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Abstract 

Theories of truth approximation in terms of truthlikeness (or verisimilitude) almost always deal with 

(non-probabilistically) approaching deterministic truths, either actual or nomic. This paper deals first 

with approaching a probabilistic nomic truth, viz. a true probability distribution. It assumes a 

multinomial probabilistic context, hence with a lawlike true, but usually unknown, probability 

distribution. We will first show that this true multinomial distribution can be approached by Carnapian 

inductive probabilities. Next we will deal with the corresponding deterministic nomic truth, that is, the 

set of conceptually possible outcomes with a positive true probability. We will introduce Hintikkian 

inductive probabilities, based on a prior distribution over the relevant deterministic nomic theories and 

on conditional Carnapian inductive probabilities, and first show that they enable again probabilistic 

approximation of the true distribution. Finally, we will show, in terms of a kind of success theorem, 

based on Niiniluoto’s estimated distance from the truth, in what sense Hintikkian inductive 

probabilities enable the probabilistic approximation of the relevant deterministic nomic truth. In sum, 

the (realist) truth approximation perspective on Carnapian and Hintikkian inductive probabilities leads 

to the unification of the inductive probability field and the field of truth approximation. 
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approximation, truthlikeness, verisimilitude, inductive probability, inductive logic, estimated distance 

from the truth 

 

 

1. Introduction 

Theories of truth approximation in terms of truthlikeness (or verisimilitude) almost always deal with 

(non-probabilistically) approaching deterministic truths, either actual or nomic, and have a Popperian 

background. E.g. Graham Oddie’s Likeness to truth (1986) and Ilkka Niiniluoto’s Truthlikeness (1987) 

focus on deterministic actual truths. My own From Instrumentalism to Constructive Realism (Kuipers, 

2000) and Nomic truth approximation revisited (Kuipers, 2019) deal almost exclusively with 

(qualitatively) approaching deterministic nomic truths, based on the hypothetico-deductive method.  

This paper deals first with approaching a probabilistic nomic truth, viz. a true probability 

distribution. It assumes a multinomial probabilistic context, hence with a lawlike true, but usually 
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unknown, distribution. Approaching this true multinomial distribution can naturally be based on 

Carnapian inductive logic or inductive probability theory (Kuipers, 1978). Assume e.g. random 

sampling with replacement in an urn with colored balls. The primary problem of truthlikeness, or 

verisimilitude, is the logical problem of finding an optimal definition. In the present context this 

amounts to an optimal definition of the distance between any (multinomial) probability distribution 

and the, presumably unknown, true distribution. There are some plausible standard measures. 

However, the epistemic problem of verisimilitude is at least as interesting: what is a plausible 

distribution to start with, and how to update it in the light of empirical evidence such that convergence 

to the true distribution, that is, truth approximation, takes place. It will be shown that Carnap-systems, 

starting from equal probabilities, converge in an inductive probabilistic way to the corresponding true 

probabilities, i.e. the true multinomial distribution (or the probabilistic nomic truth).  

Next we will introduce Hintikkian inductive probabilities, based on a prior distribution over 

the relevant deterministic nomic theories (a kind of constituents) and on conditional Carnapian 

inductive probabilities, and show that they enable again probabilistic approximation of the true 

multinomial distribution. Hintikkian systems add to this the inductive probabilistic convergence to the 

true constituent, i.e., the deterministic nomic truth about which conceptual possibilities are nomically 

possible, here specified as those which have a positive true probability. However, on second thoughts 

it is problematic to call this a genuine form of truth approximation. It turns out to be more plausible to 

take into account Niiniluoto’s notion of estimated distance to the truth, which can be based on the 

Hintikkian probabilities. Hence, if applied in the random sampling context, both Carnapian and 

Hintikkian types of systems can be reconstructed as inductively approaching a probabilistic nomic 

truth and, in the Hintikka-case, in addition as inductively approaching a deterministic nomic truth in 

terms of a decreasing estimated distance from the truth.  

Some more background may be useful. The focus in this paper is, like in Kuipers (2000, 

2019), on nomic truths, that is, truths dealing with which conceptual possibilities are nomically, e.g. 

physically or biologically, possible and which ones are not, the nomic (im-)possibilities, for short. A 

deterministic nomic truth just states which conceptual possibilities are nomically possible. A 

probabilistic nomic truth is in fact more detailed. It states the objective probabilities (if applicable) of 

the conceptual possibilities, non-zero for the nomic possibilities and zero for the nomic impossibilities. 

Objective probabilities are conceived of as objective dispositions or tendencies of a device to generate 

outcomes of which the relative frequencies have limits corresponding to these objective probability 

values. (Note that we do not deal with the logical possibility of nomic possibilities with zero 

probability.) In sum, nomic truths describe lawlike behavior of some kind or another. Since we will 

exclusively deal with nomic truths, deterministic or probabilistic, we will not always insert ‘nomic’ 

where it would be appropriate. 

 Now there are at least three options for nomic truth approximation: 

Option 1. Non-probabilistically approaching a deterministic nomic truth 
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Option 2. Probabilistically approaching a probabilistic nomic truth  

Option 3. Probabilistically approaching a deterministic nomic truth 

As suggested before, Option 1 has been the primary focus of research explicitly dealing with truth 

approximation. As reflected in the title, this paper deals primarily with Options 2 and 3, using 

inductive probabilities, but we will need some aspects of Option 1, in the rest of this introduction and 

in Section 4 and 6. For the logically possible fourth option, i.e. non-probabilistically approaching a 

probabilistic nomic truth, we see no meaningful interpretation. 

As far as (Kuipers, 2000, 2019) are concerned, Option 1 deals primarily with qualitative 

(basic, refined, and stratified) ways of approximation of a deterministic nomic truth. A consequence 

of the basic definition of closer to the truth in this approach will play a recurrent role in this 

paper. The definition itself is given in terms of sets of conceptual possibilities (X, Y), and 

amounts to a (set-theoretically) decreasing symmetric difference with the set T of nomic 

possibilities: 

 

 Y is ∆-closer to T (= set of nomic possibilities) than X iff Y∆T ⊂ X∆T 

 

It is important to note that in the context of nomic deterministic truth approximation, theories X and Y 

amount to the (maximal) claims X=T and Y=T, respectively. Of course, these claims are mutually 

incompatible. Following the terminology of Niiniluoto (1987), the definition is restricted to complete 

answers to the cognitive problem which subset of conceptual possibilities corresponds to the true one, 

i.e. T. Hence, in the case that for example Y is a subset of X, the claim of Y does not entail that of X, as 

one might think, the two claims are incompatible.
1. 2

  

Together with a corresponding definition of ‘more successful’ it is possible to prove the 

crucial (basic) success theorem. It states that a theory which is ∆-closer to the nomic truth than another 

is always at least as successful and in fact, under some plausible conditions, more successful in the 

long run. The idea of something like a success theorem in other cases will play a guiding role in the 

paper. 

In Section 2 we will introduce for a ‘multinomial context’, the true multinomial distribution 

(the probabilistic nomic truth) and candidate probability distributions (probabilistic nomic theories) for 

approaching it (Option 2), and prove a restricted success theorem. Section 3 studies the extent to 

which the true multinomial distribution can be approached by Carnapian inductive probabilities. 

                                                             
1
 In Kuipers (2019) we deal with incomplete answers by introducing ‘two-sided’ theories. 

2
 To be sure, the definition of ‘∆-closer to’ enables a variant of the so-called ‘child’s play objection’ (Oddie, 

2016). It amounts to the case that if we know that X∩T = ∅ then it is easy to come ∆-closer to the truth, viz. by 

taking any subset Y of X, even though the claim of Y is not entailed by that of X. However, knowing that X∩T = 

∅ is in the context of nomic truth approximation quite a strong and not a realistic assumption, for just one 

counterexample, leading to T−X ≠ ∅, is not at all enough. This is quite different from the situation in case of 

factual truth approximation, where we assume that T = {t}, with t as the actual world t. Here, coming to know a 

false consequence of X and hence t∉X it is enough to come ∆-closer to the truth by taking a subset of X.     



4 

 

Section 4 deals with the basics of deterministic nomic truth and deterministic nomic theories 

approaching it (Option 1). In Section 5 we introduce Hintikkian inductive probabilities, based on a 

prior distribution over the relevant deterministic theories and conditional Carnapian inductive 

probabilities, enabling again probabilistic approximation of the true multinomial distribution (Option 

2). In Section 6 we show, based on a kind of success theorem, in what sense Hintikkian inductive 

probabilities enable the probabilistic approximation of a deterministic nomic truth (Option 3), viz. in 

terms of Niiniluoto’s estimated distance from the truth. Section 7 presents some concluding remarks.  

Carnap- and Hintikka-systems of inductive probabilities were the crucial focus of my 

dissertation (Kuipers, 1978). After more than 40 years, I begin to understand that it can best be seen in 

light of approaching probabilistic nomic truths, that is, of approaching the relevant true probability 

distribution. This, evidently, realist perspective
3
 leads to the unification of the two research fields, that 

is, the inductive probability field and the field of truth approximation. As a matter of fact, I consider 

all approaches to a true probability distribution, and therefore all (perhaps frequency interpreted) 

inferential statistics also to be approaches to the truth. 

