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Abstract: The free energy principle (FEP) is sometimes put forward as accounting for 
biological self-organization and cognition. It states that for a system to maintain 
non-equilibrium steady-state with its environment it can be described as minimising its free 
energy. It is said to be entirely scale-free, applying to anything from particles to organisms, 
and interactive machines, spanning from the abiotic to the biotic. Because the FEP is so 
general in its application, one might wonder whether this framework can capture anything 
specific to biology. We take steps to correct for this here. We first explicate the worry, taking 
pebbles as examples of an abiotic system, and then discuss to what extent the FEP can 
distinguish its dynamics from an organism’s. We articulate the notion of ‘autonomy as 
precarious operational closure’ from the enactive literature, and investigate how it can be 
unpacked within the FEP. This enables the FEP to delineate between the abiotic and the 
biotic; avoiding the pebble worry that keeps it out of touch with the living systems we 
encounter in the world. 
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1 Introduction 

The free energy principle (FEP) is a principle first approach to what it takes for a system to 
exist. Rather than empirical investigation, the FEP starts from a mathematical principle that a 
system is thought to conform to if it exists. Indeed, FEP researchers seek to provide a general 
theory unifying biology and cognitive science formulated almost entirely from mathematical 
principles in physics and information theory (see e.g., Friston 2010 2013; Hohwy 2020; 
Kirchhoff et al. 2018; Linson et al. 2018; Ramstead, Kirchhoff, Friston 2019). The ambition 
is to secure a definition of existence by appealing to constructs in physics and information 
theory, and then employing those constructs to derive a principle of self-organization and 
cognition (Friston 2019; Hesp et al. 2019). In a nutshell, the FEP states that a system that 
maintains non-equilibrium steady-state (NESS) with its environment can necessarily be cast 
as minimising free energy.  This particular observation can consequently be exploited to 1

show a wide variety of interesting relations to hold between a NESS system and its 
environment. 

Yet the FEP’s mathematical toolkit is not only applicable to living systems. It is said to be 
entirely scale-free in its applicability. That is, it is intended to apply to any system able to 
maintain its organisation despite tendencies towards disorder: from chemotaxis in cells 
(Friston 2013; Auletta 2013), neuronal signalling in brains (Friston et al. 2017; Parr & Friston 
2019), tropism in plants (Calvo & Friston 2017), synchronised singing in birds (Frith & 
Friston 2015) to decision-making and planning in mammals (Daunizeau et al. 2010; Friston 
2013; Williams 2018). It has also been applied to model adaptive fitness over evolutionary 
timescales by casting evolution in terms of Bayesian model optimisation and selection 
(Campbell 2016; Hesp et al. 2019). However, this widespread applicability of the FEP can be 
taken as a fault, rather than an advantage. 

Indeed, there is a general concern about the FEP’s ability to speak to the essential 
organizational dynamics of biology, because it can seem utterly disconnected from biology. 
More specifically, the FEP is sometimes considered incapable of uniquely addressing the 
organisational dynamics of living systems (van Es 2020; Colombo and Wright 2018). 
Because the FEP implies an entirely scale-free dynamics in which any self-organising NESS 
system can be cast in terms of self-evidencing, some worry that this particular view cannot 

1 The term ‘non-equilibrium steady-state’ refers to self-sustaining processes in a system requiring input and 
output to avoid relaxing into thermodynamic equilibrium (= systemic decay/death). It is important to mention 
here that the notion ‘steady-state’ in non-equilibrium systems is an approximation to some specified duration of 
time - e.g., circadian rhythms over a 24 hour clock cycle or the homeostatic processes involved in maintaining 
on average and over time a specific body temperature. So strictly speaking, biological systems are not in steady 
states; rather, to say that a system is in a steady-state, X, at a particular time, is effectively to say that the 
probability density over the system’s states during some period of time was X. 
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capture the specific details of biological organisation that is of interest to the biological 
sciences. If true, this undercuts the grand unifying ambitions of many FEP researchers.  

We address this worry here. We start by rehearsing the basic tenets of the FEP, with 
particular focus on the Markov blanket formalism and how it relates to Bayesian inference 
(sect. 2). We proceed to explicate the aforementioned worry by considering the application of 
the FEP formalism to a pebble and discuss how the FEP seems to fall short in delivering the 
tools to distinguish pebbles from organisms (sect. 3). Prima facie, its scale-free applicability 
makes it seem like it is unable to carve any interesting joints between the abiotic and the 
biotic, which would hinder the prospect of a FEP biology. Kirchhoff et al. (2018) make an 
initial attempt to address this problem, suggesting that autonomy is what distinguishes living 
from non-living systems. The overarching claim there is that autonomy is the capacity of a 
system to modulate its exchange with its environment. Here we supplement this initial 
treatment. We first look at ‘autonomy’ from an enactive viewpoint (sect. 4). We then sketch 
the contours of how the notion of ‘autonomy’ from the enactive literature could be emulated 
with the tools available to the FEP formalisms. This allows us to understand what constitutes 
an autonomous system rather than merely using the notion of autonomy as a mark by which 
to delineate life from no-life (sect. 5). 

2 Markov blankets, free energy and Bayesian inference 
The FEP speaks to what characteristics a system must exhibit for it to exist (Friston 2013). Its 
basic premise is that any random dynamical system “that possesses a Markov blanket will 
appear to actively maintain its structural and dynamical integrity” (Friston 2013, p. 2). 

A Markov blanket is a statistical separation of states that is applicable to any thing that exists 
(Hipólito 2020). It is a set of blanket states that separates a system’s internal states from 
external states (Pearl, 1988; Beal 2003). The blanket states shield (in a statistical sense) 
internal from external states, and vice versa. They can be partitioned into sensory states and 
active states. Sensory states capture the influence of external states on internal states. Active 
states capture the influence of internal states on external states. Intuitively, any thing can be 
separated statistically from that which it is not (Palacios et al. 2020).  

