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Abstract

No-go theorems have played an important role in the development and assessment of scientific

theories. They have stopped whole research programs and have given rise to strong ontological

commitments. Given the importance they obviously have had in physics and philosophy of physics

and the huge amount of literature on the consequences of specific no-go theorems, there has been

relatively little attention to the more abstract assessment of no-go theorems as a tool in theory

development. We will here provide this abstract assessment of no-go theorems and conclude that

the methodological implications one may draw from no-go theorems are in disagreement with the

implications that have often been drawn from them in the history of science.
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1 Introduction

The mathematician and polymath John von Neumann claimed to have proven in his classic (Neumann,

1932) the impossibility to complete quantum mechanics by hidden variables. A couple of years later,

Grete Hermann (1935/2017, P. 251) challenges von Neumann, claiming that he “introduces into its

formal assumptions, without justification, a statement equivalent to the thesis to be proven”. Thirty

years later, Jauch and Piron (1963) state, unaware of Hermann’s claim, that “[t]he question concerning

the existence of such hidden variables received an early and rather decisive answer in the form of von
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Neumann’s proof on the mathematical impossibility of such variables in quantum theory”. Three years

later Bell (1966) shows in his seminal work that “the formal proof of von Neumann does not justify his

informal conclusion”, saying later in an interview that “the von Neumann proof, if you actually come

to grips with it falls apart in your hands! There is nothing to it. It’s not just flawed, it’s silly! [...] The

proof of von Neumann is not merely false but foolish!”1. Thirty years later Mermin (1993), following

Bell, still considers that “von Neumann’s no-hidden variables proof was based on an assumption that

can only be described as silly”. Going forward in time another 17 years, Jeff Bub (2010, 1334) argues

that “Bell’s analysis misconstrues the nature of von Neumann’s claim, and that von Neumann’s

argument actually establishes something important about hidden variables and quantum mechanics”.

The details of the von Neumann no-go theorem will not concern us here, but this example of a

history of a single no-go theorem nicely illustrates the difficulty of interpreting no-go results in

physics. Opinions about it varied between having established a “decisive answer” on the question of

hidden variables to the proof being considered “foolish”; the whole debate now ranging more than

eight decades. This is not to say that there was no progress or that there is not a way to understand the

disagreement and its development. However, this example illustrates that the role of no-go theorems in

physics seems to differ from the case of impossibility results in mathematics. When we prove

something in mathematics, there usually does not seem to be that much disagreement about what the

theorem implies. This already hints at the more complex structure of no-go theorems in physics

compared to those in mathematics. There is a plethora of examples in the history of physics where this

more complex structure was not adequately recognised and where it was misunderstood what no-go

theorems can imply. In this paper we want to analyse abstractly the general implications one can draw

from no-go theorems and the role they can serve in theory development.

It is not in terms of the content of the theorems that the analysis proceeds – although it will have

significant implications for it – it is in terms of an understanding of no-go theorems as methodological

tools in theory development. As such, it is crucial to understand what capabilities no-go theorems can

1As cited in (Mermin, 1993, 88).
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have. As being unaware of what the general role of no-go theorems can be, i.e. of what they can

possibly imply, bears the danger of misinterpreting what a particular result actually implies and can

misdirect a whole research effort based on a misinterpretation of the situation. The aim of this paper

thus is to address this more general argument structure of no-go theorems.

I start in Sect. 2 with the presentation of a case study of a set of no-go theorems from particle

physics, which serves as an illustration of the various elements of a no-go theorem and subsequently

allows us to provide an analysis of the abstract argument structure of no-go theorems (Sect. 3). In Sect.

4, I discuss the methodological consequences of a no-go theorem for each individual element in more

detail. In Sect. 5, I consider what the previous analysis implies for no-go theorems more generally and

how one should adequately interpret the result of a no-go theorem.

2 The Development of a No-Go Theorem: Combining Internal and External Symmetries

Our tactic in assessing what no-go theorems imply, is to start by considering a specific historically rich

development of a set of no-go theorems from which we can establish the various components relevant

for the more abstract discussion. More specifically, it is a not much discussed example of a set of no-go

theorems from particle physics, each aiming to establish the impossibility to combine internal and

external symmetries.

Symmetry transformations can act on different degrees of freedom of the physical system. External

symmetries refer to those symmetries that act on the spatiotemporal degrees of freedom. These can be

the discrete symmetries of parity and time reversal or continuous symmetries like translations and

boosts. The spacetime symmetry that physicists were concerned with in the examples we will consider,

focused on the Poincaré symmetry, which contains the Lorentz symmetry and the symmetry under

translation. One contrasts external symmetries with internal symmetries. Internal symmetries are

symmetry transformations that do not act on the spacetime degrees of freedom but rather on an

“internal” space. Examples are Gell-Mann and Ne’eman’s S U(3)-flavour symmetry, which in modern

terms, is a symmetry under the change of the flavour of quarks with respect to the strong force. Other
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popular examples are Heisenberg’s S U(2)-Isospin of the neutron and proton or the standard model

gauge group S U(3) × S U(2) × U(1).2

I will discuss two motivations for why physicists tried to combine internal and external symmetries

(2.1). This will be followed by a discussion of some no-go theorems that culminated in the result of

Coleman and Mandula in 1967 (2.2). Finally, I will discuss certain routes towards combining internal

and external symmetries which were not affected by the no-go theorems (2.3).3

2.1 Why Combine Internal and External Symmetries?

Symmetries in physics are strongly related to the properties characterising the particles of the theory.

To put it briefly: one looks for those operators that commute with the generators of the symmetry. The

eigenvalues of these operators then correspond to the invariant properties of the particles.4 The

properties thus related to the Poincaré group, i.e. the external symmetry, are spin and mass. For

internal symmetries like SU(2) it is the isospin or for SU(3) it is the quark flavour. One can always

2To schematically illustrate it: in a field theory, external symmetries refer to transformations of the

form ΦI(x)→ Φ̃I(x̃) under x→ x̃ and internal symmetries to transformations of the form

ΦI(x)→ Φ̃I(x).

