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1

Introduction

The present dissertation aims to propose the following: First, a family of temporary
vaccination strategies in the framework of the SIR model. These strategies are charac-
terized by parameters (k, p) where vaccination starts when the number of infected hosts
reaches a threshold level k, and with rate p we continue vaccination until herd immunity
is achieved (VUHIA). Second, a family of temporary non-pharmaceutical intervention
(NPIs) strategies. For the sake of simplicity, we work in the basic SIR-framework. An
intervention strategy will be defined by two parameters (k, u∗) which determine the time
interval it is applied as well as the intensity of intervention, where NPIs start when
the number of infected hosts reaches a threshold level k, and with rate u∗ we continue
intervention till herd immunity is reached (ITHIR).

In Chapters 3 and 4 of this thesis, we assign a total cost to each strategy composed
of cost of disease burden and cost of intervention, and systematically investigate the
dependence of the total cost on the parameters. Our goal in these two chapters is to
find out which strategy is the most cost-efficient. In Chapter 5, we construct the final
size system for each strategy and investigate the impact of the VUHIA-strategy and
ITHIR-strategy on the final epidemic size.

In addition, this thesis aims to propose and analyze a mathematical model for in-
fectious disease dynamics with a discontinuous control function, where the control is
activated with some time delay after the density of the infected population reaches a
threshold. The model is mathematically formulated as a delayed relay system, and the
dynamics are determined by the switching between two vector fields (the so-called free
and control systems) with a time delay with respect to a switching manifold. Our results
in Chapter 6 provide insight into disease management, by exploring the effect of the in-
terplay of the control efficacy, the triggering threshold and the delay in implementation.
This thesis is based on the publications [33] and [34] of the author.
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1. INTRODUCTION 2

Mathematical models of the transmission dynamics of infectious diseases are useful in
gaining insights into the mechanisms of disease spread, in estimating key epidemiological
parameters, in making predictions about the expected outcomes, and also in devising,
evaluating and comparing intervention strategies.

One of the simplest compartmental models for epidemiology is the SIR model (sus-
ceptible, infectious, recovered), which is a special case of the general model introduced
by Kermack and McKendrick in 1927. It has been used to study a variety of diseases
such as pandemic and seasonal influenza, SARS, and many other disease. Many papers
that simulate these epidemics are discussed in the introduction of [26]. The aim of using
the SIR model is to simulate the disease outbreak and evaluate the impacts of selected
control measures under various determined scenarios.

Depending on the nature of the epidemic, many control measures can be used to
contain, mitigate, or prevent epidemic outbreaks. They might be pharmaceutical or
non-pharmaceutical interventions. Vaccination is the most successful and cost-effective
preventive measure against many infectious diseases [9]. However, for some emerging dis-
eases, the delay in identification of the pathogen (such as the particular strain), the time
needed to develop novel vaccinations, and the limited capacity in production, distribution
and administration of vaccines may lead to a situation where vaccination programs run
parallel in time with the disease outbreak.

During the recent West African Ebola virus epidemic (2013–2016), at the beginning
no licensed vaccines for the disease were available. The rVSV-ZEBOV vaccine was de-
veloped during the course of the epidemic [32]. Until the vaccine became available, other
coordinated public health measures have been implemented [3]. A similar situation oc-
curred also in many developed countries during the 2009 influenza H1N1 outbreak [22].
For instance, in Canada, due to the limited availability of the vaccine at the outset of
the outbreak, and the inability to vaccinate the entire population simultaneously, a se-
quencing strategy has been developed that identified groups of different levels of priority
[10]. In some countries a significant portion of the influenza vaccines were administered
in the later phase of the epidemics [22], when the number of prevented cases per a unit
of administered vaccine drops sharply. This raises the question of cost-effectiveness, and
also suggests that the vaccination program should stop at some well defined point of the
epidemics.

Emerging coronavirus and influenza threaten the world with more and more pan-
demics. The ongoing COVID-19 caused by a novel SARS-CoV-2 has infected a con-
firmed 62,721,869 humans, killing 1,460,894 from January 2020 to November 2020. We
have experienced the emergence of the influenza pandemics in the periods 1918 − 1919,
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1957−1958, 1968−1969, and also a novel H1N1 pandemic influenza strain in 2009−2010
that caused substantial morbidity and mortality around the world and has transitioned
into a seasonal strain [6]. Every year around 1 billion people worldwide suffer from sea-
sonal influenza, of which 3 − 5 million of them are classified as serious cases and some
290000− 650000 die from chronic respiratory illness associated with influenza [19,48].

Seasonal epidemics cause an economic burden caused by direct and indirect medical
costs such as loss of productivity due to absence from work resulting in infection. These
losses are estimated about 0.6% of global income [12]. Reducing the burden of seasonal
influenza is a major goal of national and international public health organizations. Inte-
grating non-pharmaceutical interventions (NPIs) into prevention and control programs is
one of the key actions of the Global Influenza Strategy of WHO for 2019−2030 [48]. NPIs,
also known as community mitigation strategies, proven effectiveness in addressed to the
1918− 1919 influenza pandemic in the USA, were the only available set of interventions
[31]. NPIs may cover a range of measures including social distancing, school closure,
hand hygiene, cough etiquette, mask usage and so on. NPIs have different costs and
different impacts on the epidemic outcome, hence it is important to develop a framework
to determine their cost-effectiveness.

Reducing the final epidemic size of infectious diseases is a major goal for national
and international public health organizations. One of the strategic objective of Global
Influenza Strategy for 2019−2030 of WHO is to expand seasonal influenza prevention and
control policies and programs to protect the vulnerable [48]. The tools for the prevention
and control of epidemics include non-pharmaceutical interventions (NPIs) to slow down
the spread of illness, vaccines to reduce transmission, disease severity and incidence of
serious complications and death, and isolation or antiviral drugs to reduce the infection
rate and treat the illness and reduce the risk of serious complications [48].

Final epidemic size (FES), the number of individuals of the population who become
infected over the course of the epidemic, is an important factor in computing the total
cost of intervention strategies for epidemic outbreaks (see for example [20,26,33,39,51]).
Estimating the final size is one of the key questions that arise when emerging infectious
diseases appear. A mathematical tool for this estimation is the so-called final size relation.

The final size relation has been derived recently for a variety of compartmental models
of mathematical epidemiology to predict the total number of cases during the outbreak
when intervention strategies are implemented. For example, the generalized mean-field
and pairwise models for non-Markovian epidemics on networks with arbitrary recovery
time distributions [38], EVD dynamics, including virus transmission in the community,
at hospitals, and at funerals[3], a generalization of pairwise models to non-Markovian epi-



1. INTRODUCTION 4

demics on networks [21], a delay differential model for pandemic influenza with antiviral
treatment [1], for SEIR models with quarantine and isolation [13].

Switching models have been used recently in the compartmental models of mathemat-
ical epidemiology to analyze the impact of control measures on the disease dynamics. For
example, it has been observed that if the treatment rate [46] or the incidence function [2]
is non-smooth, that may lead to various bifurcations. These sharp changes occur in [2]
and [46] when the total population, or the infected population reaches a threshold level.
Such a sudden change may even be discontinuous, for example due to the implementation
and termination of an intervention policy such as vaccination or school closures.

Mathematically, such situations are described by Filippov systems, when the phase
space is divided into two (or more) parts and the system is given by different vector
fields in each of those parts. Examples include sudden changes in vaccination [33, 44],
hospitalization [47], transmission [49], travel patterns [29], or the combination of several
effects [45]. They have been used for vector borne diseases as well [52]. An overview of
the basic theory and applications of switching epidemiological models can be found in
[30]. Many of the mathematical challenges appear due to the incompatible behaviours of
the vector fields at their interfaces, on the so-called switching manifold.

Switching systems typically assume that the change in the vector field occurs im-
mediately whenever the switching manifold is touched, for example, a threshold in a
population variable is reached. However, in reality, implementing a policy may have
some time lag, hence it is natural to consider the situation when we switch to the new
vector field with some delay after the solution intersected the switching manifold. These
systems are called delayed relay systems [40], and they are of different mathematical
nature than the Filippov systems.

Delayed relay systems have been applied to an SIS model [28], where explicit periodic
solutions were constructed for the case of a delayed reduction in the contact rate after the
density of infection in the population passed through a threshold value. The dynamics of
this discontinuous system was different from its continuous counterpart [27],[24], showing
that it is worthwhile to analyse the dynamics of epidemiological systems with delayed
switching. The simplistic SIS model of [28] could be reduced to a scalar equation, and
here we initiate the study of more realistic and more complex compartmental models in
this context.

In particular, in chapter 6 of this thesis our starting point is an SIR model with
switching, which has been thoroughly investigated in [49]. The model represents cir-
cumstances when intervention measures are taken only when the density of infectious
individuals is exceeding a certain threshold value. This is expressed by a discontinuous
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incidence rate, more precisely, the intervention causes a drop in the transmission rate.
They showed that the solutions ultimately approach one of the two endemic states of
the two structures (the free and the control system), or the so-called sliding equilibrium
located on the switching surface, depending on the threshold level.

In chapter 6, we introduce the possibility of a time delay in the threshold policy.
We prove several global stability theorems for the system with delay. An important
difference in the dynamics is that while in the model of [49] the existence of limit cycles
was excluded, for our model periodic orbits exist, and we prove that by constructing a
Poincaré-type return map on a special subset of the phase space. These periodic solutions
oscillate around the threshold level. On the other hand, the sliding mode control in [49]
does not appear in our system. Our results contribute to the development of a systematic
way of designing simply implementable controls that drive the dynamics towards disease
control or mitigation.



2

Mathematical framework

2.1 The basic SIR model
An epidemic is a sudden outbreak of a disease that infects a substantial portion of
the population in a region before it disappears. In this thesis, we are interested in
the epidemic caused by viral agents and it transmits from individual to individual in a
population. So, we assume that the epidemic divide the constant population N , which
we normalize to a unity (N = 1), into three compartments. Namely, susceptibles (S),
infecteds (I), recovereds (R), see Figure 2.1. The new infection occurs with transmission
coefficient β and infected individual recover with rate α, upon recovery full immunity is
assumed. Hence we consider the following system of differential equations:

S ′(t) = −βS(t)I(t),
I ′(t) = βS(t)I(t)− αI(t), (2.1)
R′(t) = αI(t),

with the initial data S(0) = S0, I(0) = I0, R(0) = 0, where I0 is relatively small
compared to the total population size N = S + I + R. The first two equations of (2.1)
are independent of the third one. Hence we consider the following system of differential
equations

S ′(t) = − βS(t)I(t),
I ′(t) = βS(t)I(t)− αI(t)

(2.2)

with S(0) = S0, I(0) = I0, and we denote its solution by (S(t), I(t)). It is known
(see [18, Chapter 11] and [7, Chapter 9]) that, from the first equation of (2.2), S is
decreasing for all t ≥ 0, and from the second one we can see that I ′(t) = 0 if I = 0 or
S = α/β. I ′ > 0 if S > α/β while I ′ < 0 if S < α/β. Hence for (S0, I0), S decreases

6
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Figure 2.1: Scheme of Susceptible-Infectious-Recovered (SIR) Model. Boxes
represent compartments and arcs represent flux between compartments.

monotonically, while I at first increases, but eventually reaches a maximum and then
start decreases and eventually tends to zero. Epidemic outbreak occurs when I ′(0) > 0.
That is βS(0)/α > 1. This threshold is called the basic reproduction number, which is
the average number of secondary cases per infectious case in a population composed of
both susceptible and non-susceptible individuals during the course of an outbreak, i.e.

R0 = βS0

α
,

however if I0 << 1, we have S0 ≈ 1 hence the reproduction number simplifies to R0 =
β/α. In other words epidemic outbreak occurs when R0 > 1.

Division the first equation of (2.2) and integration from 0 to t gives

I(t) + S(t)−R−1
0 logS(t) = 1−R−1

0 logS0. (2.3)

This implicit relation between S and I describes the orbits of solutions of (2.2) in the
(S, I) plane. Indeed, the function I + S −R−1

0 logS is constant along solution curves. It
then follows that there is a unique solution curve connecting each equilibrium point in
the interval α/β < S < 1 to one in the interval 0 < S < α/β..

Let Imax denotes the peak of the SIR-epidemic in the absence of any intervention. If
I(0) > 0, then I ′(t∗) = 0 when S(t∗) = α/β = R−1

0 . Substitution I = Imax and S = R−1
0

in (2.3) gives
Imax = 1−R−1

0 (1 + logR0), (2.4)

the maximum number of infecteds for the SIR model (with N = 1).
The sum of the first two equations of (2.1) is

(S(t) + I(t))′ = −αI(t).

It is not difficult to prove that limt→∞ I(t) = 0, limt→∞(S(t)+I(t)) = limt→∞ S(t) := S∞,
and α

∫∞
0 I(t)dt = 1 − S∞. Division the first equation of (2.1) on S(t) and integration

from 0 to ∞ gives
log S0

S∞
= R0(1− S∞). (2.5)

Equation 2.5 is called the final size relation. It gives a relationship between the ba-
sic reproduction number and the final size of the epidemic (1 − S∞), the total number
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of individuals who get infected during the course of the epidemic. The final size rela-
tion (2.5) can be generalized to epidemic models with more complicated compartmental
structure than the simple SIR model (2.1), including vaccination or non-pharmaceutical
interventions. Indeed, this is a one of our interests in this thesis, see Chapter 5.

2.2 Intervention strategies for epidemic outbreaks
A usual way of introducing intervention strategies is to start the control measures when
the number of infected reaches a given level and stop the intervention if the number of
infected becomes smaller than this level. The problem with this strategy is that if the
number of infected starts growing again once the intervention is stopped as shown in
Figure 2.2 (left), the intervention policy might become unpopular among the population
as it might seem unsuitable to stop the epidemic.

In the control literature ([49], [11], [14], [42], [43]), a threshold policy leads to a
variable structure system with two distinct structures with their own equilibrium points,
separated by the threshold level. A sliding mode [43, 49] along the threshold level may
ensue, if in its vicinity the vector fields of both structures are directed toward each other,
see Figure 2.2 (right), which means that the number of infected people should be kept
constant for some time, which is not realistic.

2 4 6 8
t

0.01

0.02

0.03

0.04

I(t)

2 4 6 8
t

0.01

0.02

0.03

0.04

I(t)

Figure 2.2: The second wave resulting from lifting the control measures (left) and the sliding
mode control of outbreaks resulting from the threshold policy. Parameters are R0 = 1.4,
α = 6, β = 8.4.

There has been a number of studies using SIR model with optimal control theory
to find a control function that minimizes some (typically linear, quadratic, exponential)
cost function (see [20,26,39,51] for examples). However, a continuously changing control
function, which is the common output from that approach for nonlinear cost functions,
is not feasible to be realized as a public health policy.
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Motivated by these problems we aim to define a strategy in a simpler way, and we
assume that the control function is a piecewise constant function, taking values of either 0
(control is off), or some positive value (control is on). This means that we propose to apply
the interventions with a given rate on some time interval. We assume that the starting
point of intervention is when the density of infecteds reaches a threshold value as in [49]
and stop the intervention only when herd immunity is achieved. Mathematically, from
the second equation of (2.1) I ′(t) < 0 for every t > t∗ if and only if S(t) < α/β = 1/R0.
That is the number of infected individuals start decreasing for every t > t∗ if and only
if the number of susceptible population drops below 1/R0. That is, (with N = 1),
1 − 1/R0 of the population recovered from the disease and they are immune. In the
literature this threshold is called herd immunity (HIT)(see [15]). For example, the herd
immunity threshold for seasonal influenza is 21.9% as the basic reproduction number is
1.28 (see [5]).

2.3 Numerical computations
In this section, we describe the code we used in the simulations, which was implemented
in Wolfram Mathematica 12. Wolfram Mathematica provides the following commands:

• Table [expr, {i, imin, imax, di} , {j, jmin, jmax, dj}] : gives a nested list of the values of
expr when i runs from imin to imax and j runs for every i from jmin to jmax using
steps di and dj;

• NDSolve, [eqns, u, {x, xmin, xmax}]: finds a numerical solution to the ordinary dif-
ferential equations eqns for the function u with the independent variable x in the
range xminto xmax;

• WhenEvent [event, action]: specifies an action that occurs when the event triggers
it for equations in NDSolve and related functions.

• Flatten [list, n]: flattens out nested lists to level n.

• Interpolation [{{{x1, y1, . . .} , f1} , {{x2, y2, . . .} , f2} , . . .}]: constructs an interpola-
tion of multidimensional data.

• ContourPlot [(f, {x, xmin, xmax} , {y, ymin, ymax})]: generates a contour plot of f as
a function of x and y.

For example, in Chapter 3 we investigated the dependence of the total (TC) cost of an
outbreak on the threshold level k, the starting point of the intervention, and on the
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vaccination rate p. The total cost is assessed as follows

TC (k, p) := C1Ĩ + C2Ṽ ,

where Ĩ(k, p) is the total infected people during the course of the epidemic and applying
VUHIA-strategy of (k, p)-type (see page 15 of this thesis for more details about VUHIA
strategy) and Ṽ (k, p) is the total vaccinated people, which are defined in (3.4). Indeed,
we defined the total cost as a function in two variables. We built this function as fol-
lows: First we calculated the maximum number of infecteds (Imax) in the absence of any
intervention by using (2.4). Second, we used the Table command to generate a nested
list of the values of a numerical solution of (3.1), where k runs from I0 to Imax and p

runs for every k from pmin to pmax using steps kstep and pstep. The code can be written
as Table [NDsolve [System 3.1] , {k, I0, Imax, kstep}, {p, pmin, pmax, pstep}]. The WhenEvent
command is used while resolving the system to collect and memorize the values of Ĩ(k, p)
and Ṽ (k, p). Then one can interpolate the collected data by using Interpolation and
Flatten commands to have the functions Ĩ(k, p) and Ṽ (k, p). Finally, one can use Con-
tourPlot command to generate a contour plot of TC as a function of k and p, see for
example Figure 3.7.



3

Optimal temporary vaccination
strategies for epidemic outbreaks

In this chapter, we propose temporary vaccination strategies in the SIR disease outbreak
model, where vaccination starts when the infection level reaches a threshold, and con-
tinues until susceptibles drop below a level such that the number of infected hosts is
decreasing without further intervention. Costs are assigned to vaccination and disease
burden, and we investigate which one of this two parameter family of VUHIA (vaccinate
until herd immunity achieved) strategies gives the minimal cost. When the cost of vac-
cination is very small compared to the cost of disease burden, the optimal strategy is to
start vaccination as early as possible and as high rate as possible. When vaccination is
very expensive, the minimal cost is attained without vaccination. However, when these
costs are of similar magnitudes, we uncover some counter-intuitive phenomena, namely
the total cost can be a non-monotone function of the vaccination rate and the threshold
value. We also show that for different basic reproduction numbers, the corresponding
optimal strategies can be very different.

3.1 Specification of the VUHIA-strategy and its to-
tal cost

To understand the following discussion, the reader is referred to Figure 3.1. We con-
sider a constant population divided into susceptible (S(t)), infected (I(t)), and removed
(R(t)) compartments. New infections occur with transmission coefficient β and infected
individuals recover with rate α. Upon recovery, full immunity is assumed. Vaccination
of susceptibles is included in the model with time dependent vaccination rate v(t), to be
specified later. Vaccination is assumed to be fully protective, thus vaccinated individuals
are placed in the R-compartment as well. Hence, we consider the following system of

11
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Figure 3.1: Scheme of Susceptible-Infectious-Removed (SIR) Model of the
VUHIA-strategy. Boxes represent compartments and arcs represent flux between com-
partments.

differential equations:

S ′(t) = − βS(t)I(t)− v(t)S(t),
I ′(t) = βS(t)I(t)− αI(t),
R′(t) = αI(t) + v(t)S(t).

