium-N. However, the 

nitrate-N was necessary to compute the proposition of organic-N in ACM and PSW (free amino 

acids, peptides, proteins, microbial nucleic acids, urea, etc.). 
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Ten percent of the total-N content in cattle manure consisted of ammonium-N and the 

remaining N was assumed to be the amount of organic-N, with a negligible content of nitrate-

N. However, the nitrate analysis of ACM (post field application) revealed that the 

concentrations of nitrate-N and ammonium-N were similar, which means that approx. 20% of 

the total-N content in that batch specific ACM consisted of inorganic N.  

For balancing of T1, the nutritional concentrations of two pelleted fertilizers (NPK 6-3-

12+7S and N15) were obtained from the packaging of these products, and the concentration 

of ammonium-N in these products (NPK 6-3-12+7S and N15) were further complemented with 

analysis data obtained from the PSW producer.   

 

Compiling & adding the fertilisers  

The N and K were balanced according to ‘Chinese cabbage’ specific levels obtained from 

agriculture advisors, as already mentioned. The intention with balancing was to not 

underestimate the nutrient demand of macro elements for Pak choi plants and in order to 

provide similar concentrations of nutrition in both T1 and T2. This was done to prevent the 

possibility that N and P concentration in plant tissues could be altered by deficient levels of 

other macro elements. A rapid N fertiliser like the BRD is suited for pre-cultivated seedlings, 

in terms of rapid N access to promote maximum growth in connection with field 

transplantation. Most of the log-phase (Pak choi and several plants develop according to an S-

curve) has passed during the pre-cultivation of seedlings in the nursery. 

All fertilisers (except dolomite stone meal) that were used in T1 were added to the soil 

and tilled at a depth of approx. 15 cm prior to field transplantation of Pak choi seedlings. All 

the components (except BRD) of the fertilisers which were used in T2 were also tilled into the 

soil prior to transplantation of the seedlings. Further, the dolomite meal was added a week 

past field transplantation of seedlings to balance the magnesium concentration and the BRD 

were added after some days of precipitation, 7 days past transplantation, to reduce 

volatilisation of ammonium-N (NH4+) to ammonia-N (NH3). Soil pH = 7,8. Table S1 in 

supplementary material provides information of added fertilisers and their resulting summary 

of macro elements in each treatment. 
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Irrigation & installation of sensors for soil moisture/temperature-measurements 

Drip-irrigation was installed ten days post field transplantation. The plots were watered (all 

with the same volume and procedure) by hand prior to the installation of drip-irrigation. Soil 

moisture was kept at low fluctuation with the assistance of sensors which measured the 

moisture (or soil pore under-pressure) at two depths: 10 and 30 cm. Precipitation was not 

monitored. Specific changes in soil elements concentration affected by altered water levels 

caused by rain were not of interest. The drop-irrigation was installed to maintain similar soil 

moisture levels in all treatments to avoid general plant stress caused by drought events. 

 

Soil & plant tissue sampling 

All samples of plant tissues and soil which were analysed for macro element concentrations 

were pooled in this study. Pooling is usually suited for different DNA and RNA studies when 

many samples are taken from, for instance, biologically replicated hybrid crosses who possess 

a specific trait linked to a specific pattern of gene expression, inherited from one of the 

parents. A single sample taken from a pool can be used as a representative value for a 

treatment and it reduces the cost of the analysis procedure. On the other hand, if a statistical 

analysis of the variance in a pool is important for the question of a researcher, then sub pools 

can be analysed from the bulk pool in order to obtain the spread of whatever analysed in the 

bulk pool. This spread or variance can be used further for different statistical tests. Pak choi 

cv. ‘Shanghai’ was used to indicate the status of available elements when grown in T0, T1 and 

T2. Pak choi is a rapid crop with a high rate of leaf production during its exponential stage of 

growth which provides suited conditions for frequent tissue sampling. 

Leaf tissues from each treatment were sampled, pooled and analysed for total N 

concentration in three occasions (week 2, 4 and 5) over a cultivation period of six weeks. This 

step in the analysis was done to compare the levels with the plant sap  

Plant sap N and P concentration were analysed from the oldest and less deficient 

leaves in the same three occasions as for the leaf tissues.  