3See (Weinberg, 2011, Sect. 24) and (Di Stefano, 2000) for historical accounts and (Iorio, 2011) for

a more systematic treatment, parts of which we follow here.

4When we speak of “particles”, it should not be interpreted as a statement about our commitment

with regard to the ontology of quantum field theory. It is used here in the usual particle physics

parlance (see also the physics literature cited below). More precisely, the eigenvalues of the Casimir

operators, i.e. the commuting operators, are the invariant properties, understood as uniquely

determining the irreducible representations of a group. These irreducible representations are associated

with what we call “particles” above. My thanks to an anonymous referee for pointing me to this

possible point of confusion.
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combine internal and external symmetries trivially, by considering the direct product of the two groups.

In this case, however, all elements of the internal and external group commute with each other and so

remain independent. One is therefore interested in the non-trivial combinations of the symmetry group,

i.e. a group which combines the operators of the symmetry groups in such a way that they do not

commute. There were two main motivations behind the wish to combine internal and external

symmetries, which we now turn our attention to.

The Problem of Mass-splitting The first motivation to combine internal and external symmetries

was to account for the mass gap between protons and neutrons. Heisenberg (1932) introduced the

S U(2)-Isospin symmetry between protons and neutrons to account for their equal interaction under the

strong force5. This internal symmetry transforms between protons |+〉 and neutrons |−〉, i.e. I∓|±〉 = |∓〉

with [I+, I−] = 2I0 and I0|±〉 = ±|±〉.

The translation generator of the Poincaré group Pµ, an external symmetry generator, commutes with

the I±, i.e. [Pµ, I±] = 0. From this it follows that PµPµ|±〉 = m2|±〉, where m is the mass of the states.

That is, since the momentum generator commutes with the S U(2) generator, the proton and neutron

will have to have the same mass. Although this is a good approximation, protons and neutrons do not

have the same mass. The idea was then that a non-trivial commutation relation between them may lead

to the known mass difference between the proton and the neutron. For instance, by assuming

[Pµ, I+] = cµI+ one obtains after some manipulations using the changed commutation relations

P2|+〉 = I+P2|−〉 − c2|+〉 from which one can easily show m2
p = m2

n − c2. One can then recover the

hoped for mass difference by experimentally fixing the c2 value. So by mixing internal and external

symmetries the hope was to explain the mass difference of particles. This initial motivation turned out

not to be significant, as nowadays we know that protons and neutrons are composite particles made up

of different quarks.

5Although they do not interact equally under electromagnetic interactions, as the neutron is

neutrally charged and the proton positively charged.
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Unification The second motivation for combining internal and external symmetries is the

methodological urge within the particle physics community to unify. If internal and external

symmetries could be understood as following from one more general unified simple group, we would

be one step further in the unification program within particle physics. Consider Gell-Mann (1964) and

Ne’eman (1961)’s S U(3)-Flavour Symmetry. During the 1960s many new particles were being

discovered and the relation between them was unknown. It was the SU(3)-flavour symmetry that

allowed an understanding of the different baryons and mesons then discovered as elements within

multiplets of the same group. There is for instance a baryon octet that combines particles with different

strangeness and charge but the same spin, namely spin- 1
2 . Similarly, there is a baryon decuplet

combining spin- 3
2 particles into one multiplet.

Having unified particles with different strangeness and charge within multiplets the hope was to be

able to unify particles with different spins within one multiplet as well. Since spin is a property related

to an external symmetry, this would amount to combining internal (strangeness, charge) and external

(spin) properties. So bringing particles with different charges, strangeness and spins within a multiplet

can be achieved by bringing together internal and external degrees of freedom in a non-trivial way. One

early step in this direction was the SU(6) symmetry group. The S U(6) group was introduced and

succeeded in unifying the baryon octet and decuplet into a 56-plet6. This gave rise to further attempts

at unifying internal and external symmetries, since S U(6) was not yet the end of the story. What S U(6)

achieved was a unification of S U(3)-flavour with non-relativistic S U(2) spin. A full relativistic

unification, i.e. one including the full Poincaré group, was then hoped for and attempted. But attempts

failed, leading the way to several no-go theorems.

2.2 No-Go Theorems

Several no-go theorems were proposed between 1964 and 1967 culminating in the famous

Coleman-Mandula theorem. The no-go theorems that were being developed ranged from mathematical

6See e.g. (Sakita, 1964) and (Gürsey et al., 1964).
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to more and more physical arguments for the impossibility of combining internal and external

symmetries. We will now mention three no-go theorems starting with the simplest argument made by

McGlinn (1964) for the impossibility of combining internal and external symmetries.

In 1964 McGlinn, having the mass splitting problem from before in mind, proved the following

theorem7.

McGlinn Theorem: Let L be the Lie algebra of the Poincaré group, M and P the

homogeneous and translation parts of L, respectively, and I any semisimple internal

symmetry algebra.

(a) If T is a Lie algebra whose basis consists of the basis of L and the basis of I, and

(b) if [I,M] = 0 (i.e. the internal symmetry is Lorentz invariant)

then [I, P] = 0. Hence T = L × I.

So if (a) and (b) are satisfied, one can combine the internal group I with the external group L only

trivially. Note this is a mathematical result, in the sense that it is not a result that follows from within

the framework of a physical theory. As such it seems to be of a more general nature.

McGlinn’s theorem gave rise to several papers which aimed to weaken the assumptions. For

instance, early attempts by Michel (1965) and Sudarshan (1965) showed that to obtain McGlinn’s

result, it is sufficient to assume that only one of the generators of the internal symmetry algebra I does

not commute in (b). But it is especially assumption (a) that seems too stringent and unnecessary and

which therefore motivated O’Raifeartaigh in 1965 to prove a more general theorem. Rather than

building up the larger group starting from the Poincaré group, O’Raifeartaigh looked for the most

general way to embed the Poincaré group into a larger group, with the only restriction that the larger

group is of finite order. The finite order of the larger group is necessary so that the so-called Levi

7We follow O’Raifeartaigh’s presentation of McGlinn’s theorem in (O’Raifeartaigh, 1965) to allow

for a more coherent nomenclature.
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decomposition theorem, which forms the basis of his theorem, can be applied. So with the only

requirement that the group within which the Poincaré group is to be embedded be of finite order,

O’Raifeartaigh was able to categorise the possible embeddings in the following theorem:

O’Raifeartaigh Theorem: Let L be the Lie algebra of the Poincaré group, consisting of

the homogeneous part M and the translation part P. Let T be any Lie algebra of finite

order, with radical S and Levi factor G. If L is a subalgebra of T , then only the following

four cases occur:

(1) S = P;

(2) S Abelian, and contains P;

(3) S non-Abelian, and contains P;

(4) S ∩ P = ∅.