3 
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Figure 1 is a schematic representation of a Markov blanketed system. The gray 
circle delineates the Markov blanketed system that separates internal states 
(int) from external states (ext). The blanket states, sensory states (sen) and 
active states (act) are displayed as surrounding the internal states. The arrows 
depict modes of influence. External states influence only one another or 
sensory states, while influenced only by active states or one another. Internal 
states are influenced only by sensory states, influencing only active states. In 
terms of modes of influence, internal states are separated from external states. 
(figure taken from Bruineberg, et al. 2018). 

In this statistical formulation, the separation between internal and external states implies that 
these states are conditionally independent, given the states that comprise the Markov blanket. 
If we want to figure out the external states and we know the values of the blanket states, 
knowing the values of the internal states will not offer additional predictive value, and 
vice-versa. This is so by definition, because the blanket states already capture any possible 
influence the internal states could have on the external states. A brief example may clarify 
this. Say you observe that it is cold. This could be either due to an open window or to an air 
conditioning system that is set too strong. If you would observe that, say, the air conditioning 
is set excessively high, the observation that it is cold now does not offer further information 
with regards to whether or not the window is open. That is, in this case, the observed cold and 
the open window are conditionally independent, given that the air conditioning is on blast 
(Kirchhoff and Kiverstein 2019; Beal 2003). In terms of the Markov blanket formalism, the 
observed cold could be cast as the internal states, the state of the window could be formalized 
as the external states with the states of the air conditioning serving as the blanket states. This 
example is important because it indicates the widespread applicability of the formalism. 
Indeed, it is not necessarily obvious to associate the boundaries induced by the Markov 
blanket with physical boundaries, though it does seem to lend itself well to this particular 
application. We should nonetheless remain wary about overstating the implications of this 
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statistical partitioning of states when considering its application onto other systems (van Es 
2019, 2020).  

Now that it is clear what a Markov blanket is, we can delve into its relation with free energy 
minimisation and Bayesian inference. This is a technical story. According to the Second Law 
of thermodynamics, the entropy of any closed system increases indefinitely over time. Any 
system that exists, or any Markov blanketed system that retains its structural integrity over 
time, seems to temporarily slow down the increase of entropy for as long as it remains intact 
(Friston 2012, 2013, 2019; Schrödinger, 1944). Of course, any such ‘resistance’ is only 
temporary, as entropy increases upon disintegration, which, in the case of biotic systems, 
means death.  

For any such system, you can establish a multi-dimensional state space with as many 
dimensions as there are variables represented in the state space. Each point in the state space 
corresponds to a unique intersection of values for each variable. In this state space, you can 
mark a bound of states within which a system can remain intact, outside of which it cannot 
(Friston, 2012, 2013). For as long as the system remains intact, the system will continuously 
‘revisit’ the states within this bound. This is so by definition, as we define the bound by the 
range of values within the system remains intact. With regards to organisms, the viable bound 
differs per species: humans remain intact under quite different circumstances than fish do, for 
example. Insofar as this bound counts as a description of the states in which the system can 
be found when alive, it is also considered to be a mathematical description of a phenotype 
(Friston 2013; Kirchhoff et al 2018).  On average and over time, any living system is thus 2

likely to be found within the bound of viable states and unlikely to be found outside of it. 
That is, we may expect a system to be within a bound of states that it typically remains within 
on average (Friston, Wiese, Hobson 2020). This implies a probability distribution that can be 
laid over the state space so that each state is assigned a probability value (Ramstead et al. 
2019; Corcoran et al. 2020; Friston 2013). At any given time the system is encountered, it is 
highly likely to occupy a state within the viable bound, and highly unlikely to occupy a state 
outside of this. This means that states within the bound are considered high-probability states, 
whereas states outside of it are considered low-probability states. 

Furthemore, if a system’s internal states remain within a particular range, this must mean that 
the influences on those states are similarly bounded. An example should clarify this. Consider 
an egg and spoon race. An egg-and-spoon runner will need to ensure that the influence on the 
egg of their running the race remains within certain bounds, lest the egg move out of the 
spoon and break. Let us apply the Markov blanket partitioning method. We shall take the 
internal states here to be the egg’s, and the influences it receives via the spoon shall be the 
sensory states, the runner is here the environment impacting on the spoon and comprises the 

2 See Colombo and Wright (2018) for criticism on the viability of this application onto an organismic system. 
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external states. This means that an egg-and-spoon runner can be cast as keeping a tight bound 
on the sensory states of the Markov blanketed egg for as long as it remains in the spoon.  

As it is for the egg-and-spoon runner, so it is for any system that remains intact over time. 
Relative to the viable bound of the internal states of the system, then, we can also establish a 
state space for the sensory states within which the system can remain intact, outside of which 
it cannot. Here too, we can determine a probability distribution where states within the bound 
are ascribed high probability, those outside of it are ascribed low probability. This is a 
probability distribution over external states, as it relates to the influences on the internal 
states by the external states. In other words, it defines the possible external states that there 
could be relative to the internal states, given that the internal states remain within the viable 
bound. Of interest here is that the internal states themselves provide all we need (the 
‘sufficient statistics’) to compute the probability distribution over the external states. As such, 
by knowing the viable bound of the internal states, we can compute the viable bound of the 
system’s sensory states. 

Further, in Bayesian probabilistic theory, surprise is a quantity defined as the improbability 
of a particular state (Shannon, 1948). If the surprise of sensory states (or ‘sensory surprise’, 
not to be confused with agent-level surprise with regards to an unexpected sensation) is high, 
the sensory states currently occupy a low probability area in the state space. As 
low-probability states are those that endanger the system’s structural integrity, surprise is 
kept low, or minimized, as long as the system remains intact. However, sensory surprise is a 
probabilistic measure of sensory states. The entire state space of sensory states includes all 
possible modes of influence the external states could possibly exert on the internal states. 
This is, in principle, an infinite set. Computing sensory surprise directly is thus intractable 
(Friston 2009). 