Three days prior to harvest, samples of all treatments were collected for 

measurements of fresh weight and dry weight to test H0(2) (see the hypothesis section).  

Dry root and leaf material from these samples were analysed for total N concentration.  

Soil samples were taken postharvest following the same procedure as the initial soil 

sample. 



18 
 

 

Summary of experimental details & data & statistics 

In this study, 22 Pak choi plants were grown in each plot, divided into two rows of plants with 

11 plants per row. Repeating, each treatment had 10 replicated plots which gives 22 plants x 

10 plots = 220 individuals per treatment which is 660 plants used in a total of three treatments: 

T0, T1 and T2. All these treatments with corresponding plots were totally randomised over 

the experimental area in the field. The amount of individual plants in each plot (22) determines 

the degree of freedom in the statistical computation which will reduce statistical errors that 

can arise from differences in the soil at plot level. Samples of plant tissues and incubated soil 

were collected during three occasions: week 2, 4 and 5 post field transplantation of plug 

plants. All plants experienced the same duration and volume of watering since drip irrigation 

was installed. Further on, three days prior to the final harvest plants were sampled to measure 

fresh weight and dry weight. The sampling was performed by computing an average of fresh 

weight and dry weight from two randomly selected plants taken from each plot. Thus, a total 

of 20 randomly selected plants were taken per treatment which generated 10 averaged 

observations per treatment (collected from 10 plots). These 10 averages (derived from each 

treatment) were statistically tested against each other using Student’s t-test, in addition to an 

analysis using a generalised linear model (‘glm’) in R (version 3.5.3). The ‘glm’ output 

parameters were used for a post hoc test (pairwise comparison according to Tukey’s HSD) 

using the R package ‘emmeans’. The final harvest was carried out three days after the 

sampling and measurements of fresh weight and dry weight. Final harvest data was 

statistically tested according to the same procedure described for the FW and for the DW 

measurement. Moreover, binary counts (1 or 0) were taken on visible inflorescences for every 

plant in each treatment (600 individuals in total). The inflorescence counts data was then 

analysed with ‘glm’ but unlike for the ‘glm’ of yield data (continuous data), an argument for 

discrete data (or ‘Binomial’ distribution) was specified.  
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Results 

All the results of pooled plant tissues and pooled soil samples collected from T0, T1 and T2 in 

this experiment should be interpreted as indications which reflect the nutritional status of soil 

and plants, in response to different fertilisers. 

 

Nitrogen levels in leaf sap & leaf tissues & soil 
Results of leaf tissue total N concentration (see figure 1) shows similar trends compared to 

the trends of plant sap N concentration shown in Fig. 2, except for the last occasion of 

sampling in Fig. 2 (28/05). The first observations of N levels in Fig. 1 and Fig. 2 (07/05) shows 

high relative accessibility to N for plants grown in T2 compared with plants grown in T1 and 

T0. Application of the BRD fertiliser in T2 was carried out one week prior to the first date of 

observation (07/05).  

 

Figure 1 Leaf Tissue Total Nitrogen Concentration, 

in the youngest fully developed leaves of Pak choi 
plants sampled from each treatment on three 
occasions. Each data point shows the concentration 

of total N from a pool of approx. 100 leaves. 

 

Figure 2 Plant Sap Inorganic Nitrogen Concentration , 
in the oldest and less defected leaves of Pak choi 

plants sampled from each treatment. Each data point 
shows the concentration of total N from a pool of 
approx. 100 leaves. 

Nitrate content 
According to the Swedish National Food Agency, nitrate N has a threshold concentration in 

unspecified salat (3000 – 5000 mg/kg), ruccola salat (7000 mg/kg) and spinach (3500 mg/kg) 

(NFA 2017 – table 4). No treshhold value for Pak choi is given in NFA (2017).  