(3.1)

We are interested in the situation when a small number of infected hosts are introduced
into a fully susceptible population, hence we consider initial data S(0) = S0, I(0) = I0,
R(0) = 0, where I0 is relatively small compared to the total population sizeN = S+I+R.
The basic reproduction number is given by

R0 = βS0

α
,

however by normalizing the population size at N = 1 and with I0 << 1, we have S0 ≈ 1
hence the reproduction number simplifies to R0 = β

α
. Epidemic outbreak occurs when

R0 > 1.
The total cost (TC) of an outbreak will be assessed by considering two components,

the disease burden and the cost of vaccination. Disease burden is calculated as the total
number of infections during the course of the outbreak (denoted by Ĩ) multiplied by
the cost C1 of a single infection. Vaccination cost is calculated as the total number of
administered vaccines (denoted by Ṽ ) multiplied by the cost C2 of a single vaccination.
This way, for the total cost we have

TC := C1Ĩ + C2Ṽ , (3.2)

where

Ĩ :=
∫ ∞

0
βS(t)I(t)dt = α

∫ ∞
0

I(t)dt, (3.3)

Ṽ :=
∫ ∞

0
v(t)S(t)dt. (3.4)
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There has been a number of studies using optimal control theory to find the control
function v(t) that minimizes some (typically quadratic) cost function (see [50] for an
example). However, a continuously changing v(t), which is the common output from
that approach, is not feasible to be realized as a public health policy. Hence, we aim to
define a strategy v(t) in a simpler way, and we assume that v(t) is a piecewise constant
function, taking values of either 0 (control is off), or some p > 0 (control is on). This
means that we propose to apply vaccination with a given rate on some time interval. It
remained to determine when to start and when to finish the intervention. We can not
expect in general that the intervention can start immediately, as the epidemic may not
have been detected or the resources are not in place at the beginning of the outbreak.
A reasonable assumption is that the starting point of interventions is when the number
of infected individuals reach a threshold value k, as it has been in [49]. However, in
outbreak models using the same threshold to define the end of intervention may not be
adequate, given that if k is too large then we finish vaccination too early, while when
k is too small then vaccination may go on even when it does not have any significant
impact on the epidemic any more. Instead, we propose to stop the vaccination when
the number of infections start decreasing, which is the same point when the number of
susceptibles becomes so low that herd immunity is reached in the population. We call
such an intervention a VUHIA-strategy of (k, p)-type, referring to vaccinate until herd
immunity achieved with parameters (k, p).

In mathematical terms, the VUHIA-strategy of (k, p)-type is defined as follows. Let

v(t) =

0, t /∈ J,
p, t ∈ J,

(3.5)

where J is the intervention interval J = [Tstart, Tend] with

Tstart = min{t ≥ 0 : I(t) ≥ k} (3.6)

and
Tend = min{t ≥ 0 : βS(t)− α ≤ 0}. (3.7)

The time Tstart is well defined as long as k ∈ [I0, Imax], where Imax denotes the peak of
the SIR-epidemic in the absence of any intervention. It is well known for the SIR model
(with N = 1) that

Imax = 1−R−1
0 (1 + lnR0).

Clearly we have I ′(t∗) = 0 when S(t∗) = α/β, and I ′(t) < 0 for any t > t∗ regardless
we vaccinate or not at some t > t∗. Since the epidemic eventually always dies out, Tend
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Figure 3.2: The total number of infected (left) and vaccinated (right) people during the
epidemic for different strategies. The epidemic parameters are R0 = 4, α = 6, β = 24. On
the left, the red curve is the epidemic curve in the absence of intervention. On the right,
we can clearly see when the vaccination starts and stops.

is well defined, and (3.4) becomes

Ṽ := p
∫ Tend

Tstart
S(t)dt. (3.8)

Figure 3.2 depicts how the epidemic plays out with two different strategies. In one,
we start vaccinating early with a low rate; in the other we start vaccinate later but
with a higher rate. As Figure 3.2 shows, it is unclear which of these two strategies is
better, hence we will systematically explore this in the forthcoming sections by computer
simulations.

3.2 The relation between the total cost and the vac-
cination rate p

To see how the total cost depends on the vaccination rate, we shall consider various fixed
k-s and vary p. The change in the total cost then depends on

d

dp
TC(p, k) = C1

d

dp
Ĩ + C2

d

dp
Ṽ .

From Figure 3.3 we can see that Ĩ decreasing while Ṽ decreasing in p, thus the sign of
the rate of change of the total cost is determined by the ratio of C1 and C2 relative to
the rates of change in Ĩ and Ṽ . In the sequel we always normalize the cost of disease
burden C1 = 100, and we will vary C2 to compare different scenarios. What we can
see in Figure 3.4 is that when C2 � C1, the total cost is decreasing in p, meaning that
when vaccination is relatively cheap, we should vaccinate as high rate as possible. On the
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Figure 3.3: The total number of infected (left), and vaccinated (right) people during the
epidemic as a function of vaccination rate p. Parameters are R0 = 1.5, α = 6, β = 9.
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Figure 3.4: The total cost as a function of p, for five different vaccination costs (left). In
the right, the case C2 = 155 is highlighted by zooming in. Parameters are R0 = 1.5, α = 6,
β = 9, k = 0.002.

other hand, when C2 � C1, the total is increasing in p, meaning that when vaccination
is very expensive relative to the disease burden, the strategy that give minimal cost is
to not vaccinate at all. We can also see that the total cost is most sensitive to p when
the vaccination rate is small. These results are what one would expect, however there
is a curious situation when C1 and C2 are of similar magnitudes: there is a possibility
that the total cost is not monotone in p. This scenario is highlighted in Figure 3.4, right.
In this case, vaccination with a small rate yields a higher cost than no vaccination (see
the red line), however vaccination with a high rate yields a smaller cost. Let p∗ be the
value where the cost curve intersects the straight red line corresponding to cost of no
vaccination. This means that if we are capable to vaccinate with a sufficiently high rate
p > p∗, then we should do it, but if with our capacities and resources only a smaller rate
p < p∗ can be achieved, it is better to not vaccinate at all.
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Figure 3.5: The total number of infected (left) and vaccinated (right) people during the
epidemic as a function of k. Parameters are R0 = 1.5, α = 6, β = 9.

3.3 The relation between the total cost and the
threshold level k

Next we consider how the total cost changes when we vary k for fixed values of p. Figure
3.5 shows that by increasing k, that is we start vaccinating later, the total number of
infections increasing while the total number of vaccinations decreasing. Again, the change
in total depends on how C1 : C2 relates to dĨ

dk
: dṼ
dk
. This is depicted in Figure 3.6 (left)

for various values of C2. Similarly as before, we see that if vaccination is relatively cheap,
it is better to start early, and when it is very expensive, it is better not to start at all.
The graphs of all five curves meet at the right when k → Imax. When similar costs are
assigned to disease burden and vaccination, we can see a non-monotone behaviour, which
is highlighted in the right of Figure 3.6. The interpretation of this figure is that in the
scenario if the blue dotted curve there is a k∗, such that if we are capable to start the
intervention earlier that k∗, then we should as soon as possible. But, if for any reason we
could not start the intervention before I(t) reached k∗, then it is better not to vaccinate
at all. This k∗ is given by the intersection of the blue dotted curve with the horizontal
red line.

3.4 Conclusions and summary
We have proposed a family of temporary vaccination strategies in the framework of the
SIR model. These strategies are characterized by parameters (k, p), where vaccination
starts when the number of infected hosts reach the threshold value k, and with rate p we
continue vaccination until herd immunity is achieved (VUHIA). The advantages of the
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Figure 3.6: The total cost as a function of k for five different vaccination costs (left). The
cases C2 = 155 and C2 = 200 are highlighted by zooming in (right). Parameters are
R0 = 1.5, α = 6, β = 9, p = 1.5.

VUHIA-strategy are the following. First, it has a clear and meaningful definition: we
start vaccinate with rate p when a threshold k is reached in the level of infection, and
we start the vaccination then the number of susceptibles drops below R−1

0 , that is herd
immunity achieved the number of infected will decrease anyway. Second, it is determined
only by the parameters (k, p), hence all strategies from this family can be explored in a
two dimensional parameter space.

We have assigned a total cost to each strategy composed of cost of disease burden
and cost of vaccination, and systematically investigated the dependence of the total cost
on the parameters. Essentially, we have found three types of behaviours:

(a) vaccination cost is very low compared to the cost associated to disease burden: in
this case increasing the vaccination rate and start vaccination earlier reduce the
total cost;

(b) vaccination cost is very high compared to the cost associated to disease burden: in
this case the optimal strategy is to not vaccinate at all;

(c) vaccination cost and disease burden cost are of similar magnitudes: there may be
non-monotone relationships between the vaccination rate, the starting threshold
and the total cost.

These three typical behaviours are plotted into a heatmap in Figure 3.7. In case (c), it
may happen that a better strategy is to start earlier but only if we can start sufficiently
early, or, it better to increase vaccination rate but only if we can increase it to a sufficiently
high level. If we cannot meet those criteria, then the best decision is to not vaccinate.
The top plot of Figure 3.7 illustrates these intricate non-monotonicity properties.
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Figure 3.7: Dependence of the total cost on (k, p) in three typical situations: C2 = 50� C1
(bottom left), C2 = 500 � C1 (bottom right), and C2 = 155 (top). Parameters are
R0 = 1.5, α = 6, β = 9, and C2 = 50, 155, 500 respectively. The bottom plots show
monotone cases, while in the top plot we can find non-monotonicity in both k and p.

Depending on the available resources and public health capacities, there may be
constraints on the parameters, such as k ≥ kmin and p ≤ pmax. Finding the optimal
strategy with such constraints can be found even in these cases from the graphs in
Figures 3.4, 3.6, 3.7. It is very easy when the total cost depends monotonically on the
parameters, for example with an upper bound on p and in the situation of C2 = 50 in
Figure 3.4, the optimal strategy is always p = pmax. In contrast, for C2 = 155 (see Figure
3.4 right), p = pmax is the optimal strategy only if p∗ < pmax, otherwise the optimal
strategy is p = 0.

Another interesting phenomenon is depicted in Figure 3.8, showing that for a fixed
p, the monotonicity of the total cost in k can reverse varying the reproduction number.
In that particular situation of Figure 3.8, for a less contagious disease (R0 = 1.2), to
minimize the cost vaccination should start as early as possible (k → 0), while for a more
contagious disease (R0 = 4) the lowest cost comes from not vaccination at all (k → Imax).

Although this SIR vaccination model is certainly too simplistic to apply to any real
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Figure 3.8: Effect of R0 on the monotonicity of the cost curve. Parameters are p = 0.25,
C2 = 115, α = 6 and β = 7.2, resp. β = 24. For R0 = 1.2, optimal strategy is achieved by
vaccinating early, while for R0 = 4 it is better to not vaccinate at all.

outbreak, this simple epidemiological model already exhibits some surprising and counter-
intuitive features, highlighting that in real applications with more complex models, a
comprehensive mathematical investigation of the possible intervention strategies is really
necessary.



4

Optimal temporary
non-pharmaceutical intervention
strategies for epidemic outbreaks

Striking a fine balance between protecting public health and minimizing economic dis-
ruption is a major goal for authorities during the battle against the COVID-19 pandemic.
In addition, reducing the burden of seasonal influenza is a major goal of national and
international public health organizations. Integrating non-pharmaceutical interventions
(NPIs) into prevention and control programs is one of the key actions of the Global In-
fluenza Strategy of WHO for 2019-2030. In fact, NPIs are key tools to mitigate COVID-19
as well. NPIs may cover a range of measures including social distancing, school closure,
hand hygiene, cough etiquette, mask usage and so on. NPIs have different costs and
different impacts on the epidemic outcome, hence it is important to develop a framework
to determine their cost-effectiveness.

In this chapter, we propose temporary non-pharmaceutical intervention strategies in
the SIR disease outbreak model, where NPIs start when the density of infected individuals
reaches a threshold level, and continues with the same intensity until the density of
susceptibles drops below a critical level such that the infection can not spread any more
even without further intervention. Such a strategy is determined by two parameters:
the threshold of infection density when the intervention is triggered, and the intensity
of the intervention efforts. Costs are assigned to NPIs and to disease burden, and we
investigate which member of this two-parameter family of ITHIR (intervene till herd
immunity reached) strategies gives the minimal cost. We systematically investigate and
compare a variety of possible cost functions.

We identified a parameter region where the herd immunity will never be reached, in
which case the intervention is not feasible as its cost exceeds any given bound. Consid-

20
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ering the feasible region of limited costs, when the cost of NPIs is very small compared
to the cost of disease burden, we maximized the allowed length of intervention, and we
could find the optimal strategy with such restriction. When the NPI is very expensive,
the minimal cost is attained without any intervention. However, when these costs are
of similar magnitudes, we uncover some counter-intuitive phenomena, namely that the
total cost can be a non-monotone function of the control intensity and the threshold
value, and in this case we can determine which strategy gives the minimal total cost.
We also demonstrated that the corresponding optimal strategies can be very different for
pandemic and for seasonal influenza.

We systematically investigated the cost-effectiveness of a newly proposed family of
temporary NPIs. We uncovered the impact of various cost functions, and provided valu-
able insights to develop effective control strategies for seasonal and pandemic influenza.

4.1 Modelling framework
We consider a constant population N divided into three compartments: susceptible
(S(t)), infected (I(t)), and recovered (R(t)), see Figure 4.1. At the beginning, an out-
break runs its natural course, hence new infections occur with transmission coefficient
β > 0. However, if the number of infected individuals reaches a threshold level k, then the
authorities impose certain non-pharmaceutical interventions (NPIs) with control inten-
sity u∗ ∈ (0, 1), resulting in a reduction in the transmission coefficient. This reduction is
included in the model with time dependent NPIs intensity rate u(t), to be specified later.
Infected individuals recovered with rate α. Upon recovery, full immunity is assumed.
Hence we consider the following system of differential equations:

S ′(t) = −[1− u(t)]βS(t)I(t),
I ′(t) = [1− u(t)]βS(t)I(t)− αI(t), (4.1)
R′(t) = αI(t).

We are interested in the situation when a small number of infected hosts are introduced
into a fully susceptible population, hence we consider initial data S(0) = S0, I(0) = I0,
R(0) = 0, where I0 is relatively small compared to the total population sizeN = S+I+R.
The basic reproduction number is given by

R0 = βS0

α
,

however by normalizing the population size at N = 1 and with I0 << 1, we have S0 ≈ 1
hence the reproduction number simplifies to R0 = β/α. Epidemic outbreak occurs when
R0 > 1.
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Figure 4.1: Scheme of Susceptible-Infectious-Recovered (SIR) Model of ITHIR-
strategy of NPIs. Boxes represent compartments and arcs represent flux between com-
partments.

4.2 Cost functions
The total cost (TC) of an outbreak will be assessed by considering two components as
follows. Overview of cost functions we use:

TC(k, u∗;α, β, S0) := Disease Burden Cost + NPIs Cost,

where k ∈ (0, 1) is the threshold level of starting the intervention and u∗ ∈ [0, 1] is the
control intensity of NPIs. One particular type of cost functions is the quadratic total
cost (TCqq) of an outbreak, which is quadratic in the disease burden and quadratic in the
control intensity. The disease burden cost of this type of cost functions is calculated as a
quadratic integral of the density of infected individuals during the course of an outbreak
(denoted by Ĩq) multiplied by the cost factor C1 and the NPIs cost is calculated as the
duration of intervention in months (denoted by T̃ ) multiplied by the cost C2 of a single
month and the quadratic of the control intensity u∗. Hence the quadratic total cost is
the following:

TCqq := C1Ĩq + C2T̃ u
2
∗, (4.2)

where

Ĩq :=
∫ ∞

0
I2(t)dt. (4.3)

We also define several structures for the total cost function (as in [26] for example) such
as the linear cost function, which is linear in disease burden and in intensity of control,
and exponential cost function, which is discounted in time in disease burden (meaning
that immediate of the disease are considered higher than future costs), and we use a
mixture of them. In these cost functions (see Table 4.1) we use the following notations:

Ĩl :=
∫ ∞

0
[1− u(t)]βS(t)I(t)dt = α

∫ ∞
0

I(t)dt, (4.4)

and

Ĩe :=
∫ ∞

0
I(t)e−φtdt, φ > 0. (4.5)
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Table 4.1: An overview of cost functions we use:

The cost function type The cost function
Linear in disease burden and linear in control intensity TCll := C1Ĩl + C2T̃ u∗.
Discounting in disease burden while growing in duration
of intervention exponentially TCee := C1Ĩe + C2u∗e

T̃

Linear in disease burden and quadratic in control intensity TClq := C1Ĩl + C2T̃ u
2
∗.

Linear in disease burden and growing in duration
exponentially TCle := C1Ĩl + C2u∗e

T̃ .
Quadratic in disease burden and growing in duration
exponentially TCqe := C1Ĩq + C2u∗e

T̃ .
Linear in disease burden, quadratic in control intensity,
and growing in duration exponentially TClqe := C1Ĩl + C2u

2
∗e
T̃

Quadratic in disease burden, quadratic in control intensity,
and growing in duration exponentially TCqqe := C1Ĩq + C2u

2
∗e
T̃

There has been a number of studies using SIR model with optimal control theory to
find the control function u(t) that minimizes some (typically linear, quadratic, exponen-
tial) cost function (see [20, 26, 39, 51] for examples). However, a continuously changing
u(t), which is the common output from that approach for nonlinear cost functions, is
not feasible to be realized as a public health policy. Hence we aim to define a strategy
u(t) in a simpler way, and we assume that u(t) is a piecewise constant function, taking
values of either 0 (control is off), or some 0 < u∗ ≤ 1 (control is on). This means that we
propose to apply the NPIs with a given rate on some time interval. We assume that the
starting point of intervention is when the density of infecteds reaches a threshold value
k as in [33, 49]. Stopping the intervention when the density of infecteds becomes less
than the threshold value k is not always appropriate. Moreover, relaxing the NPIs has
significant impact on the size of epidemic if we stop interventions before herd immunity
is achieved [4]. To avoid next waves of the epidemic we propose to stop the intervention
only when herd immunity is reached in the population. We call such an intervention
a ITHIR-strategy of (k, u∗)-type, referring to intervene till herd immunity reached with
parameters (k, u∗). In mathematical terms, the ITHIR-strategy of (k, u∗)-type is defined
as follows. Let

u(t) =

0, t /∈ J,
u∗, t ∈ J,

(4.6)

where J is the intervention interval J = [Tstart, Tend] with

Tstart = min{t ≥ 0 : I(t) ≥ k}
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and
Tend = min{t ≥ 0 : βS(t)− α ≤ 0}.

The time Tstart is well defined as long as k ∈ [I0, Imax], where Imax is the peak of the
SIR-epidemic in the absence of any intervention, which is given by (2.4).

Let S̃(k, u∗) := limt→∞ S(t) when (k, u∗) strategy applied, the proportion of the
susceptible population in the community who had never been infected during an outbreak
and NPIs implementation. Clearly, in the absence of any intervention we have I ′(t∗) = 0
when S(t∗) = α/β = R−1

0 , and I ′(t) < 0 for any t > t∗ regardless we apply NPIs or not
at some t > t∗, that is the herd immunity is reached in the community, and hence Tend

is well defined if and only if S̃(k, u∗) < R−1
0 . The epidemic in this case eventually dies

out, and the duration of the intervention (denoted by T̃ ) is well defined as follows:

T̃ := Tend − Tstart.

However, if S̃(k, u∗) ≥ R−1
0 , then we never stop the intervention before the vaccine

becomes available. Since the vaccine may take a long time to be produced and ready for
use, the length of intervention T̃ and hence the total cost is unbounded.