In all cases, M ∩ S = 0.8

O’Raifeartaigh then goes on to discuss each possibility in detail. One thing that one can already see is

that from a purely mathematical point of view, it is possible for the internal and external symmetry to

be combined in a non-trivial way. O’Raifeartaigh shows that case (1) reduces to the McGlinn case of a

trivial combination, where one obtains T = L × I. In the other three cases (2)-(4), the internal and

external symmetries could possibly be combined non-trivially but are, as O’Raifeartaigh argues,

physically unreasonable. For instance, case (2) necessitates a translational algebra of more than four

dimensions, or case (3) has the problem that, due to Lie’s theorem, any finite dimensional

8Some background may be helpful here: the Levi decomposition theorem states that any Lie

algebra of finite order can be decomposed into the semi-direct sum of its radical (maximally solvable

Lie algebra) and Levi factor (semisimple Lie algebra). Since P is abelian its first-derived algebra is

empty and therefore solvable. M is semisimple therefore not solvable and contained in G. This leads to

the four mentioned possible cases of decomposition.
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representation of a solvable non-abelian algebra has a basis such that all matrices have only zeros

above the diagonal, i.e. are triangular matrices. This leads to the problem that one cannot always define

hermitian conjugation. So unlike McGlinn’s theorem, O’Raifeartaigh’s theorem rules out a non-trivial

combination of internal and external symmetries for physical reasons.

Although O’Raifeartaigh was able to generalise McGlinn’s no-go theorem it was still considered to

have shortcomings. One shortcoming was the need to consider only Lie algebras of finite order and the

second shortcoming is the concentration on only the one-particle spectrum. Coleman and Mandula

(1967) were able to account for both of these shortcomings by moving away from the mathematical

framework of McGlinn and O’Raifeartaigh, towards a physical framework, namely S-Matrix theory,

wherein the symmetries from before are the symmetries of the S-matrix.9 This allowed them to

consider n-particle spectra but still without the need to consider any specific quantum field theory. Also

no need for finite order Lie algebras was necessary anymore. However, several physical and

mathematical assumptions were introduced. The Coleman-Mandula Theorem states the following:

Coleman-Mandula Theorem: Let T be a connected symmetry group of the S matrix,

and let the following five conditions hold:

1. T contains a subgroup locally isomorphic to the Poincaré group L;

2. all particle types correspond to positive-energy representations of L, and, for any

finite mass M, there are only a finite number of particle types with mass less than M;

3. elastic-scattering amplitudes are analytic functions of the center of mass energy and

of the momentum transfer in some neighbourhood of the physical region;

4. at almost all energies, any two plane waves scatter;

9Coleman was already working on the problem of combining internal and external symmetries in

1965 when he was able to show that certain relativistic versions of S U(6) had absurd consequences

and should therefore be discarded (Coleman, 1965).
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5. the generators of T are representable as integral operators in momentum space, with

distributions for their kernels.

Then T is locally isomorphic to L × I , the direct product of the Poincaré group and the

internal symmetry group.

This represented the final blow to attempts in the community at unifying internal and external

symmetries.10 It is interesting to note that the physicists working on this unification project were

actually hoping for the opposite result. While aiming for unification they apparently ended up showing

its impossibility.

2.3 The Rise of Supersymmetry

As mentioned, the Coleman-Mandula theorem stopped much of the discussion on internal and external

symmetries. The explicit assumptions above did not give rise to physicists attempting to weaken the

assumptions, although some problems with them were known (see e.g. Sohnius (1985)). However, in

the subsequent years, three different groups with completely different motivations were able to

non-trivially combine internal and external symmetries.The first successful proposal was by Yuri

Golfand and his student Evgeni Likhtman from the Physical Institute in Moscow.11 The actual reason

motivating Golfand to develop an extension of the Poincaré group is not clear. However, they try to

account for parity violation in the weak interactions in their original paper. Although, they also state

the following reason: "only a fraction of the interactions satisfying this requirement [i.e. being

10With a single exception: Mirman (1969) made the more general claim that “the impossibility

theorems have no physical relevance”. This was followed by Cornwell (1971), where it is claimed that

“Mirman’s objections may be overcome without difficulty, and that the above-mentioned theorems do

indeed relate to the physical situation”.

11See Golfand and Likhtman (1971) for the original paper and Golfand and Likhtman (1972) for an

elaboration on the 1971 paper.
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invariant under Poincaré transformations] is realised in nature. It is possible that these interactions,

unlike others, have a higher degree of symmetry" (Golfand and Likhtman, 1971, p.323). So the search

for this higher symmetry can be seen to have been their goal as well. Volkov and Akulov (1972) from

the Kharkov Institute of Physics and Technology had other reasons for their work. They hoped to be

able to describe the neutrino, then thought to be massless, as a Goldstone particle. Obtaining Goldstone

particles with half-integer spin like the neutrino makes an extension of the Poincaré group with

spinorial generators necessary. And finally, Wess and Zumino (1974a) discovered a 4D supersymmetric

field theory by trying to extend the 2D version obtained in String Theory. The results were not affected

by the Coleman-Mandula result. In fact, none of the papers even referred to the Coleman-Mandula

theorem, since none of them were motivated by the aim to combine internal and external symmetries.12

So how did they do it? An implicit assumption of the Coleman-Mandula no-go theorem is the use of

Lie algebras to represent the symmetries, a mathematical assumption, which turned out to be too

restrictive. Golfand and Likhtman, Akulov and Volkov as well as Wess and Zumino introduced,

without explicitly realising it, a more general mathematical structure to represent symmetries, so called

graded Lie algebras. A structure which was introduced in the mathematics literature in the

mid-1950s13. This more general mathematical structure allowed them to non-trivially combine internal

and external symmetries in what is nowadays called supersymmetries.