The results of nitrate N concentration in plant sap of plants grown in T0, T1 and T2 are 

presented in Fig. 9, given mg/L. All concentrations of plant sap nitrate N (Fig. 9) observed for 

the given weeks in this study shows lower values than the lowest treshhold value for the leafy 

vegetables listed in NFA (2017). 
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The plant sap levels shown in Fig. 9 triggered further interest to analyse nitrate N in dry leaf 

tissues. Samples were taken from the same leaf pool analysed for total N (see figure 4). These 

samples were sent to the laboratory in order to confirm the nitrate N concentration. The 

resulting concentratons of nitrate in dry laef tissues were: T0 nitrate N = 478 mg/kg, T1 nitrate 

N = 440 mg/kg, T2 nitrate N = 343 mg/kg. The highest concentration of nitrate N was found in 

T0, having the lowest relative concentration of ammonium N compared to T1 and T2. The 

concentration of nitrate N in T0 are still approx. six times lower than the lowest treshhold 

value listed for nitrate N in unspecified sallat (Lactusa sativa L.) and approx. 14 times lower 

than the treshhold value listed for ruccola (Eruca sativa Mill.). Ruccola and spinach belongs to 

the same family as Pak choi (Brassicaceae). 

 

Figure 9 Plant sap nitrate concentrations for all weeks of sampling, (A) shows the concentration of ammonium 

N in leaf tissues sampled in week 2, 4 and 5 post field transplantation. (B) shows the nitrate N concentration for 
the given weeks. No samples were taken in week 3. 

 

Figure 3 Soil Inorganic Nitrogen Concentration, 

each bar indicates the concentration of inorganic-
N (ammonium + nitrate) found in the soil for each 
treatment postharvest.  

 

 

Figure 4 Plant Tissue Total Nitrogen Concentration, in 
sampled root and leaf tissues three days prior to the final 
harvest. 

Dry & fresh weight 

Leaf and root tissues were sampled from T0, T1 and T2 to measure fresh weight (FW) and dry 

weight (DW) 43 days post field transplantation (see figure 5) and total N concentration was 
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measured for the same samples (see figure 4) where relatively small differences are shown 

for the root N concentration in DW. The roots of plants grown in T2 had significantly higher 

DW compared to both T0 and T1 (figure 5). In Fig. 4, DW and FW of sampled root and leaf 

tissues show similar concentrations of total N for the plants grown in T2 and T1. However, the 

difference in soil concentration indicates higher accessibility to inorganic nitrogen for plants 

grown in T1 compared to plants grown in T2 and T0. This concentration did not reflect any 

significant output on the final harvest (see figure 6) and plant sap concentration of inorganic 

N (see figure 2) was contractively shown to be the lowest in T1 samples (see discussion).  

A complementary two sample t-test (Welch) testing the root DW and leaf DW from T1 

and T2 samples resulted in p = 0,02 for the comparison of root DW, and p = 0,63 for the 

comparison of leaf DW. Thus, the alternative hypothesis H0(2) is true for the comparison of T1 

and T2 root DW according to results gained from the ‘glm’ analysis with post hoc test in 

‘emmeans’ according to Tukey’s HSD, and results gained from the t-test (Welch).  

 

Figure 5 Fresh Weight (FW) and Dry weight (DW), each bar indicates the sampled mean of FW and DW three 
days prior to final harvest. Letters describe the statistical grouping; all bars within each subplot that are not 
sharing the same letter are significantly different from each other  according to the ‘glm’ analysis followed by the 

post hoc test in ‘emmeans’ (Tukey HSD). 
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Final harvest 

The final harvest (Fig. 6) was measured for yield 46 days post field transplantation. No 

statistical difference in means of yield were found between T1 and T2 according to the ‘glm’ 

analysis with post hoc test in ‘emmeans’ (Tukey HSD). Thus, H0(1) is true regarding the 

comparison of means of final harvest data for T1 and T2. Table S2 in supplementary material 

shows the detailed ‘glm’ parameters for the final harvest. 

 

 

Figure 6 Final Harvest Yield Data (right) & Final Harvest Mean Yield (left), each bar (left) shows the mean value 

of 200 observations harvested from its respective treatment. Each boxplot (right) manifests the same 200 
observations sampled from each treatment. Letters (left) describes the statistical grouping of the mean values; 
all means that are not sharing the same letter are significantly different from each other according to the ‘glm’ 
analysis with post hoc test in ‘emmeans’ (Tukey HSD). (See table S2 for statistical parameters). 