This is where (variational) free energy comes in. Free energy, in the statistical usage of the 
term, is a functional of the internal and sensory states a system is in.  In this case, free energy 3

is thus, more specifically, the function of a function of the sensory states that is parameterized 
by the internal states. Because of this, the value of free energy limits the possible values of 
the internal and sensory states. To see why, consider a solution to a simple summation 
problem in arithmetics, say it’s 15, and the terms of the equation are non-negative. This 
means that none of the terms of the problem can exceed the value of 15. Minimizing the 
value of free energy, then, minimizes an upper bound on the probability of sensory states. 
This ensures that sensory states remain in high-probability areas in the state space, which in 
turn implies that sensory surprise is minimized. Minimizing free energy can thus be seen as 
approximately minimizing the otherwise intractable value of sensory surprise (Friston and 
Stephan 2007). Moreover, as free energy is a function of only the internal and sensory states, 
it is in principle computable (Kiebel, Daunizeau and Friston 2008; Friston and Ao 2012). 

3 A functional is a function of a function. 
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In Bayesian probability theory, negative surprise is equivalent to Bayesian model evidence. 
Minimizing surprise thus maximizes Bayesian model evidence. The process by which 
Bayesian model evidence can be maximized is called Bayesian inference, sometimes referred 
to as self-evidencing (Friston, Killner, Harrison 2006; Hohwy 2016). Bayesian inference then 
refers to the particular way a probability distribution needs to be updated in light of new 
evidence (Beal 2003). Bayesian inference describes the permissible ‘moves’ one can make in 
the formal system of Bayesian probability theory. We can now see that for any system to 
remain intact over time, its entropy needs to be minimized on average over time, which 
means expected free energy needs to be minimized, which in turn implies the minimization of 
sensory surprise, which is done by way of a formal operation called Bayesian inference. 

The above story is employed in the FEP as a mathematical description of the homeostatic 
processes of biotic systems (Friston 2013). This works, very roughly, as follows. In the 
Markov blanket formalism, the Markov blanket is thought to carve out ontological joints: the 
internal states map onto the organism itself, and the external states map onto the environment 
(Kirchhoff and Kiverstein 2019). The partitioning blanket states map onto the organism’s 
modes of interaction so that sensory states are associated with sensory receptor activity, and 
active states are associated with the system’s influence on its environment, such as action. It 
remains a current debate to what extent this application of the Markov blanket should be 
taken literally or instrumentally (van Es  2020; Bruineberg et al. 2020; Hohwy 2016). In this 
paper, we will remain neutral in this debate, and instead explore only what can be done 
within the formalism, regardless of how it may or may not be implemented in any real 
system. 

In a realist interpretation, to ‘engage’ in Bayesian inference is considered a fundamental 
aspect of life, as without it, the organism would go outside of its viable bounds. This is called 
active inference, and is thought to account for both action and perception by the same guiding 
principle (Friston 2013). The probability distributions are embodied and/or encoded by the 
organism (and/or the brain). They are to be manipulated, updated and leveraged by the 
organism. Through active inference, the organism updates the probability distributions in the 
face of newfound evidence, and uses this to infer action policies for its interaction with the 
world. Long term activities are thought to require counterfactual inference, which is 
associated with the minimization of expected free energy or free energy on average over time 
(Corcoran et al. 2020). Rather than updating the probability distribution to remain within its 
viable bounds, this should be seen as the inference of a possible trajectory through the state 
space conditioned on bodily movement. This allows the organism to adapt to environmental 
fluctuations. After all, the distribution of states within which an organism can remain alive 
cannot be simply ‘updated’ when confronted with an environment likely to push the system 
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outside of viable bounds. Active inference thus plays a central role in the realist FEP story of 
biological systems.   4

3 Pebble meets Markov blanket 

One person’s meat is another person’s poison: the scale-free applicability of the FEP’s 
Markov blanket formalism may be taken as a vice, rather than a virtue. In this section we take 
up a specific challenge to the FEP that flows from what seems like an overly generous 
application of the FEP formalism to a wide variety of phenomena: the pebble challenge. It 
challenges the FEP’s ambitions to describe the organizational dynamics of life precisely 
because its mathematical formalisms apply equally well to pebbles, and other abiotic systems 
as they do to biotic ones. One might therefore worry that the FEP fails to say anything 
specific about biology, unless characteristics we take to be specific to biology are not so 
specific at all. We describe this challenge in more detail now.  

Friston & Stephan (2007) anticipates this kind of challenge to the FEP. They ask, “What is 
the difference between a plant [a biotic system] and a stone [an abiotic system]?” (2007, p. 
422) They say that the plant “is an open non-equilibrium system, exchanging matter and 
energy with the environment, whereas the stone is an open system that is largely at 
equilibrium” (2007, p. 422). There is something to this initial observation. Plants are open 
systems, i.e., energy and mass can flow between the system and its surroundings. The same, 
of course, can be said of stones as environmental forces impinge on their surface area, and 
their own existence influences their environment by, say, releasing heat during the day, or 
altering pathways for organisms  (Olivotos & Economou-Eliopoulos 2016). At first glance, it 
thus seems that the FEP applies in the same way to stones, plants and humans.  

The FEP (as we saw above) starts from the simple observation “that for something to exist it 
must possess (internal or intrinsic) states that can be separated statistically from (external or 
extrinsic) states that do not constitute the thing” (Friston 2019, p. 4, emphases added). This 
Markov blanket formulation would apply to a pebble as follows. The Markov blanket defines 
the conditional independencies between two sets of states: the system and the environment. 
Pebbles are composed of minerals with different properties, lattice structure, hardness and 
cleavage. We can associate these variables as the internal states comprising the system. On 
shingle beaches, the second set of states (the environment) would be other pebbles, and so on. 
In rivers, the water could be cast as the external states. As seen in Section 2, it is possible to 
cast a spatial boundary for anything that exists in terms of a Markov blanket (Friston 2013). 
The pebble has a clear boundary separating internal states and external states. The sensory 