To be sure, much of what is presented in this paper is not new. The goal of the paper is a 

systematic presentation of what systems of inductive probability of Carnapian and Hintikkian style can 

offer from the perspective of probabilistic truth approximation, in particular the epistemological 

problem. This leads to the search for relevant success theorems: does ‘closer to the truth’ entail ‘more 

successfulness’? In addition, besides presenting some well-known evidence-based logical (or internal 

or ’with certainty’) conditional, stepwise and limit results, we will study, assuming an underlying 

multinomial experiment, the objective (or external and, a number of times, ‘with probability 1’) 

conditional, stepwise and limit behavior of such systems. In both cases, some well-known theorems of 

arithmetic and probability theory will be used. 

Both types of results show that it is perfectly possible to combine the inductive probabilistic 

and the truth approximation perspective, both in the logical and the objective sense. This is contrary to 

what was (and still is?) believed in empiricist, Carnapian circles and realist, Popperian circles. In fact 

this paper extends the claim in (Kuipers, 2000) that in the context of deterministic theories the 

inductive instrumentalist methodology is perfectly compatible with the realist truth approximation 

perspective. In both cases holds that even ‘inductivists’ who are reluctant to subscribe to the truth 

approximation perspective are in practice approaching the truth in certain contexts, that is, whether 

they like it or not. 

We conclude this section with some clarifications regarding the specific relation of this paper 

to other work. 

                                                             
3 The realist perspective is here understood in the sense of ‘constructive realism’ (Kuipers, 2000). Concepts, e.g. 

as represented by Q-predicates, see below, are at least partly man-made and hence the resulting truths do not 

only depend on the way the world is but are also conceptually relative.  
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 There are many ways how to estimate the bias of a multinomial experiment, for example 

random sampling with replacement, a wheel of fortune or roulette, statistically, e.g. by (Bayesian) 

Dirichlet distributions or frequentist means. It is plausible that these statistical methods can be 

rephrased and further articulated in terms of inductive probabilities and (increasing) verisimilitude. 

For example, Festa (1993) showed the equivalence of certain Dirichlet distributions and (generalized) 

Carnap-systems and studied optimization of the latter from the truth approximation perspective.  

As stated before, here we restrict our attention to the study of the inductive methods of Carnap 

and Hintikka from the perspective of truth approximation. Whereas standard statistical methods seem 

to go straight to their target, whether or not called ‘the truth’, the two inductive methods were 

designed to learn, with a self-chosen speed, from experience in a systematic and conceptually 

transparent way, without (Carnap) or with (Hintikka) some objective target, the truth, in mind. 

Whereas Carnap focused on one-step prediction probabilities, Hintikka focused on, using Carnap- 

systems, probabilities for generalizations. The surplus value of such inductive systems in particular 

when seen in the truth approximation perspective is that they articulate leading intuitions of layman 

and scientists, in particular other than statisticians, and hence they enable conceptually transparent 

communication.  

As said, Roberto Festa (1993, Part III) studied already (generalized) Carnap-systems from the 

perspective of truth approximation, but his focus was not on the (logical or objective) limit behavior, 

but on the logical and epistemic ‘problem op optimality’. That is, the logically and epistemically 

optimal choices of parameters, the former in view of the objective probabilities (in fact a 

generalization of Carnap (1952, Section 2)) and the latter in view of the background knowledge.  

As is well known, Jaakko Hintikka (1966) introduced stratified systems of inductive 

probability, based on Carnap-systems, leaving room for generalizations, and he assumed a particular 

prior distribution over generalizations. He focused on, among other things, the logical limit behavior 

of such systems, leading to ‘with certainty results’: like Carnap-systems, the ‘special values’ converge 

to the relative frequency, and the probability of the strongest generalization compatible with the 

evidence converges to 1, assuming that this strongest generalization remains constant.  

In his monumental book on truthlikeness, Niiniluoto (1987) focused, regarding the epistemic 

problem of verisimilitude, primarily on the momentary ‘evidence-based’ probabilistic estimation of 

the distance of a deterministic theory from the deterministic truth, based on a quantitative distance 

measure between theories. However, in Section 9.5 on the estimation problem for (deterministic, 

monadic) generalizations, where the relevant truth is a deterministic generalization, he includes also 

the logical (with certainty) limit behavior of the estimated distance from the truth, along the lines of 

Hintikka.  

As suggested before, besides incorporating ‘with certainty’ results, we concentrate on the 

objective conditional, stepwise and limit behavior of such systems, frequently, not ‘with certainty’, but 

‘with probability 1’. 
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As before indicated, we will use the phrases ‘the probabilistic (nomic) truth’ and ‘the true 

(multinomial) (probability) distribution’ interchangeably.  

 

 

2. The probabilistic nomic truth and probabilistic nomic theories approaching it 

This section deals with Option 2, probabilistically approaching a probabilistic nomic truth. In the 

whole paper we assume a specific context of application: a multinomial context, that is,  

an experimental device enabling successive experiments with a finite set of conceptually possible, 

observable, outcomes, where the successive outcomes of the experiment are probabilistically 

independent and have a fixed probability. Random sampling with replacement in an urn with colored 

balls is a typical example of a multinomial context. Think also of a possibly biased wheel of fortune or 

roulette. It is important to note that in this paper all possible outcomes are supposed to be observable. 

Our theorems are not claimed to apply to theoretical, non-observable, outcomes.  

 We will use the following terminology and notation:  

K is the set or universe4 of a finite number k (≥ 2) of conceptually possible (elementary) 

outcomes: K = {Q1, Q2,…, Qk}. The ‘Q-predicates’ are mutually exclusive and together exhaustive. 

The probabilistic nomic (pn-)truth is the true probability distribution: t = {t1, t2, …tk}, 0≤ti<1, Σti=1. A 

(probabilistic nomic) pn-theory is any k-tuple x = {x1, x2, …xk}, such that 0≤xi<1, i.e. x ∈ [0, 1)
k
, and 

Σxi=1, with the claim x = t. The set of conceptually possible pn-theories is F=df {x | x∈ [0, 1)
k 
, xi 

=1}. Note that the claim of a pn-theory is a complete answer to the cognitive problem: “Which 

distribution is the true one?” Of course, besides the true one, all other pn-theories are false, however 

close they may be to the true one. Moreover, they are mutually incompatible and, in a generalized 

sense, of equal logical strength. 

As a matter of fact, all results to be reported are dealing with the limit behavior of |xi – ti|, or 

some variant, for any single Qi, where xi is based on the available prior knowledge and evidence. So, 

we do not really need any overall distance function between distributions. In the literature several 

sophisticated distance functions are discussed. However, the most simple and plausible distance 

functions between pn-theories fitting to our primary results are the city-block distance d1(x, y) =df Σ|xi 

− yi| and the Euclidean distance d2(x, y) =df (Σ(xi − yi)
2
 )

1/2. Both lead to plausible definitions of “pn-

theory y is closera to the pn-truth t than pn-theory x” iff da(y, t) < da(x, t), with a = 1 or 2. An even 

stronger (more demanding) definition than both is “y is closer3 to the pn-truth t than x” iff ∀i |yi − ti| ≤ 

|xi − ti| and ‘<’ holds at least once. 

 For quantitative evidence we will use the following notations.  

 - en reports the ordered outcomes of the first n experiments, 

 - ni(en), or simply ni, indicates the number of Qi-occurrences; note that ni is a random variable. 

                                                             
4
 In probability theory this set is usually called the sample space. 
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We will soon turn to the updating of pn-theories, but first we will introduce one comparative result for 

two fixed pn-theories, viz. a kind of success theorem, that is, about the comparative limit behavior of 

two pn-theories to be expected due to the limit behavior of the corresponding relative frequency. We 

will use the following restricted definitions:  

 

Definition: y is relative to Qi closer to the pn-truth than x iff |ti − yi|  <  |ti −xi| or, 

equivalently:  (ti − yi)
2
  <  (ti − xi)

2
 , i.e. a smaller distance from the true probability of Qi. 

 

Definition: y is relative to Qi in en more successful than x iff |ni/n − yi| <  |ni/n − xi| or, 

equivalently: (ni/n − yi)
2
  <  (ni/n − xi)

2, i.e. a smaller distance from the observed relative 

frequency of Qi. 

 

Theorem 1: Restricted Expected (Probabilistic-)Success Theorem 

If y is relative to Qi closer to the pn-truth than x if and only if it may be expected that en is such 

that y is relative to Qi more successful than x. 

 

For the proof, see the Appendix. Note the ‘if’-side. It may seem surprising, for a success theorem 

normally is restricted to the ‘only if’-side: closer to the truth entails more success. See e.g. Theorem 5, 

below. However, Theorem 1 deals with ‘expected success’. 

Of course, there is a plausible generalization of this theorem based on the very strong 

definition of ‘closer to’, i.e. ‘closer3 to’, and a similarly strong version of ‘more successful’, i. e. both 

starting with “for all Qi ….”. 