 

Phosphorus - plant & soil levels 

Highest concentration of postharvest soil remaining phosphorus was found in T2 (0,03 mg/L) 

compared to T1 (0,025 mg/L) and T0 (0,019 mg/L). Soil remaining concentration of phosphorus 

in T2 indicates redundant levels in relation to the plant sap concentration found in T2 (see Fig. 

7). The values for plant sap concentration presented with week numbers (2, 4 and 5) in Fig. 7 

were averaged and divided by the postharvest soil remaining phosphorus concentration for 

each treatment and the ratios are presented in Fig. 8. 
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Figure 7 Plant sap concentration of phosphorus in 

relation to cultivation starting concentration in soil , 
plant sap concentration is indicated with data points 
and graded with the right y-axis. Assigned numbers (2, 

4 and 5) to each data point indicates the week in which 
the sample was taken post filed transplantation. Bars 
indicate soil concentration graded with the left y-axis.   

 
Figure 8 Ratio of averaged plant sap phosphorus to 

postharvest soil remaining phosphorus, computed 
by taking the mean concentration of plant sap 
phosphorus from plants grown in each treatment 

and divide those means with the postharvest soil 
remaining P concentration of each treatment. The 
highest difference of this sap-to-soil ratio was 
shown for T0 (plants grown in control soil without 

added fertilisers). This shows that T0 plants grown 
in the lowest relative soil concentration of P were 
able to accumulate the highest relative sap 

concentration of P (see Discussion). 
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Discussion 

The growth and development of plants can be demonstrated with an S-shaped slope (an ‘S-

curve’) where x = time and y = growth rate. For most pre-cultured seedlings, the log-phase of 

growth (i.e. the lower tail of the ‘S-curve’) passes in the nurseries during the pre-cultivation of 

seedling. Plug plants of rapid leafy vegetables requires instant access to nutrition in 

connection with field transplantation to ensure maximum growth and development (yield). In 

any form of plant production farmers and urban producers should take material specific nutritional 

release rates and batch specific concentrations into consideration and follow advice given by 

professionals from the agricultural sector. Appropriate fertiliser management saves resources, 

maximizes crop productivity (yield) and reduces pollution of soil remaining fertilisers. 

Regardless of the system (conventional/integrated or organic) N and P percolation is mainly 

important to reduce due to the impact on eutrophication in watercourses, lakes and further 

downstream in the oceans. Organic matter can be sensitive for leakage of both N and P since 

their release rate varies over the season depending on several factors given in the introduction 

(for instance the ratio of C/N) which differs among organic materials. The challenging part is 

to apply the fertilisers with the ambition to supply maximised plant growth during the 

accelerated stage of growth in connection to field transplantation of precultured leafy 

vegetables like Pak choi. 

The ACM assayed in T2 could possibly had affected the accessibility to the proportion 

of inorganic N added from the BRD through immobilisation (beyond plant absorption) 

indicated in Fig. 1 with a descending trend of total N concentration observed in T2. In contrast 

to T2, T1 shows an increasing trend of total N concentration (Fig. 1) which can depend on slow 

disintegration of PSW in soil after application. All treatments ended up showing similar 

concentrations of total N in the last date of sampling (figure 1 – 28/05). Further, the last date 

of sampling of plant sap (figure 2 – 28/05) showed the lowest N concentration in T1 and the 

highest concentration in T2. This particular relationship of plant sap concentration between 

T1 and T2 is mediated as contradictive since the lowest concentration of postharvest soil 

inorganic N was found in T2, and the highest concentration of postharvest soil inorganic N was 

found in T1, see Fig. 3. A more reasonable scenario would have been that the plant sap 

concentration actually reflected the concentration in soil, high sap concentration mirrors high 

soil accessibility which is shown in Fig. 1 and Fig. 2 for the first two occasions of sampling 
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(07/05 and 21/05) but not the last (28/05). This pattern is communicated here as a reverse 

soil-sap concentration relationship which most likely arised from bias. The low inorganic levels 

of N found in the soil of T2 postharvest indicates that the nitrogen was either effectively 

utilised by the plants along with some immobilisation and/or that a part of the N got lost 

through gasification events. The immobilisation, however, depends on the summarised C/N 

of ACM and the present C/N in soil post fertiliser application. In fact, ACM have an 

approximated C/N = 20 (SJV 2018, see table 3) which is considered relatively high compared 

to BRD and PSW.  