Figure 4.2 depicts how the epidemic plays out with two different strategies. In one,
we start NPIs early with a low rate; in the other we start NPIs later but with a higher
rate. As Figure 4.2 shows, it is unclear which of these two strategies is better, hence
We will systematically explore this in the coming sections by computer simulations as
the simulations simulate seasonal and pandemic influenza, see Table 4.2 for the model
parameters.

Table 4.2: Model parameters

Epidemic R0 α−1(month) Reference
Seasonal Influenza 1.28 0.167 [5]
Pandemic Influenza 2.3 0.167 [5, 22]

Let us emphasize that if S̃(k, u∗) ≥ R−1
0 , then the herd immunity will never be reached

in the population, in which case the intervention is not feasible as its total cost exceeds
any given bound. Therefore, considering the feasible region we have the following results.
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Figure 4.2: The proportion of population that is infectious in the community as a function
of time (months) during the epidemic for different strategies. The solid red curve is the
epidemic curve in the absence of intervention. Parameters are R0 = 1.28, α−1 = 1/6
month, β = 7.68.

4.3 The relation between the quadratic total cost
and the control intensity u∗

To see how the quadratic cost function depends on the control intensity u∗, we shall
consider various fixed k-s and vary u∗. The change in the total cost then depends on

d

du∗
TCqq(k, u∗) = C1

dĨq
du∗

+ C2( dT̃
du∗

u2
∗ + 2T̃ u∗). (4.7)

From Figure 4.3 we can see that Ĩq decreasing while T̃ increasing in u∗, thus the sign
of the rate of change of the quadratic total cost function is determined by the ratio of
C1 and C2 relative to the rate of change in Ĩq and −( dT̃

du∗
u2
∗ + 2T̃ u∗). In the sequel we

always normalize the cost of disease burden C1 = 100, and we will vary C2 to compare
different scenarios. Considering the feasible region of limited costs, what we can see in
Figure 4.4 is that for a given threshold level k, when C2 >> C1, the quadratic total cost
is increasing in u∗, and hence the minimal cost is obtained when u(t) = 0, meaning that
when NPIs cost is very expensive compared with the disease burden cost, the minimal cost
is attained by not controlling at all. This result is what one would expect, however there
is a curious situation when C1 and C2 are of similar magnitudes: there is a possibility
that the total cost is non-monotone in u∗. This scenario is represented by the dashed red
curve in Figure 4.4 (left), in this case we can determine which strategy gives the minimal
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Figure 4.3: Ĩq(k, u∗) (left) and the length of intervention (T̃ (k, u∗)) (right) as a function
of the control intensity u∗ for four different threshold levels. Parameters are R0 = 1.28,
α−1 = 1/6 month, β = 7.68.
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Figure 4.4: The quadratic total cost as a function of u∗ for four different NPIs costs. The
total cost is unbounded to the right of the dashed vertical pink line. The dark yellow
horizontal line is the total cost in the absence of any intervention. Parameters are k = 0.01;
β = 7.68; α−1 = 1/6 month; R0 = 1.28.

total cost. Also another counter intuitive situation when C2 << C1, the quadratic total
cost is decreasing in u∗, meaning that when the cost of NPIs is very small compared to
the cost of disease burden, the optimal strategy lies on the boundary between the two
regions, which is again not feasible. In this case we impose a restriction: we maximized
the possible length of intervention, and we could find the optimal strategy with such
restriction.
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Figure 4.5: Ĩq(k, u∗) (left) and the length of intervention (T̃ (k, u∗)) (right) as a function
of the threshold level k for four different control intensities. Parameters are R0 = 1.28,
α−1 = 1/6 month, β = 7.68.

4.4 The relation between the quadratic total cost
and the threshold level k

Next we consider how the quadratic total cost changes when we vary k for fixed values
of u∗. The change in the total cost then depends on

d

dk
TCqq(k, u∗) = C1

dĨq
dk

+ C2
dT̃

dk
u2
∗. (4.8)

Figure 4.5 shows that by increasing k, that is we start intervention later, Ĩq increasing
while the duration of intervention decreasing. Again, the change in total depends on
how C1 : C2 relates to −dT̃

dk
u2
∗ : dĨq

dk
. This is depicted in Figure 4.6 for various values of

C2. Similarly as before, considering the feasible region of limited costs, when the NPI
is very expensive, the minimal cost is achieved by non-intervention (k ≥ Imax). On the
other hand, when the cost of NPIs is very small compared to the cost of disease burden,
the optimal strategy lies on the boundary between the two regions, which is again not
feasible. In this case we maximized the possible length of intervention, and we could find
the optimal strategy with such restriction. When these costs are of similar magnitudes,
the total cost can be a non-monotone function in the threshold level k, and in this case
we can determine which strategy gives the minimal total cost.
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Figure 4.6: Quadratic total cost as a function of threshold level k for four different NPIs
costs. The total cost is unbounded to the left dashed vertical pink line. Parameters are
β = 7.68; α = 6; R0 = 1.28; u∗ = 0.13.

4.5 Discussion and the global optimum
We have proposed a family of temporary NPI strategies in the framework of the SIR
model. These strategies are characterized by parameters (k, u∗), where NPIs start when
the number of infected hosts reaches the threshold value k, and with rate u∗ we con-
tinue the intervention till herd immunity is reached (ITHIR). The advantages of ITHIR-
strategy are the following: First, it has a clear and meaningful definition: We start NPIs
with a control intensity u∗ when a threshold k is reached in the level of infection, then
the density of susceptibles drops below R−1

0 , that is the herd immunity is reached in the
population, the density of infected will decrease anyway. Second, it is determined only
by the parameters (k, u∗), hence all strategies from this family can be explored in a two
dimensional parameter space. We have assigned a different total cost to each strategy
composed of cost of disease burden and cost of NPIs, and systematically investigated the
dependence of the total cost on the parameters for seasonal and pandemic influenza. As
we see in the plots of Figure 4.7, the whole parameter domain is divided into two regions
where the total cost is unbounded in the white region and bounded in the colored region.
Essentially, considering the feasible region of limited costs, we have found three types of
behaviours (hereandafter the next A,B,C denote the first, second, third behaviours with
its optimal strategy res.) :

(A) NPIs cost is very low compared to the cost associated with the disease burden: in
this case the optimal strategy lies on the boundary between the two regions, which
is not feasible. Hence we maximized the possible length of intervention, and we
could find the optimal strategy with such restriction;
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Figure 4.7: Dependence of the quadratic total cost on (k, u∗) in three typical situations: (A)
C2 = 0.01 � C1, (C) C2 = 200 � C1, and (B) C2 and C1 are of similar magnitude. The
white regions represent the unbounded total cost. The plots A and C show the monotone
cases, while the plot B where C2 = 1 we can find non-monotonicity in both k and u∗. In
plot A the dotted black, dashed gray, and solid green curves represent the duration of NPIs
for 1.5, 1, 0.5 months respectively. The black point represents the infimum of the total cost
in plot A, and it represents the minimum of the total cost in plot B and C.

(B) intervention cost and disease burden cost are of similar magnitudes: there may be
non-monotone relationships between the control intensity, the starting threshold
and the total cost, and in this case we can determine which strategy gives the
minimal total cost;

(C) intervention cost is very high compared to the cost associated to disease burden: in
this case the minimal cost is attained by not controlling at all.
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These three typical behaviors are plotted into a heatmap in Figure 4.7. In case (A) (see
Figure 4.7 bottom left), if we consider the maximized possible length of the intervention
that represented by black dotted curve, which equals two months in this example, then the
boundary between the two bounded and unbounded cost regions lies out the restriction
domain, meaning that the optimal strategy lies in the feasible region where we could
find it. If we maximized the possible control intensity in the feasible region, say that
0 < u∗ ≤ umax then the optimal strategy is to start the NPIs as early as possible with
control intensity u∗ = umax. Furthermore, if we maximized both of the possible length of
intervention and the possible control intensity, then their intersected point is the optimal
strategy. In case (B), the black point in the Figure 4.7 (top) represents the global
minimum of the quadratic total cost of seasonal flu when C2 = 1, meaning that the
optimal strategy is to start NPIs when k = 0.005 with control intensity u∗ = 0.088.

Depending on the available resources and public health capacities, there may be
constraints on the parameters, such as kmin ≤ k ≤ Imax and 0 ≤ u∗ ≤ umax in the feasible
region. Finding the optimal strategy with such constraints can be found even in these
cases from the graphs in Figures 4.4, 4.6, 4.7. It is very easy when the total cost depends
monotonically on the parameters, for example with 0 ≤ u∗ ≤ umax and in the situation
of C2 = 0.01 in Figure 4.4, the optimal strategy is always u∗ = umax. In contrast, for
C2 = 200 (see Figure 4.4 right), u∗ = 0 is the strategy that gives the minimal cost, but
in the situation of C2 = 1 the optimal strategy exists at the minimum.

Another interesting phenomenon is depicted in Figure 4.8, showing that for a fixed
u∗, the non-monotonicity of the total cost in k for seasonal influenza can be monotone
increasing for pandemic influenza. In that particular situation of Figure 4.8, for seasonal
influenza, to minimize the cost we apply the strategy at the minimum while for pandemic
influenza the lowest cost comes from start NPIs as early as possible. This important
insight shows that pandemic influenza should be treated differently than seasonal by
public health authorities.

Also another interesting phenomenon is depicted in Figure 4.9, showing that for a fixed
k, the monotonicity of the total cost in u∗ can reverse varying the cost function type.
We can see the monotone increasing in u∗ for TCee, TCle, TCqe, TCqqe while monotone
decreasing for TClq, and non-monotone for TCll, TCqq, TClqe. Thus, the type of cost
function plays an interesting vital role in determining the optimal temporary intervention
strategy in the case of seasonal and pandemic influenza as shown in the tables 4.3 and
4.4.



4. NON-PHARMACEUTICAL STRATEGIES FOR EPIDEMIC OUTBREAKS 31

C2=1 Without intervention

0.005 0.010 0.015 0.020 0.025
k

0.05

0.10

0.15

0.20

TCqq

R0=1.28, β=7.68, α=6, u*=0.15

C2=1 Without intervention

0.05 0.10 0.15 0.20
k

0.5

1.0

1.5

2.0

TCqq

R0=2.3, β=13.8, α=6, u*=0.15

Figure 4.8: Effect of R0 on the monotonicity of the quadratic cost curve. Parameters are
u∗ = 0.15, C2 = 1, α−1 = 1/6 month and β = 7.68, resp. β = 13.8. For seasonal influenza,
(R0 = 1.28), the optimal strategy is achieved by starting NPIs at the minimum while for
pandemic influenza, (R0 = 2.3), it is better to start NPIs early.

Table 4.3: The effect of the total cost function type in the case of seasonal
influenza on the optimal strategy. A,B, and C refer to the behaviour of the cost
function and the corresponding optimal strategy (see the discussion section). Parameters
are R0 = 1.28; α−1 = 1/6 month; β = 7.68; C1 = 100; k = 0.01.

The cost function C2 = 1 C2 = 25 C2 = 70
CTll A B C
CTqq B B C
CTee B C C
CTlq A A B
CTle B C C
CTqe C C C
CTlqe C B C
CTqqe B C C

Table 4.4: The effect of the total cost function type in the case of the pandemic
on the monotonicity. A,B, and C refer to the behaviour of the cost function and the
corresponding optimal strategy (see the discussion section). Parameters are R0 = 2.3;
α−1 = 1/6 month; β = 13.8; C1 = 100,and k = 0.01.

The cost function C2 = 1 C2 = 25 C2 = 70
CTll A B C
CTqq B B B
CTee B C C
CTlq A A B
CTle B C C
CTqe B C C
CTlqe A B B
CTqqe B B B
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Figure 4.9: The effect of type of cost function on the monotonicity of the cost curve for
eight cost functions. Parameters are k = 0.01; R0 = 1.28; α = 6; β = 7.68; C2 = 25.



5

Final epidemic size with temporary
intervention strategies during
infectious disease outbreaks

Reducing the final epidemic size of any infectious disease is a major goal for national
and international public health organizations. Besides vaccination interventions, the
most cost-effective preventive measures against many infectious diseases, integrating also
non-pharmaceutical interventions and treatment and isolation interventions into control
programs is one of the key actions to control epidemics.

In this chapter, we introduce temporary intervention strategies to control infectious
disease outbreaks. The analysis of these strategies is based on the SIR framework. We
apply a given control when the number of infected reaches a prescribed threshold level,
and continue with the same intensity until the number of susceptible individuals drops
below a critical level such that herd immunity is reached without further intervention.

We construct the final size system for the aforementioned methods of intervention,
investigate how the final epidemic size depends on the parameters of the temporary
intervention strategies, and show that the minimal final epidemic size is attained by
starting intervention as early as possible and as high rate as possible.

5.1 The final susceptible population size system for
the VUHIA-strategy

To understand the following discussion in this section, the reader is referred to Section
3.1 where the specification of the VUHIA-strategy including the model description can
be found. We only consider the following first two equations of (3.1) with (3.5) as they

33
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are independent of the third one of (3.1):

S ′(t) = −βS(t)I(t)− v(t)S(t),
I ′(t) = βS(t)I(t)− αI(t),

(5.1)

where

v(t) =

0, t /∈ J,
p, t ∈ J,

J is the intervention interval J = [Tstart, Tend] with

Tstart = min{t ≥ 0 : I(t) ≥ k} and Tend = min{t ≥ 0 : βS(t)− α ≤ 0},

and k is the threshold of infection density when the vaccination is triggered.
Let (SysV ) denote System (5.1). Note that (SysV ) consists of the following two

systems: First, the free system (denoted by Sysfree) is

S ′(t) = −βS(t)I(t),
I ′(t) = βS(t)I(t)− αI(t).

(5.2)

Second, the control system of VUHIA-strategy (denoted by SysV c) is

S ′(t) = −βS(t)I(t)− pS(t),
I ′(t) = βS(t)I(t)− αI(t).

(5.3)

It is well known (see Chapter 2.1) that

Φ1(t) := I(t) + S(t)−R−1
0 logS(t) (5.4)

is an invariant of (Sysfree), and hnce there is a unique solution curve connecting each
equilibrium point in the interval α/β < S < 1 to one in the interval 0 < S < α/β.

For the (SysV c), it is not difficult to see that (0, 0) is the only equilibrium point for
(SysV c) and it attracts the set {(S, I) ∈ [0, 1]2 : S + I ≤ 1}. Next, one can use a similar
technique to the way of constructing Φ1(t) in Chapter 2.1 to obtain Φ2(t) that given in
the next Proposition.

Proposition 5.1.1.

Φ2(t) = I(t) + S(t)− α

β
logS(t) + p

β
log I(t) (5.5)

is an invariant of System 5.3.
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Proof. If Φ′2(t) = 0 for all t, then the proof is complete. The derivative of the function
Φ2(t), given in (5.5), with respect to t is

Φ′2(t) = S ′(t) + I ′(t)− α

β

S ′(t)
S(t) + p

β

I ′(t)
I(t) . (5.6)

Then one can substitute the S ′(t) and I ′(t) equations of SysV c into (5.6) to obtain

Φ′2(t) = −βS(t)I(t)− pS(t) + βS(t)I(t)− αI(t)

− α

β

−βS(t)I(t)− pS(t))
S(t) + p

β

βS(t)I(t)− αI(t)
I(t) ,

which can be simplified to

Φ′2(t) = −pS(t)− αI(t)− α

β
(−βI(t)− p) + p

β
(βS(t)− α).

That is Φ′2(t) = 0.

Note that the solution of (SysV ) only coincides with the solution of (SysV c) in the
interval S(Tstart) ≤ S ≤ α/β. Now we are able to analyze the vector field of (SysV )
and rely on Φ1(t) and Φ2(t) to construct the final size system for the VUHIA-strategy of
(k, p)-type.

The final susceptible population size S̃(k, p) := limt→∞ S(t) when (k, p) of VUHIA-
strategy applied is the proportion of the susceptible population in the community who
had never been infected during an outbreak and VUHIA-strategy implementation.

Theorem 5.1.1. The final susceptible population size system for the VUHIA-strategy of
(k, p)-type is

k + S(Tstart)−R−1
0 logS(Tstart) = 1−R−1

0 logS0,

k + S(Tstart)−R−1
0 logS(Tstart) + p

β
log k = I(Tend) +R−1

0 −R−1
0 logR−1

0 + p

β
log I(Tend),

I(Tend) +R−1
0 −R−1

0 logR−1
0 = S̃(k, p)−R−1

0 log S̃(k, p).
(5.7)

Proof. From the first equation of (SysV ), one can observe that S is decreasing for all
t ≥ 0. From the second equation, we can see that I-nullclines are I = 0 and the vertical
line S = α/β = R−1

0 . I ′ > 0 if S > R−1
0 and I ′ < 0 if S < R−1

0 . Hence for the initial
data (S0, I0), S0 ≈ 1 and I0 << 1 and I(Tstart) = k, during the time interval [0, Tstart], S
decreases monotonically while I rises, coinciding with the solution of (Sysfree) (see Figure
5.1), and hence one can use the invariant function Φ1(t) of (Sysfree), given in (5.4), to
find S(Tstart) as in the first equation of the final susceptible population size system (5.7).
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Figure 5.1: The solution (S, I) = (S(.;S0, I0), I(.;S0, I0)) of (SysV ) for (k1, 10)-strategy and
(k2, 10)-strategy (left) and (0.15, p1)-strategy and (0.15, p2)-strategy (right), where k1 =
0.15, k2 = 0.2, p1 = 5, p2 = 10, I0 << 1 and S0 ≈ 1. The solution of (Sysfree) is
represented by the dashed curve. The vertical dotted line is S = α/β = R−1

0 . Parameters
are R0 = 3.83, α = 6, β = 23.

.

Then, during the interval [Tstart, Tend], S(t) and I(t) are coinciding with a solution of
(SysV c), and hence one can use the invariant function Φ2(t), given in the Proposition
5.1.1 to find I(Tend) as in the second equation of the final susceptible population size
system. Finally, for all t ∈ [Tend,∞), S(t) and I(t) are coinciding with a solution of
(SysV f ), and hence using the invariant function Φ1(t) to find S̃(k, p) as in the third
equation of the final susceptible population size system. By this way the three equations
of the final susceptible population size system (5.7) have constructed.

5.2 Dependence of the final susceptible population
on (k, p)

Lemma 5.2.1. Let p > 0 be a fixed vaccination rate. The final susceptible population
size for VUHIA-strategy of (k, p)-type is decreasing in the threshold level k.

Proof. Let I(Tstart1) = k1 and I(Tstart2) = k2 be arbitrary threshold levels of starting
vaccination such that k1 < k2 and k1, k2 ∈ [I0, Imax]. We consider the I − S plane
and denote the solutions of (SysV ) for (k1, p)-strategy and (k2, p)-strategy by (Sk1 , Ik1),
(Sk2 , Ik2) respectively (see Figure 5.1). We consider phase curves I(S) and claim that
Ik2(S) > Ik1(S) for each S in the interval S̃(k1, p) ≤ S < S(Tstart1). Indeed, we note that
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Ik2(S(Tstart1)) = Ik1(S(Tstart1)) = k1

dIk2

dSk2

= βSk2k1 − αk1

−βSk2k1
<

βSk1k1 − αk1

−βSk1k1 − pSk1

= dIk1

dSk1

, at Sk1 = Sk2 = S(Tstart1).