 

 

3. Probabilistic nomic truth approximation by Carnapian inductive probabilities 

This section deals with a Carnapian way of realizing Option 2 (probabilistically approaching a 

probabilistic nomic truth). As before: given is a device enabling successive experiments where the 

successive outcomes of the experiment are probabilistically independent and have a fixed probability. 

Hence, a multinomial device with nomological or nomic behavior, i.e. with a set K of a finite number 

k(≥2) of possible (observable) outcomes Q1, Q2, … Qk, with true probabilities t1, t2, … tk (0≤ti≤1, 

Σti=1). Recall that en reports the ordered outcomes of the first n experiments, and ni the number of Qi-

occurrences. The Carnapian 'characteristic value' or ‘prediction function’ pC(Qi|en), i.e. the probability 

that Qi will be the outcome of the next experiment, i.e. after en, is defined as the weighted mean of the 

relative frequency (ni/n) and the logical or initial probability (1/k), i.e. the initial probabilistic nomic 

(pn-)theory: 

pC(Qi|en) =  
n

n + �
 
���   + 

�

n + �
 ��  = 

ni + �/k

n + �
 ,with real-valued λ, 0< λ< ∞ (1C)             
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Informally we may say that this Carnapian value is an inductive probability in the sense that it will 

gradually approach the true (nomic) probability ti of Qi, since the relative frequency (ni/n) will do so 

and its weight (n/(n + λ)) will approach 1 at the cost of the weight of the initial probability (1/k). The 

smaller the parameter λ the faster this convergence will take place. In sum: this ‘Carnap-system’ is 

here a perfect means of approaching (k) ‘probabilistic nomic truths’, by gradually learning from 

experience in a probabilistic way, i.e. Option 2. Note that just taking the relative frequency, the so-

called straight rule, is also a form of learning from experience, a jumping form. However, apart from 

technical probability problems, you then exclude every conceptual possibility you have not yet 

observed, by assigning zero probability, which is not very open minded, to say the least.  

 The informal claim that the prediction function (1C) goes to the pn-truth ti when n goes to ∞, 

still needs a precise definition and corresponding theorem. Let Probt indicate the probability according 

to the probabilistic truth t =df < t1, t2, … tk>.  

 

 Theorem 2: Carnap-systems converge to the probabilistic nomic truth 

Informally, the Carnapian updating of the initial pn-theory approaches the pn-truth with 

probability 1. 

 Formally: 

Probt (lim n→∞ pC(Qi|en) = ti) = 1, i.e. Probt [∀ε > 0 ∃N ≥ 0 ∀n ≥ N  |pC(Qi|en) – ti| < ε] = 1,  

i.e. Probt [∀ε > 0 ∃N ≥ 0 ∀n ≥ N |
ni + �/k

n + �
  – ti| < ε)] = 1 

 

Theorem 2 is, in more or less detail, well-known in the literature. For the proof, based on the strong 

law of large numbers, see the Appendix. 

Although the theorem is a kind of condition sine qua non for calling Carnapian updating in the 

multinomial context truth approximation, there is a more specific intuition associated with truth 

approximation: ‘later’ Carnapian pn-theories are, as a rule, closer to the true probability (the pn-truth) 

than ‘earlier’ ones, that is, as a rule, there is stepwise approximation. However, this is not precisely 

what we can prove. Recall that ti is the true probability of Qi and hence the limit of ni/n as n goes to ∞. 

Let pCt(Qi|en) indicate 
nti + �/k

n + �
, to be called the Carnapian precursor of the pn-truth. The Carnapian 

precursor at time n is the probability of the next event that would be assigned by the ‘λ-rule’ (1C) if 

the observed frequency would coincide with the true probability. As is easy to check, the precursor 

trivially approaches the pn-truth stepwise. What we can prove is (Theorem 3) that for every 

significance level ε > 0 and for sufficiently many trials the probability that ‘later’ Carnapian pn-

theories deviate ε-significantly from the Carnapian precursor of the pn-truth is smaller than that this 

happens for ‘earlier’ ones. We will call this the ‘decreasing significant deviation’-theorem. 



9 

 

We do not exclude that it is even possible to prove that in the long run there is, at least more 

often than not, stepwise approximation to the precursor of the pn-truth and, as said already, this 

precursor goes stepwise to the pn-truth. If it is possible to prove the suggested conjecture, we might be 

inclined to conclude, by asymptotic reasoning, that in the long run ‘later’ Carnapian pn-theories are at 

least more often than not closer to the pn-truth than ‘earlier’ ones, and that the failures become fewer 

as n increases. However, being closer to the corresponding precursor does not guarantee being closer 

to the true value, even though that precursor is closer to the true value.
5
 

 

Theorem 3: Decreasing significant deviation. For every significance level εεεε > 0 holds, for 

sufficiently large n, that the probability that the nth Carnapian prediction deviates from the 

n
th 

Carnapian pn-truth-precursor εεεε-significantly is larger than the probability that the 

(n+1)
th

 Carnapian prediction deviates εεεε-significantly from the (n+1)
th

 Carnapian pn-truth-

precursor. 

∀ε > 0 ∃N ≥ 1∀n ≥ N  Probt (|pC(Qi|en+1) – pCt(Qi|en+1)| > ε)  <  Probt (|pC(Qi|en) – pCt(Qi|en)| > ε)  

where ���	
|��
 =  n

n + �
 
���   + 

�

n + �
 ��  = 

ni + �/k

n + �
 , the Carnapian value, and  ����	
|��
 = 

��� + �/k

n + �
  , the Carnapian precursor of the pn-truth, and ti is the limit of ni/n as n tends to infinity 

(it is assumed that this limit exists, and that ni/n has a binomial distribution with mean ti and 

variance ti(1-ti)). 

 

An easy to prove consequence is that this not only holds for the next experiment but even more so for 

a number of new experiments: 

 

Corollary 3.1: For every significance level εεεε > 0 and m>0 holds, for sufficiently large n, that 

the probability that the n
th

 Carnapian prediction deviates from the n
th 

Carnapian pn-truth-

precursor εεεε-significantly is larger than the probability that the (n+m)th Carnapian prediction 

deviates εεεε-significantly from the (n+m)
th

 Carnapian pn-truth-precursor. 

∀ ε > 0 ∃ N ≥ 1 ∀ n ≥ N  ∀ m ≥ 1:  

Probt (|pC(Qi|en+m) – pCt(Qi|en+m)| > ε) <  Probt (|pC(Qi|en) – pCt(Qi|en)| > ε)  

 

There is even a lower bound (lb) to the relevant difference in Theorem 3, which makes (the decreasing 

significant deviation) Theorem 3 and Corollary 3.1 even more compelling.  

 

Corollary 3.2: There is a well-defined lower bound pertaining to Theorem 3 

                                                             
5
 For a counterexample to the suggested conjecture see the Appendix, between the proofs of Theorem 2 and 3. 
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∀ ε > 0 ∃ N ≥ 1∀ n ≥ N ∃ lbi(n) > 0 

Probt (|pC(Qi|en) – pCt(Qi|en)| > ε) –  Probt (|pC(Qi|en+1) – pCt(Qi|en+1)| > ε) > lbi(n), 

 where lbi(n) is a positive lower bound, depending on n, whose value is stated in the proof. 

 

For the proofs of Theorem 3 and the corollaries, see the Appendix. 

 

One might think that a stronger form of Theorem 3 must be provable, that is, that there is always 

stepwise approximation of the true probability, but the proof of Theorem 3 makes clear that this 

stronger claim does not hold. However, in terms of expected values the intuition is perfectly true.   

 

Theorem 4: In a Carnap-system the expected value of the distance |pC(Qi|en) −−−− ti| goes 

stepwise to 0 (or is and remains 0 when ti is 1/k) 

 

For the proof, see the Appendix. Direct consequences of this theorem are that the expected value of the 

city-block (total) distance Σ|pC(Qi|en) −ti| from the truth and the expected value of the Euclidean (total) 

distance from the truth, i.e. (Σ(pC(Qi|en)−ti)
2
)

1/2, go also stepwise to zero. 

So much for Carnap-systems illustrating Option 2: Probabilistically approaching a probabilistic nomic 

truth. 

 

 

4. The deterministic nomic truth and deterministic nomic theories approaching it 

 

4.1 Deterministic nomic theories, qualitative evidence, and their relation 

This section deals, among other things, with Option 1, non-probabilistically approaching a 

deterministic nomic truth. In the previous sections we studied a multinomial context in terms of 

probabilities, the probabilistic level. We could also have started with the deterministic level as follows. 

Given is a quasi-multinomial context: an experimental device enabling successive experiments with a 

finite set of conceptually possible elementary outcomes, i.e. K = {Q1, Q2,.…Qk}. Let T indicate the 

(unknown) subset of nomically (e.g. physically) possible (observable) outcomes (∅ ≠ T ⊆ K).  