12Only in a second paper, did Wess and Zumino note in a footnote that “[t]he model described in this

note, and in general the existence of supergauge invariant field theories with interaction, seems to

violate S U(6) no-go theorems like that proven by S. Coleman and J. Mandula [...]. Apparently

supergauge transformations evade such no-go theorems because their algebra is not an ordinary Lie

algebra, but has anti-commuting as well as commuting parameters. The presence of the spinor fields in

the multiplet seems therefore essential” (Wess and Zumino, 1974b).

13The first paper introducing it was Nijenhuis (1955). See Corwin et al. (1975) for an excellent

review article on the application of graded Lie algebras in mathematics and physics.
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3 Modelling No-Go Theorems Abstractly

In Sect. 2 we have seen the history of a set of no-go theorems, from early motivations to how it was

finally circumvented. It was chosen as a case study, as it provides us with enough detail to model no-go

theorems more abstractly and identify the relevant elements involved in their assessment.

No-go theorems usually start with a goal G. One e.g. aims to unify internal and external

symmetries, find a hidden variable theory or simulate neutrinos. The no-go theorem then purports to

show that achieving this goal is not possible. Once the goal is determined the no-go theorem is set

within a certain framework F, which is usually chosen based on its suitability to achieve G. So for

some purpose one may not need to consider a specific theory within which one tries to show the

impossibility of G but may wish to do so on purely mathematical grounds from which one then infers

that it generally holds. Thus, the framework can be a mathematics-framework (as in the McGlinn and

O’Raifeartaigh no-go theorems), a theory-framework (like the use of S-matrix theory by Coleman and

Mandula), or a model-framework (based e.g. on toy models or possible extensions of existing theories,

as in the derivation of the Bell inequalities). Within the framework one is then able to phrase the

physical assumptions P that are represented by certain mathematical structures M. M for our purposes

will contain both the mathematical structures used to represent the physical assumptions (e.g. Lie

groups, Kolmogorovian probabilities, etc.) as well as the mathematical tools and methods used to

derive the result.14

In a no-go theorem one derives from F, P and M something which either contradicts G directly or

establishes G by violating another physical background assumption B. Taking B into account is

important as we saw in O’Raifeartaigh’s theorem. There, one is actually able to combine internal and

external symmetries but will then not be able to define hermitian conjugate operators, which are needed

14The elements F, P and M are recognized in formally more careful reconstructions of quantum

theory. See for instance Hardy (2001) and Clifton et al. (2003) for reconstructions and Grinbaum

(2007) for a philosophical discussion. I thank an anonymous referee for pointing me to these.
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to guarantee real eigenvalues that correspond to physical quantities in quantum mechanics. Similarly,

in the case of Bell’s no-go theorem, one considers the consequences of a generic hidden variable

theory, which lead to the Bell inequalities, and how they disagree with the confirmed predictions of

quantum mechanics. So the goal G of obtaining a hidden variable theory has been satisfied, while it

disagrees with the physical background assumptions B, i.e. the predictions of quantum mechanics,

which were not part of the derivation of the inequality. We have now all the components necessary to

give an abstract definition:

Definition: A No-go result has been established iff an inconsistency arises between

• a derived consequence of a set of physical assumptions P represented by a

mathematical structure M within a framework F,

• and a goal G or a set of physical background assumptions B.

We denote an abstract no-go result with 〈P,M, F G, B〉.

The arrow,  , denotes the contradiction between P,M, F on the one side and G and possibly B on the

other. The physical assumptions and the mathematical structures used to represent them are, of course,

strongly dependent on each other. Obviously all elements G, B, F, P and M are dependent on each

other to some extent and one may argue that it seems not obvious how to demarcate, for instance, P

and M. But as we will see – and as our aim is to follow a methodological goal – it is reasonable to

distinguish between them, since in most cases one can change the individual elements separately. For

example I can go from a mathematics-framework to a theory-framework while still considering the

physical assumption of using certain spacetime symmetries and using for that purpose the

mathematical structure of Lie algebras. However, as we saw in the case of the Coleman-Mandula

theorem, going from one framework to the other (from a mathematics-framework to a

theory-framework) still made it necessary to add additional assumptions to establish the no-go result.

This exemplifies that one may separately change the assumptions involved; however, these changes

will usually not be independent from changes in the other assumptions.
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The historical case study does not force the above definition upon us. The justification for defining

no-go theorems in the above sense, and to model its elements as above, comes from its methodological

fruitfulness and the wish to stay close to scientific practice, which in turn brings in some vagueness in

the individual elements and their logical and structural relations. For many no-go theorems, however,

the above definition is readily and fruitfully applicable as will be illustrated in what follows. It is not

the aim of the paper to establish that the above definition is applicable to all no-go theorems (an

impossible task). The elements defined above are quite broad in their intended domain and so may

encompass more than they bargained for: theorems that are usually not considered no-go theorems

may also fall under the above definition. This would not weaken in any way the methodological

implications I want to draw from no-go theorems, but only weaken the use of the above definition to

pick out no-go theorems among all theorems. A task that I do not aim to address in the paper, as a

no-go theorem is a specific kind of theorem in physics that is distinguished from other theorems not

structurally but in their purpose. They purport to establish the impossibility of something and the above

explication serves to account for this purpose. The aim of this paper is to establish under what

conditions no-go theorems can, if at all, serve this purpose.

4 The Different Elements of No-Go Theorems

In this section we want to discuss each element of 〈P,M, F G, B〉 in more detail. No-go theorems

construed as above are contradictions. So to resolve the contradiction one has to deny at least one of its

elements. These denials amount to a methodological step in the use of no-go theorems in theory

development. For example, some no-go theorems have had the impact of stopping whole research

programs. In these circumstances they were understood as showing the impossibility of G only. In

other circumstances they made certain assumptions explicit and showed through that a methodological

pathway in how to go about achieving G, by denying one of the other assumptions. Given the structure

we have established, it is legitimate to assess the viability of denying each element and what

methodological pathway that amounts to. For that purpose we need to consider the different elements
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more closely, analyse the possible justifications we may have for each and consider the possible

implications we may draw from their denial. We use the following notation:

〈P,M, F G, B〉 ⇒ ¬G ∨ ¬P ∨ ¬B ∨ ¬F ∨ ¬M.