The final harvest (Fig. 6) did not differ between T1 and T2 according to the ‘glm’ 

analysis with post hoc test in ‘emmeans’ (Tukey´s HSD) and the two-sided t-test (Welch) see 

table S2, S3, S4. The low difference in final harvest comparing T1 and T2 can also be 

interpreted as 3.9% higher total yield summary in T2, over T1. Moreover, the difference of 

added N content in T1 and T2 can be interpreted as 23% more nitrogen in T2. To compare, a 

3.9% difference in yield gain compared to a 23% difference in N application between T2 to T1 

(see table S1 – summary of nitrogen in treatment 1 compared to treatment 2) indicate that N 

can be lowered in T2 without losing a significant amount of yield. A common procedure to 

implement after a pilot study (like this work) is to optimise application by testing gradients of 

fertiliser concentrations with further statistical approaches.  

The results of this study indicates that the concentration of phosphorus can be lowered 

in T2 since the plant sap levels of phosphorus reflects that even if the soil phosphorus 

concentration is 2,4 folds higher in T2 compared to T1, and 4 folds higher compared to T0 (see 

bars in figure 7), plant sap concentrations of P in T1 and T2 stayed similar over time and the 

highest concentration was surprisingly found in T0 plant sap, surprisingly, since T0 had the 

lowest soil phosphorus concentration, Fig. 7. Grow catch crops is a sustainable way to prevent 

the loss of negatively charged anions like nitrates and phosphates when these are present in 

redundant levels in soil postharvest. 

The general growth/development of T2 went somewhat faster during the first three 

weeks. This was mainly observable on the number of leaves counted ones on intact plants 

from all treatments during week three; data not saved since not intended to be measured at 

first place, however, a response variable which indicated the momentary growth rate. 

Moreover, an observation of visible inflorescences was also performed on all 600 plants (T1, 

T2, T3) in connection with final harvest. It turned out that T2 had a significant higher number 
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of inflorescence counts compared to T1 and T0 which indicates faster development as a result 

of the fertilisers applied in T2, see table S5 in supplementary material for ‘glm’ parameters of 

inflorescence counts. As a matter of fact, plants in T2 could have been harvested at least a 

week earlier in comparison to T1 and T0. Worth to discuss here is: was the enhanced flowering 

process in T2 dependent on the 3.9% difference in N concentration compared to T1 – most 

likely not since the control with very much lower N concentration did not differed from T1 in 

terms of inflorescence counts, see table S5.  In addition, the growth of Pak choi has shown to 

be significantly enhanced in soil treated with cattle manure (Watanabe et al. 2012). The major 

fact communicated is the potential for earlier harvest of plants grown in T2. 
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Conclusions 

This work concluded that using ACM as the primary source of P indicates redundancy revealed by the 

ratio of soil P and averaged plant sap P (figure 8) when applying the ACM as the primary source of K. 

In case of balancing the ACM with respect to P, a shortage of K will appear () which can be 

supplemented with an alternative K-source, for instance ‘Kalimagnesia’ which content of magnesium 

(Mg) moreover complements the low level of Mg found in the BRD. This reasoning is suggested for this 

particular fertiliser regime suited to supply Pak choi with non-redundant levels of P to avoid over 

fertilisation. 

 

The PSW is concluded to be assayed in a new experiment, but together with the BRD as a 

supplementary source of N. The BRD could in other words be added together with the PSW (NPK 6-3-

12) with the same objective as adding it together with the ACM (like in this experiment) – to apply a 

high concentration of inorganic nitrogen in connection to field transplantation in order to provide 

instant access of inorganic N to plug plants. Moreover, this procedure is suggested to be performed 

using a gradient of concentration of BRD to avoid over exposure and loss of N because the C/N is lower 

in the soil when testing the PSW as a nutritional foundation instead of the ACM like in this study. This 

modification is concluded due to the high soil concentration of inorganic nitrogen found in T1 

postharvest; which could be lowered in case of lowering the starting amount of N application from the 

PSW and have this difference of N supplemented instead with the BRD. In other words, the BRD can 

compensate for the low (early season) N release of the pelleted fertilisers (PSW) which in this study is 

indicated with a relative low concentration of plant sap N in the first occasion of tissue analysis (see 

figure 1 and figure 2 – 07/05). The dry and compressed organic waste in the PSW require some soil 

heat and moisture for effective dissolution in early spring and this affects the availability of N from 

PSW. Anyhow, the amount of SOM is suggested, primary, to determine which of these two choices 

(PSW or ACM) to add in conjunction to the BRD – ACM is added in case of low SOM and PSW is added 

if the SOM is in balance. 