A deterministic theory HV, for ∅≠V⊆K, claims that for a specified subset V V=T holds.6 HV is 

the multinomial analogue of a so-called ‘(monadic) constituent’, which claims that in a given universe 

of objects precisely the ‘Q-predicates’ in V are exemplified. Deterministic theories are deterministic 

just because they are non-probabilistic statements, being true or false. Of course, HT is the true 

deterministic theory, i.e. the deterministic truth. Note that the claim V=T of theory HV is a complete 

                                                             
6
 In the terminology of (Kuipers, 2019) this is a maximal claim. 
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answer to the cognitive problem: “Which conceptually possible outcomes have positive probability?” 

Hence, these theories are mutually incompatible and, in a generalized sense, of equal logical strength.  

 We define the (qualitative) ∆-distance between deterministic theories HV and HW, D(HV, HW), 

as the symmetric difference between V and W: D(HV, HW) =df (V−W)∪(W−V) =df V∆W. Now it is 

plausible to define “HW is ∆-closer to the true deterministic theory T than HV” by the condition W∆T⊂ 

V∆T. 

 Later on, in the context of Hintikka-systems, we will introduce what we call a ‘probabilified-

deterministic’ theory: a prior distribution over the relevant deterministic theories: for a non-empty 

subset V of K we then have p(HV) = p(V=T) such that 0≤p(HV)<1 and Σp(HV)=1.  

 Recall that en reports the ordered sequence of outcomes of the first n experiments. Let R(en) = 

Rn report the set of realized or exemplified outcomes in the first n experiments, hence, Rn ⊆ T. Rn is 

called the qualitative evidence. Under plausible assumptions, Rn ‘increases’. More precisely, if 

outcomes are correctly registered, Rn necessarily is a subset of T and it can only expand: Rn ⊆ Rn+m. 

Moreover, in a genuine multinomial context, Rn goes to T when n goes to ∞, see Theorem 6 below. 

 As is easy to check, �����  is at least as ∆-close to HT as ���. Consequently, if Rn is a proper 

subset of Rn+m, �����  is relative to ���a case of non-probabilistic approximation of the deterministic 

nomic truth, i.e. Option 1. However, these theories are not very interesting, they are just ad hoc 

constructions. 

Similarly, truth approximation can also be guaranteed by revision of a deterministic theory in 

the following way (Kuipers, 2019, Ch. 15): ��∪��is at least as ∆-close to HT as HV, which is due to Rn 

being a subset of T. However, such revisions are also rather ad hoc.  

 We define “HW is relative to Rn at least as successful as HV” iff (Rn∩V)⊆(Rn∩W). Note that 

this is equivalent to Rn−W ⊆ Rn−V, that is, all counterexamples of HW are counterexamples of HV. In 

my work on the approximation of deterministic (nomic) truths, notably (Kuipers, 2000, 2019), the so-

called success theorem is a kind of backbone. The following (easy to prove) theorem is a special case7:   

 

 Theorem 5: Deterministic Success Theorem 

If HW is ∆-closer to HT than HV then HW is always at least as successful as HV and (under 

genuine multinomial conditions) more successful in the long run. 

 

Quantitative versions of the comparative deterministic notions ‘∆-closer to’ and ‘at least as successful’ 

can easily be given (Kuipers, 2019, Ch. 5). 

The aim to prove something like Theorem 5 for probabilistically approaching a deterministic 

nomic truth, Option 3, will play a guiding role in Section 6. 

                                                             
7
 To be precise, it neglects evidence in terms of empirical laws induced on the basis of Rn (Kuipers, 2000, Ch. 7; 

2019, Ch. 2). 
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4.2 Some relations between deterministic and probabilistic levels 

To clarify the relevant notions, we will specify some of the relations between deterministic and 

probabilistic level. Here we assume throughout a genuine multinomial context, i.e. the successive 

outcomes of the experiment are probabilistically independent and have a fixed probability. 

Recall: 

Set of deterministic theories:  H = {HV | ∅ ⊂ V ⊆ K}   The deterministic truth: HT 

Set of probabilistic theories:  F =df {x | x∈ [0, 1)k 
,  xi = 1}  The probabilistic truth: t 

We will assume that there are no nomically possible outcomes with zero probability, i.e. Qi∈T iff ti>0, 

and T = {Qi|ti>0}.   

 Given a probabilistic theory x, then Hπ(x), with π(x) =df {Qi|xi > 0}, is of course the 

corresponding deterministic theory. In particular, π(t) = T. Note that a deterministic theory 

corresponds to numerous probabilistic theories (it is a one-many relation). In some formal detail:  

 π: F → H    projection function: π(x) =df {Qi|xi > 0} 

 π−1
:  H → ℘(F) − {∅}  reproduction function: π−1

(HV)=df {x ∈F | π(x) =V} 

     where ℘(F) is the powerset of F. 

It is interesting to note that π−1 leads to a partition of F. Hence it is impossible that for some V and W 

“π−1
(HW) is ∆-closer to π−1

(HT) than π−1
(HV)” holds, even if HW is ∆-closer to HT than HV. 

  

Regarding evidence, recall: 

Qualitative evidence: Rn: the set of realized or exemplified outcomes in the first n experiments: 

hence, Rn ⊆ T.  

 Quantitative evidence: en reports the ordered outcomes of the first n experiments, ni the 

 number of Qi-occurrences. 

Of course, we have the following relation: Rn = R(en) =df {Qi|ni>0}. As already noted, assuming ni>0 

entails ti>0, then R(en) goes to T when n goes to ∞, see Theorem 6 below.  

 

 

5. Hintikkian updating of a probabilified deterministic theory and its corresponding 

probabilistic theory, based on conditional Carnapian updating 

This section deals primarily with a first attempt to realize Option 3, probabilistically approaching a 

deterministic nomic truth, a problematic Hintikkian way, but in the same go also with a clear case of 

Option 2, probabilistically approaching a probabilistic nomic truth, the, conditional, Hintikkian way.  

 

 

5.1 Hintikka-systems 
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In (Kuipers, 1978) I introduced so-called Hintikka-systems of inductive probability, a generalization 

of the kind of systems that Hintikka (1966) introduced earlier.  

We assume a multinomial context. We will call a probability distribution over the possible 

deterministic theories ‘Probabilified-Deterministic’ (PD-) theory. We start with assuming a Prior PD-

theory: let V be a non-empty subset of K, then p(HV) = p(V=T), such that 0≤p(HV)≤1 and Σp(HV)=1. 

A plausible special kind of prior distribution is that only size matters: p(HV) = p(Hw) = p(Hv) if 

|V|=|W|=v. Originally Hintikka introduced a still more specific prior distribution which is here not 

relevant. 

To complete Hintikka-systems, we introduce conditional Carnapian values (conditional C-

values, see (1C), Section 3), assuming, ∅ ≠ V⊆ K, R(en) ⊆ V and Qi ∈V:  

pC(Qi|HV&en) =  
ni + ��/�

n + ��     (|V|=v; 0< λV  <∞) 

Note that, restricted to Qi ∈V, they sum up to 1.  

Again we have the similar special case for the parameter that only size matters: λV = λ|V| =λv. 

In this case we have at least two interesting special subcases:   

1) λv = λ; this was generally assumed by Hintikka 

2) λv = vρ, 0<ρ<∞; this holds in so-called special H-systems
8
 (Kuipers, 1978). 

 

By applying Bayes’ theorem, the combination of a prior PD-theory and conditional C-values naturally 

leads to the corresponding Posterior PD-theory: p(HV|en) = p(HV)pC(en|HV) / p(en), where p(en) = 

� �� ����
 p(HW)pC(en|HW). 

Here, pC(en|HV) is of course to be calculated with the product rule applied to the successive conditional 

C-values. Note that the summation of p(en) needs only to take supersets of R(en) into account, because 

pC(en|HW) is of course 0 otherwise. 

The combination of the posterior PD-theory and the relevant conditional C-values, leads to a 

corresponding probabilistic theory: the Posterior probabilistic theory (of Hintikka- or H-values): 

pH(Qi|en) = Σ V⊇R(en) p(HV|en) pC(Qi|HV&en). 

 

5.2 Limit behavior of H-systems 

In the present context, the limit behaviors of p(HV|en) and pH(Qi|en) of H-systems are of course the 

crucial questions. In the following we do not make any special case assumption. There are three 

theorems of which the third is a trivial consequence of the second (Theorem 7) and Theorem 2. 

We begin with a general theorem that is also important for the next section.  

 

Theorem 6: In a multinomial context all nomic possibilities are realized, with probability 1  

                                                             
8
 They turn out to be equivalent to a prima facie totally different kind of so-called Niiniluoto-Hintikka-systems. 
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R(en) approaches T (R(en) → T) (stepwise) with probability 1 for n → ∞. 

Formally: Probt [limn→∞ (R(en) = T)] = 1, i.e. Probt [∃N ≥ 0 ∀n ≥ N (R(en) = T)] = 1 

 

The formal proof is in the Appendix. 

This theorem is in fact well-known: in a binomial case both outcomes will, with probability 1, 

show up sooner or later because they have a positive probability. The trivial consequence, stated in the 

theorem, is that this also holds in the multinomial case for all nomically possible (observable) 

outcomes are assumed to have positive probability; of course, they show up one at a time (i.e. 

stepwise).  