While we do use the logical notation, i.e. ¬ and ∨, one should understand the above symbolically,

pointing to different possible methodological pathways rather than strict logical implications, pointing

to a strict independent denial of either one of the disjuncts.

4.1 Methodological Pathway 1: 〈P,M, F G, B〉 ⇒ ¬G:

Here the no-go result is interpreted as the impossibility of G. This is for example how von Neumann’s

no-go theorem was understood for thirty years or the Coleman-Mandula theorem till the advent of

supersymmetry. Both stopped whole research programs. Although, given the general structure of

no-go theorems, concentrating on the denial of G may seem odd, but it is not too surprising. G is some

goal, which obviously is not yet established, while the other elements are at least perceived to be part

and parcel of the well-confirmed physics. But if G is not part and parcel of the well-confirmed physics,

why is it considered to be a goal in the first place? This, of course, leads us to the issue underlying

motivations behind theory development.15 For our purpose we will consider the following list of

possible motivations for setting goals for theory development.

Empirical Motivation: One motivation for setting a goal G might be some empirical observation,

which existing theories cannot adequately accommodate. We saw that one motivation for combining

internal and external symmetries was the unexplained observed mass difference between the proton

and the neutron. Combining internal and external symmetries was a possible way to address this.

Metaphysical Motivation: A goal may be motivated by metaphysical considerations. One way of

15Of particular interest, since they are formulated in a language close to scientific practice, is Laudan

(1978) and Nickles (1981).
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understanding the program of completing quantum mechanics, i.e. to provide a hidden variable theory,

is metaphysical. Finding a theory of hidden variables is not necessitated by some observed

phenomenon that quantum mechanics cannot account for. One may argue that it is motivated by the

hope to find an ontologically coherent understanding of its domain of applicability.

Meta-inductive Motivation: The second motivation we discussed as to why to combine internal and

external symmetries was unification (combining particles of different spin into one multiplet).

Unification is also not necessitated by some empirical observations, but is often considered a

successful ingredient in theory development. One may argue, see e.g. Maudlin (1996), that unification

is meta-inductively motivated, i.e. one infers from previous successes of attempts at unification to

future ones.

Pragmatic Motivation: Another possible motivation can be purely pragmatic. Consider for instance

the theorem that Nielsen and Ninomiya (1981) proved. They show that neutrinos, or more generally

chiral fermions, cannot be simulated on a lattice. So this result puts certain calculational limitations on

simulating certain phenomenon in particle physics. As the aim of lattice gauge theories are to do

certain calculations, which are otherwise very difficult, there is nothing of great foundational

significance about this theorem. The original goal was pragmatically motivated.

These are possible motivations one may give for some goal G. There is no claim regarding the

completeness of this list. The relevant point is that there may be different motivations for G and

different motivations may lead to different implications one may want to draw from the no-go result.

Note that there are cases where one and the same G is motivated by different theorists for different

reasons, c.f. the two motivations from 2.1. Accordingly, the implications of the same no-go theorem

may differ for these different theorists. For instance, it seems obvious that a goal which is

metaphysically motivated may lead to a different interpretation of the theorem compared to one that

was motivated purely pragmatically. Laudisa (2014), for instance, argues against the significance of

many recent no-go theorems in quantum mechanics. He claims that the “search for negative results [...]

seems to hide the implicit tendency to avoid or postpone the really hard job”, which for him is partly
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“to specify the ontology that quantum theory is supposed to be about” (Laudisa, 2014, p.16). However,

one can understand the programme of finding a hidden variable theory, both as a metaphysical

programme as well as a programme of finding a probabilistic foundation of quantum mechanics16. The

significance of one and the same no-go theorem, like e.g. the Bell inequality, will therefore be

differently assessed depending on one’s motivations for that goal G.

Besides different motivations, also being insufficiently explicit about the goal G can lead to

confusion about the evaluation of the no-go theorem. Note that 〈P,M, F G, B〉 does not imply

〈P,M, F G′, B〉 when G implies G′. This is nicely illustrated by two recent papers by Cuffaro (2017,

2018). While discussing the Bell inequality and the GHZ equality, he distinguishes between two kinds

of context: the theoretical and the practical context. Within the theoretical context one may consider

the Bell result to shed light on the questions of whether there is an alternative locally causal theory of

the world able to replace quantum mechanics. In the practical context, one may ask whether one can

classically reproduce, by e.g. a classical computer simulation, the predictions of quantum mechanics.

These two contexts are very different. As Cuffaro shows, a denial of the goal in the theoretical context

does not imply a denial of the classical simulability of the considered quantum correlations. The reason

why we would still reject those in the other context is because a “set of plausibility constraints on

locally causal descriptions [...] in the context of this question is implicitly understood by all” (Cuffaro,

2018, p. 634).

Finally, it is important to note that the goal G does not need to always be desirable. In fact, there are

cases where the no-go theorem is established to rule out the possibility of G. Coleman and Mandula

did not have the desire to show that you can combine internal and external symmetries, but they wanted

to conclusively show its impossibility (even though, as we saw, they failed to do so).

16For example, Arthur Fine (1982) followed this second route with generalised probability spaces.

See also more recent discussions in (Suppes and Zanotti, 1991; Hartmann, 2015; Feintzeig and

Fletcher, 2017).
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4.2 Methodological Pathway 2: 〈P,M, F G, B〉 ⇒ ¬P ∨ ¬B:

Let us turn to the physical assumptions. I include the physical background assumptions B here as well

as they are after all physical assumptions. However, unlike P, if they are included at all, it is usually as

a crucial assumption that is much more supported. So for that purpose we will not consider them

explicitly in what follows. A no-go result that is not understood as having established the impossibility

of G, is quite commonly understood as an impossibility result with respect to the physical assumptions

P. It is usually with respect to one single assumption p ∈ P, if one considers that one assumption to be

the least defensible. This is the situation when Einstein, Podolsky and Rosen (1935) infer the

incompleteness of quantum mechanics rather than denying the physical assumption of locality.

