
 

 

Hadamard Transform Improvement for HEVC using 

Intel AVX-512 
Jackson Teh Ka Sing1, Usman Ullah Sheikh2, Musa Mokji2, N. Ezaila Alias2 

Intel Microelectronics (M) Sdn. Bhd., Pulau Pinang, Malaysia. 
2School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor, Malaysia 

jackson.ka.sing.teh@intel.com , usman@fke.utm.my, musa@fke.utm.my, ezaila@utm.my 

 

Abstract—High Efficiency Video Coding (HEVC) doubles 

the data compression ratio compared to previous generation 

compression technology, Moving Picture Expert Group-

Advanced Video Codec (MPEG-AVC/H.264) without 

sacrificing the image quality. However, this superior 

compression comes at the cost of more computation payload 

resulting in longer time for encoding and decoding. This work 

proposes the vectorization on HEVC data heavy computation 

algorithm, Hadamard Transform or Sum of Absolute 

Transform Difference (SATD) and Sum of Absolute Difference 

(SAD) to achieve optimized compression performance. Single 

Instruction Multiple Data (SIMD) acceleration will be based on 

the Intel AVX-512 (Advanced Vector Extension) Instruction Set 

Architecture (ISA). Since HEVC supports more coding tree 

block (CTB) sizes, SATD and SAD algorithms eventually 

become more complex compared to AVC. As a result, SATD and 

SAD algorithms with various block sizes will be subjected to 

SIMD acceleration. We provide performance evaluation based 

on different SIMD ISA and without SIMD implementation on 

HEVC SATD and SAD and found that AVX-512 optimized 

implementation performed faster when compared to non- 

optimized SATD and SAD but showed signs of reduced 

performance when compared to SSE optimized SATD and SAD. 

Keywords—High efficiency video coding, Intel Advanced 

Vector Extension, Hadamard transform, compression 

I. INTRODUCTION 

Advanced Video Coding (AVC)/H.264 is the dominant 
video coding technology used worldwide, while High 
Efficiency Video Coding (HEVC)/H.265 is the next 
generation video coding standard [1] that provides 
significantly improved compression performance relative to 
AVC standard without sacrificing the quality but with the cost 
of higher computing and memory requirements as the 
complexity of processing is increased tremendously.  

HEVC video compression standard was a result of joint 
video project of the same two bodies, ITU-T Video Coding 
Experts Group (VCEG) and the ISO/IEC Moving Picture 
Experts Group (MPEG) standardization organizations. Both 
working together in a partnership known as the Joint 
Collaborative Team on Video Coding (JCT-VC) [2]. It is 
known as ISO/IEC 23008-2 (MPEG-H Part 2) by ISO/IEC, 
and H.265 recommended by ITU-T. The objective of this joint 
venture is to achieve higher compression efficiency with 
roughly 50% of bit-rate reduction without compromising the 
quality and to have equivalent visual quality compared to 
AVC (also known as H.264 recommended by ITU-T). The 
first version of the HEVC verification test showed that the 
HEVC achieved its goal and performed better on higher 
resolutions [3].  

HEVC implements enhanced tools to improve 
compression efficiency at the cost of far more computational 

payload than the capacity of real-time video applications. 
Therefore, the time consumed in the encoding and decoding 
would be longer since HEVC supports more coding tree block 
(CTB) sizes, more transform sizes, an additional loop filter, 
and more intra prediction angles. All of these improvements 
over HEVC makes it more complex than its predecessor. 
Single Instruction Multiple Data (SIMD) instructions had 
been used to optimize video codec such as H.264/AVC. Thus, 
HEVC is well suited for SIMD acceleration. However, most 
SIMD implementations of HEVC are based on older versions 
of reference software and using SIMD ISA that did not include 
the Intel AVX-512. Besides, previous implementations did 
not consider still images, while the optimizations applied on 
HEVC were limited to using SIMD ISA up to AVX2. 