Note that this theorem reports a kind of objective probabilistically based approximation of the 

deterministic truth HT associated with T, that is, a kind of Option 3: (objective) probabilistic 

approximation of a deterministic truth.9  

 The next theorem is also crucial: 

 

Theorem 7: Hintikka-systems converge to the deterministic truth with probability 1 

In an H-system the posterior probability of HV gradually (but not necessarily stepwise) 

approaches 1 with probability 1 when HV is the deterministic truth, and it may suddenly fall 

down to 0 or gradually approach 0 otherwise.  

Briefly, if n → ∞ then, with probability 1, p(HV|en) → 1 if V=T, otherwise →  0 (the latter as 

soon as R(en) − V ≠ ∅, if T−V ≠ ∅, or gradually, if V ⊃ T). 

Formally, Probt [limn → ∞ p(HT|en) = 1] = 1, i.e. Probt [∀ε > 0 ∃N ≥ 0 ∀n ≥ N  |p(HT|en) − 1| < ε] 

=1, and, for V ≠ T, Probt [limn → ∞ p(HV|en) = 0] = 1, i.e. Probt [∀ε > 0 ∃N ≥ 0 ∀n ≥ N  p(HV|en) < 

ε] =1 (where in the latter case p(HV|en) drops to 0 as soon as R(en) − V ≠ ∅, if T−V ≠ ∅, or 

gradually, if V ⊃ T). 

 

For the proof, see the Appendix. It is important to know that the proof of Theorem 7 is strongly based 

on Theorem 6 (R(en) → T (stepwise) with probability 1 for n → ∞). 

At first sight, Theorem 7 again seems to state a straightforward case of probabilistic 

approximation of a deterministic truth, i.e. Option 3. However, in the next section we will start with 

questioning this qualification. 

  

Theorem 8: Hintikka-systems converge to the probabilistic truth with probability 1 

 The posterior probability Qi approaches the true probability of Qi with probability 1. 

Formally, Probt (lim n→∞ pH(Qi|en) = ti) = 1, i.e. Probt [∀ε > 0 ∃N ≥ 0 ∀n ≥ N  |pH(Qi|en) – ti| < ε] = 

1  

                                                             
9 Note that, in view of Theorem 6, revision ��∗��=df �������
 goes with probability 1 to HV∪T. 
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Theorem 8 directly follows from Theorem 7 and the fact that pC(Qi|HT&en) → ti, which is an adapted 

version of Theorem 2, i.e. applied to conditional C-systems. Theorem 8 states a case of gradual 

probabilistic approximation of a probabilistic truth, again a clear case of realizing Option 2, the, 

conditional, Hintikkian way. We leave the question whether it is possible to prove something like (the 

decreasing significant deviation) Theorem 3, like in the case of Carnap-systems, for further research.  

 

  

6. Option 3: Probabilistically approaching a deterministic truth 

This section deals with a second, more adequate, attempt to realize Option 3, probabilistically 

approaching a deterministic nomic truth, to be called the Hintikka-Niiniluoto way. Recall that 

Theorem 7 states: if n → ∞ then p(HV|en) → 1 if V=T, otherwise → 0, the latter suddenly as soon as 

R(en) −V ≠ ∅, if T−V ≠ ∅, or gradually, if V⊃T. The cases V=T and V⊃T are defensibly described as 

cases of truth approximation. However, in the third case, when T − V ≠ ∅, p(HV|en) will sooner or later 

suddenly fall down from some positive value to 0, viz. when R(en) becomes such that R(en) − V ≠ ∅, 

that is, as soon as a counterexample to HV appears. This goes against the basic intuition that though the 

probability of a hypothesis may well be confronted with this fate, it is problematic from the point of 

view of verisimilitude. For the falsified hypothesis, more generally, any false hypothesis may well be 

close to the truth. This is one of the main reasons for Popper’s claim that probability and verisimilitude 

are quite different concepts. 

This is also the reason why the following tentative probabilistic success theorem is 

problematic. Let us consider conditional Carnap-systems and call HW more successful relative to en 

than HV iff pC(en|HW) > pC(en|HV). Assuming that λ is constant, it is now easy to prove that if T ⊂ W ⊂ 

V, and hence HW is ∆-closer to HT than HV, then HT is always more successful than HW, and HW is 

always more successful than HV. The crucial point is that, in calculating pC(en|HX) for X = T, W and V, 

respectively, the numerators of the corresponding C-values, i.e. ni + λ/t , ni + λ/w, and ni + λ/v, are 

decreasing, due to t < w < v, while their denominators are the same, viz. n + λ. However, this does not 

work out nicely for other cases of HW being ∆-closer to HT than HV, for if T − W ≠ ∅ we may have T − 

R(en) ≠ ∅, in which case we get 0 probability for pC(en|HW) and hence the likelihood is no longer a 

sophisticated measure of the success of HW.  

Note that an attractive point of the present definition of ‘more successful’ in the context of the 

tentative success theorem is that it is not laden with the notion of nomic truth, let alone nomic 

truthlikeness. This feature is typical for success theorems, like Theorem 5, in the context of non-

probabilistic approximation of deterministic truths. Unfortunately, we did not find a probabilistic 

definition of ‘more successful’ that is independent of a truthlikeness definition, but nevertheless 

enabling some kind of probabilistic success theorem. 
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However, apart from this ladenness problem, we can get a very nice kind of success theorem 

in terms of Ilkka Niiniluoto’s (1987) notion of ‘estimated distance from the truth’. For this purpose we 

need a distance function between subsets of K. Let d(V, W) be a real-valued normalized metric, i.e. a 

distance function satisfying the standard conditions: 0 ≤ d(V, W) ≤ 1, d(V, W) = 0 iff V=W, d(V, W) = 

d(W, V), and d(V, W) ≤ d(V, X) + d(X, W). A plausible metric in the present case is the size distance, 

i.e. the normalized size of the symmetric difference: d∆(V,W) =df |V∆W|/|K|. Whatever d is, we assume 

that if HW is ∆-closer to HT than HV (i.e. if W∆T⊂ V∆T then d(V, T) ≥ d(W, T)), which is trivially the 

case for the suggested quantitative version of the symmetric distance, d∆.  

We need the following definitions. 

1. HW is d-closer to HT than HV iff d(W, T) < d(V, T).  

2. Estimated Distance from the Truth (HV|en) = EDT(HV|en) =  �������
p(HX|en) d(V, X).  

3. HW is estimated to be d-closer to the truth than HV in view of en: EDT(HW|en) < 

EDT(HV|en). 

Note that the last notion is via EDT not only probabilistic but also substantially laden with the notion 

of nomic truth, and even with a specific version of the idea of nomic truthlikeness, viz. in terms of a 

distance function from, in particular, the possible nomic truth.  

 Note also that Theorem 7 (if n → ∞ then, with probability 1, p(HV|en) → 1 if V=T, otherwise 

→  0) has now an immediate corollary. 

 

Corollary 7.1: EDT(V|en) converges with probability 1 to d(V, T) 

Formally: Probt [lim n→ω EDT(V|en) = d(V, T)] =1,  

i.e. Probt [∀ε>0 ∃N≥0 ∀n≥N |EDT(V|en) − d(V, T)| < ε] =1   

 

Recall that the proof of Theorem 7 is strongly based on Theorem 6 (R(en) → T, with probability 1), 

which is based on the true distribution Probt.  

 

 Theorem 9: Deterministic-Probabilistic Quasi-Success Theorem (DPQ-Success Theorem) 

If HW is d-closer to the deterministic truth HT than HV (by assumption entailed by ‘∆∆∆∆-closer 

to‘) then with probability 1 HW will in the long run be estimated to be d-closer to the truth than 

HV ((EDT(HW|en) < EDT(HV|en)).  

Formally:  

if d(W, T) < d(V, T) then Probt [limn →∞ (EDT(HW|en) < EDT(HV|en))] = 1,  

i.e. Probt [∀ε>0 ∃N≥0 ∀n≥N (EDT(HV|en) − EDT(HW|en)) > ε] = 1 

 

For the proof of Theorem 9, see the Appendix. It is strongly based on Corollary 7.1. 
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Our claim is that this DPQ-Success Theorem may be seen as the core of genuine probabilistic 

approximation of the deterministic truth (HT) in the present context, viz. by decreasing (probabilistic) 

EDT, i.e. Option 3, the Hintikka-Niiniluoto way. The reasoning behind this claim is an adapted 

version of the reasoning behind the claim that the deterministic success theorem (Theorem 5) is the 

core of deterministic truth approximation by increasing empirical success (e.g. Kuipers, 2019, p. 57):  

• Assuming that HW is at a certain moment estimated to be d-closer to the truth HT than HV, 

propose and test the ‘probabilistic empirical progress (PEP-)hypothesis’: HW (is and) remains 

(at least in the long run) estimated to be d-closer to the truth than HV. 