Now suppose for contradiction that the solutions (Sk1 , Ik1) and (Sk2 , Ik2) are intersected
at (S∗, I∗), where S(Tstart2) ≤ S∗ < S(Tstart1). Then it is necessary that dIk1/dSk1 ≤
dIk2/dSk2 , at Sk1 = Sk2 = S∗. That is

βS∗I∗ − αI∗
−βS∗I∗ − pS∗

≤ βS∗I∗ − αI∗
−βS∗I∗

,

and hence pS∗ ≤ 0, which is not true. This implies that Ik2(S) > Ik1(S) for each S in the
interval S(Tstart2) ≤ S < S(Tstart1). Since both solutions (Sk1 , Ik1) and (Sk2 , Ik2) coincide
with the same system for each S̃(k1, p) ≤ S ≤ S(Tstart2), they will not intersect each
other and Ik2(S) > Ik1(S) for each S in this interval. Hence S̃(k1, p) > S̃(k2, p). That is
the final susceptible population size is decreasing in k.

In the next Lemma, we uncover a counter-intuitive phenomenon about the relation-
ship between the final susceptible population size and the vaccination rate. Indeed, the
final size of the susceptible population after achieving herd immunity by applying the
VUHIA-strategy of (k, p)-type and eliminating the epidemic increases in the vaccination
rate p, for a fixed threshold level k.

Lemma 5.2.2. Let k ∈ [I0, Imax] be a fixed threshold level of starting vaccination. The
final susceptible population size for VUHIA-strategy of (k, p)-type is increasing in the
vaccination rate p.

Proof. Let p1 and p2 be arbitrary vaccination rates such that p2 > p1 > 0. Similar to the
proof of Lemma 5.2.1, we consider the I−S plane and denote the solutions of (SysV ) for
(k, p1)-strategy and (k, p2)-strategy by (Sp1 , Ip1), (Sp2 , Ip2) respectively (see Figure 5.1).
We consider phase curves I(S) and claim that Ip1(S) > Ip2(S) for each S in the interval
α/β ≤ S < S(Tstart). Indeed, we note that Ip1(S(Tstart)) = Ip2(S(Tstart)) = k and

dIp1

dSp1

= βSp1k − αk
−βSp1k − p1Sp1

<
βSp2k − αk
−βSp2k − p2Sp2

= dIp2

dSp2

, at Sp1 = Sp2 = S(Tstart).

Now suppose for contradiction that (Sp1 , Ip1) and (Sp2 , Ip2) are intersected at (S∗, I∗),
where α/β ≤ S∗ < S(Tstart). Then it is necessary that dIp1/dSp1 ≥ dIp2/dSp2 , at
Sp1 = Sp2 = S∗. That is

βS∗I∗ − αI∗
−βS∗I∗ − p1S∗

≥ βS∗I∗ − αI∗
−βS∗I∗ − p2S∗

,
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which contradicts p2 > p1. This means that each solution of (Sp1 , Ip1) and (Sp2 , Ip2)
coincides with the solution of (SysV c) in the interval α/β ≤ S ≤ S(Tstart) and Ip1(S) >
Ip2(S) for each S in the interval α/β ≤ S < S(Tstart). Since both solutions (Sp1 , Ip1)
and (Sp2 , Ip2) coincide with the solution of (SysV f ) in the interval S̃(k, p2) ≤ S < α/β,
they will not intersect each other and Ip1(S) > Ip2(S) for each S in this interval because
Ip1(α/β) > Ip2(α/β). Hence S̃(k, p2) > S̃(k, p1). That is the final susceptible population
size is increasing in p.

Next, we prove the previous two Lemmas by another way depending on the final
susceptible population size system given in Theorem 5.1.1.

Alternative proof of Lemma 5.2.1. If I0 ≤ k ≤ Imax and I(Tstart) = k, then any changing
in k leads to changing in Tstart. Since the right side of the first equation of (5.7) is a
constant, the derivative of the left-hand side of this equation with respect to k is zero.
That is

d(k + S(Tstart)−R−1
0 logS(Tstart))

dk
= d(1−R−1

0 logS0)
dk

= 0.

Now, we consider the second equation of (5.7) and differentiate both sides w.r.t k, and
then do some algebraic manipulation to get the following:

d(k + S(Tstart)−R−1
0 logS(Tstart))

dk
+ p

βk
= dI(Tend)

dTend

dTend

dk
+ p

β

dI(Tend)
dTend

dTend

dk

1
I(Tend) ,

Which is equivalent to

p

βk
= dI(Tend)

dTend

dTend

dk
(1 + p

β

1
I(Tend)).

Simple algebraic manipulation leads to

dI(Tend)
dTend

dTend

dk
= p

k

I(Tend)
βI(Tend) + p

.

Differentiation both sides of the third equation of (5.7) w.r.t. k gives

dI(Tend)
dTend

dTend

dk
= dS̃(k, p)

dk
(1−R−1

0
1

S̃(k, p)
),

and hence
dS̃(k, p)
dk

=
(
p

k

I(Tend)
βI(Tend) + p

)(
S̃(k, p)

S̃(k, p)−R−1
0

)
< 0

because S̃(k, p) < R−1
0 for all p > 0.
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Alternative proof of Lemma 5.2.2. Similar to the previous alternative proof of Lemma
5.2.1, differentiation the second equation of System (5.7) w.r.t. p and algebraic manipu-
lation give

dI(Tend)
dTend

dTend

dp
= I(t2)
βI(T2) + p

[log k − log I(Tend)]. (5.8)

Do similar steps to the third equation of (5.7) and use (5.8) to get

dS̃(k, p)
dp

= I(t2)
βI(T2) + p

[log k − log I(Tend)] S̃(k, p)
S̃(k, p)−R−1

0
> 0. (5.9)

5.3 Numerical simulation for FES of the VUHIA-
strategy

Remember that Ṽ (k, p) is the proportion of the population that get vaccinated during
the course of the epidemic and VUHIA-strategy of (k, p)-type implementation, it is given
by (3.8). The final epidemic size (FES) of VUHIA-strategy of (k, p)-type (with N = 1)
is

Ĩ(k, p) := 1− S̃(k, p)− Ṽ (k, p) =
∫ ∞

0
βS(t)I(t)dt = α

∫ ∞
0

I(t)dt, (5.10)

the total number of infected people during the course of the epidemic and VUHIA-
strategy of (k, p)-type.

Next, we systematically investigate the dependence of the final epidemic size Ĩ(k, p)
of the VUHIA-strategy on the parameters (k, p).

To see how the final epidemic size Ĩ(k, p) depends on the vaccination rate p, we shall
consider various fixed k-s and vary p. The change in the Ĩ(k, p) then depends on

d

dp
Ĩ(k, p) = − d

dp
S̃(k, p)− d

dp
Ṽ (k, p).

From Figure 5.2, we can see that the final susceptible population size S̃(k, p) and the
total vaccinated people Ṽ (k, p) increasing in p, thus the sign of the rate of change of
the final epidemic size is positive for all p > 0. Hence, the final epidemic size Ĩ(k, p) is
decreasing in p, which we can see in the top plot of Figure 5.2, meaning that the optimal
strategy to reduce the final epidemic size is to vaccinate as high rate as possible. In
addition, we can also observe that (with N = 1) Ĩ(k, p)→ 1− S∞ as p→ 0.

Next, we consider how the final epidemic size changes when we vary k for fixed values
of p. Figure 5.3 shows that by increasing k, that is we start vaccinating later, both the
final susceptible population S̃(k, p) and total vaccinated people Ṽ (k, p) are decreasing.



5. FINAL EPIDEMIC SIZE (FES) 40

k=0.05 k=0.1 k=0.2 k=0.25

2 4 6 8 10
p

0.2

0.4

0.6

0.8

I
˜
(k,p)

k=0.05 k=0.1 k=0.2 k=0.25

2 4 6 8 10
p

0.05

0.10

0.15

0.20

S
˜
(k,p)

k=0.05 k=0.1 k=0.2 k=0.25

2 4 6 8 10
p

0.1

0.2

0.3

0.4

0.5

0.6

V
˜
(k,p)

Figure 5.2: The final susceptible population size (bottom left), the total vaccinated people
(bottom right), and the final epidemic size (top) as functions of the vaccination rate p.
Parameters are R0 = 3, α−1 = (1/3) month, β = 9.

Hence, dĨ(k, p)/dk < 0 for all k ∈ [I0, Imax] and the final epidemic size is increasing in k
for all k ∈ [I0, Imax], see the top plot in Figure 5.3. Thus the optimal strategy to minimize
the final epidemic size is to start vaccination as early as possible. In addition, one can
note that the graphs of all four curves meet at the right when k → Imax. That is, (with
N = 1) the FES of VUHIA-strategy of (k, p)-type [1 − S̃(k, p) − Ṽ (k, p)] → 1 − S∞ as
k → Imax, the final epidemic size without vaccination.

Figure 5.4 represents the dependence of the final size of the susceptible population
after achieving herd immunity by applying the VUHIA-strategy and eliminating the
epidemic (bottom left), the total vaccinated people (bottom right), and the final epidemic
size (top) on (k, p). The plots are heatmaps. From the top plot of this figure, we can see
that the minimal final epidemic size is attained when (k, p) → (I0, pmax), where pmax is
the maximal possible vaccination rate. Hence, the optimal strategy to reduce the final
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Figure 5.3: The final susceptible population size, the total vaccinated people, and the final
epidemic size as functions of the threshold level k. Parameters are R0 = 3, α−1 = (1/3)
month, β = 9.

epidemic size is to start vaccination as early as possible as high rate as possible.

5.4 The final size system for the ITHIR-strategy of
NPIs

To understand the following discussion in this section, the reader is referred to Section
4.1 where the specification of the ITHIR-strategy including the model description of non-
pharmaceutical interventions (NPIs) is given. We only consider the following first two
equations of (4.1) with (4.6) as they are independent of the third one of (4.1):

S ′(t) =− [1− u(t)]βS(t)I(t),
I ′(t) =[1− u(t)]βS(t)I(t)− αI(t),

(5.11)
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Figure 5.4: Dependence of the final susceptible population size (bottom left), the total
vaccinated people (bottom right), and the final epidemic size on (k, p) (top). Parameters
are R0 = 3, α−1 = (1/3) month, β = 9.

where

u(t) =

0, t /∈ J,
u∗, t ∈ J,

and J is the intervention interval J = [Tstart, Tend] with

Tstart = min{t ≥ 0 : I(t) ≥ k} and Tend = min{t ≥ 0 : βS(t)− α ≤ 0},

and k is the threshold level where we start NPIs.
Let (SysNPI) denote System (5.11). Note that (SysNPI) consists of the following two

systems: First, the free system (Sysfree) from any interventions, which is given in (5.2).
Second, the control system of ITHIR-strategy of NPIs (denoted by SysNPIc) is

S ′(t) =− [1− u∗]βS(t)I(t),
I ′(t) =[1− u∗]βS(t)I(t)− αI(t).

(5.12)
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Let us emphasize that these are 2-dimensional systems consisting of the S- and I-
equations of a basic SIR model. The transmission rate is β for (Sysfree), and it is
(1− u∗)β for (SysNPIc). Hence we take the following observation without proof:

Proposition 5.4.1.

Φ3(t) = I(t) + S(t)− α

[1− u∗]β
logS(t) (5.13)

is an invariant of System 5.12.

Remember that S̃(k, u∗) = limt→∞ S(t) when (k, u∗) of ITHIR-strategy applied, the
proportion of the susceptible population in the community who had never been infected
during an outbreak and ITHIR-strategy implementation.

Now we are able to construct the final size system for the ITHIR-strategy of (k, u∗)-
type in a similar manner to the final size system (5.7).

Theorem 5.4.1. If k ∈ [I0, Imax], then we distinguish two cases:
Case 1: If S̃(k, u∗) ≥ R−1

0 , then the final size system for ITHIR-strategy of NPIs is

k + S(Tstart)−R−1
0 logS(Tstart) = 1−R−1

0 logS0,

k + S(Tstart)−
R−1

0
(1− u∗)

logS(Tstart) = S̃(k, u∗)−
R−1

0
(1− u∗)

log S̃(k, u∗).
(5.14)

Case 2: If S̃(k, u∗) < R−1
0 , then the final size system for ITHIR-strategy of NPIs is

k + S(Tstart)−R−1
0 logS(Tstart) = 1−R−1

0 logS0,

k + S(Tstart)−
R−1

0
(1− u∗)

logS(Tstart) = I(Tend) +R−1
0 −

R−1
0

(1− u∗)
logR−1

0 ,

I(Tend) +R−1
0 −R−1

0 logR−1
0 = S̃(k, u∗)−R−1

0 log S̃(k, u∗).

(5.15)

Proof. From the first equation of (SysNPI), we see that S is decreasing for all t ≥ 0,
and from the second equation we can note that I-nullclines are I = 0 and the vertical
line S = α/[1 − u(t)]β = R−1

0 /[1 − u(t)]. I ′ > 0 if S > R−1
0 /[1 − u(t)] and I ′ < 0 if

S < R−1
0 /[1− u(t)]. Hence for the initial data (S0, I0) and I(Tstart) = k, if t ∈ [0,Tstart),

then u(t) = 0 and the solution of (SysNPI) coincide with the solution of (Sysfree), and
hence one can use the invariant function Φ1(t) of the (Sysfree), given in (5.4), to find
S(Tstart) as in the first equation of the final size system (5.14) and (5.15). Next we
distinguish two cases depending on the S̃(k, u∗), see Figure 5.5:
Case 1: If S̃(k, u∗) ≥ R−1

0 , then u(t) = u∗ for all t ≥ Tstart and the solution of (SysNPI)
coincides with the solution of (SysNPIc) for all t ≥ Tstart as we never stop the intervention
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Figure 5.5: The solution (S, I) = (S(.;S0, I0), I(.;S0, I0)) of (SysNP I), where I0 << 1 and
S0 ≈ 1, is represented by the dashed and dotted curves for different ITHIR-strategy of
NPIs . S̃(k, u∗) < R−1

0 (left) while S̃(k, u∗) > R−1
0 (right). The solid blue curve is the

solution of (Sysfree). The solid vertical blue line is S = R−1
0 . The other vertical lines

are S = R−1
0 /(1 − u∗). The horizontal solid line is the threshold level k. Parameters are

R0 = 3.83, α = 6, β = 23.

in this case. Hence one can use the invariant function Φ3(t), given in the Proposition
5.4.1 to find S̃(k, u∗) as in the second equation of the final size system (5.14).
Case 2: If S̃(k, u∗) < R−1

0 , then the solution of (SysNPI) coincides with the solution of
(SysNPIc) for all t ∈ [Tstart,Tend], and hence one can use the invariant function Φ3(t),
given in the Proposition 5.4.1 to find I(Tend) as in the second equation of the final size
system (5.15). Finally, for all t ∈ [Tend,∞), S(t) and I(t) are coinciding with the solution
of (Sysfree), and hence using the invariant function Φ1(t) to find S̃(k, u∗) as in the third
equation of the final size system(5.15). By this way, the final size system for ITHIR-
strategy of NPIs is constructed for both cases.

Next we give a condition that determines whether we are in Case 1) or case 2) of the
previous theorem. Set

η(k) := 1−R−1
0

log R−1
0

S(Tstart)

R−1
0 − k − S(Tstart)

. (5.16)

Proposition 5.4.2. Let k ∈ [I0, Imax] be a given threshold level. If R−1
0 ≤ S̃(k, u∗) <

S(Tstart), then η(k) ≤ u∗ ≤ 1.

Proof. From the second equation of (5.14), algebraic manipulation gives

1− u∗ = α

β

log S̃(k,u∗)
S(Tstart)

S̃(k, u∗)− k − S(Tstart)
. (5.17)
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For simplicity, we set the right-hand side of (5.17) as follows:

g(x) = ρ
log x− log s1

x− k − s1
, ρ = α

β
, s1 = S(Tstart), x = S̃(k, u∗).

In the next step, we show that g is decreasing on [ρ, s1]. Therefore,

g′(x) = ρ
x− k − s1 − x log x+ x log s1

x(x− k − s1)2 ,

and g′(x) < 0 if
x+ x log s1 − k − s1 − x log x < 0.

In addition, we set
f(x) = x+ x log s1 − k − s1 − x log x,

and prove that the absolute maximum value of f is negative. Indeed, f ′(x) = log s1−log x,
f ′(x) > 0 for every ρ < x < s1, and has an absolute maximum value at x = s1,
which is f(s1) = −k < 0. Thus g(x) is a decreasing on [ρ, s1]. Hence, g(x) has an
absolute maximum at x = ρ and has an absolute minimum at x = s1, which implies that
g(s1) ≤ g(x) ≤ g(ρ), and hence 0 ≤ 1− u∗ ≤ 1− η(k). Thus η(k) ≤ u∗ ≤ 1.

As a consequence of Proposition 5.4.2, 0 ≤ u∗ < η(k) if S̃(k, u∗) < R−1
0 . . The final

epidemic size of ITHIR-strategy of (k, u∗)-type (with N = 1) is

Ĩ(k, u∗) := 1− S̃(k, u∗) =
∫ ∞

0
(1− u∗)βS(t)I(t)dt = α

∫ ∞
0

I(t)dt. (5.18)

5.5 Dependence of the FES of the ITHIR-strategy
on (k, u∗)

Lemma 5.5.1. Let 0 < u∗ ≤ 1 be a fixed control intensity. Then the final epidemic size
(1− S̃(k, u∗)) of ITHIR-strategy of (k, u∗)-type of NPIs (with N = 1) is increasing in the
threshold value k.

Proof. The proof is divided into two parts related to the two cases in Theorem 5.4.1. In
the first part we assume that S̃(k, u∗) ≥ R−1

0 . Differentiation the first equation of System
5.14 w.r.t k gives

d(k + S(Tstart)−R−1
0 logS(Tstart))

dk
= d(1−R−1

0 logS0)
dk

= 0,

that is
1 + dS(Tstart)

dTstart

dTstart

dk
−R−1

0
dS(Tstart)
dTstart

dTstart

dk

1
S(Tstart)

= 0,
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and hence
dS(Tstart)
dTstart

dTstart

dk

1
S(Tstart)

= −1
S(Tstart)−R−1

0
. (5.19)

Similarly, differentiate the second equation of System (5.14) w.r.t. k to get

1 + dS(Tstart)
dTstart

dTstart

dk
− R−1

0
1− u∗

dS(Tstart)
dTstart

dTstart

dk

1
S(Tstart)

= dS̃(k, u∗)
dk

− R−1
0

1− u∗
dS̃(k, u∗)

dk

1
S̃(k, u∗)

.

which is equivalent to

1 + dS(Tstart)
dTstart

dTstart

dk

1
S(Tstart)

[S(Tstart)−
R−1

0
1− u∗

] = dS̃(k, u∗)
dk

1
S̃(k, u∗)

[S̃(k, u∗)−
R−1

0
1− u∗

].

Using (5.19) and then algebraic manipulation give the following:

1 + −1
S(Tstart)−R−1

0
[S(Tstart)−

R−1
0

1− u∗
] = dS̃(k, u∗)

dk

1
S̃(k, u∗)

[S̃(k, u∗)−
R−1

0
1− u∗

],

1
S(Tstart)−R−1

0
[S(Tstart)−R−1

0 −S(Tstart)+
R−1

0
1− u∗

] = dS̃(k, u∗)
dk

1
S̃(k, u∗)

[S̃(k, u∗)−
R−1

0
1− u∗

],

1
S(Tstart)−R−1

0
[ R

−1
0

1− u∗
−R−1

0 ] = dS̃(k, u∗)
dk

1
S̃(k, u∗)

[S̃(k, u∗)−
R−1

0
1− u∗

],

dS̃(k, u∗)
dk

=
[ R

−1
0

1−u∗
−R−1

0 ]S̃(k, u∗)

[S(Tstart)−R−1
0 ][S̃(k, u∗)− R−1

0
1−u∗

]
< 0 (5.20)

by using the fact that S̃(k, u∗) <
R−1

0
1−u∗

(see the proof of Theorem 5.4.1). And this
completes the proof of the Case 1.