Physical assumptions need to be discussed case by case and a general discussion will not allow us to

draw concrete conclusions, but we can still recognise that there are physical assumptions of different

kind. Obviously, the goal G determines to a large extent the physical assumptions. If my goal is to

combine the Poincaré group with some internal group, then trivially I will take as one of my physical

assumptions that one of the groups adequately represents the assumed symmetries of space and time.

There are also physical assumptions that are part of well-confirmed theories, like energy

conservation, or physical assumptions that have been introduced for the sole purpose of deriving the

result. An example is the analyticity assumption of Coleman and Mandula (assumption 3 above).

As one can see, these different physical assumptions are not comparable in terms of the justification

one can give for them. While some assumptions can be justified empirically, others cannot, and may

correspond to metaphysical positions17 and external requirements on what the future theory needs to

satisfy. So while we may say that we have evidence supporting the claim that energy is conserved, we

may not want to claim the same for the reality criterion in the Einstein-Podolski-Rosen setup or the

factorisability assumption in the Bell inequalities. These are cases where much disagreement about the

17The Reality criterion of Einstein et al. (1935) may be read as such. However, its status is still

debated: see Maudlin (2014); Werner (2014); Glick and Boge (2019).
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possible importance and justification for the assumption can arise and where most of the philosophical

debate of no-go theorems is understandably situated. This is important, as careful analysis of these

assumptions are sometimes lacking in the physics literature. For instance, Coleman and Mandula

(1967, p.159) claim that the analyticity assumption “is something that most physicists believe to be a

property of the real world”. This, one may reasonably argue, needs further discussion.

One strategic option used in the context of physical assumptions is to replace one physical

assumption by a weaker physical assumption. If I consider for instance some P1 to be the least

defensible of the assumptions, I may give up less by further distinguishing that assumption by its

possible conjuncts. That is, if I follow the route of ¬P1 I may consider that to entail

¬P1 = ¬(P1a ∧ P1b) = ¬P1a ∨ ¬P1b. So it would suffice to give up P1a or P1b and thereby giving up

something weaker. This, however, does not entail that these weaker assumptions are then safe from

other possible no-go theorems, but only that that specific no-go result is affecting it. An example of this

strategy in play is the consideration of the factorisability assumption of the Bell inequalities as a

conjunct of the assumptions of parameter independence and outcome independence as introduced by

Jarrett (1984).

4.3 Methodological Pathway 3: 〈P,M, F G, B〉 ⇒ ¬F:

No-go theorems in physics are not always formulated within a theory (e.g. the standard model of

particle physics or thermodynamics). As we saw in the examples from the last section, the McGlinn

theorem as well as the O’Raifeartaigh theorem are theorems, which are theory independent, as they can

be seen as results of group theory. The possibility to frame a no-go theorem in physics outside of

specific theories points to an additional element I would like to make explicit, namley the framework

F. The McGlinn and O’Raifeartaigh theorem are within a mathematics-framework. That is, one

considered two mathematical structures and asked whether there is a mathematical structure that

non-trivially combines them. On the other hand, Coleman and Mandula’s theorem is a result within a

theory, namely S-matrix theory. They were considering the external and internal symmetries as
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symmetries of the S-matrix and so chose a theory-framework for their no-go result. In other cases, one

may develop a model and prove within that model-framework the no-go result.

The framework F of a no-go result has not played much of a role in the evaluation of no-go

theorems. This can be due to the apparent neutrality of the framework with respect to the no-go result.

In most cases it seems that the choice of framework is fixed by the kind of goal one aims to reach rather

than the specific goal itself. If I aim to find a hidden variable account of quantum mechanics, I start by

building a general model on which I impose the physical properties (elements of P) of the desired

hidden variable account. So I choose a model-framework, which may still lack the details of the

dynamics of the theory etc. It is, at least at first, not clear how a theory-framework or a

mathematics-framework could be helpful here. Similarly, it seems to be a mathematical issue, whether

one can combine two symmetry groups non-trivially. So combining them without any specific theory

in mind seems to be the obvious and more general approach. So one chooses a

mathematics-framework. The move towards S-matrix theory, i.e. a theory-framework, was not based

on not being satisfied by the mathematics-framework but was largely motivated by the aim to weaken

the strong assumption of restricting oneself to finite parameter groups made by O’Raifeartaigh and it

was not obvious how the theorem could have been extended to infinite parameter groups as it relied so

strongly on Levi decomposition.

The above example nicely illustrates that the framework is mainly chosen for pragmatic reasons and

is not independently justified. However, using different frameworks may still provide us with different

perspectives. Pitowsky (1989), for instance, provides a different perspective on the hidden variable

program and the Bell inequalities18. He shows that one can understand the question whether a set of

probabilities are classical (Kolmogorovian) probabilities, not only by considering whether they satisfy

the Kolmogorovian axioms, but also, equivalently, by whether they satisfy a set of inequalities. He

shows that the inequalities for certain classical setups correspond to Bell-type inequalities. Inserting

18A result derived within a model-framework.
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probabilities predicted by quantum mechanics for certain quantum mechanical experiments19 into the

inequality leads to a violation of that inequality. However, unlike the implications in the

model-framework, one infers in the mathematics-framework to the comparably more mathematical

conclusion that not all quantum mechanical experiments have classical probability space

representations.

A reason why the significance of the framework F has not been important in the evaluation of no-go

results is the lack of an obvious interpretation for ¬F. In the case of the goal G and the physical

assumptions P, the denial could be understood as their respective impossibility. This is usually not so

for the framework. It does not make sense to talk of the impossibility of a certain

mathematics-framework or model-framework, but only of the assumptions realised within it. However,

an understanding of the respective negations as opening up possible methodological pathways provides

important strategic options. The benefit of considering a change of framework has already been

illustrated in the case of the hidden variable program, where the move to a mathematics-framework

presented a new perspective. The new perspective, however, came effectively with a different goal,

more concerned with the probabilistic foundations rather than a locally causal hidden variable theory.