4 The extent to which this story should be taken in a realist sense so that each biotic system literally performs 
advanced statistical operations, or in an instrumentalist sense so that each biotic system’s interactional dynamics 
merely correspond to (or ‘instantiate’) the dynamics described in Bayesian inference is still debated (van Es 
2020; see Ramstead, Kirchhoff, Friston 2019; Corcoran et al. 2020). A discussion of this debate is outside the 
scope of this paper, and it is unnecessary for our current purposes. 
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states of a pebble can be associated with the effects of external causes of its boundary - 
stressors such as pressure, temperature and so on. Its active states would correspond to how 
the pebble effects external states - e.g., via release of heat back into the environment. The 
Markov partitioning rule governing the relation between states dictates that external states act 
on sensory states, which influence, but are not themselves influenced by internal states. 
Internal states couple back to external states, via active states, which are not influenced by 
external states (Palacios et al. 2020). Given that the Markov blanket formulation for a pebble 
is possible, it follows that internal pebble states are conditionally independent of external 
states in virtue of the Markov blanket states.   5

What does this mean for our FEP analysis of the pebble, given what we have seen in Section 
2? Under the FEP, the mere presence of a Markov blanket implies that internal states can be 
understood as if they minimise the free energy over the states that make up their Markov 
blanket. Technically, since minimising free energy is the same as performing approximate 
Bayesian inference, it follows that one can associate the internal pebble states (and its blanket 
states) with Bayesian inference. As such, it seems that if (1) anything that exists over time 
can be described in terms of a Markov blanket which implies that expected free energy is 
minimized by way of Bayesian inference, and (2) pebbles exist, then (3) pebbles can be 
described as having a Markov blanket, whose dynamics will appear as though they minimize 
free energy by way of Bayesian inference. The formalisms of the FEP that we employed here 
therefore seem too general to distinguish between pebbles and organisms. Below we will 
discuss what is needed for a formalism to properly address autonomy in Section 4. In Section 
5 we will see how FEP’s toolkit can be leveraged to make a headway in providing a 
principled distinction between pebbles and organisms. 

4 Autonomy meets pebble 

The pebble challenge need not be a knockdown argument against the ambitions of the FEP to 
address biology and cognitive science. Here we consider a possible reply to it. Our agenda 
will be to introduce the notion of autonomy from enactive philosophy of cognitive science.  6

5 We could, for example, determine the surface molecules of the pebble to be sensory states, adjacent molecules 
to be active states, and the remainder of the pebble’s molecules to be internal states, with the environment cast 
as external states. The molecules we cast as active states are then shielded from influence of the external states, 
while still able to influence the external states, though vicariously through sensory states. Of course, a pebble is 
merely an example and this could apply to many abiotic systems. Thanks to an anonymous reviewer for pointing 
this out. 
6 Autonomy is a central theoretical construct of the enactive approach to life and mind (Varela, 1979; Varela et 
al., 1991; Thompson 2007; Di Paolo & Thompson 2014; Di Paolo et al. 2017). Enactivism is a theoretical 
framework with roots in theoretical biology, dynamic systems theory, and phenomenology. In enactivism, the 
notion of autonomy as operational closure has received special attention in attempting to unearth the 
self-organisational dynamics essential to life. Yet the literature so far has fallen short of construing operational 
closure in terms of the FEP’s conceptual toolkit. Here we will make a first attempt at conceiving of an 
operationally closed system as being composed of a network of Markov blanketed systems that stand in a 
mutually enabling relation to one another. 
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Kirchhoff et al. (2018) appeal to this notion in order to distinguish between mere active 
inference and adaptive active inference. The former can be shown to apply to abiotic systems 
such as pebbles (from above) and the generalised synchrony induced in coupled pendulum 
dynamics. Adaptive active inference is introduced to make sense of the idea that living 
organisms are able to actively change or modulate their sensorimotor coupling to their 
environment - which is needed to actively monitor and predict changes to perturbations that 
challenge homeostatic variables, which may, sometimes, go out of bounds. However, the 
modulation of sensorimotor coupling is merely a (contingent) feature of an autonomous 
system. Operational closure and precariousness jointly define autonomy. We build on 
Kirchhoff et al’s (2018; see also Kirchhoff & Froese 2017) argument by showing how 
autonomy is underwritten by the concepts of operational closure and precariousness (cf. Di 
Paolo & Thompson 2014).  

4.1 Operational closure and precariousness 

Operational closure is central to the conceptualisation of autonomy (Di Paolo & Thompson 
2014). It is characterized as a form of organization in the sense that it specifies the particular 
way any system’s component parts are organized in relation to one another. By specifying the 
organized ‘unity’ (the system) via this formalism, we also implicitly define its environment. 
Furthermore, by defining the system and its environment, we also specify the boundary 
through which the system interacts with its environment (Beer 2004, 2014; Maturana and 
Varela, 1980). 

A system is operationally closed if the processes that make up the system constitute what is 
known as a self-enabling network. This means that each of the network’s processes enables 
and is enabled by at least one other process in the network. It is empirically possible to 
determine whether any particular system is operationally closed by mapping out the causal 
processes relevant for the system and how they relate to one another. In particular, one must 
look for enabling relations. Any one process is said to enable another process if its 
continuation is partly or wholly constitutive of the enabled process. To explain how this 
works, it may help to look at the diagram of an operationally closed system (Figure 2 below). 
In this toy system, we distinguish five component processes: A, B, C, D, and E represented as 
nodes in the figure. The arrows between them represent enabling relations, so that A can be 
seen to enable process B. Following the arrows, we can identify a closed loop in the enabling 
relations pertaining to processes A, B, and C. This means that the continuation of A enables 
the continuation of B, which enables the continuation of C, which comes full circle and 
enables the continuation of process A: the ABC network is thus self-enabling. But what about 
processes D and E? E can be seen to enable process A, yet remains outside of the network as 
it is not enabled by a process in the network. D, on the other hand, is enabled by a process in 
the network, but doesn’t loop back and enable a process in the network itself. This is why 
ABC can be identified as a self-enabling network, while D and E fall outside the boat. 

10 
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Figure 2, a diagram displaying an operationally closed network of enabling 
relations. Each node in the figure represents a process in the network, and each 
arrow represents an enabling relation. The operationally closed network is 
marked by the black nodes; processes outside the operationally closed system 
are marked in grey. Each node that is part of the operationally closed network 
is marked by having at least one outgoing and one incoming arrow from 
another node in the operationally closed network as is described in-text 
(inspired by Di Paolo and Thompson 2014). 