 

The ACM together with one single application of BRD in T2 leaves less inorganic nitrogen in soil 

postharvest (see figure 3). Plants in T2 accumulates a somewhat higher concentration of (pooled) total 

N in roots and leaves, in contrast to T1. 

 

The level of fertilisers (ratios and concentrations) is concluded to be lowered in both of the treatments 

for further experiments, with the aim to compare the yield with plant tissue concentrations of different 

macro elements in a restricted manner (or with less accessibility to the elements as a consequence of 
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assaying concentration gradients in the soil). With a stronger budget, such a project can be conducted 

through the analysis of sub-pools to generate data for at least five observations per treatment. This 

repeated measurement will be sufficient if the aim is to apply comparative statistics to test sample 

variance. 

 

Extensive levels of fertilisers will not increase the yield, rather cause different issues like eutrophication 

and unnecessary loss of natural resources, e.g. P. Peak phosphorus is one example of a projection of 

the limitation of phosphorus in agriculture which soon will become an important area of research on 

global level. 

Thank you for reading this thesis.  
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Supplementary material 

Table S1 Summary of all fertilisers which was added to T1 and T2. The amount of nitrate in the ACM analysed 
according to QuAAtro (post field application) is indicated with +158, see column: N. This amount of nitrate lead 
to an unbalanced summary concentration of N between T1 and T2. 

 

Table S2, ‘glm’ parameters of final harvest based on 200 obs. of yield data per treatment. 

Contrast Estimate SE Df z-ratio p-value 

T0 – T1 95 11.6 infinity 8.151 <0.001*** 
T0 – T2 107 11.6 Infinity 9.183 <0.001*** 

T1 – T2 12 11.6 infinity 1.031 0.5570 

 

Table S4, two sample t-test (Welch) assuming equal variances of the final harvest. 

Contrast df t-value p-value 

T1 – T0 18 2.9973 0.00773** 

T2 – T0 18 3.0106 0.00751** 

T2 – T1 18 0.3957 0.679 
 

Table S3, yield parameters given in grams (g) and kilograms (kg) as indicated. 

Treatments 
Mean yield 

200 obs. ± SD (g) 
Summed yield 
200 obs. (kg) 

T0 213 ± 82 42.67 

T1 308 ± 57.6 61.66 
T2 320 ± 76.8 64.06 

  

Fertilisers T1 T2 
Added 

(g/plant)  
N P K Ca Mg S 

ACM 
(NPK) 

 X 177.8 
294 

+ 158 
390 814  266 248 

BRD 
(NPK) 

 X 57.8 235 14 104  3 17 

PSW 
(NPK) 

X  6.8 302 163 814  7 495 

PSW 

(N) 
X  1.9 228 6    43 

Kieserit 
(Mg + S) 

X  17.4     262 349 

 X 31.1     467 623 

Dolomit 
(Mg) 

X  7.8 
    

934 
 

 X 3.9 467 

 

Summary T1 (mg/plant) 530 169 814  1203 887 

Summary T2 (mg/plant) 687 404 918  1203 888 
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Table S5, ‘glm’ parameters where ‘contrast’ indicates the comparison (in pairs) of inflorescence counts based on 

binomial data (1,0) observed for all 200 obs. in each treatment. The contrast of T0 to T1 reveals no effect on 
inflorescence count which indicates that the fertiliser treatment in T1 had no effect on e nhanced flowering.  

Contrast Estimate SE df z-ratio p-value 

T0 – T1 0.171 0.338 infinity 0.505 0.8688 
T0 – T2 1.242 0.296 Infinity 4.200 0.0001*** 

T1 – T2 1.071 0.282 infinity 3.797 0.0004*** 

 