• Assuming that after ‘sufficient confirmation’ the PEP-hypothesis is accepted (for the time 

being), argue on the basis of DPQ-Success Theorem to what extent the ‘truth approximation 

(TA-)hypothesis’, that is, HW is d-closer to the truth HT than HV, is the best explanation for this 

case of probabilistic empirical progress, i.e., that this is a case of probabilistic approximation 

of a deterministic truth. 

• Abductively conclude (for the time being) that HW is d-closer to the truth HT than HV, i.e., that 

deterministic truth approximation has been achieved in a probabilistic way.
10

 

 

 

7. Concluding remarks 

In the introduction we distinguished three options:  

Option 1. Non-probabilistically approaching a deterministic nomic truth 

Option 2. Probabilistically approaching a probabilistic nomic truth  

Option 3. Probabilistically approaching a deterministic nomic truth 

We may conclude that all three options make perfect sense in a multinomial context. It is plausible to 

expect that this is also the case in other well-defined probabilistic contexts. It may well be 

enlightening to elaborate the options in some detail in one or more of these other contexts. 

Hence, we may conclude that, as already anticipated by Festa (1993), the (realist) truth 

approximation perspective on Carnap- and Hintikka-systems leads to the unification of the inductive 

probability field (formally, in their style) and the field of truth approximation.  

                                                             
10

 There is a quite different variant of Option 3, viz. approaching a ‘deterministic nomic truth’ in a probabilistic, 

more specifically, measure-theoretical way. Ch. 5 and Ch. 13 of (Kuipers, 2019) deal with it. Ch. 5 provides a 

quantitative, measure-theoretical version of basic, qualitative approximation of the (deterministic) nomic truth. 

Ch. 13, entitled “Empirical Progress and Nomic Truth Approximation by the ‘Hypothetico-Probabilistic 

Method’” builds on this. The crucial difference is that the latter assumes a deterministic context with a 

straightforward deterministic truth, that is, unlike the present paper, there is no underlying probability process 

that gives rise primarily to a probabilistic truth, and indirectly to a deterministic truth.  

 



18 

 

The present paper leaves several questions for further research. Among others, there is the 

question whether the convergence to the probabilistic truth (Section 5, Theorem 8) of Hintikka-

systems, like Theorem 3 in the case of Carnap-systems, may also be a matter of ‘decreasing significant 

deviation’. Moreover, in Section 6, we found a nice kind of success theorem in terms of Ilkka 

Niiniluoto’s (1987) notion of ‘estimated distance from the truth’. However, that notion is laden with 

the notion of nomic truth. Is there a notion of ‘more successful’ that is not laden with that notion and 

nevertheless enables an interesting success theorem? Finally, there is the plausible connecting question 

whether the way in which Hintikka-systems realize Option 3 can be conceived as an extension or 

concretization of qualitatively approaching the deterministic nomic truth, i.e. Option 1. 

It may be illuminating to pay some attention to the well-known distinction between content 

and likeness definitions of verisimilitude/ truthlikeness, introduced by Sjoerd Zwart (2001) (see also 

Oddie, 2016) and, related, the distinction between theories with the same versus different logical 

strength. These distinctions were not yet relevant for the present paper for the following reasons. As 

said before, the paper is in fact restricted to, following the terminology of Niiniluoto (1987), truth 

approximation between complete answers to a cognitive problem, i.e. the problem which complete 

answer is the true one? As far as the logical problem of verisimilitude is concerned the first, in a sense 

elementary, question is e.g. which of two (conceptually) relevant propositional or monadic 

constituents is closer to the truth, i.e. the true constituent? Similarly, which of two relevant probability 

distributions is closer to the truth, i.e. the true distribution? In these terms and assuming a realist 

perspective we focussed on Carnap-systems in view of one cognitive problem, viz. which multinomial 

probability distribution is (closer to) the true one. Next we focussed on Hintikka-systems in view of 

two cognitive problems, the one mentioned, and the cognitive problem of which (analogue of a 

monadic) constituent is (closer to) the true one. In many contexts there are plausible qualitative or 

quantitative answers to these logical questions, e.g. based on a plausible distance function between 

complete answers, e.g. the city-block distance between distributions and the size distance between 

constituents.11  

The compound, or, if you wish, ‘hard’ logical problem of verisimilitude, however, is how to 

extend solutions for complete answers to incomplete answers to the cognitive problem: e.g. sets (e.g. 

intervals) of probability distributions, disjunctions of constituents and the like. This compound logical 

problem is not touched upon in the present paper, neither for the cognitive problem of the true 

distribution, nor for that of the true constituent. However, the mentioned distinctions (content vs 

                                                             
11

 Of course, something like the distinction between content and likeness definitions could already be brought 

into play by the definition of ‘∆-closer to’ between constituents, but the (more or less) standard definition of the 

distinction in terms of whether the logically stronger false theory is closer to the true one than the weaker theory, 

or vice versa, does of course not work for complete answers. In my view the distinction can best be made in 

terms of whether the definition of ‘Y is closer to T than X’ is merely a matter of set comparisons (as in the case 

‘∆-closer to’ and the corresponding size distance) or that it includes distance considerations between members of 

these sets. In Kuipers (2000 and 2019) I call this the distinction between the basic (or naïve!) and refined 

definitions. 
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likeness definitions and equal vs different logical strength
12

), can and will certainly play an important 

role in research devoted to the two compound problems.      

To be sure, our main concern was not the (elementary) logical but the elementary epistemic 

problem of verisimilitude, that is, more specifically: the comparative evaluation on the basis of 

evidence of complete answers to the two relevant cognitive problems with regard to the aim of truth 

approximation. Again, the extension to the two relevant compound epistemic problems, including the 

role of the two distinctions, is an interesting challenge. 

 

 

Appendix: Proofs of Theorems 1, 2, 3, 4, 6, 7, 9 

 

Theorem 1: Restricted Expected (Probabilistic-)Success Theorem 

If y is relative to Qi closer to the pn-truth than x if and only if it may be expected that en is such that y 

is relative to Qi more successful than x. 

 

Proof of Theorem 1. 

In fact we are dealing with three binomial distributions, <xi, 1-xi>, <yi, 1-yi> and <ti, 1-ti>, for which 

the probability that the first n experiments result in ni(en) = m according to e.g. <xi, 1-xi>,  i. e. 

���� ,� ��!(ni(en) = m), equals "�#$%
#�1 − %

� #. Regarding the true distribution <ti, 1-ti> it is well-

known that the mean, i.e. the expected value of the relative frequency, E(ni/n), equals ti and the 

variance, i.e. the expected value of the square of the distance of the relative frequency from the true 

probability, i.e. E((ni/n − ti)
2
), equals ti(1 − ti). Crucial for the theorem is the quasi-variance relative to 

xi, i.e. the expected value E((ni/n − xi)
2
), and similarly for yi. 

 E((ni/n − xi)
2
)  = E((ni/n − ti + ti − xi)

2
)  

= E((ni/n − ti)
2
) + 2(ti − xi)E(ni/n − ti) + (ti − xi)

2
  

= ti(1 − ti) + (ti − xi)
2. 

The last step uses the variance and the fact that E(ni/n − ti) is of course 0 in view of the mean value.  

Similarly we have:  

 E((ni/n − yi)
2
)  = ti(1 − ti) + (ti − yi)

2. 

Hence, E((ni/n − yi)
2
) < E((ni/n − xi)

2
) if and only if (ti − yi)

2
 < (ti − xi)

2. Qed. 

 

Theorem 2: Carnap-systems converge to the probabilistic nomic truth 

Informally, the Carnapian updating of the initial pn-theory approaches the pn-truth with probability 1. 

                                                             
12 In a generalized sense we may say that the relevant distributions and constituents, respectively, are of equal 

logical strength. Note that the relevant constituents are in fact propositional constituents, viz. conjunctions of 

negated and un-negated positive probability claims with respect to all Q-predicates. 
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Formally: Probt (lim n→∞ pC(Qi|en) = ti) = 1, i.e. Probt [∀ε > 0 ∃N ≥ 0 ∀n ≥ N  |pC(Qi|en) – ti| < ε] = 1,  

i.e. Probt [∀ε > 0 ∃N ≥ 0 ∀n ≥ N |
ni + �/k

n + �
  – ti| < ε)] = 1 

 

Proof of Theorem 2. 

The theorem follows directly from the fact that, step 1, the Carnapian prediction function converges 

with certainty to the relative frequency 
ni

n
, and, step 2,  the strong law of large numbers

13
, according to 

which the limit of the relative frequency of a series of independent experiments with a fixed 

probability equals the true probability with probability 1,  

Formally: Step 1 limn→∞ pC(Qi|en) = limn→∞ 
ni + �/k

n + �
  =  

ni

n
   

i.e. ∀ε > 0∃N ≥ 0∀n ≥ N  |pC(Qi|en) – ni/n| (= | 
ni + �/k

n + �
  – 

ni

n
 | = |

�

n + �
 ( 

1
k
 –  

ni

n

| < ε 

Step 2 Probt [limn→∞ 
ni

n
  = ti] = 1, i.e. Probt [∀ε > 0 ∃N ≥ 0 ∀n ≥ N  |ni/n – ti| < ε] = 1. Qed. 