These are strongly dependent questions, however, with different foci and thereby opening up different

methodological pathways.

Finally, there are not only options of going from one kind of framework to another but also options

within one kind of framework. A result obtained within one theory may or may not hold for another

theory. This is even the case with different formulations of the same theory. We can consider a no-go

result we obtain in one formulation to also hold in the other, only if we have reason to believe that they

are equivalent in the relevant sense. However, the Coleman-Mandula result is a result within S-matrix

theory, and it is, for example, not obvious that it will similarly hold within Lagrangian quantum field

theory, as the symmetries of the S-matrix are not necessarily symmetries of the Lagrangian. Similarly

for results within classical mechanics, the differences in the Lagrangian and Hamiltonian formulations

19Note that not all quantum mechanical experiments lead to a violation of the Bell inequalities.
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have been a much discussed topic in philosophy of physics20.

4.4 Methodological Pathway 4: 〈P,M, F G, B〉 ⇒ ¬M:

Let us turn to the last crucial element of no-go results, the mathematical structure M, which

encompasses the mathematical structures, tools and methods as well as the underlying logic.21 There

are usually many necessary mathematical assumptions involved in the derivation of a no-go result. For

example, assumption 5 of the Coleman-Mandula theorem is of this kind. It is an assumption that

Coleman and Mandula admit is “both technical and ugly”, and for which they hope “that more

competent analysts will be able to weaken [...] further, and perhaps even eliminate [...] altogether”

[p.159]. There may also be additional assumptions involved in the derivational steps, like the use of

certain approximation methods and limits. All of these can possibly be problematic and should be

carefully assessed. However, we will focus on another element of M. In any representation of a

problem, one uses, within a certain framework, certain mathematical structures. These are usually

implicit in the derivation of the no-go result. We will concentrate on these mathematical structures for

the rest of this section. More specifically, we are interested in how one may understand what ¬M

implies methodologically in these cases. For that purpose we need to understand what the relation

between the physical situation of interest is and the mathematical structure representing it. We will not

be concerned with the details of the semantics of physical theories, though relevant, but take a more

pragmatic attitude of the relationship between the mathematical structure and the physical situation.

Let us again consider the mathematical representation of symmetries. Symmetries are usually

represented in terms of the algebraic structure of groups. There are different kinds of groups for

different kinds of symmetries. In order to understand the implications of ¬M, we need to address the

20See for instance North (2009), Curiel (2014) and Barrett (2015).

21The underlying logic has played an important role in discussions surrounding the logic of quantum

mechanics. I thank Hartry Field for pointing me to this.
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uniqueness of the mathematical representation concerning the physical phenomenon of interest. First,

one may ask whether there is only a unique group able to represent the situation of interest. This is

usually not the case and has been discussed in the literature on structural underdetermination. Roberts

(2011) for instance, posing it as a problem for supporters of group structural realism, shows how one

can understand a group G as well as its automorphism group Aut(G) as a basis from which one can

construct the physical situation.22 This, of course, goes on including the automorphism group of the

automorphism group of G and so on. So there is a whole ‘hierarchy’ of symmetry groups one can

consider in representing the physical situation.

Second, one may consider whether groups are the unique structure able to represent the situation.

Both G and Aut(G), although different groups, are still the same algebraic structure, in the sense that

they both satisfy the same algebraic axioms, namely those of groups. There are, however, many

algebraic structures we could in principle use to represent symmetries. As we saw in the case of

supersymmetry, it was exactly this move from one algebraic structure, namely Lie algebras, to another

algebraic structure, namely Z2-graded Lie algebras, that allowed internal and external symmetries to

combine non-trivially. Graded Lie algebras can be understood as generalisations of Lie algebras. In

this sense, everything a Lie algebra can describe can also be described by a graded Lie algebra; the

converse however is not true. This kind of generalisation is usually a possible methodological option.

Consider the requirement that probabilities satisfy the Kolmogorov axioms. As we saw in the

previous section, certain quantum mechanical probabilities violate the axioms of Kolmogorov. We do

not want to say that they are therefore not probabilities but instead that they may satisfy different

axioms of probability, i.e. they are non-Kolmogorovian probabilities. If we want to change the

structure, we can consider weakening one of the axioms, e.g. the additivity axiom, leading to what is

sometimes called upper or lower probability spaces. This will similarly count as a more generalised

structure in the sense that all Kolmogorovian probabilities will satisfy these changed axioms as well.

22This is not true for all groups as some groups, e.g. the permutation group S 3, is isomorphic to its

automorphism group. See Roberts (2011, p.62) for more details.
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Another option, however, would have been to allow for negative probabilities. This again would still

allow us to account for all Kolmogorovian probabilities. These other non-Kolmogorovian probabilities

can still be affected by other no-go theorems, but provide, at first, methodological options in need of

further analysis.23

So to sum up, the ¬M route opens up different strategic options. The argument for or against a

specific choice of mathematical structure is usually in need of an independent evaluation. For instance,

one may argue based on simplicity arguments in favor of one structure being more fundamental than

another.24 These arguments heavily depend on the kind of simplicity measures used and arguments for

either one may be lacking (Curiel, 2014, p. 303). Similarly, one may argue against certain

non-Kolmogorovian probabilities by the lack of suitable interpretations for them. All of these are

independent justifications one may give for a certain mathematical structure over the others that need

further elucidation, usually pointing to further underlying assumptions.

5 No-Go Theorems: What Are They Good For?

No-go theorems are complicated and hard to dissect. We have provided a possible abstract definition of

no-go theorems, which allowed us to analyze it in more detail and to comprehend it in a more

fine-grained way. We would now like to draw some more general conclusions by stating five broad

methodological lessons, which are supposed to be complemented by the more detailed analyses of

Section 4:

Lesson 1: No-go theorems have a more complex structure than is usually explicitly stated.

The cases from the history of physics we considered, showed that the often multi-layered structure of

23No-go theorems for further non-Kolmogorovian probabilistic approaches to quantum mechanics

exist. See e.g. (Feintzeig and Fletcher, 2017).