Precariousness signifies a natural inclination to decline. In Figure 2 above, for example, 
process A is precarious if it would cease were it not enabled by E and C. It may be that not 
each enabling process is per se necessary or sufficient in enabling. If A is precarious, this 
does mean however, that jointly, its enablers are both necessary and sufficient for the 
continuation of A. As each node in the network is precarious, the network itself is too. This is 
crucial for the notion of autonomy in the enactive approach (Di Paolo 2005). 

A paradigmatic case that displays operational closure and precariousness is a single cell. A 
cell is constituted by a complex network of interrelated causal processes, but, for didactic 
purposes, we distinguish three. The first process comprises the metabolic network. The 
second process is the membrane-generation of the cell that separates the network from the 
environment. The third process consists of the active regulation of matter and energy 
exchanges of the cell, via the membrane-induced barrier, with its external environment. By 
way of this third process, the system can absorb nutrients from and expel wastes into its 
environment to continue its metabolism, looping back into process one. 

The metabolic network, process 1, can be divided into subprocesses. A central aspect of 
metabolism is the production of enzymes, which exhibits a form of closure in itself. Enzymes 
are precarious. As such, when particular enzymes need to be produced, this occurs “in 
metabolic pathways helped by other enzymes, which in turn are produced with the 
participation of other ones … in a recursive way” (Mossio and Moreno 2010, p. 278, 
emphasis added). That is, the metabolic network in itself can be said to be “enzymatically 
closed” (Mossio and Moreno 2010, p. 278). This production network enables process 2: the 
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generation of a membrane that separates the network from its environment. This 
semipermeable barrier is necessary for the system to actively regulate its exchanges with the 
environment. It both allows the system to take in matter and energy from the environment, 
and protect its internal network from external perturbation of the metabolism (Ruiz-Mirazo 
and Mavelli 2008; Thompson 2007). The exchange with the environment enabled by the 
barrier’s separation is process 3. The limited openness is exploited to allow for the absorption 
of nutrients from the environment which can stimulate the maintenance of the membrane 
itself, but also “contribute to the production of an ‘energy currency’” (Ruiz-Mirazo and 
Mavelli 2008, 376; Skulachev, 1992). Via trans-membrane mechanisms, this ‘currency’ is 
cashed out in internal metabolic reactions, transformed to serve as energy resources to 
maintain and actively regulate its boundary conditions (Ruiz-Mirazo, Mavelli 2008). This is 
to say that process 3 loops back into enabling process 1 and 2. These enabling relations are 
visualized in Figure 3 below. Here we can see that operational closure and precariousness 
jointly correctly marks a cell as an autonomous system. 

Figure 3 illustrates the simplified process network relevant to a single cell. 
Process 1, which captures the metabolic network, is represented by the 1 in the 
top-left. Process 2, membrane-generation, is represented by 2 in the top-right. 
Process 3, the active regulation of matter and energy exchanges with the 
environment is represented by 3 in the bottom-right. The environment is 
represented by the E in the bottom-left. The arrows between the represented 
processes stand for enabling relations as described above. We see that 1, 2 and 
3 form a self-enabling network as per the definition above. Each process in the 
network enables and is enabled by at least one other process in the network. 1 
enables 2 and is enabled by 3. 2 enables 3 and is enabled by 1 as well as 3. 3 
enables both 1 and 2, and is enabled by 2 and E. The network here described 
thus represents an operationally closed system. 

4.2 Autonomy and the pebble 

A pebble is not autonomous. Given that autonomy is intended to solve the pebble challenge, 
it is important to subject the pebble to the same analysis: is a pebble operationally closed and 
precarious? If not, this indicates that autonomy as used here is an adequate concept to 
distinguish between abiotic and biotic systems. We distinguish four causal processes that are 
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relevant to the formation and maintenance of the pebble’s structural integrity on a shingle 
beach, two of which are directly considered to be determinants of a pebble’s shape and size: 
particle abrasion and particle transport. These two processes may be more or less relevant 
depending on the particular geological location (Domokos and Gibbons 2012; see also 
Landon, 1930; Kuenen, 1964; Carr, 1969; Bluck, 1967). Particle transport refers to the 
transport of the pebble by the river. Particle abrasion refers to the collusion with other 
pebbles (and other materials) that occurs primarily during particle transport. The remaining 
two processes are the fluid flows of the river and the environment that consists of abraders of 
a hard enough consistency to allow for particle abrasion. 

The four processes in the network are thus: fluid flows (A), environmental abraders (B), 
particle abrasion (C) and particle transport (D). Fluid flows enable particle transport, and can 
reasonably be considered to enable particle abrasion too. Assuming there are no other moving 
objects in the river, the pebble will be unlikely to move from its location and is thus unlikely 
to be abraded by other materials, if it is not swept anywhere by the fluid flows. 
Environmental abraders only enable particle abrasion. Particle abrasion in itself does not 
enable any other process in the network. Particle transport only enables particle abrasion. 
This means that fluid flows only enable other processes, but are themselves not enabled by 
any other process in the network. The enabling relations are specified in Figure 4 below. This 
means that A cannot be part of a self-enabling network. Environmental abraders only enable 
particle abrasion, and are not themselves enabled by other processes in the network and thus 
B suffers the same fate as A. C, particle abrasion, is enabled by all other processes in the 
network, but does not actually enable any other process, and can also not figure in a 
self-enabling network. Process D, particle transport, is the only process that is both enabled 
by and enables another process in the network, being enabled by fluid flows, enabling particle 
abrasion. This enabling chain, however, never loops back into enabling the continuation of 
particle transport. As such, Process D too cannot be part of a self-enabling network. 
Summing it up, there is no self-enabling network to be found in the processual network 
surrounding pebbles. This means that, under the operational closure formalism, pebbles are 
not marked as autonomous.  7

 

7 Our treatment of the pebble case may seem disanalogous with our treatment of the cell case. The discussion of 
the cell case treated a few important internal processes such as metabolism and membrane-generation next to 
the external processes concerned with exchanges with the environment. Our take on the pebble case seems to 
lack in internal counterparts to the external processes. This speaks to what the operational closure formalism 
indicates, which is that the pebble simply is not an operationally closed system. This means that, in terms of this 
formalism, there is no ‘internal’ to speak of that could operate (semi-)independently of the external processes. 
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Figure 4 represents the process network relevant to a pebble on a shingle 
beach. The nodes with letters A, B, C and D in the figure represent the 
processes A, B, C, and D mentioned in-text respectively. The arrows represent 
enabling relations so that the arrow going down from A to C means that A 
enables C. Each node is coloured gray to indicate that the network is not 
operationally closed, as no process except for D enables and is enabled by at 
least one other process in the network. The network can thus not be said to be 
self-enabling. 