Next we consider Case 2 of Theorem 5.4.1 and assume that S̃(k, u∗) < R−1
0 . Similarly

as in the first part, Differentiation the first equation of (5.15) w.r.t k and simple algebraic
manipulation give

dS(Tstart)
dTstart

dTstart

dk
= −S(Tstart)
S(Tstart)−R−1

0
. (5.21)

From the second equation of (5.15) and using (5.21) we get
R−1

0
1−u∗
−R−1

0

S(Tstart)−R−1
0

= dI(Tend)
dTend

dTend

dk
. (5.22)

From the third equation of (5.15) and using (5.22) we obtain

dS̃(k, u∗)
dk

=
S̃(k, u∗)[ R

−1
0

1−u∗
−R−1

0 ]
[S(Tstart)−R−1

0 ][S̃(k, u∗)−R−1
0 ]

< 0. (5.23)

From (5.23) and (5.20), in both cases d(1− S̃(k, u∗))/dk > 0.
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Lemma 5.5.2. Let k ∈ [I0, Imax] be a fixed threshold level. Then the final epidemic size
(1− S̃(k, u∗)) of ITHIR-strategy of NPIs is decreasing in control intensity u∗.

Proof. First, we assume that S̃(k, u∗) ≥ R−1
0 , and hence we use System (5.14) and

differentiate the second equation of it w.r.t. u∗, we obtain

−R−1
0

(1− u∗)2 logS(Tstart) = dS̃(k, u∗)
du∗

− R−1
0

(1− u∗)

dS̃(k,u∗)
du∗

S̃(k, u∗)
− R−1

0
(1− u∗)2 log S̃(k, u∗),

that is

dS̃(k, u∗)
du∗

= −R
−1
0 [logS(Tstart)− log S̃(k, u∗)]

(1− u∗)2
S̃(k, u∗)

S̃(k, u∗)− R−1
0

(1−u∗)

> 0.

Similarly, let S̃(k, u∗) < R−1
0 . By differentiation the second and the third equations of

system (5.15) w.r.t. u∗ and using algebraic manipulation one can show that

dS̃(k, u∗)
du∗

= −R
−1
0 [logS(Tstart)− logR−1

0 ]
(1− u∗)2

S̃(k, u∗)
S̃(k, u∗)−R−1

0
> 0.

Thus, in both cases d(1− S̃(k, u∗))/du∗ < 0.

5.6 Numerical simulation for the ITHIR-strategy of
NPIs

Figure 5.6 shows that by increasing k, that is we start NPIs later, the FES increasing,
and hence the minimal FES is attained when k → I0, meaning that for a fixed u∗ the
optimal strategy to minimize the FES is to start NPIs as early as possible.

Moreover, herd immunity against seasonal influenza will be reached if this proportion
1 −R−1

0 = 0.219531 = HIT (herd immunity threshold) of the population are recovered
from the disease (see the turning points of the curves in Figure 5.6). We can see that
in the case of the solid red curve (u∗ = 0.1) herd immunity is reached for any k because
1 − S̃(k, 0.1) > HIT ). However, the other curves show that in lower levels of k (to the
left of the turning points) herd immunity will never be reached. The strategies at the
turns give the minimal FES such that the herd immunity is reached. We will discuss
later if there is a risk if the strategy is accidentally changed to be in the case of herd
immunity will never be reached.

Furthermore, we can see that the delay in initiating the intervention strategy implies
to a larger control intensity is needed to get a similar magnitude of the FES (see how
the turns shift to the right), that is, if we start intervention later, then a larger u∗ is
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Figure 5.6: Final epidemic size of ITHIR-strategy of NPIs as a function of threshold level k
(left) for four different values of control intensity u∗ and as a function of control intensity u∗
(right) for four different threshold levels. The final epidemic size without any intervention
(with N = 1) is 1−S∞ = 0.406805. Parameters are R0 = 1.28, 1/α = 1/6 month, β = 8.4,
Imax = 0.0268647, 1−R−1

0 = 0.219531.

required to get the same FES (0.219531) of the population. In addition, we can observe
that Ĩ(k, u∗)→ 1− S∞ = 0.406805 as k → Imax = 0.0268647.

Next we will see how the final epidemic size of ITHIR-strategy depends on the control
intensity u∗. Figure 5.6 shows that the FES of NPIs is decreasing in u∗ and the minimal
FES of NPIs is attained when u∗ → 1, meaning that the optimal strategy to minimize
the FES is to impose NPIs as strict as possible. The FES equals the herd immunity
threshold at the turns. We may ask here whether there is a risk if our plan was to
apply a strategy at one of the turns but accidentally u∗ has turned out to be stronger,
leading to a situation where herd immunity will never be reached? In fact, the risk could
be here from an economic point of view if we continue by the same control intensity.
However, carefully relaxing the measures to come back to the prescribed strategy may
offer a solution to this situation. We also observe that for various k-s the FES curves do
not intersect each other and they are placed in order, meaning that to minimize FES we
start NPIs as early as possible besides as high rate as possible.

Figure 5.7 depicts the dependence of the final epidemic size on the threshold level k
and the control intensity u∗ together, where the plot is a heatmap. From this figure, we
can see that the FES is increasing in k while decreasing in u∗, and the global minimum
of the FES is attained by applying (k, u∗) → (I0, 1)-strategy. The green solid curve
represents (k, η(k))-strategies, the boundary between Case (1) and Case (2) of Theorem
5.4.1. The herd immunity will never be reached in the population if the applied (k, u∗)-
strategies are in the region above the green curve, on contrast, in the other region below
the green curve. Handel found that the best control strategy is the strategy that achieves
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Figure 5.7: Dependence of the final epidemic size on (k, u∗)-strategies. The final
epidemic size on the green curve (with N = 1) is 1−S̃(k, η(k)) = 1−R−1

0 = 0.219531. Herd
immunity will never be reached in the region above the green curve. The final epidemic size
without any interventions (with N = 1) is 1− S∞ = 0.406805. Parameters are R0 = 1.28,
1/α = 1/6 month, β = 8.4, which are the parameters of seasonal influenza.

this condition (S̃(k, u∗), I∞) → (R−1
0 , 0) (see [17]). According to our finding this occurs

at the combination of (k, u∗) represented by the green solid curve and determined by the
formula (5.16).

Depending on the available resources and public health capacities, there may be
constraints on the parameters, such as kmin ≤ k ≤ Imax and also 0 < u∗ ≤ umax in
the region where the herd immunity can be reached. Then the optimal strategy that
minimizes FES of NPIs in this restricted domain is (kmin, umax).

Let us emphasize that the same magnitude of the final epidemic size exists along the
curves, which are level sets the final epidemic size and are represented by the values on
the scale beside the plot (see Figure 5.7). These curves indicate that any delay in starting
the NPIs leads to more control intensity is needed to get the same magnitude of the final
epidemic size.

5.7 Treatment and isolation strategies (TISs) for epi-
demic outbreak

Antiviral drugs of seasonal influenza may be a treatment option. In addition, antiviral
drugs can lessen symptoms and shorten the duration of the infection by 1 or 2 days [8].
Besides, isolating infected individuals is another option to reduce the period of infection.
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Figure 5.8: Scheme of Susceptible-Infectious-Recovered (SIR) Model of treat-
ment and isolation strategies. Boxes represent compartments and arcs represent flux
between compartments.

In this section, we investigate the effectiveness of treating and isolating the infected in
preventing or containing the epidemic in terms of the final size of the epidemic. Our
goal is to construct the final size system for the treatment and isolation strategies (TISs)
and then find the optimal strategy that minimizes the final epidemic size of this type of
intervention.

Modelling framework

To understand the following discussion, the reader is referred to Figure 5.8. We consider
a constant population divided into susceptible (S(t)), infected (I(t)), and removed (R(t))
compartments. New infections occur with transmission coefficient β. Although in the
classical SIR model, infected individuals recover with rate α, here we assume that the re-
covery rate depends on the number of infected individuals and the number of susceptible
individuals: If the number of infecteds reaches a threshold level k, then in this section
we assume that the authorities adopt a therapeutic protocol to treat the infecteds, and
impose isolation on the infected individuals to shorten the infectious period, and thereby
α−1 is reduced to (m∗α)−1, where m∗ > 1. If the number of susceptibles drops below a
critical level such that the herd immunity is reached in the community, then the inter-
ventions are relaxed and the recovery rate is α. Hence we consider the following system
of differential equations:

S ′(t) = − βS(t)I(t),
I ′(t) = βS(t)I(t)−m(t)αI(t),
R′(t) = m(t)αI(t),

(5.24)

where

m(t) =

1, t /∈ J,
m∗, t ∈ J,

m∗ > 1, and and J is the intervention interval J = [Tstart, Tend] with

Tstart = min{t ≥ 0 : I(t) ≥ k} and Tend = min{t ≥ 0 : βS(t)− α ≤ 0}.
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5.8 The final size system for the ITHIR-strategy of
TISs

We only consider the following first two equations of (5.24) as they are independent of
the third one of (5.24):

S ′(t) = − βS(t)I(t),
I ′(t) = βS(t)I(t)−m(t)αI(t).

(5.25)

Let (SysTI) denote (5.25). Note that (SysTI) consists of the following two systems: First,
the free system (Sysfree) from any interventions, which is given in (5.2). Second, the
control system of ITHIR-strategy of treatment and isolation interventions (denoted by
SysTI)

S ′(t) = − βS(t)I(t),
I ′(t) = βS(t)I(t)−m∗αI(t).

(5.26)

Let us emphasize that these are 2-dimensional systems consisting of the S- and I-
equations of a basic SIR model. The recovery rate is α for (Sysfree), and it is m∗α for
(SysTIc). Hence we take the following observation without proof:

Proposition 5.8.1.

Φ4(t) = I(t) + S(t)− m∗α

β
logS(t) = 1− m∗α

β
logS0. (5.27)

is an invariant of System 5.26.

Let S̃(k,m∗) := limt→∞ S(t) when (k,m∗) of ITHIR-strategy applied, the proportion
of the susceptible population in the community who had never been infected during an
outbreak and ITHIR-strategy implementation of (k,m∗)-type. The final epidemic size of
ITHIR-strategy of (k,m∗)-type (with N = 1) is

Ĩ(k,m∗) := 1− S̃(k,m∗) =
∫ ∞

0
βS(t)I(t)dt = m∗α

∫ ∞
0

I(t)dt. (5.28)

Now we are ready to construct the final size system for ITHIR-strategy of (k,m∗)-type
in a similar way to the final size system 5.4.1.

Theorem 5.8.1. If k ∈ [I0, Imax], then we distinguish two cases: Case 1: If S̃(k,m∗) ≥
R−1

0 , then the final size system for ITHIR-strategy of treatment and isolation interven-
tions is

k + S(Tstart)−R−1
0 logS(Tstart) = 1−R−1

0 logS0,

k + S(Tstart)−m∗R−1
0 logS(Tstart) = S̃(k,m∗)−m∗R−1

0 log S̃(k,m∗).
(5.29)
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Case 2: If S̃(k,m∗) < R−1
0 , then the final size system for ITHIR-strategy of treatment

and isolation strategies is
k + S(Tstart)−R−1

0 logS(Tstart) = 1−R−1
0 logS0,

k + S(Tstart)−m∗R−1
0 logS(Tstart) = I(Tend) +R−1

0 −m∗R−1
0 logR−1

0 ,

I(Tend) +R−1
0 −R−1

0 logR−1
0 = S̃(k,m∗)−R−1

0 log S̃(k,m∗).
(5.30)

One can proof this theorem in a similar way to Theorem 5.4.1. So, the proof is left
to the reader.

Next we give a condition that determines whether we are in Case 1) or case 2) of the
previous theorem.

Proposition 5.8.2. Let k ∈ [I0, Imax] be a given threshold level. If R−1
0 ≤ S̃(k,m∗) <

S(Tstart) then m∗ ≥ ν(k) where

ν(k) := R
−1
0 − k − S(Tstart)
R−1

0 log( R−1
0

S(Tstart))
.

It is not difficult to prove Proposition 5.8.2 by the similar way of proving Proposition
5.4.2.

Clearly, as consequence of Proposition 5.8.2 the values of the treatment and isolation
rate m∗ where we can stop ITHIR-strategy of (k,m∗)-type is

1 < m∗ <
R−1

0 − k − S(Tstart)
R−1

0 log( R−1
0

S(Tstart))
. (5.31)

5.9 Dependence of FES of ITHIR-strategy on (k,m∗)
Lemma 5.9.1. Let m∗ > 1 be a fixed treatment and isolation rate. Then the final
epidemic size Ĩ(k,m∗) is increasing in the threshold value k.

The proof of this lemma is similar to that of Lemma 5.5.1.

Lemma 5.9.2. Let k ∈ [I0, Imax] be a fixed threshold level. Then the final epidemic size
Ĩ(k,m∗) is decreasing in the treatment rate m∗.

The proof is similar to that of Lemma 5.5.2

5.10 Numerical simulation for ITHIR-strategy of TIIs
and conclusions

We systemically investigate the dependence of the final epidemic size on the threshold
level k and the treatment and isolation rate m∗. We found the same observations of
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Figure 5.9: Dependence of the final epidemic size on (k,m∗) (top). The FES of ITHIR-
strategy of (k,m∗)-type as a function of k (left bottom) and as a function of m∗ (right
bottom). The final epidemic size without any intervention (with N = 1) is 1 − S∞ =
0.406805. Parameters are R0 = 1.28, 1/α = 1/6 month, β = 8.4.

ITHIR-strategy of (k, u∗)-type. Briefly, from Figure 5.9 the FES of ITHIR-strategy on
(k,m∗) is increasing in k while is decreasing in m∗, meaning that the global minimum of
the FES is attained when we start treatment and isolation as early as possible as high
rate as possible.

We have proposed and analyzed a family of temporary intervention strategies in terms
of final epidemic size and its dependence on the intervention parameters. For simplicity,
our analysis depends on the SIR framework. We have constructed the final size system
for VUHIA-strategy of (k, p)-type, ITHIR-strategy of (k, u∗)-type, and ITHIR-strategy
of (k,m∗)-type, where k is the threshold level, p is the vaccination rate, u∗ is the control
intensity in the reduction of transmission, and m∗ is the treatment and isolation rate.
We have showed that the final epidemic size is increasing in k while decreasing in p,u∗,
and m∗. We also systematically investigated the dependence of the final epidemic size on
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the parameters of seasonal influenza. We found that the optimal strategy to minimize
the final epidemic size is to start the intervention as early as possible as high rate as
possible.

It is well known that vaccination is the most cost-effective preventive measure against
many infectious disease. In fact, we here also emphasize that our results demonstrate that
VUHIA-strategy of (k, p)-type is the most successful from minimizing the finial epidemic
size point of view in addition to cost-effectiveness, where herd immunity can be achieved
for all (k, p)-strategies on the contrary to a big part of (k, u∗) and (k,m∗) strategies.



6

Periodic orbits and global stability
for a discontinuous SIR model with
delayed control

We propose and analyse a mathematical model for infectious disease dynamics with a
discontinuous control function, where the control is activated with some time lag after
the density of the infected population reaches a threshold. The model is mathematically
formulated as a delayed relay system, and the dynamics is determined by the switching
between two vector fields (the so-called free and control systems) with a time delay with
respect to a switching manifold. First we establish the usual threshold dynamics: when
the basic reproduction number R0 ≤ 1, then the disease is eradicated, while for R0 > 1
the disease persists in the population. Then, forR0 > 1 , we divide the parameter domain
into three regions, and prove results about the global dynamics of the switching system
for each case: we find conditions for the global convergence to the endemic equilibrium
of the free system, for the global convergence to the endemic equilibrium of the control
system, and for the existence of periodic solutions that oscillate between the two sides
of the switching manifold. The proof of the latter result is based on the construction of
a suitable return map on a subset of the infinite dimensional phase space. Our results
provide insight into disease management, by exploring the effect of the interplay of the
control efficacy, the triggering threshold and the delay in implementation.

6.1 Model description
The population N is divided into three compartments: susceptible (S), infected (I) and
recovered (R). All individuals are born susceptible, and the birth rate is µ > 0 for each
compartment. The death rate is also µ for each class, and hence the total population

55
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N = S + I + R is constant, which we normalize to unity, N = 1. Although in classical
SIR models with mass action incidence, the new infections occur with some constant
transmission coefficient β > 0, here we assume that the transmission coefficient depends
on the number of infected individuals: If the density of infected individuals reaches a
threshold level k ∈ (0, 1), then the society implements certain control measures, and
thereby the transmission rate is reduced from β to (1 − u∗)β with u∗ ∈ (0, 1). The
constant u∗ represents the efforts and the efficacy of the control measures. It is reasonable
to assume that this reduction takes place with a time delay τ > 0. If the density of the
infected individuals becomes less than k, then the control measures are stopped, again
with delay τ > 0. Infected individuals recover with rate γ > 0, and full lifelong immunity
is assumed upon recovery. With these assumptions above, we obtain the following SIR
model with delay:

dS(t)
dt

= µ− µS(t)− [1− u(I(t− τ))]βS(t)I(t),

dI(t)
dt

= [1− u(I(t− τ))]βS(t)I(t)− γI(t)− µI(t),

dR(t)
dt

= γI(t)− µR(t),

(6.1)

where

u(I) =

0 if I < k,

u∗ if I ≥ k,
(6.2)

k ∈ (0, 1) and u∗ ∈ (0, 1).
In the special case τ = 0 we obtain a model studied in [49].
A dynamical system is called a delayed relay system [40], if it is governed by a

differential equation of the form

dx(t)
dt

=

f 1(x(t)) if g(x(t− τ)) < 0,
f 2(x(t)) if g(x(t− τ)) ≥ 0,

where τ > 0, and f 1, f 2 are Lipschitz continuous. The switching function g is typically
a piecewise smooth Lipschitz continuous function. The set {x : g(x) = 0} is called the
switching manifold.

Let (Sysd) denote the system consisting of the first two equations of (6.1). We consider
only these two equations as they are independent of the third one in (6.1). Note that
(Sysd) is a delayed relay system with x = (S, I),

f 1(S, I) =
(
f 1

1 (S, I)
f 1

2 (S, I)

)T
=
(
µ− µS − βSI
βSI − γI − µI

)T
,

f 2(S, I) =
(
f 2

1 (S, I)
f 2

2 (S, I)

)T
=
(
µ− µS − (1− u∗)βSI
(1− u∗)βSI − γI − µI

)T (6.3)
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and g(S, I) = I − k. Now the switching manifold is the set {(S, I) : I = k}.
Hereinafter (Sysf ) denotes the free system

(S ′(t), I ′(t)) = f 1(S(t), I(t)),

and (Sysc) is for the control system

(S ′(t), I ′(t)) = f 2(S(t), I(t)).

Let us emphasize that these are 2-dimensional systems consisting of the S- and I-
equations of a classical ordinary SIR model. The transmission rate is β for (Sysf ),
and it is (1− u∗)β for (Sysc).

As it is well-known, the set

∆ = {(S, I) ∈ [0, 1]2 : S + I ≤ 1} (6.4)

is positively invariant for both (Sysf ) and (Sysc). For all (S0, I0) ∈ ∆ and for both
∗ ∈ {f, c}, let

(S∗, I∗) = (S∗(·;S0, I0), I∗(·;S0, I0))

denote the solution of (Sys∗) with

S∗(0) = S∗(0;S0, I0) = S0 and I∗(0) = I∗(0;S0, I0) = I0.