24See e.g. North (2009) for an argument along that line in favor of the structure associated with the

Hamiltonian formulation of classical mechanics
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no-go theorems does not allow for a straightforward conclusion to be drawn from the theorem by itself.

As discussed, they are usually posed as either impossibility results with respect to the goal G or some

element of the physical assumptions P. This simplified picture ignores the important role played by the

framework F and the mathematical structure M and the strategic options they offer.

Lesson 2: The no-go theorem itself does not state which element of the theorem to give up.

A no-go theorem is a contradiction, which derives from a set of elements. The result itself does not say,

which of the elements involved in the derivation is more and which one is less justified and so does not

entail the rejection of any one specific element.

Lesson 3: There is not a unique implication one can draw from no-go theorems.

This is a corollary from the previous lesson. Once we have established a no-go theorem we need to

address the question, how we wish to address the contradiction, i.e. how we wish to interpret the no-go

result. The interpretation depends on which of the elements of the no-go theorem we are most willing

to change or give up on. However, as we have seen, not all elements are empirical certainties of nature,

but vary strongly based on the justifications one may give for them. Furthermore, different scientists

may have different justifications for the elements of a no-go theorem, corresponding to a difference in

ordering of what one prefers to give up or change first. This difference in preference assignment will

correspond to differences in interpreting the same no-go theorem. So it is important to recognize that

there is not a unique implication one can draw from a no-go theorem by itself.

Lesson 4: The consideration of the mathematical structure M deserves more recognition.

In principle, we can imagine an empirically motivated goal G and similarly empirically well-confirmed

physical assumptions P within a determined framework F. We cannot claim the same for mathematical

structures. While one may be committed to a certain goal and physical assumptions, this is usually less

so with the mathematical structures. We may have many good reasons to choose one mathematical

structure rather than another, based on simplicity and naturalness assumptions. But the empirical access

to them is very limited. Keeping certain physical assumptions fixed one can empirically only point to

the insufficiency of a certain mathematical structure to account for some observed phenomenon. This
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leaves a whole lot of weaker and therefore more encompassing structures untouched. The space of all

mathematical structures is not a clearly defined space25. As such, it does not allow for a rigorous

“working through all structures”-approach, but only allows for theoretical exploration. This naturally

leads to the methodological implications of no-go theorems, which comes in our next lesson.

Lesson 5: No-go theorems are (at first) best understood as go theorems.

No-go theorems usually do not strictly speaking allow for an interpretation as an impossibility result

with respect to some G or P, as that would imply one has certainty with respect to the rest of the

elements and this is, as we saw above, usually not the case. So what do they imply? If we, for instance,

accept the mathematical structure M as the “weakest” element, i.e. the element we are least committed

to, we interpret the no-go theorem as implying ¬M. But as we have already said, ¬M cannot

meaningfully be interpreted as the impossibility of the mathematical structure, but as an invitation to

consider alternative mathematical structures to replace it. This may lead to new no-go theorems (as

discussed above) or to unacceptable physical consequences in which case one obtains support for the

original assumption M. This would strengthen the impossibility interpretation of the theorem.

Alternatively, a new mathematical structure M′ may be able to circumvent the initial no-go theorem

without leading to physical problems (as the replacement of Lie algebras by graded Lie algebras

allowed for the non-trivial combination of internal and external symmetries). Before the exploration of

¬M one simply does not know. It is in this sense that no-go theorems are at first best understood as

go-theorems, i.e. as outlining the possible methodological pathways in pursuing to show the possibility

or impossibility of some goal G. They are excellent tools in theory development, while being (at first)

unreliable tools in stopping research programmes.

25This amplifies the previous lesson, by drawing attention to the imprecise space that is being

opened up by the no-go theorem.
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6 Conclusion

We started with a case study of the development of a no-go theorem from particle physics, which

provided us with enough detail to recognise the different abstract elements of no-go theorems. We

discussed each element in detail coming to the conclusion that no-go theorems cannot at first be

understood as impossibility results in the strict sense. Especially, the mathematical structure M poses a

threat to this strong conclusion. This turned the role of no-go theorems around. Rather than

understanding a no-go theorem as providing us direct insights into what is not possible in the world,

they should be understood as a methodological starting point in theory development, where in the end

we may be able to circumvent it or become more and more certain that we are less willing to give up

certain assumptions to make something possible.

While we have outlined a more systematic analysis of no-go theorems, we could have chosen an

alternative route to the same conclusion, namely via meta-induction on the history of physics.

Von-Neumann’s no-go theorem was superseded by both, actual hidden variable theories (pilot wave

theories, Bohmian mechanics), and further no-go theorems where the physical assumptions P, the

framework F as well as the mathematical structures M have been changed. The impossibility to

simulate chiral fermions on a lattice, the Nielsen-Ninomiya no-go theorem, was circumvented via the

introduction of domain wall fermions by extending the mathematical representation of the lattice with

an additional dimension (Kaplan, 1992; Shamir, 1993). Weinberg and Witten (1980) proved that

gravitons cannot be composite particles in a relativistic quantum field theory. There is now a whole

plethora of counter examples: from conformal field theories and massive gravity to String theory26. We

have already discussed Supersymmetry and how it circumvented the Coleman-Mandula theorem by a

change in M. We could continue with other examples, but this should suffice for our purposes. One

could now argue, based on this historical evidence, that maybe current no-go theorems will be

26See (Bekaert et al., 2012) for a review article on how the Weinberg-Witten theorem is

circumvented in these theories.
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superseded by ways to circumvent them as well. This is in complete agreement with our analysis

above. That is, it was to be expected that no-go theorems do not say the last word with respect to one’s

goal G. Our analysis actually provides the explanation why they do not. However, history is also full of

examples where these no-go theorems did actually have the effect of stopping whole research

programmes. That is, we have many historical examples where no-go theorems were systematically

misunderstood in what they can imply. So no-go theorems have played a role in the history and

methodology of physics, for which they did not provide the argumentative support. There is a

discrepancy between what no-go theorems can imply and how they were actually interpreted in

practice. Recognising what they can imply provides us with a more adequate use of them as a tool in

theory development. This more adequate use is the understanding that no-go’s are (at first) actually the

best go’s!
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