 

5 Autonomy meets Markov blanket 

Operational closure and precariousness provide the principled distinction between 
autonomous and non-autonomous systems. It is this distinction that seems difficult to capture 
within the Markov blanket formalism of the FEP: indeed, following Section 3, it seems as 
though both organisms and pebbles can be said to minimise free energy and can thus be cast 
as engaging in Bayesian inference. In Section 4 we have seen two notions from the enactive 
literature that are apt at capturing the difference between biotic and abiotic systems. As such, 
there is good reason to attempt to incorporate the enactive notion of autonomy into the FEP 
(Kirchhoff et al. 2018; Palacios et al. 2020). 

A few FEP conceptions of autonomy exist in the literature, so it is important to discuss these 
and why they fall short of capturing operational closure and precariousness. According to one 
usage of autonomy, the internal and active states of any Markov blanketed system are 
considered autonomous states, because their values are not directly influenced by the 
environment (Friston, Wiese, Hobson, 2020). Yet this does not aid in a distinction between 
biotic and abiotic systems, as any Markov blanketed system by definition has internal and 
active states. One may also think the presence of active states in a system is crucial, as active 
states are what, in the FEP formalism, allow an organism to modulate their exchange with its 
environment. Yet, recall from Section 3 that a pebble also has active states. It would be 
strange to think that a pebble’s existence has no influence on its environment merely because 
it does not act on its environment. A pebble’s mass will influence the state of the water that 
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may surround it, or the movement of the adjacent pebbles on a shingle beach, and influences 
the behaviour trajectories of organisms in its vicinity. These sorts of influences will be 
formalised as active states in the Markov blanket formalism. As such, we will be able to 
identify external states dependent on the pebble’s active states in the same way we can do so 
for organisms. 

Yet, one may object, a pebble’s exchange with its environment is much, shall we say, 
simpler, than an organism’s. This is roughly what is captured in the distinction between 
between active particles and inert particles, discussed in Friston’s 2019.  The distinction here 8

rests on what is called the ‘information length’ of a system, the technical specifics of which 
are outside of the scope of this paper.  Broadly, one could say the information length of a 9

system corresponds to the size of the ‘viable bound’ of the system under scrutiny as we have 
discussed it in Section 2. This means that a high information length is associated with 
systems whose internal states display a large degree of variability, whereas low information 
length is associated with systems whose internal states remain largely static, or consistently 
revisit a very small set of states. This seems to make headway into distinguishing biotic from 
abiotic systems, yet fails to draw a divide in kind, offering only a gradual distinction in 
degrees, leaving room for a grey area between biotic and abiotic. Take the pebble, for 
example. For the sake of argument, let us concede that the pebble’s information length is 
sufficiently low to be termed an inert particle. Yet consider now a shingle beach, consisting 
of a large amount of pebbles, that lies at water. We can consider the beach as a whole to have 
its own Markov blanket, forming an ensemble of the individually blanketed pebbles at the 
beach. The complexity of the internal states of the shingle beach as a whole as it maintains its 
integrity (continues being a shingle beach) in spite of the environmental fluctuations (the 
water flowing on and off-shore, weather circumstances, etc.) increases exponentially as we 
imagine it to be larger, comprising more distinct and varied pebbles, each of which ‘respond’ 
differently to the varying temperatures and kinetic forces. This increases the associated 
information length of the shingle beach. We could do this for increasingly complex abiotic 
systems until, one could imagine, the information length starts to look a lot like that of a 
single bacterium. The crucial point here is that relying on a system’s information length may 
not necessarily pick out biotic systems exclusively, and remains a difference in degree, as 
opposed to a difference in kind.  10

A final suggestion that could be thought to pick out organisms over pebbles is that of 
non-equilibrium steady-state (NESS). According to the FEP’s more recent formulations , 11

8 Thanks to an anonymous reviewer for pointing this out. 
9 See Friston’s (2019) unpublished manuscript for a description in technical detail. 
10 What this means is that the grey area is not inherently a fault, yet conceding this does not help us in 
distinguishing the pebble clearly from the organism. 
11 Contrary to, say, Friston (2013), the condition of a system being at NESS with its environment seems to have 
replaced the initial clause of being locally ergodic (see Friston 2019; but also Hipólito 2020; Ramstead, Badcock 
et al. 2019) . Discussion of this change and its philosophical implications are outside of the scope of this paper, 
but see Bruineberg et al. (2020) for preliminary discussions. 
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any Markov blanketed system that is at NESS with its environment can be cast as minimizing 
free energy (Ramstead, Badcock et al. 2019). For a system to be in a non-equilibrium 
steady-state so defined means that the system is far from equilibrium and, in virtue of 
systematic environmental exchange, remains in the same state over time. Yet being in a 
steady state implies that the system remains in the same state over time (Gagniuc 2017). This 
means that, for a dynamically changing organism in constant flux, this only holds by 
approximation or within certain specific timeframes. An extreme example are butterflies that 
just got out of their cocoon, which corresponds to a massive change in the organism’s states, 
but humans can just as well hardly be said to occupy the same state over time.  A pebble is 12

in no need of environmental exchange to remain a pebble and is thus not at NESS. Yet it is 
also known that NESS does not uniquely pick out biotic systems (see for example Bernard 
and Doyon, 2015; Pourhasan, 2016). As such, it remains of import to look at the enactive 
approach to autonomy and how this could be approached from within the FEP. 