 

Counterexample to the suggested conjecture in the following claim (see Note 3 before Theorem 3): 

Being closer to the corresponding precursor does not guarantee being closer to the true value, even 

though that precursor is closer to the true value. 

 

Recall the definitions of the Carnapian value and the Carnapian precursor: 

���	
|��
= 
ni + �/k

n + �
 = pi  pCt(Qi|en) = 

nti + �/k

n + �
 = ci 

Let en+1 be such that ni(en+1) = ni(en) = ni, hence, the (n+1)
th trial does not result in Qi, then 

���	
|��(�
= 
ni + �/k

n + 1 + �
 = pi’  pCt(Qi|en+1) = 

(n + 1) ti + �/k

n + 1 + �
 = ci’ 

Let 1/k < ti. The question is whether it is possible to construe a case, with k, ti, and λ, such that for all 

n there is a ni resulting in four values in the following order in the [0, 1] interval:  

0 − − − 1* − − − +
 − − − −+
, − − − −�
, − − − �
 − − − -
 − − − − − −1 

For in this case pi’ is further from the truth than pi but closer to ci’ than pi is to ci.  

Proof: Note first that ci and ci’ trivially are in the open interval (1/k, ti) and that ci < ci’, hence the 

(n+1)
th precursor is closer to ti than the nth. Note also that pi’< pi trivially holds. Hence, what further is 

needed is that pi < ti and ci’< pi’, which together amounts to:  

ni + �/k

n + �
<  -
 <  ni 

n + 1    or, equivalently, �/ + 1
-
 <  /
 < �/ +  �)-
 −   �/k  

                                                             
13

 See e.g. Feller (1968
3
), section VIII.4. 
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For k=2, ti = ¾, and �=100 the condition amounts to 1�2 + 12 <  /
 <  1�2 + 25. Choosing ni equal to 

 1�2 + 1, if that is an integer, and, if not, as the nearest integer above it, will do for all n. Note that we 

did not need to assume that ni/n is smaller than ti.  

For ti < 1/k a similar construction is of course possible. For ti = 1/k the claim is evidently not 

valid. Qed. 

 

  

[Technical notes regarding the proofs of Theorem 3 and Corollary 3.2 in the appendix:  

- Sometimes ‘t’ appears below in 6789� without underlining, whereas it should be.   

- Some occurrences of the integral sign ´: ´ might better be larger, without enlarging the 

corresponding sub- and superscripts.  

- Some brackets of the form ‘(‘and ‘)’ might better be larger, without enlarging the other 

symbols around.  

The relevant occurrences have been marked by green] 

 

 

Theorem 3: Decreasing significant deviation For every significance level εεεε > 0 holds, for 

sufficiently large n, that the probability that the n
th

 Carnapian prediction deviates from the n
th 

Carnapian pn-truth-precursor εεεε-significantly is larger than the probability that the (n+1)th 

Carnapian prediction deviates εεεε-significantly from the (n+1)
th

 Carnapian pn-truth-precursor. 

∀ ε > 0 ∃ N ≥ 1∀ n ≥ N : Probt (|pC(Qi|en+1) – pCt(Qi|en+1)| > ε)  <  Probt (|pC(Qi|en) – pCt(Qi|en)| > ε)  

where  ���	
|��
 =  n

n + �
 
���   + 

�

n + �
 ��  = 

ni + �/k

n + �
 , the Carnapian value, and  ����	
|��
 = 

��� + �/k

n + �
  , the 

Carnapian precursor of the pn-truth, and ti is the limit of ni/n as n tends to infinity (it is assumed that 

this limit exists, and that ni/n has a binomial distribution with mean ti and variance ti(1-ti)). 

 

Proof of Theorem 3 

Note first that ����	
|��
 −  ����	
|��

 =  �� ���
n + �

=  �����  ��

n + �

 . The mean is of course 0 and the 

variance is < �
n + �

=>
 times the variance of  

��� , which is -
�1 − -

, hence  < �
n + �

=> -
�1 − -

.  However, 

we may also note that ����	
|��
 − ����	
|��

 =  �����  ��

n + �

  goes to <��� − -
= for n going to ∞, with 

mean 0 and variance -
�1 − -

.] 
Note now that, for mutually independent random variables Xj, j = 1,2,...,n, each with mean µ 

and standard deviation σ, the Central Limit Theorem (Feller, 1968
3
, Section X.1) states that  

 
∑ �@  �A�@BCD√�  
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is normally distributed with mean 0 and standard deviation 1 �ℵ�0, 1

 in the limit of large n. Hence, if 

the Xj are binomially distributed, with Xj = 1 for a ‘head’ and Xj = 0 for a ‘tail’, and ∑ GH =  /
�HI� , 

then we know that asymptotically  

JK JLKMJLK�N  LK
 =  
J�JKJ  LK


MJLK�N  LK
  and hence, see above  
��OP�Q�|��
 OPR�Q�|��

M�����  ��
  

has the normal distribution ℵ�0, 1
. 

 Hence, for large n, and for S > 0, 

 

 Probt ( T ��� �� ��
 (���	
|��
 − ����	
|��

 >  S
  ~ �√>W : X% � �Y >⁄[\    . 
 

Define 

 ] =  T���� ��
�  S , 

so that Probt (|���	
|��
 − ����	
|��
| >  ]
  ~ >√>W : X% � �Y >⁄[
T �R��C^R�
 _    , 

where the factor of 2 arises because both tails of the distribution have now been included. Therefore 

       �∗
  6789��|(���	
|��
 − ����	
|��
| >  ]
 − 6789��|(���	
|��(�
 −  ����	
|��(�
| >  ]
  

~ T>W : X% � �Y >⁄T ��CR��C^R�
 _
T �R�"C^R�$ _  , 

which is positive, thus proving Theorem 3. Qed. 

 

Corollary 3.1: For every significance level εεεε > 0 and m>0 holds, for sufficiently large n, that the 

probability that the nth Carnapian prediction deviates from the nth Carnapian pn-truth-precursor εεεε-

significantly is larger than the probability that the (n+m)
th

 Carnapian prediction deviates εεεε-

significantly from the (n+m)th Carnapian pn-truth-precursor. 

∀ ε > 0 ∃ N ≥ 1 ∀ n ≥ N  ∀ m ≥ 1:  

Probt (|pC(Qi|en+m) – pCt(Qi|en+m)| > ε) <  Probt (|pC(Qi|en) – pCt(Qi|en)| > ε)  

 

Proof of Corollary 3.1: It follows directly by concatenating the result of the theorem. 

 

Corollary 3.2: There is a well-defined lower bound pertaining to Theorem 3 

∀ ε > 0 ∃ N ≥ 1∀ n ≥ N ∃ lbi(n) > 0  

Probt (|pC(Qi|en) – pCt(Qi|en)| > ε) –  Probt (|pC(Qi|en+1) – pCt(Qi|en+1)| > ε) > lbi(n), 

where lbi(n) is a positive lower bound, depending on n, whose value is stated in the proof. 

 

Proof of Corollary 3.2: 
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Such a lower bound on the relevant difference (*) in the proof of Theorem 3 can be obtained by 

minorizing the exponential in the integrand.  

 

For large n, 

    �∗
  6789��|(���	
|��
 −  ����	
|��
| >  ]
 − 6789��|(���	
|��(�
 − ����	
|��(�
| >  ]
  

~ a2b c X% � �Y >⁄T �(����� ��
 _
T ����� ��
 _   

>  a2b exp�− �/ + 1
]>
2-
�1 − -


 c X% a �(��� �� ��
 _

T ��� �� ��
  _  

= a2b exp�− �/ + 1
]>
2-
�1 − -


 ]M-
�1 − -

 [√/ + 1 − √/ 

= a2b exp�− �/ + 1
]>
2-
�1 − -


 ]M-
�1 − -

 1√/ + 1 + √/ 

> 1√2b exp�− �/ + 1
]>
2-
�1 − -


 ]M�/ + 1
-
�1 − -

 . Qed. 

 

Theorem 4: In a Carnap-system the expected value of the distance |pC(Qi|en) −−−− ti| goes stepwise to 0 

(or is and remains 0 when ti is 1/k) 

  

Proof of Theorem 4: 

Note that ni is a random variable with binomial expectation value E(ni) = nti and hence 

E(
ni + �/k

n + �
 ) = 

E(ni)+ �/k

n + �
  = 

nti + �/k

n + �
  

Therefore: 

1) If ti<1/k, E( 
ni + �/k

n + �
  − ti) = 

nti + �/k

n + �
  − 

ti (n + �)

n + �
  = 

(1/k   ti) �

n + �
  > 

(1/k   ti) �

n +1 + �
  →  0  

That is, the expected value of the relevant distance is monotone decreasingly approaching 0. 

2) If ti>1/k, similarly, but now monotone increasingly approaching 0. 

3) If ti =1/k, the expected value of the distance is constant, viz. 0. Qed. 

 

Theorem 6: In a multinomial context all nomic possibilities are realized, with probability 1  

R(en) approaches T (R(en) → T) (stepwise) with probability 1 for n → ∞. 