Solution (S∗, I∗) exists on the positive real line. It is also important that if I0 = 0, then
I∗(t) = 0 for all t ≥ 0. Condition I0 > 0 guarantees that I∗ remains positive on the
positive real line. In other words,

∆1 = {(S, I) ∈ ∆ : I > 0} (6.5)

is positively invariant w.r.t. both (Sysf ) and (Sysc).
Because of the delay τ , the phase space for (Sysd) has to be chosen as

X = {(S0, ϕ) ∈ [0, 1]× C([−τ, 0], [0, 1]) : S0 + ϕ(0) ≤ 1}.

Given any (S0, ϕ) ∈ X, the solution (S, I) = (S(·;S0, ϕ), I(·;S0, ϕ)) of (Sysd) is a pair of
real functions with the following properties: S is defined and continuous on [0,∞) with
S(0) = S0, I is defined and continuous on [−τ,∞) with I|[−τ,0] = ϕ, furthermore, (S, I)
satisfies the integral equation system

S(t) =S0 +
∫ t

0
{µ− µS(ξ)− [1− u(I(ξ − τ))]βS(ξ)I(ξ)} dξ,

I(t) =ϕ(0) +
∫ t

0
{[1− u(I(ξ − τ))]βS(ξ)I(ξ)− γI(ξ)− µI(ξ)} dξ
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for all t > 0.
It is obvious that the solutions of (Sysd) are absolutely continuous, and the first two

equations in (6.1) are satisfied almost everywhere. Throughout this chapter S ′(t) and
I ′(t) will mean the right-hand derivative when I(t − τ) = k; this will not cause any
confusion.

For all t ≥ 0, let It denote the element of C([−τ, 0], [0, 1]) defined by It(ξ) = I(t+ ξ),
ξ ∈ [−τ, 0].

Consider the following subset of X:

X0 = {(S0, ϕ) ∈ X : [−τ, 0] 3 t 7→ ϕ(t)− k ∈ R has a finite number of sign changes}.

In this chapter we only study solutions with initial data in X0. A further subset of X is

X1 = {(S0, ϕ) ∈ X0 : ϕ(0) > 0},

the collection of endemic states, when the disease is present in the population. We will
show in Section 6.3 that both X0 and X1 are positively invariant for (Sysd).

6.2 Equilibria
In case of the free system (Sysf ), the basic reproduction number is

R0 = β

γ + µ
.

The reproduction number of the control system (Sysc), what we call control reproduction
number, is given by

Ru∗ = (1− u∗)β
γ + µ

= (1− u∗)R0.

Next we recall the equilibria and their stability properties for the ordinary systems
(Sysf ) and (Sysc).

The disease-free equilibrium for both (Sysf ) and (Sysc) is

E∗0 = (S∗0 , I∗0 ) ∈ ∆, where S∗0 = 1 and I∗0 = 0.

The endemic equilibrium for (Sysf ) is

E∗1 = (S∗1 , I∗1 ) ∈ ∆, where S∗1 = 1
R0

and I∗1 = µ

β
(R0 − 1).

It exists only if R0 > 1.
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It is known (see [23]) that E∗0 is globally asymptotically stable w.r.t the free system
(Sysf ) if R0 ≤ 1, and it is unstable if R0 > 1. The endemic state E∗1 is asymptotically
stable w.r.t (Sysf ) if R0 > 1, and its region of attraction is ∆1.

The endemic equilibrium for (Sysc) is

E∗2 = (S∗2 , I∗2 ) ∈ ∆, where S∗2 = 1
Ru∗

and I∗2 = µ

(1− u∗)β
(Ru∗ − 1).

It exists for Ru∗ > 1.
E∗2 is asymptotically stable w.r.t (Sysc) and attracts ∆1 if Ru∗ > 1. The disease free

equilibrium E∗0 is globally asymptotically stable w.r.t (Sysc) ifRu∗ ≤ 1, and it is unstable
if Ru∗ > 1.

Next we examine what are the equilibria for (Sysd).
For all I∗ ∈ [0, 1], let I∗ also denote the constant function in C([−τ, 0], [0, 1]) with

value I∗. This will not cause any confusion but ease the notation. If we write (S∗, I∗) ∈ ∆,
then I∗ is considered to be a real number in [0, 1]. Notation (S∗, I∗) ∈ X0 means that
I∗ is an element of C([−τ, 0], [0, 1]). In accordance, we may consider E∗0 , E∗1 and E∗2 as
elements of X0.

(S∗, I∗) ∈ X0 is an equilibrium for (Sysd) if and only if (S∗, I∗) ∈ ∆ satisfies the
algebraic equation system

0 = µ− µS∗ − [1− u(I∗)]βS∗I∗,
0 = [1− u(I∗)]βS∗I∗ − γI∗ − µI∗.

(6.6)

As above, we call an equilibrium (S∗, I∗) disease-free if I∗ = 0, and endemic if I∗ > 0.
By calculating the solutions of (6.6), we obtain the following result.

Proposition 6.2.1.
The unique disease-free equilibrium for the delayed relay system (Sysd) is E∗0 ∈ X0, and
it exists for all choices of parameters.
If R0 ≤ 1, then there is no endemic equilibrium for (Sysd). If R0 > 1, then we distinguish
three cases.
(a) If

R0 > 1 and R0[µ− (µ+ γ)k] < µ, (C.1)

then E∗1 ∈ X0 is the unique endemic equilibrium for (Sysd).
(b) If

µ ≤ R0[µ− (µ+ γ)k] < µ/(1− u∗), (C.2)
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then there is no endemic equilibrium for (Sysd).
(c) If

R0[µ− (µ+ γ)k] ≥ µ/(1− u∗), (C.3)

then E∗2 ∈ X0 is the unique endemic equilibrium.

Note that if either (C.2) or (C.3) holds, then necessarily R0 > 1. In addition, condi-
tions (C.1), (C.2) and (C.3) together cover the case R0 > 1.

Proof. It is easy to see that (S∗, 0) satisfies (6.6) if and only if S∗ = S∗0 = 1. Moreover,
(S∗0 , I∗0 ) = (1, 0) is a solution of (6.6) without any restrictions on the parameters. So the
first statement of the proposition is true.

We may now assume that I∗ > 0 and thus S∗ < 1. Let us divide (6.6) by (µ+ γ) and
examine the equivalent form

0 = µ

γ + µ
(1− S∗)− [1− u(I∗)]R0S

∗I∗,

0 = [[1− u(I∗)]R0S
∗ − 1]I∗.

As I∗ 6= 0, the second equation gives that

R0[1− u(I∗)]S∗ = 1. (6.7)

It comes from S∗ < 1 and the definition of u that (6.7) cannot be satisfied if R0 ≤ 1,
so in that case there is no endemic equilibrium.

If R0 > 1, then we need to distinguish two cases. If 0 < I∗ < k and hence u(I∗) = 0,
then one can easily see that (S∗, I∗) = (S∗1 , I∗1 ). If I∗ ≥ k and u(I∗) = u∗, then (S∗, I∗) =
(S∗2 , I∗2 ).

To complete the proof, we need to guarantee that 0 < I∗1 < k and I∗2 ≥ k. Using
β = R0(µ+ γ), one can show that inequality

0 < I∗1 = µ

β
(R0 − 1) < k

is satisfied if and only if

1 < R0 and R0[µ− (µ+ γ)k] < µ.

Similarly, I∗2 ≥ k is equivalent to

R0[µ− (µ+ γ)k] ≥ µ/(1− u∗).

Statements (a)-(c) of the proposition follow from the calculations above.

In Fig. 6.1 we divide the (k, u∗) plane into three regions according to Cases (a)-(c)
of Proposition 6.2.1 in order to show the interplay between threshold level k and control
intensity u∗.
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Figure 6.1: A 2-parameter bifurcation diagram giving the endemic equilibria in the (k, u∗)
plane for R0 > 1. The parameters are γ = 0.25, β = 2.5 and µ = 0.4.

6.3 Construction of solutions
In this section we show that if (S0, ϕ) ∈ X0 ((S0, ϕ) ∈ X1), then the solution (S, I) exists,
and (S(t), It) ∈ X0 ((S(t), It) ∈ X1) for each t ≥ 0.

First we need the following result for the ordinary systems (Sysf ) and (Sysc).

Proposition 6.3.1. Let ∗ ∈ {f, c}. For any k ∈ (0, 1) and any non-constant solution
(S∗, I∗) of (Sys∗), the function

[0,∞) 3 t 7→ I∗(t)− k ∈ R

has a finite number of zeros on each interval of finite length.

Proof. We give a proof for the free system (Sysf ). The proof for (Sysc) is analogous.
Consider the second equation of (Sysf ):

I ′f (t) = βSf (t)If (t)− (γ + µ)If (t) = (γ + µ) (R0Sf (t)− 1) If (t). (6.8)

If R0 ≤ 1 and If (t) = k ∈ (0, 1) for some t ≥ 0, then Sf (t) ≤ 1− If (t) < 1 and I ′f (t) < 0.
The statement is clearly true in this case.

Now assume that R0 > 1. Recall from [23] that

V (S, I) = S∗1

(
S

S∗1
− log S

S∗1

)
+ I∗1

(
I

I∗1
− log I

I∗1

)
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is a Lyapunov function for (Sysf ), and V̇ (S, I) < 0 for all (S, I) ∈ ∆1 \ {E∗1}. For any
k ∈ (0, 1) \ {I∗1}, consider the nontrivial level set

Hk =
{

(S, I) ∈ ∆1 : V (S, I) = S∗1 + k − I∗1 log k

I∗1

}
,

which is a simple closed curve. The property V̇ (S, I) < 0 guarantees that int(Hk) is
positively invariant for (Sysf ), where int(Hk) denotes the interior of Hk.
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*,k)
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Figure 6.2: The segment I = k and the level set Hk of the Lyapunov function V .

Observe that (S∗1 , k) ∈ Hk. One can easily check that [0, 1] 3 S 7→ V (S, k) ∈ R has
a strict minimum at S = S∗1 , which implies that the segment I = k and Hk have no
common point besides (S∗1 , k). The segment I = k is tangential to Hk at (S∗1 , k), see Fig.
6.2.

We also see from (6.8) that if If (t) > 0 for some t ∈ R, then

I ′f (t) = 0 if and only if Sf (t) = 1/R0 = S∗1 , (6.9)

and
I ′f (t) > 0 (I ′f (t) < 0) if and only if Sf (t) > S∗1 (Sf (t) < S∗1). (6.10)

A direct consequence of (6.9) is the following observation for a non-constant solution
(Sf , If ). If there exists t̃ ≥ 0 such that If

(
t̃
)

= k and I ′f
(
t̃
)

= 0, then Sf
(
t̃
)

= S∗1 by
(6.9). Due to the Lyapunov function, there are no periodic solutions, hence there is no
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t 6= t̃ such that (Sf (t), If (t)) = (S∗1 , k). This yields, again by (6.9), that if If (t) = k for
some t ∈ [0,∞) \ {t̃}, then I ′f (t) 6= 0.

Now suppose for contradiction that for some k ∈ (0, 1) and non-constant solution
(Sf , If ), the function [0,∞) 3 s 7→ If (s) − k ∈ R has an infinite number of zeros in a
finite closed interval J ⊂ [0,∞). Let B = {t ∈ J : If (t) = k}. The compactness of J
ensures that B has an accumulation point ta in J . Necessarily If (ta) = k.

Let ε > 0 be arbitrary. Next we show that B has elements t1 < t2 < t3 in (ta−ε, ta+ε)
such that

I ′f (t1) < 0, I ′f (t2) > 0, I ′f (t3) < 0,

If (t) < k for t ∈ (t1, t2) and If (t) > k for t ∈ (t2, t3).

One can prove this claim as follows. Either (ta− ε, ta) or (ta, ta + ε) contains elements of
B arbitrary close to ta. Suppose (ta− ε, ta) is such an interval. By decreasing ε, we may
assume that the point t̃ (if exists) is not in (ta − ε, ta), and hence

I ′f (t) 6= 0 for all t ∈ B ∩ (ta − ε, ta). (6.11)

Choose any t1 ∈ B ∩ (ta − ε, ta) with I ′f (t1) < 0. It is easy to see that such t1 exists,
otherwise we cannot have several zeros in (ta − ε, ta). Then one can give δ1 > 0 with
t1 + δ1 < ta such that If (t) < k for t ∈ (t1, t1 + δ1). As B ∩ (t1 + δ1, ta) is bounded and
nonempty (actually it has an infinite number of elements), the infimum t2 = inf{B ∩
(t1 + δ1, ta)} exists. It is clear that t1 < t2 < ta, and If (t2) = k by the continuity of If .
Observation (6.11) guarantees that I ′f (t2) 6= 0. It comes from the definition of t2 that
If (t) < k for t ∈ (t1, t2) and I ′f (t2) > 0. As next step, one can give δ2 > 0 such that
t2 + δ < ta and If (t) > k for t ∈ (t2, t2 + δ2). Set t3 = inf{B ∩ (t2 + δ2, ta)}. Then
t3 satisfies the properties given in the claim. In the second case, when B has infinite
elements in (ta, ta + ε), we can find t3 first, then t2 and t1 in an analogous way.

We claim that I ′f (ta) = 0, and therefore Sf (ta) = S∗1 (that is, ta = t̃). Indeed, if I ′f (ta)
is positive (negative), then I ′f (t) is positive (negative) for all t ∈ B in a small neighbour-
hood of ta by the continuous differentiability of If . This contradicts our previous claim.
So Sf (ta) = S∗1 .

As the solution is non-constant, (Sf (ta), If (ta)) = (S∗1 , k) 6= (S∗1 , I∗1 ), and we conclude
that k 6= I∗1 . We consider the case k > I∗1 . (The case k < I∗1 can be handled in similarly.)

Recall that (Sf (ta), If (ta)) = (S∗1 , k) is the intersection point of the segment I = k

and Hk. We have seen that there exist t1 and t2 arbitrary close to ta such that If (t1) =
If (t2) = k, I ′f (t1) < 0 < I ′f (t2) and If (t) < k for t ∈ (t1, t2). Remark (6.10) implies
that Sf (t1) < S∗1 < Sf (t2). We may also achieve (using the boundedness of S ′f and
I ′f ) that (Sf (t), If (t)) is arbitrary close to (S∗1 , k) on (t1, t2). This gives the existence of
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t∗ ∈ (t1, t2) with (Sf (t∗), If (t∗)) ∈ int(Hk). The positive invariance of int(Hk) then gives
(Sf (t), If (t)) ∈ int(Hk) for all t ≥ t∗ contradicting If (t2) = k.

This means that our initial assumption was wrong, and the proposition is true also
in the R0 > 1 case.

Now we ready to prove the positive invariance of X0.

Proposition 6.3.2. If (S0, ϕ) ∈ X0, then a unique solution (S, I) exists, and (S(t), It) ∈
X0 for each t ≥ 0.

Proof. Set
0 = t0 < t1 < ... < tN−1 < tN = τ

such that ϕ(ξ) < k on intervals of the form (−τ + t2n,−τ + t2n+1) and ϕ(ξ) > k on
intervals of the form (−τ + t2n−1,−τ + t2n), where n ∈ [0, N/2] is an integer. (We omit
the case when ϕ(ξ) > k on (−τ + t2n,−τ + t2n+1) and ϕ(ξ) < k on (−τ + t2n−1,−τ + t2n)
because that can be handled analogously.)

Under the assumptions above, I(t− τ) < k and u(I(t− τ)) = 0 for t ∈ (0, t1). Hence
the solution (S, I) of (Sysd) coincides with a solution of (Sysf ) on [0, t1]:

S(t;S0, ϕ) = Sf (t;S0, ϕ(0)), I(t;S0, ϕ) = If (t;S0, ϕ(0))

for t ∈ [0, t1]. Since I(t− τ) > k and thus u(I(t− τ)) = u∗ for t ∈ (t1, t2), we see that

S(t;S0, ϕ) = Sc(t− t1;S(t1), I(t1)), I(t;S0, ϕ) = Ic(t− t1;S(t1), I(t1))

for t ∈ [t1, t2]. Similarly, (S, I) is given by a specific solution of (Sysf ) or (Sysc) on all
intervals of the form [tm−1, tm], where m ∈ {1, ..., N}. Hence the solution exists on [0, τ ].

As the functions t 7→ If (t)− k and t 7→ Ic(t)− k have finite number of sign changes
on intervals of finite length by Proposition 6.3.1, we deduce that t 7→ I(t)−k also admits
a finite number of sign changes on [0, τ ].

Iterating this argument first for [τ, 2τ ], then for all intervals of the form [jτ, (j+ 1)τ ],
j ≥ 2, we see that the solution exists on the positive real line. The uniqueness of (S, I)
comes at once from the uniqueness of solutions for (Sysf ) and (Sysc). In addition, it is
clear that t 7→ I(t) − k has a finite number of sign changes on intervals of finite length.
The way we obtain the solutions of (Sysd) and the positive invariance of ∆ for (Sysf )
and (Sysc) also imply that S(t) ∈ [0, 1], I(t) ∈ [0, 1] and S(t) + I(t) ≤ 1 for all t ≥ 0.
Summing up, (S(t), It) ∈ X0 for all t ≥ 0.

Since the solutions of (Sysd) with initial data in X0 are determined by the solutions
of (Sysf ) and (Sysc) as in the previous proof, and as the set ∆1 = {(S, I) ∈ ∆ : I > 0}
is positively invariant for both (Sysf ) and (Sysc), we see that X1 is positively invariant
for (Sysd) too.
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6.4 Threshold dynamics: disease extinction and per-
sistence

Theorem 6.4.1. If R0 ≤ 1, then E∗0 is globally asymptotically stable for the delayed
relay system (Sysd) (that is, E∗0 is asymptotically stable and attracts X0). If R0 > 1,
then E∗0 is unstable w.r.t. (Sysd), and the disease uniformly persists in the population.

Proof. First note that the solutions of (Sysd) coincide with the solutions of the free
system (Sysf ) in a small neighbourhood of E∗0 . Therefore E∗0 is a stable equilibrium for
(Sysd) if and only if it is stable for (Sysf ).

Let R0 ≤ 1. We only need to prove the global attractivity of E∗0 on X0. Suppose for
contradiction that I(t) does not converge to 0 as t→∞ for some solution (S, I). By the
second equation of (Sysd),

dI(t)
dt

= (µ+ γ) {[1− u(I(t− τ))]R0S(t)− 1} I(t) ≤ 0,

that is, I is nonincreasing. As I is nonnegative and does not converge to 0, necessarily
there exists a constant c > 0 such that I(t) ≥ c for all t ≥ 0 and I(t) → c as t → ∞.
Then S(t) ≤ 1− c and

{[1− u(I(t− τ))]R0S(t)− 1} I(t) ≤ −c2

for all t ≥ 0. It follows that

I(T ) = I(0) + (µ+ γ)
∫ T

0
{[1− u(I(ξ − τ))]R0S(ξ)− 1} I(ξ)dξ ≤ I(0)− (µ+ γ)c2T,

which implies I(T ) < 0 for all sufficiently large T , a contradiction. So I(t)→ 0 as t→∞.
Next we prove that if R0 ≤ 1, then S(t) → 1 as t → ∞ for all solutions (S, I). It is

clear from the previous paragraph that there exists T (ε) for each ε > 0 such that I(t) < ε

for all t ≥ T (ε). Then for t ≥ T (ε),

dS(t)
dt

= µ− µS(t)− [1− u(I(t− τ))]βS(t)I(t) ≥ µ− µS(t)− εβS(t),

which implies
lim inf
t→∞

S(t) ≥ µ

µ+ εβ
.

Note that ε > 0 can be arbitrary small. Thereby

lim inf
t→∞

S(t) ≥ µ

µ
= 1.
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We know on the other hand that S(t) ≤ 1 for all t ≥ 0. Summing up, limt→∞ S(t) exists
and equals one.