5.1 On self-individuation 

A system is considered operationally closed only if it exhibits a network of self-enabling 
processes. That is, each process in the network enables and is enabled by at least one other 
process in the network. This means that any operationally closed system is inherently 
composed of multiple individually distinguishable component processes. Taken together, 
these individually distinguishable component processes form a larger network that 
self-individuates, and generates its own boundary between itself and its environment. The 
Markov blanket formalism is well-equipped to capture this hierarchical boundary generation 
of processes (Palacios et al. 2020). If we take each component process to have a Markov 
blanket, and the larger, operationally closed network to have a Markov blanket too, the 
generation of a self-enabling and self-individuating process network can be cast as the 
hierarchical self-organization of a Markov blanketed ensemble of Markov blankets. Palacios 
et al. (2020) show how, with a few crucial assumptions, single cells can be shown to 
aggregate quite naturally into a larger ensemble. In this particular way, we can consider each 
node of the network to be Markov blanketed, and the ensemble-network to be Markov 
blanketed in itself, as shown in Figure 5 below. The nodes of the operationally closed 
network need not be operationally closed themselves, which means that the nodes themselves 
need not invite being divided further into another layered network. We can thus ground 
operational closure in terms of Markov blanket ensembles without inviting an infinite regress. 
This maps onto a single cell organism too. Consider that each organelle of a single cell can be 
distinguished statistically from the rest of the cell, thus establishing a Markov blanket 
(Palacios et al. 2020), without in itself being operationally closed and thus not in itself 

12 The FEP may be able to accommodate ‘wandering sets’ (see Birkhoff 1927) which could account for changes 
to a system’s viable bound over time, though it remains to be seen whether this could accommodate drastic and 
sudden changes such as the butterfly’s (Friston 2019). 
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requiring to be composed of a self-enabling process network under the current definition of 
operational closure. 

Figure 5 describes the operationally closed single cell system with a Markov 
blanket around the ensemble of process networks that make up the system. The 
process relations described are just as they were in Figure (x: cell). The circle 
around the self-enabling network of 1, 2 and 3 represents the Markov blanket 
around the ensemble. 

Although this captures a key feature of operational closure, self-individuation (or 
membrane-generation in terms of a single biotic cell), it falls short of accounting for the 
conditional enabling network that differentiates autonomous from non-autonomous systems. 
Hierarchical self-organization is only part of the enactive story of autonomy. Indeed, the 
pebble challenge could be reformulated as a shingle beach challenge so that the beach can be 
cast as an ensembled Markov blanketed system that engages in Bayesian inference, 
composed of individually Markov blanketed pebbles. The distinction between abiotic and 
biotic thus remains blurred, even in a hierarchical perspective. 

5.2 On operational closure and enabling relations 

There are a few differences between just any Markov blanketed system and an operationally 
closed Markov blanketed system that we need to capture. Operational closure is a particularly 
structured manner of self-organization (Maturana and Varela, 1980). Increased structure over 
time implies that the long term entropy (informally a measure of disorder; Friston 2013) is 
low, which means that sensory surprise must be low too. The ensemble’s states are 
constituted by the component states, which means that the component states inherit this low 
surprise. This is a key aspect of understanding operational closure in the FEP. 

We can exploit the lower surprise internal to the network further by, for the sake of 
exposition, ignoring the system’s environment. For each particular node, its sensory states are 

17 



This is a preprint accepted for publication in Synthese. Please cite the published version. 

entirely determined by the active states of the other nodes in the network (Palacios et al. 
2020). More specifically, if A enables B, that means that the active states of A must have an 
important influence on B, which in turn means that the active states of A are significantly 
determinant of the sensory states of B. Conversely, if B is enabled only by A, its sensory 
states are entirely determined by the active states of A. This means that, within the network, 
each node’s sensory states are determined by the active states of its enablers. This implies 
that the sensory surprise of any node is at a nearly absolute minimum, given the active states 
of the enabling nodes. 

In light of this, an enabling relation is closely related to the notion of coupling. Any two 
nodes can be said to be coupled when they are in a relation of mutual influence (Friston 
2013). In active inference, the generative models associated with two coupled systems will 
approach one another over time, giving rise to what is known as generalized synchrony. As 
the coupled two systems continuously interact, they become attuned to one another; they 
adapt to one another (Friston 2013). This attunement means that the influence they have on 
one another becomes increasingly well accommodated. In mutual attunement, this entails 
changes in the extrinsic probability distribution in the state space, so that the sensory states 
associated with the active states of the coupled system are increasingly likely. On the scale of 
the network, this means that the nodes as part of the network, i.e. on a network-level scale, 
are in a tight coupling relation. This is to say that each node’s influence will enable, and thus 
largely determine, another node’s states that will, by virtue of being part of the network, 
couple back the initial node to enable and largely determine its own states either directly or 
indirectly. An operationally closed network, then, can be taken as a tightly coupled network 
of Markov blanketed nodes.  

Note however, that, prima facie, the notion of coupling is not necessarily applicable to any 
two nodes in an enabling relation within the network. We thus cannot simply transcribe the 
enabling relations between nodes as coupling relations. A coupling relation is symmetrical 
insofar it prescribes mutual influence. This does not mean that the interaction needs to be 
identical in both directions of influence, but it does imply that the interaction is minimally 
bidirectional: the active states of one node determine the sensory states of another node and 
vice versa. Taken in this sense of direct influence, an enabling relation is not. An enabling 
relation can be asymmetrical, as we see in nodes 1 and 2 in Figure 5 above. This means that 
we would miss out on asymmetrical enabling relations if we were to transcribe them as 
coupling relations in a model. Moreover, an enabling relation concerns a specific type of 
influence that one node has on another. Consider that any random two systems may, for a 
certain duration over time, be coupled in a mutually disruptive fashion. This means that rather 
than enabling one another, they instead inhibit one another. This distinction too may be lost if 
we were to transcribe enabling relations as coupling relations. Crucially, however, we can say 
that the individual nodes are at least indirectly coupled to one another from a network 
perspective. 
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The network perspective can also capture the sense in which operational closure depends on a 
network’s constituents. Consider, for example, how the free energy of a Markov blanketed 
ensemble of Markov blankets depends on the free energy of its constituents (Friston, 2013). 
Nonetheless, the shingle beach considerations in Section 5.1 remain valid. 