Formally: Probt [limn→∞ (R(en) = T)] = 1, i.e. Probt [∃N ≥ 0 ∀n ≥ N (R(en) = T)] = 1 

 

Proof of Theorem 6: 
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From Step 2 in the proof of Theorem 2 (based on the strong law of large numbers), we get:  

 for all i Probt [limn→∞ 
ni

n
  = ti] = 1, i.e. ∀i Probt [∀ε > 0 ∃N ≥ 0 ∀n ≥ N  |ni/n – ti| < ε] = 1. 

Let I(T) indicate {i|ti > 0} = {i|Qi ∈T} and let t* indicate the smallest non-zero ti, i.e. min{ti| i ∈ I(T)}. 

Then we may conclude:  

∀i ∈ I(T)  Probt [limn→∞ 
ni

n
  > 0] = 1, i.e. ∀i ∈I (T) Probt [∃N ≥ 0 ∀n ≥ N  

ni

n
 > 0] = 1, 

the latter via ∀i ∈ I(T) Probt [∀ε∈ (0, t*) ∃N ≥ 0 ∀n ≥ N  ( ni

n
  >  ti – ε)] = 1. 

Hence, since p(A&B)=1 if p(A)=1=p(B), 

Probt ∀i ∈ I(T) [limn→∞ 
ni

n
  > 0] = 1, i.e. Probt [∀i ∈ I(T)∃N ≥ 0 ∀n ≥ N  

ni

n
 > 0] = 1. 

Hence, since ni/n>0 entails ni > 0, which entails Qi in R(en), 

Probt [limn→∞ (R(en) = T] = 1, i.e. Probt [∃N ≥ 0 ∀n ≥ N R(en) = T] = 1, 

the latter via Probt [∃N ≥ 0 ∀n ≥ N ∀i ∈ I(T) 
ni

n
  > 0] = 1.  

That the members of T show up one at a time (stepwise) is trivial. Qed. 

 

Theorem 7: Hintikka-systems converge to the deterministic truth with probability 1 

In an H-system the posterior probability of HV gradually (but not necessarily stepwise) approaches 1 

with probability 1 when HV is the deterministic truth, and it may suddenly fall down to 0 or gradually 

approach 0 otherwise.  

Briefly, if n → ∞ then, with probability 1, p(HV|en) → 1 if V=T, otherwise →  0 (the latter as soon as 

R(en) − V ≠ ∅, if T−V ≠ ∅, or gradually, if V ⊃ T). 

Formally, Probt [limn → ∞ p(HT|en) = 1] = 1, i.e. Probt [∀ε > 0 ∃N ≥ 0 ∀n ≥ N  |p(HT|en) − 1| < ε] =1, and, 

for V ≠ T, Probt [limn → ∞ p(HV|en) = 0] = 1, i.e. Probt [∀ε > 0 ∃N ≥ 0 ∀n ≥ N  p(HV|en) < ε] =1 (where in 

the latter case p(HV|en) drops to 0 as soon as R(en) − V ≠ ∅, if T−V ≠ ∅, or gradually, if V ⊃ T). 

 

Proof of Theorem 7:     

In order to prove this theorem we first prove two lemmas (adapted from T3, p. 57 and T8, p. 81, resp. 

in Kuipers, 1978). Assuming HV as condition, then for all non-empty proper subsets S of V (∅ ⊂ S ⊂ 

V) any infinite sequence of outcomes within the infinite product S
∞
 amounts to the truth of a universal 

generalization. Notation: |V| = v, |S| = s. 

 

Lemma 1 In a (conditional) Carnap-system genuine universal generalizations get probability 

0 (with certainty), i.e. pC(S
∞
|HV) = limm→∞pC(S

m
|HV) = 0 for ∅ ⊂ S ⊂ V (and hence 0 < s < v). 

 

Proof of Lemma 1:  
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It follows from the Carnapian value pC(Qi|HV&en) = (ni + λV/v) / (n + λV)   (0< λV <∞) that 

pC(S|HV&en) = (nS + sλV/v) / (n + λV)  (nS =df �Q��j/

 and hence by the product rule that  

(*)  pC(S
m
|HV) = ∏ �/ +  l ��/n
 / �/ + ��
# ��Io  = ∏ {1 � �1�l/n
 ��  /�/ + ��
}# ��Io  

There is a well-known theorem (Knopp, 1956, p. 96) that (*) tends to 0, with certainty, if m → ∞, i.e. 

limm ∞pC(S
m
|HV) = 0, iff ∑ �1�l/n
 �� /�/ + ��
  =  ���Io , which is true for 0 < λV < ∞, for the sum 

is comparable to Σ 1/n. Qed. 

 

Lemma 2 Universal convergence (with certainty) in a Hintikka-system  

Let R(en) = R, |R| = r>0, then p(HR|en) → 1 if n → ∞ and R remains constant, in the sense 

that, with certainty, limm→∞ p(HR|enR
m
) =1 and for R⊂V⊆K, p(HV|en) → 0 if n → ∞ and R 

remains constant, in the sense that, with certainty, limm→∞ p(HV|enR
m
) = 0, provided p(HR) > 0.  

 

Proof of Lemma 2: 

Note first that  

(1) p(HR|enR
m
) = p(HR) pC(en|HR) pC(R

m
|HR&en) / p(enR

m
)  

and similarly 

(2) p(HV|enR
m
) = p(HV) pC(en|HV) pC(R

m
|HV&en) / p(enR

m
) for R⊂V⊆K 

Moreover, we have 

(3) p(enR
m
) = p(HR) pC(en|HR) pC(R

m
|HR&en) + Σ R⊂V⊆K p(HV) pC(en|HV) pC(R

m
|HV&en) 

From Lemma 1 and  

pC(R|HV&en) = (n+rλV/v) / (n+λV)  pC(V−R|HV&en) = (v−r)λV / v(n+λV) 

we get that limm→∞ pC(R
m
|HR&en) = 1 and limm→∞ pC(R

m
|HV&en) = 0 for V⊃R. Hence, using (1), (2), 

and (3), we get p(HR|enR
m
) → 1 if m → ∞, i.e. limm→∞ p(HR|enR

m
) =1. That p(HV|enR

m
) → 0 if m → ∞ 

for all v>r, i.e. limm→∞ p(HV|enR
m
) = 0, follows now from the fact that they are all non-negative and 

that their sum equals 1−p(HR|enR
m
). Qed. 

Now Theorem 7 directly follows from Lemma 2 and Theorem 6. The latter guarantees with probability 

1 that from a certain stage on R remains constant, viz. T. Qed. 

 

Theorem 9 Deterministic-Probabilistic Quasi-Success Theorem (DPQ-Success Theorem) 

If HW is d-closer to the deterministic truth HT than HV (by assumption entailed by ‘∆∆∆∆-closer to‘) then 

with probability 1 HW will in the long run be estimated to be d-closer to the truth than HV 

((EDT(HW|en) < EDT(HV|en)).  

Formally: if d(W, T) < d(V, T) then Probt [limn →∞ (EDT(HW|en) < EDT(HV|en))] = 1,  

i.e. Probt [∀ε>0 ∃N≥0 ∀n≥N (EDT(HV|en) − EDT(HW|en)) > ε] = 1 
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Proof of Theorem 9:  

From Corollary 7.1, we get:  

(1) Probt [lim n→∞ EDT(V|en) = d(V, T)] =1 and Probt [lim n→∞ EDT(W|en) = d(W, T)] =1. 

From (1) we get, using p(A&B) = 1 if p(A)=p(B)=1,  

Probt [lim n→∞ EDT(V|en) = d(V, T) and lim n→∞ EDT(W|en) = d(W, T)] =1 

≡ 

Probt [∀ε>0 ∃N≥0 ∀n≥N |EDT(V|en) − d(V, T)| < ε and ∀ε>0 ∃N≥0 ∀n≥N |EDT(W|en) − d(W, T)| < ε] =1 

≡ 

(2) Probt [∀ε>0 ∃N≥0 ∀n≥N |EDT(V|en) − d(V, T)| < ε and |EDT(W|en) − d(W, T)| < ε] =1 

 

Assume d(W, T) < d(V, T), hence d(V, T) − d(W, T) =df 3D > 0. Hence, from (2): 

(3) Probt [∀ε: D>ε>0∃N≥0 ∀n≥N |EDT(V|en) − d(V, T)| < ε < D and |EDT(W|en) − d(W, T)| < ε < D] =1 

As is easily seen by representation on an axis, 

 

    d(W, T)   d(V, T)   

       0         1 

   EDT(W|en)      EDT(V|en) 

           2ε             2ε 

    3D (> 3ε) 

we may now conclude 

(4)  Probt [∀ε: D>ε>0∃N≥0 ∀n≥N (EDT(HV|en) − EDT(HW|en) > ε] =1 

In sum, if d(W, T) < d(V, T) then with probability 1 (EDT(HW|en) < EDT(HV|en) for n →∞, i.e. 

Probt [limn →∞ (EDT(HW|en) < EDT(HV|en)] = 1, Qed.  
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