We have verified that S(t) → 1 and I(t) → 0 as t → ∞ for every solution (S, I) if
R0 ≤ 1.

To show the persistence, let R0 > 1, and consider a solution with I(0) > 0. If there
exists arbitrarily large t with I(t) ≥ k, then lim supt→∞ I(t) ≥ k. Otherwise, there is a t∗
such that I(t) < k for all t > t∗. In this case, the solution follows (Sysf ) for t ≥ t∗ + τ :

S(t) =Sf (t− t∗ − τ ;S(t∗ + τ), I(t∗ + τ)),
I(t) =If (t− t∗ − τ ;S(t∗ + τ), I(t∗ + τ)),

t ∈ [t∗ + τ,∞).

Then limt→∞ I(t) = I∗1 . In any case, we can conclude that lim supt→∞ I(t) ≥ min{k, I∗1},
which means uniform weak persistence. Since the solutions of (Sysf ) and (Sysc) both
have uniformly bounded derivatives on ∆, by the Arzelà-Ascoli theorem our solution
operators Φ(t) : X0 3 (S0, ϕ) 7→ (St, It) ∈ X0 are compact for t > τ , hence the semiflow
Φ has a compact attractor in X0. We can apply Corollary 4.8 from [41] to conclude
(strongly) uniform persistence: there exists a δ > 0 such that for all solutions with
I(0) > 0, lim inft→∞ I(t) ≥ δ.

6.5 Case (a): E∗1 is GAS for large k
In this section let R0 > 1 and k > k0, where k0 = 1− 1/R0. It is easy to see that these
conditions imply (C.1). Hence Proposition 6.2.1 gives that E∗1 is the unique endemic
equilibrium for (Sysd) and I∗1 < k.

Fig. 6.3 shows the segment I = k0 in ∆.
The main result of this section is the following global stability theorem.

Theorem 6.5.1. If R0 > 1 and k > k0, then E∗1 is asymptotically stable with respect to
(Sysd), and it attracts the set X1.

The proof is based on the next simple observation.

Proposition 6.5.1. Assume that R0 > 1 and k > k0. If I(t0) < k for some t0 ≥ 0, then
I(t) < k for all t ∈ [t0,∞).

Proof. Suppose for contradiction that there exists t∗ > t0 such that I(t) < k for t ∈ [t0, t∗)
and I(t∗) = k. Then necessarily I ′(t∗) ≥ 0. On the other hand,

S(t∗) ≤ 1− I(t∗) = 1− k < 1− k0 = 1/R0,
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Figure 6.3: The segment I = k0.

and thus
dI(t∗)
dt

= (γ + µ)[[1− u(I(t∗ − τ))]R0S(t∗)− 1]I(t∗) < 0,

independently of the value of I(t∗ − τ). This is a contradiction, so the proposition is
true.

Proof of Theorem 6.5.1. As I∗1 < k, the solutions of (Sysd) coincide with solutions of
the free system (Sysf ) in a small neighborhood of E∗1 . Since E∗1 is stable for (Sysf ), this
fact implies that E∗1 is a stable equilibrium also for (Sysd). We only need to prove that
the region of attraction is X1.

Consider an arbitrary solution (S, I) of (Sysd) with initial data in X1.
We claim there exists t0 ≥ 0 such that I(t0) < k. Indeed, suppose for contradiction

that I(t) ≥ k for all t ∈ [0,∞). Then we have

I(t) = Ic(t− τ ;S(τ), I(τ)) for t ∈ [τ,∞).

If Ru∗ > 1, then E∗2 attracts the set ∆1 = {(S, I) ∈ ∆ : I > 0} w.r.t. (Sysc), and hence
I(t) → I∗2 < k as t → ∞. If Ru∗ ≤ 1, then I(t) → 0 < k as t → ∞ by the global
attractivity of E∗0 for (Sysc). In both cases we obtained a contradiction.

One can now use Proposition 6.5.1 with this t0 to obtain that I(t) < k for t ∈ [t0,∞).
Then (S, I) coincides with the subsequent solution of (Sysf ) on [t0 + τ,∞):

S(t) =Sf (t− t0 − τ ;S(t0 + τ), I(t0 + τ)),
I(t) =If (t− t0 − τ ;S(t0 + τ), I(t0 + τ)),

t ∈ [t0 + τ,∞).
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Recall that E∗1 attracts ∆1 w.r.t. (Sysf ). Also note that I(t) > 0 for all t ≥ 0 by the
positive invariance of X1. We conclude that (S(t), I(t))→ E∗1 as t→∞.

Summing up, E∗1 is asymptotically stable and attracts X1 w.r.t. (Sysd).

6.6 Case (b): Periodic orbits in the absence of en-
demic equilibria

Recall from Proposition 6.2.1 that (Sysd) has no endemic equilibria if

µ < R0[µ− (µ+ γ)k] < µ/(1− u∗). (6.12)

In more detail, condition (6.12) implies that the second coordinate I∗1 of E∗1 is greater
than k (see the proof of Proposition 6.2.1), and hence E∗1 is not an equilibrium for (Sysd).
If Ru∗ > 1, then E∗2 exists for (Sysc), but I∗2 < k, and thus E∗2 is not an equilibrium for
(Sysd) either. If Ru∗ ≤ 1, then E∗0 is the unique equilibrium for both (Sysc) and (Sysd).

The aim of this section is to show that the absence of endemic equilibria implies the
existence of periodic orbits in the R0 > 1 case – at least for small τ .

Theorem 6.6.1. If (6.12) holds and τ is small enough, then the delayed relay system
(Sysd) has a periodic solution.

In order to prove this theorem, first we need to recall how the solutions of (Sysf ) and
(Sysc) behave in ∆1.

If R0 > 1, i.e., E∗1 = (S∗1 , I∗1 ) is an endemic equilibrium for (Sysf ), then the curves
S = S∗1 and (µ+βI)S = µ are the null-isoclines for (Sysf ), see Figure 6.4.(a). Analyzing
the vector field, one sees that

S ′f (t) ≤ 0 and I ′f (t) > 0 if
(Sf (t), If (t)) ∈ A1 = {(S, I) ∈ ∆1 : S > S∗1 , (µ+ βI)S ≥ µ} ,

S ′f (t) < 0 and I ′f (t) ≤ 0 if
(Sf (t), If (t)) ∈ A2 = {(S, I) ∈ ∆1 : S ≤ S∗1 , (µ+ βI)S > µ} ,

S ′f (t) ≥ 0 and I ′f (t) < 0 if
(Sf (t), If (t)) ∈ A3 = {(S, I) ∈ ∆1 : S < S∗1 , (µ+ βI)S ≤ µ} ,

S ′f (t) > 0 and I ′f (t) ≥ 0 if
(Sf (t), If (t)) ∈ A4 = {(S, I) ∈ ∆1 : S ≥ S∗1 , (µ+ βI)S < µ} .

Moreover, the above inequalities are strict in the interior of Ai, i ∈ {1, 2, 3, 4}.
It is clear from these observations and the positive invariance of ∆1 that the solutions

of (Sysf ) behave as follows.
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Figure 6.4: The null-isoclines and the vector field for (a): the free system (Sysf ) in case
R0 > 1, (b): the control system (Sysc) in case Ru∗ > 1. The isoclinic curves for the free
system (Sysf ) are g1

f = {(S, I) ∈ ∆1 : µ−µS−βSI = 0} and g2
f = {(S, I) ∈ ∆1 : S = S∗1}.

The isoclinic curves for the control system (Sysc) are g1
c = {(S, I) ∈ ∆1 : µ − µS − (1 −

u∗)βSI = 0} and g2
c = {(S, I) ∈ ∆1 : S = S∗2}.

Remark 6.6.2. Let R0 > 1.
(i) Assume that (S0, I0) ∈ Ai, where i ∈ {1, 3}. Then either

(Sf (t), If (t)) = (Sf (t;S0, I0), If (t;S0, I0)) ∈ Ai for all t ≥ 0

(in this case the solution converges to E∗1 in Ai), or there exist 0 < T1 < T2 such that

(Sf (t), If (t)) ∈ Ai for t ∈ [0, T1) (6.13)

and
(Sf (t), If (t)) ∈ Ai+1 for t ∈ [T1, T2) (6.14)

(that is, the solution leaves Ai through the boundary of Ai+1).
(ii) Each solution leaves Ai, i ∈ {2, 4}, through the boundary of Ai+1: If (S0, I0) ∈ Ai,
where i ∈ {2, 4}, then there exist 0 < T1 < T2 such that (6.13) and (6.14) hold. Here the
index is considered modulo 4, so A5 stands for A1.
(iii) Assume that k < I∗1 . If 0 < If (t∗) < k for some t∗, then there exists t∗∗ > t∗ such
that

Sf (t∗∗) ∈ [S∗1 , 1− k] and If (t∗∗) = k.

Let us now consider (Sysc). If Ru∗ > 1, i.e., if E∗2 is an endemic equilibrium for
(Sysc), then ∆1 \{E∗2} can be divided up into four subsets B1, B2, B3, B4 in an analogous
way using the null-isoclines S = S∗2 and (µ + (1 − u∗)βI)S = µ, see Fig. 6.4.(b). By
analyzing the vector field, we get the subsequent information on the behavior of solutions.
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Remark 6.6.3. If Ru∗ > 1, then the analogues of Remark 6.6.2.(i) and (ii) hold for
the solutions of (Sysc) with Bi standing instead of Ai, i ∈ {1, 2, 3, 4}. In addition, if
k > I∗2 and Ic(t∗) > k for some t∗, then there exist t∗∗ > t∗ such that Sc(t∗∗) ∈ [0, S∗2 ] and
Ic(t∗∗) = k.

Theorem 6.6.1 is the consequence of the subsequent two propositions.

Proposition 6.6.1. Assume (6.12).

(i) Consider a solution (Sf , If ) of (Sysf ) with Sf (0) = S0 ∈ [S∗1 , 1− k] and If (0) = k.

There exists a time Tf > 0 (independent of S0) such that If (t) > k for t ∈ (0, Tf ].

(ii) Assume in addition that Ru∗ > 1. Consider a solution (Sc, Ic) of (Sysc) with
Sc(0) = S0 ∈ [0, S∗2 ] and Ic(0) = k. There exists a time Tc > 0 (independent of S0)
such that Ic(t) < k for t ∈ (0, Tc].

Proof. (i) Condition (6.12) implies that I∗1 > k. Therefore (Sf (0), If (0)) = (S0, k) ∈
A4 ∪ A1, see Fig. 6.4.(a). It follows from Remark 6.6.2.(i) and (ii) that either If (t) > k

for all t > 0 (the proof is complete in this case with any Tf > 0), or there exists T > 0
such that If (t) > k for all t ∈ (0, T ) and If (T ) = k. In the latter case the total change
of If on the interval [0, T ] is greater than 2(I∗1 − k). On the other hand, it comes from
the If -equation that |I ′f (t)| ≤ β + γ + µ for all t ≥ 0. Therefore

T >
2(I∗1 − k)
β + γ + µ

.

So set Tf = 2(I∗1 − k)/(β + γ + µ).
(ii) Under the assumptions of the proposition, E∗2 is an endemic equilibrium for (Sysc)

with I∗2 < k, and (S0, k) ∈ B2∪B3, see Fig. 6.4.(b). One may apply a reasoning analogous
to the proof of statement (i) to show that statement (ii) is true with

Tc = 2(k − I∗2 )
(1− u∗)β + γ + µ

.

Now consider the subset

A = {(S0, ϕ) ∈ X1 : S0 ∈ [S∗1 , 1− k], ϕ(θ) < k for θ ∈ [−τ, 0) and ϕ(0) = k}.

Proposition 6.6.2. If (S0, ϕ) ∈ A, then the solution (S, I) = (S(.;S0, ϕ), I(.;S0, ϕ)) of
(Sysd) is independent of ϕ. If (6.12) holds and τ is small enough, then there exists a
smallest t1 = t1(S0) > 0 such that (S(t1), It1) ∈ A. Moreover, S(t1) depends continuously
on S0.
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Proof. For any (S0, ϕ) ∈ A, the solution (S, I) =
(
S(.;S0, ϕ), I(.;S0, ϕ)

)
coincides with

the subsequent solution of (Sysf ) on [0, τ ] :

S(t) = Sf (t;S0, k), t ∈ [0, τ ],
I(t) = If (t;S0, k), t ∈ [0, τ ],

(6.15)

see curve Γ1 on Fig. 6.5.

Figure 6.5: The solution (S, I) = (S(.;S0, ϕ), I(.;S0, ϕ)) of (Sysd) for (S0, ϕ) ∈ A under
conditions (6.12) and Ru∗ > 1. The blue solid curves Γ1 and Γ3 represent (S, I) when
it follows (Sysf ). The solid red curve Γ2 represents (S, I) when it follows (Sysc). The
null-isoclines of (Sysf ) and (Sysc) are the dotted blue and dashed red curves, respectively.
The parameters are: k = 0.26, γ = 1.38, β = 15.8, µ = 1.3, τ = 1, u∗ = 0.76, S0 = 0.58.

It comes from Proposition 6.6.1.(i) that if τ ≤ Tf , then I(t) = If (t;S0, k) > k for
t ∈ (0, τ ].

Observe that if I(t) ≥ k for t ∈ [0, T ] with any T > τ, then (S, I) coincides with the
following solution of (Sysc) on [τ, T + τ ] :

S(t) = Sc(t− τ ;S(τ), I(τ)), t ∈ [τ, T + τ ],
I(t) = Ic(t− τ ;S(τ), I(τ)), t ∈ [τ, T + τ ],

(6.16)
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see curve Γ2 on Fig. 6.5.
Next we show the existence of t0 > τ such that I(t0) = k and I(t) > k for t ∈ (0, t0).

We need to distinguish two cases.
Case Ru∗ ≤ 1 : Suppose for contradiction that I(t) > k for all t ∈ (0,∞) and

hence I(t) = Ic(t − τ ;S(τ), I(τ)) for t ∈ [τ,∞). The disease free equilibrium E∗0 is
globally asymptotically stable for (Sysc) if Ru∗ ≤ 1, i.e., Ic(t) → 0 as t → ∞. This is a
contradiction.

Case Ru∗ > 1 : The existence of t0 comes from I(τ) > k > I∗2 , observation (6.16) and
Remark 6.6.3. In this case S(t0) ∈ [0, S∗2 ].

It is clear that for t ∈ [t0, t0 + τ ],

S(t) = Sc(t− t0;S(t0), k),
I(t) = Ic(t− t0;S(t0), k).

(6.17)

Next we claim that I(t) < k for (t0, t0 + τ ] if τ is small enough. If Ru∗ 6 1, then
it comes from the Ic-equation and S(t) < 1 that I ′(t) < 0 for t ∈ [t0, t0 + τ). So the
claim holds in this case. If Ru∗ > 1, then we apply Proposition 6.6.1.(ii). It yields that
I(t) = Ic(t− t0;S(t0), k) < k for (t0, t0 + τ ] if τ < Tc.

Our last observation implies that

S(t) = Sf (t− t0 − τ ;S(t0 + τ), I(t0 + τ)),
I(t) = If (t− t0 − τ ;S(t0 + τ), I(t0 + τ))

(6.18)

for t ∈ [t0 + τ, t0 + 2τ ]. Moreover, if I(t) < k for t ∈ (t0, t1) with some t1 > t0 + τ , then
equations (6.18) hold for all t ∈ [t0 + τ, t1 + τ ]. Arguing as before, one can actually verify
the existence of t1 > t0 + τ such that I(t) < k for t ∈ (t0, t1), S(t1) ∈ [S∗1 , 1 − k] and
I(t1) = k. See curve Γ3 on Fig. 6.5.

As S(t1) ∈ [S∗1 , 1 − k], It1(θ) < k for θ ∈ [−τ, 0) and It1(0) = k, we conclude that
(S(t1), It1) ∈ A.

The statement that (S, I) is independent of ϕ is clear from the first step of the proof.
The continuous dependence of S(t1) from S0 comes from the fact the solutions of

(Sysf ) and (Sysc) depend continuously on initial data.

Proof of Theorem 6.6.1. Proposition 6.6.2 allows us to define a continuous return map

P : [S∗1 , 1− k]→ [S∗1 , 1− k], S0 7→ S(t1).

By the Schauder fixed-point theorem, P admits a fixed point Ŝ0 ∈ [S∗1 , 1−k]. In addition,
let ϕ̂ = It1(., Ŝ0, ϕ), where ϕ ∈ C([−τ, 0],R) is an arbitrary function with ϕ(0) = k and
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ϕ(θ) < k for θ ∈ [−τ, 0]. By Proposition 6.6.2, ϕ̂ is independent of ϕ and (Ŝ0, ϕ̂) ∈ A.
It is now obvious that solution (S(., Ŝ0, ϕ̂), I(., Ŝ0, ϕ̂)) of (Sysd) is periodic with minimal
period t1.

It follows from the proof above that Theorem 6.6.1 holds if

τ ≤ min{Tf , Tc} = min

 2(I∗1 − k)
β + γ + µ

,
2(k − I∗2 )

(1− u∗)β + γ + µ

.
Numerical investigations suggest that the theorem holds for larger choices of τ as well.
This is not surprising as our estimates in Proposition 6.6.1 were not sharp.

Threshold level k I(t) S(t)

6 8 10 12 14 16
t

0.1

0.2

0.3

0.4

0.5

0.6

Figure 6.6: The periodic solution for k = 0.26, γ = 1.38, β = 15.8, µ = 1.3, R0 = 5.9,
τ = 1, u∗ = 0.76.

6.7 Case (c): E∗2 is GAS for sufficiently small k
The purpose of this section is to show that E∗2 attracts X1 under certain conditions.

Theorem 6.7.1. Assume that

µ

µ+ γ
+ µ

β
< 2

√
µ

β
(6.19)

and
k1 = µ

µ+ γ
− S∗2 = µ

µ+ γ
− µ+ γ

β(1− u∗)
> 0. (6.20)

If k ∈ (0, k1), then E∗2 is the unique endemic equilibrium for (Sysd), it is asymptotically
stable, and the region of attraction is X1.
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Figure 6.7: The dashed, solid and dotted curves represent the periodic solution for τ =
0.4, 1, 4 respectively. The parameters are k = 0.26, γ = 1.38, β = 15.8, µ = 1.3, R0 = 5.9,
u∗ = 0.76.

Note that it is possible to satisfy both inequalities (6.19) and (6.20) at the same time:
for example, if β = 15, µ = 0.4, γ = 1 and u∗ = 0.5, then both (6.19) and (6.20) hold.

Also observe that condition k ∈ (0, k1) implies (C.3). Therefore Proposition 6.2.1
already guarantees that E∗2 is the unique endemic equilibrium for (Sysd). For the second
coordinate of E∗1 , we have I∗1 ≥ k.

Fig. 6.8 explains the geometrical position of the segment I = k1.
Set

∆2 =
{

(S, I) ∈ ∆ : S + I ≥ µ

µ+ γ

}
.

It is straightforward to check that both E∗1 and E∗2 belong to ∆2.
We need the forthcoming two results before proving Theorem 6.7.1. First we show

that all solutions of (Sysd) leave ∆ \ ∆2 in finite time. Then we verify the positive
invariance of ∆2 independently of the choice of parameters.

Proposition 6.7.1. Assume (6.19) and suppose that (S(0), I(0)) ∈ ∆\∆2 for a solution
(S, I) of (Sysd). Then there exists t0 > 0 such that (S(t0), I(t0)) ∈ ∆2.