5.3 On precariousness and limits 

The Markov blanketed ensemble of Markov blankets has been important in our 
characterization of self-individuation and operational closure, so one could think it to cover 
precariousness as well. The idea is that an ensemble’s free energy is determined by the free 
energy of its constituents, which means that if the constituents’ free energy is minimised, the 
free energy of the ensemble is minimised too. It is important to note that this hierarchical 
dependence is a crucial feature of precariousness in organisms. That is, organisms and their 
component processes are inherently precarious. Yet what is typical of precariousness is not 
the hierarchical dependence relation: it is the natural inclination to decline. 

More important here is the FEP requirement of a system to be at NESS with its environment. 
As we have seen, this implies that the system requires continued environmental exchange to 
maintain its state. Barring the limiting remarks of the applicability of NESS to real, living 
organisms noted above at the start of Section 5, the continued environmental exchange 
requirement for maintaining its state is exactly what precariousness demands. Some employ 
this feature of the FEP to construe cancer, for example (Manicka and Levin 2019; Kuchlin et 
al. 2019).   13

Furthermore, the low sensory surprise of an enabled node, given the active states of enabling 
nodes may also be able to capture an organism’s precariousness. Recall that precariousness 
appears on two levels in an autonomous system. Each process in the network is precarious, 
and the network as a unity is too. Network-level precariousness is built into the FEP at its 
very core. Any system needs to put in work to be able to maintain its boundaries with the 
environment and continue existing. This means that without this work, the system will 
disintegrate, which is to say the system is naturally inclined to cessation, yet remains intact 
due to the ‘efforts’ of the system. In this sense, the organism can be taken as precarious.  

However, this line of thinking invites an unintended implication on the node level. Consider 
that high-probability sensory states are those for which they are largely determined by their 
enablers’ active states. The cessation of a process, further, is associated with leaving expected 
bounds. When a process ceases, its active states will thus by definition leave expected 
bounds. This implies that the sensory states of an enabled node would be highly surprising 
(given its ceasing enabler’s active states) so that it’s likely to enter an unviable state and 
cease as well. This seems to entail that if any random enabling node would cease, the sudden 

13 Thanks to an anonymous reviewer for pointing this out, which inspired further considerations regarding 
operational closure as well. 
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increase in sensory surprise for the enabled nodes would sooner or later cause each other 
process in the network to fall like dominoes. After all, their own cessation will cause a spike 
in sensory surprise in the nodes they enable, and so on. As the network is composed only of 
processes that both enable and are enabled by at least one other node in the network, no 
single process will be spared. In certain cases, this is to be expected. Consider our toy 
description of a single cell in Section 4.1 above. If we were to cease any of the processes in 
that network, the entire network would collapse. Each process is essential for the continuation 
of the network. However, this is only a contingent fact of our toy description. As stated 
above, it is not necessary for each enabling process to be individually necessary or sufficient 
for the continuation of the enabled process. This flexibility is key in our understanding of 
operational closure, yet is orthogonal to the domino effect we find on a node-level of 
description. This shows that, though this approach is able to capture certain characteristics, it 
is not capable of incorporating precariousness on both a network- and a node-level of 
description.  

Further, if we intend to capture the essential organizational dynamics for biotic systems, 
abstracting away the environment misses the point. By defining what something is (the 
system, or the unity), we indirectly define that which it is not (the environment) (Beer 2004; 
Friston 2019). This is exacerbated by the fact that for each probability distribution over 
internal states, there is an associated probability distribution over external states that specifies 
the expected influences of external states (Friston, Wiese, Hobson 2020). Even in the 
presence of an external environment, an operationally closed system intrinsically defines its 
environment as well as its boundary through which it can interact with the environment (Beer 
2004 2014; Friston 2012). In an ecological situation, any one node’s surprise is thus not at 
nearly absolute minimum, but can still be said to be particularly low, given the active states 
of its enablers. 

In sum, we have presented some ways to consider conceptualizing operational closure and 
precariousness in terms of a tightly coupled network of Markov blankets. There is a sense in 
which tightly bound network-scale coupling, and particularly low sensory surprise of enabled 
nodes given the active states of enabling nodes, can capture operational closure and 
precariousness. This can be taken as a proof of concept. Further simulational research may 
aid further in the incorporation of autonomy into the FEP by putting the approach here to 
work. 

Conclusion 

Many FEP researchers hold the FEP to support a grand unifying ambition to account for a 
wide variety of phenomena, among others the organizational dynamics of living and 
cognitive systems. Yet a common criticism is that it is overly general and cannot distinguish 
between biotic and abiotic systems, making it seem uninteresting from a biological 
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perspective. We addressed this worry by elaborating on earlier suggestions to incorporate the 
enactive notion of autonomy into the FEP framework. In Section 4, we described how 
operational closure and precariousness are concepts fit to handle the pebble challenge. In the 
subsequent section, we made a first attempt at incorporating the enactive language of 
autonomy into free energy language. We discuss different aspects of autonomy in the 
enactive approach and how they could potentially be transcribed into the FEP formalism. The 
FEP quite naturally accounts for self-individuation, a corollary of operational closure. The 
same applies to the bi-directional dependence relation of an operationally closed system and 
its component processes and a Markov ensemble and its nodes. Yet the enabling relation 
central to operational closure proves more challenging. There are implications with regards to 
the statistical relations between nodes for any operationally closed system such as an enabled 
node’s low sensory surprise in light of its enablers’ active states that we show the FEP can 
account for. Precariousness is also shown to be difficult to incorporate on a node-level 
(although the ensemble level is able to capture some basal features of precariousness), and 
the complexity of an ecological environment places limits on surprise-minimization 
descriptions as leveraged before. The FEP can thus emulate a limited version of autonomy as 
it appears in the enactive approach. Simulation modeling can further help incorporate this 
notion of autonomy into the FEP formalism.  
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