Proof. First we claim that if (6.19) holds, then S ′f and S ′c are both positive on the closure

∆ \∆2 =
{

(S, I) ∈ ∆ : I ≤ µ

µ+ γ
− S

}
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S+I=1
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*
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Figure 6.8: The definition of k1.

of ∆ \ ∆2. Recall from Fig. 6.4 in Section 6.6 that S ′f and S ′c are both positive on the
subset {

(S, I) ∈ ∆ : I < µ− µS
βS

}
.

Hence it suffices to show that
µ

µ+ γ
− S < µ− µS

βS
for 0 ≤ S ≤ µ

µ+ γ
.

We investigate this inequality in the form
µ

µ+ γ
+ µ

β
< S + µ

βS
for all 0 ≤ S ≤ 1. (6.21)

The left-hand side is independent of S. Examining the derivative of the right-hand side,
it is easy to see that the right-hand side is minimal for S =

√
µ/β, and it takes the value

S + µ

βS
= 2

√
µ

β
for S =

√
µ

β
.

We see from assumption (6.19) that inequality (6.21) holds for S =
√
µ/β. Thus it holds

for all S ∈ [0, 1]. The proof of the claim is complete.
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Let Mf and Mc be the minimum of S ′f and S ′c on ∆ \∆2, respectively. As S ′f and S ′c
are both continuous and positive on the compact subset ∆ \∆2, the constants Mf and
Mc are well-defined and positive.

Now suppose that (S(0), I(0)) ∈ ∆ \ ∆2 for a solution (S, I) of (Sysd). As long
as (S(t), I(t)) ∈ ∆ \ ∆2, we have S ′(t) ≥ min{Mf ,Mc} > 0. The boundedness of
∆ \∆2 implies that the solution necessarily leaves ∆ \∆2 (through the segment S + I =
µ/(µ+ γ)).

Proposition 6.7.2. If there exists t0 ≥ 0 such that (S(t0), I(t0)) ∈ ∆2, then (S(t), I(t)) ∈
∆2 for all t ≥ t0.

Proof. Consider any solution (S, I) of (Sysd) with S(t0) + I(t0) ≥ µ/(µ+ γ). Adding up
the equations of (Sysd), we obtain that

d

dt
(S(t) + I(t)) =µ− µ(S(t) + I(t))− γI(t)

≥µ− (µ+ γ)(S(t) + I(t))

for all t > 0.
The solution of the ordinary differential equation

du(t)
dt

= µ− (µ+ γ)u(t), t ∈ R,

with initial data
u(t0) = S(t0) + I(t0) ≥ µ

µ+ γ

is
u(t) = µ

µ+ γ
+
(
u(t0)− µ

µ+ γ

)
e(µ+γ)(t0−t).

Then, by the comparison theorem, S(t) + I(t) ≥ u(t) ≥ µ/(µ+ γ) for all t ≥ t0, i.e.,
(S(t), I(t)) ∈ ∆2 for all t ≥ t0.

Now we are ready to prove Theorem 6.7.1.

Proof of Theorem 6.7.1. Assumption k ∈ (0, k1) implies that

R0[µ− (µ+ γ)k] > µ/(1− u∗). (6.22)

Therefore (C.3) holds, and E∗2 is the unique endemic equilibrium for (Sysd) by Proposition
6.2.1. Inequality (6.22) is actually equivalent to I∗2 > k, see the proof of Proposition 6.2.1.
This observation and the fact that E∗2 is stable w.r.t. to (Sysc) guarantees that it is stable
w.r.t. to (Sysd) too. We only need to show that if (S, I) is an arbitrary solution of (Sysd)
with initial data in X1, then (S(t), I(t))→ E∗2 as t→∞.
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It comes from Propositions 6.7.1 and 6.7.2 that there exists t0 ≥ 0 such that (S(t), I(t)) ∈
∆2 for all t ≥ t0. The rest of the proof comes from two claims.

First we claim that there exists t1 ≥ t0 such that I(t1) ≥ k. Indeed, suppose for
contradiction that I(t) < k for all t ∈ [t0,∞). Then we have

I(t) = If (t− t0 − τ ;S(t0 + τ), I(t0 + τ)) for t ∈ [t0 + τ,∞).

As we are in the R0 > 1 case, E∗1 attracts ∆1 for (Sysf ). It follows that I(t) → I∗1 as
t→∞. This is a contradiction since condition (6.22) implies that I∗1 > k.

Next we claim that if I(t1) ≥ k for some t1 ≥ t0, then I(t) ≥ k for all t ∈ [t1,∞). If
this is not true, i.e., I(t) can be smaller than k for some t > t1, then there exists t2 > t1

such that I(t2) = k and I ′(t2) ≤ 0. However, as (S(t2), I(t2)) ∈ ∆2, we have

S(t2) ≥ µ

µ+ γ
− I(t2) = µ

µ+ γ
− k > µ

µ+ γ
− k1 = S∗2 .

(Fig. 6.8 also shows this property: If (S(t2), I(t2)) ∈ ∆2 and I(t2) = k < k1, then
necessarily S(t2) > S∗2 .) This means that

dI(t2)
dt

=[[1− u(I(t2 − τ))]βS(t2)− (γ + µ)]I(t2)

>[[1− u∗]βS∗2 − (γ + µ)]k = 0

independently of the value of I(t2 − τ). This contradicts our previous observation that
I ′(t2) ≤ 0. So I(t) ≥ k for all t ∈ [t1,∞).

It comes from our last result that solution (S, I) coincides with the subsequent solution
of (Sysc) on [t1 + τ,∞):

S(t) =Sc(t− t1 − τ ;S(t1 + τ), I(t1 + τ)),
I(t) =Ic(t− t1 − τ ;S(t1 + τ), I(t1 + τ)),

t ∈ [t1 + τ,∞).

As E∗2 attracts ∆1 w.r.t. (Sysc), we conclude that (S(t), I(t)) → E∗2 as t → ∞. The
proof is complete.

6.8 Discussion
We have considered the dynamical consequences of switching to a control system in an
SIR epidemic model, when the switch takes place with some delay after the solution
crosses a switching manifold (i.e., when the density of infected individuals reaches a
threshold level k).

Our results for (6.1)-(6.2) with delay τ > 0 are summarized in Table 6.1. We have
found that the behaviour of the system can be significantly different from switching
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models without delay. This can be easily seen by comparing Table 6.1 to Table 6.2,
which lists the findings of Xiao, Xu, and Tang in [49] for system (6.1)-(6.2) in the case
τ = 0.

Parameters Results for τ > 0
R0 ≤ 1 E∗0 is GAS. No endemic equilibria.

(a) R0 > 1 and R0[µ− (µ+ γ)k] < µ E∗0 is unstable.
E∗1 is the unique endemic equilib-
rium.
E∗1 attracts X1 for large k.

(b) µ < R0[µ− (µ+ γ)k] < µ/(1− u∗) E∗0 is unstable.
No endemic equilibria.
Periodic solution for small τ .

(c) R0[µ− (µ+ γ)k] > µ/(1− u∗) E∗0 is unstable.
E∗2 is the unique endemic equilib-
rium.
E∗2 attracts X1 for small k (under
certain technical conditions).

Table 6.1: A summary of our results.
Parameters Results for τ = 0

(a) R0 > 1 and R0[µ− (µ+ γ)k] < µ E∗1 is the unique endemic equilib-
rium,
it attracts ∆1.

(b) µ < R0[µ− (µ+ γ)k] < µ/(1− u∗) A new equilibrium appears on the
switching manifold attracting ∆1.

(c) R0[µ− (µ+ γ)k] > µ/(1− u∗) E∗2 is the unique endemic equilib-
rium,
it attracts ∆1.

Table 6.2: The results of Xiao, Xu, and Tang in [49] for τ = 0.

As one can see from Table 6.1, all solutions in ∆1 converge to an endemic equilibrium if
τ = 0 and R0 > 1. However, periodic orbits can exist in the delayed case: we constructed
periodic solutions for some range of the parameters and for small positive delay (see
Case (b)). These are slowly oscillating between the two sides of the switching manifold
(meaning that if I(t1) = I(t2) = k for t1 < t2, then t2 − t1 > τ). Numerical observations
show that the periodic orbit persists by increasing the delay, and the oscillatory solution
tends to approach the two stable equilibria corresponding to the free and the control
systems.

On the other hand, our global stability results are delay independent (see Cases (a)
and (c)). Based on some numerical simulations, we conjecture that a stable periodic
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orbit may coexist with a stable equilibrium for some parameter configurations (when k
is slightly smaller than I∗2 or slightly bigger than I∗1 ), thus local stability of an endemic
equilibrium does not always imply its global stability. We have observed this bistable
situation for both small and large values of τ . The investigation of such cases is left for
future work.

Fig. 6.9 depicts how the maxima and minima of some solutions (calculated after long
time integration) change if parameter k increases. This numerically generated diagram
confirms the conjecture that a periodic orbit may coexist with a stable equilibrium for
some parameter configurations.

k=I2
* k=I1

*

0.2 0.4 0.6 0.8 1.0
k

0.1

0.2

0.3

0.4

0.5

0.6

I

Figure 6.9: Plot of the maxima and minima of the I-terms after long time integration for
several initial data. The bifurcation parameter is k. The other parameters are u∗ = 0.76,
γ = 1.38, β = 15.8, µ = 1.3 and τ = 1. The solution converges to E∗2 for small k, then to a
periodic orbit as k increases, and then to E∗1 for large values of k.

It may seem surprising that we do not necessarily obtain information on the dynamics
in the non-delayed case by considering the delayed case with small values of τ . The
underlying reason is the following: If τ = 0 in Case (b), then there is a segment within
the switching manifold I = k (the so-called sliding domain) along which the vector field
corresponding to the free system points up, while the vector field of the control system
points down. When a solution reaches the sliding domain, this incompatibility between
the free and the control systems can be resolved by a sliding mode control which is forcing
the solution to remain on the sliding domain, and the solution may converge to a new
equilibrium appearing there. In contrast, the solution curves of the delayed system cross
the switching manifold transversally because this system reacts with a positive delay and
because both vector fields are transversal to I = k (except at most one point). Therefore
in Case (b) with τ > 0 we observe solutions oscillating between the two sides of the
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switching manifold but no solutions moving along it.
From our results we can draw some conclusions about the potential intervention

strategies. For a large threshold k, the control will eventually be turned off and solutions
converge to the endemic equilibrium of the free system, and the control strategy has no
effect whatsoever. If k < I∗1 , then the control effort u∗ also plays a role. If the control
effort is weak, then I∗2 > k (see Fig. 6.1) and we can expect the control to be on for large
times. Then the control strategy is reducing the infected population. Interestingly, in the
presence of time delay, a strong control effort can induce periodic oscillations, and the
peak of the periodic solution may be larger than the endemic level what we could achieve
by a weaker control. If we do not want to tolerate high peaks in disease prevalence, we
may choose a milder control strategy. Alternatively, we may try to reduce the delay as
that leads to smaller oscillations, and then the periodic solution can be kept near the
threshold k. Our results suggest that it may be worthwhile to continue research to the
directions we initiated here, to have a better understanding of the effect of the interplay of
control strategies and delays in implementation on the long term transmission dynamics.
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Summary

The dissertation proposes

(a) a family of temporary vaccination strategies in the framework of the SIR model (see
Chapters 3 and 5). These strategies are characterized by parameters (k, p) where
vaccination starts when the number of infected hosts reaches a threshold level k,
and with rate p we continue vaccination until herd immunity is achieved (VUHIA);

(b) a family of temporary non-pharmaceutical intervention (NPIs) strategies in the
framework of the SIR model (see Chapters 4 and 5). These strategies are charac-
terized by parameters (k, u∗) where NPIs start when the number of infected hosts
reaches a threshold level k, and with rate u∗ we continue intervention till herd
immunity is reached (ITHIR);

(c) and analyses of a mathematical model for infectious disease dynamics with a dis-
continuous control function, where the control is activated with some time lag after
the density of the infected population reaches a threshold (see Chapter 6).

The advantages of the VUHIA-strategy and ITHIR-strategy are the following. First, it
has a clear and meaningful definition: we start intervention with rate c (c = p in the
case of vaccination interventions and c = u∗ in the case of NPIs) when a threshold k

is reached in the level of infection, and we continue the intervention then the number
of susceptibles drops below R−1

0 , that is herd immunity is achieved, and the number of
infected will decrease anyway. Second, it is easy to explain to policy makers (in contrast
to outputs from optimal control theory). Third, it is determined only by the parameters
(k, c), hence all strategies from this family can be explored in a two dimensional parameter
space.

In Chapters 3 and 4, we have assigned a total cost for each strategy composed of cost of
disease burden and cost of intervention, and systematically investigated the dependence

81
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of the total cost on the parameters. The aim of these two chapters is to find out which
strategy gives the minimal cost. Chapter 5 focuses on the final epidemic size of VUHIA
and ITHIR strategies. The aim of this chapter is to find out which strategy gives the
minimal final epidemic size. Chapter 6 provides insight into disease management, by
exploring the effect of the interplay of the control efficacy, the triggering threshold and
the delay in implementation.

The dissertation is organized as follows: After the introduction and the mathematical
framework, Chapter 3 investigates optimal temporary vaccination strategies for epidemic
outbreaks. Specification of the VUHIA-strategy and its total cost (model description,
the basic reproduction number, the total cost of an outbreak, when to start and when
to stop the vaccination) are introduced in Section 3.1. Sections 3.2 and 3.3 illustrate the
relation between the total cost, the vaccination rate, and the threshold level. Indeed, the
total cost is assessed by considering two components, the disease burden and the cost of
vaccination, which are weighted by two factors C1 and C2 respectively. We found that the
total cost is decreasing in p and k if C2 << C1 while increasing in p and k if C2 >> C1.
However there is a curious situation when C1 and C2 are of similar magnitudes: there
is a possibility that the total cost is neither monotone in p nor in k. In section 3.4, we
discussed the conclusions. Indeed, we found three types of behaviours:

(i) vaccination cost is very low compared to the cost associated to disease burden: in
this case increasing the vaccination rate and start vaccination earlier reduce the
total cost;

(ii) vaccination cost is very high compared to the cost associated to disease burden: In
this case the minimal cost is obtained by not vaccinating at all;

(iii) vaccination cost and disease burden cost are of similar magnitudes: there may be
non-monotone relationships between the vaccination rate, the starting threshold
and the total cost. In this case, it may happen that a better strategy is to start
earlier but only if we can start sufficiently early, or, it better to increase vaccination
rate but only if we can increase it to a sufficiently high level. If we cannot meet
those criteria, then the minimal cost is achieved by not vaccinating.

These three typical behaviours are plotted into a heatmap in Figure 3.7. In addition,
we found that depending on the available resources and public health capacities, there
may be constraints on the parameters, such as k ≥ kmin and p ≤ pmax. The optimal
strategy with such constraints can also be found. We demonstrated the effect of R0 on
the monotonicity of the cost curve. Indeed, the monotonicity of the total cost in k can
reverse varying the reproduction number.
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Chapter 4 proposes and investigates optimal temporary non-pharmaceutical interven-
tion strategies for epidemic outbreaks. We divided this chapter like the previous one.
Moreover, we considered different types of cost functions and we identified a parameter
region where herd immunity will never be reached, in which case the intervention is not
feasible as its cost exceeds any given bound. Considering the feasible region of limited
costs, we found the following:

(a) NPIs cost is very low compared to the cost associated with the disease burden: in this
case the optimal strategy lies on the boundary between the two regions, which is
not feasible. In this case we impose a restriction: we maximized the possible length
of intervention, and we could find the optimal strategy with such restriction;

(b) intervention cost and disease burden cost are of similar magnitudes: there may be
non-monotone relationships between the control intensity, the starting threshold
and the total cost, and in this case we can determine which strategy gives the
minimal total cost;

(c) intervention cost is very high compared to the cost associated to disease burden: in
this case the minimal cost is attained by not controlling at all.

We also demonstrated that the corresponding optimal strategies can be very different for
pandemic and for seasonal influenza. Hence this important insight shows that pandemic
influenza should be treated differently than seasonal influenza by public health authori-
ties. We systematically investigated the cost-effectiveness of a newly proposed family of
temporary interventions. We uncovered the impact of various cost functions, and pro-
vided valuable insights to develop effective control strategies for seasonal and pandemic
influenza.

In Chapter 5, Theorem 5.1.1 gives the final susceptible population size system for
the VUHIA-strategy. Depending on This system we proved that the final susceptible
population size is increasing in the vaccination rate p (see see Lemma 5.2.2) while de-
creasing in the threshold level k (see Lemma 5.2.1 ). Numerical simulation shows that the
final epidemic size of VUHIA-strategy of (k, p)-type is decreasing in p while increasing
in k, and the optimal strategy to reduce the final epidemic size is to start vaccination as
early as possible as strong as possible. Theorems [(5.4.1), (5.8.1)] give the final epidemic
size systems for ITHIR-strategy of NPIs, and ITHIR-strategy of treatment and isola-
tion interventions, where temporary treatment and isolation intervention strategies are
investigated in Section 5.7 in terms of the final epidemic size. Dependence of the final
epidemic size on (k, u∗)-strategy and (k,m∗)-strategy are investigated, where m∗ is the
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treatment and isolation rate. Indeed, the final size systems above are used to show that
the final epidemic size is increasing in k while decreasing in the intervention rates u∗, and
m∗, see Lemmas [(5.5.1), (5.9.1), (5.5.2), (5.9.2)]. We also systematically investigated the
dependence of the FES on the parameters, and we found that the optimal strategy to
minimize the FES is to start intervention as early as possible as high rate as possible.

In Chapter 6, we considered the dynamical consequences of switching to a control
system in an SIR epidemic model, when the switch takes place with some delay after the
solution crosses a switching manifold. In Sections 6.1, we mathematically formulated the
model as a delayed relay system (denoted by Sysd), and we determined the dynamics
by the switching between two vector fields (the so-called free (Sysf ) and control (Sysc)
systems) with a time delay with respect to a switching manifold. The phase space X for
(Sysd) and subsets X0 and X1 of it are chosen, where X1 is the collection of endemic
states, when the disease is present in the population. Section 6.2 recalls the basic and
control reproduction numbers, the disease free and endemic equilibria and their stability
properties for both (Sysf ) and (Sysc), and examines what the equilibria for (Sysd) are.
In Section 6.3, we show that if the initial data (S0, ϕ) ∈ X0 ((S0, ϕ) ∈ X1), then the
solution of (Sysd) exists, and the sets X0 and X1 are positively invariant. Section 6.4
establishes the usual threshold dynamics: when the basic reproduction number R0 ≤ 1,
then the disease is eradicated, while for R0 > 1 the disease persists in the population.
Then, for R0 > 1, we divide the parameter domain into three regions, and prove results
about the global dynamics of the switching system for each case: we find conditions for
the global convergence to the endemic equilibrium of the free system in Section 6.5, for the
global convergence to the endemic equilibrium of the control system in Section 6.6, and
for the existence of periodic solutions that oscillate between the two sides of the switching
manifold in Section 6.7. The proof of the latter result is based on the construction of
a suitable return map on a subset of the infinite dimensional phase space. In Section
6.8, first we summarized our results in Table 6.1, and discussed that the behaviour of
the system can be significantly different from switching models without delay. This can
be easily seen by comparing Table 6.1 to Table 6.2, which lists the findings of Xiao,
Xu, and Tang in [49] for system (6.1)-(6.2) in the case τ = 0. Then based on some
numerical simulations, we conjectured that a stable periodic orbit may coexist with a
stable equilibrium for some parameter configurations, thus local stability of an endemic
equilibrium does not always imply its global stability. We have observed this bistable
situation for both small and large values of τ . The investigation of such cases is left
for future work. Finally, we drew some conclusions about the potential intervention
strategies.
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This thesis rely on two scientific papers of Attila Dénes, Gabriella Vas, Gergely Röst,
and the author of this thesis, see [33] and [34].
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