HEVC itself contains support of intra and inter-coding 
images. Still image coding also known as intra-coding is a 
natural subset of HEVC codec while inter-coding is applied 
on image sequences such as burst image and animations. Intra-
coding for a video is possible as it only relies on image data in 
the current frame of a video. As for inter-coding, it relies on 
image data in one or two reference pictures (before or after the 
current picture in display order). According to the comparison 
results with current state-of-the-art coding standards, HEVC 
is more superior compared with the second best overall 
performing coding scheme, VP9. On average, HEVC 
outperformed VP9 by 10% in terms of bit-rate saving, 23% 
more efficient compared to JPEG2000, 30% compared to 
JPEGXR, 44% compared to JPEG and 29% compared to 
WebP [4]. This paper focuses on still image coding on 
Hadamard transform and Sum of Absolute Difference for the 
intra-prediction. 

II. BACKGROUND 

A. Intel AVX-512 

SIMD is a class of parallel computing in Flynn’s 
taxonomy that takes an operation specified in one instruction 
and applies it to more than one set of data elements at the same 
time. The same operation is achieved towards all of the data 
by partitioning each register into sub-words. Thus, such 
machine exploits data level parallelism that significantly 
improves performance as compared to the scalar approach. 
Furthermore, the performance that can be further improved 
depends on one of the SIMD properties, the SIMD width. 
SIMD width is defined as the number of elements that can be 
processed in parallel within a register. For large SIMD width, 
fewer SIMD instructions are required that should reduce the 
processing time for a given data. 

Current SIMD with the largest register width is the AVX-
512 with 512-bits wide which was proposed by Intel in July 
2013. AVX-512 was first only available and supported by 
Intel Xeon Phi Processor x200 family known as Knight 

978-1-5386-8546-4/19/$31.00 ©2019 IEEE 310

Authorized licensed use limited to: UNIVERSITY TEKNOLOGI MALAYSIA. Downloaded on March 25,2021 at 03:46:59 UTC from IEEE Xplore.  Restrictions apply. 



 

 

Landing that was introduced in 2016. In the coming years, 
Intel then introduced other processor families with AVX-512 
support such as the Intel Xeon Scalable Processor, Skylake-X 
Core i9 and certain i7 families. One of the key features that 
can be highlighted for AVX-512 is the expansion of SIMD 
registers from 16 to 32 (ZMM0-ZMM31) where the width of 

the registers is 512 bits compared to previous generation Intel 
SIMD [5]. Besides, AVX-512 also provides eight opmask 
registers (k0-k7) in which it serves as a predicate operand to 

mask out the operation on certain bits. However, AVX-512 
ISA contains a subset of instructions that are usually grouped 
by supporting processor generation as shown in Fig.1. This 
may introduce some inconvenience whenever byte and word 
operations are needed especially in HEVC which are not 
found in Knight Landing processor. Syntax representation for 
the AVX-512 instruction variants is shown in Table I.  Intel’s 
current approach on AVX-512 is more targeted on High 
Performance Computing (HPC), or enterprise workloads since 
processors with AVX-512 capability are more expensive for 
the average consumer, with AVX-512 for consumer product 
will be available in the future. 

 

Fig.1. Current AVX-512 instruction variant sets supported by existing 
processor architectures [6]. 

B. Hadamard Transform and Sum of Absolute Difference 

Hadamard transform also known as Sum of Absolute 
Transform Difference (SATD) is one of the cost functions 
available in HEVC encoder. It is utilized and applied for intra-
prediction mode decision and Fractional pixel Motion 
Estimation (FME). Hadamard matrix is used on the residue 
block (the difference between the original block and a 
reference block). Another available cost function in HEVC is 
the Sum of Absolute Difference (SAD) where SAD is usually 
applied in the most frequently executed step instead of SATD. 
The reason behind this is that SATD is more complex 
compared to SAD and able to achieve better distortion 
estimation [7]. However, the distortion metric is entirely up to 
HEVC user’s choice. The mode decision of SATD or SAD 
can be selected depending on the status of the Hadamard 
Transform flag.  

Hadamard Transform and SAD algorithms are located in 
the TComRdCost class in the HEVC HM reference software. 

Since still image with different resolutions is used as the 
dataset for performance evaluation, all intra mode will be used 
throughout the whole HEVC encoding process. Although 
encoding time distribution for TComRdCost class comes in 

fifth place and does not consume the most time in the encoding 
process [8], it is still subjected to vectorization. 

 SATD is computed using Eq.1, and SAD using Eq.2, 
where 𝐷𝑖𝑓𝑓(𝑖, 𝑗) =  𝑂(𝑖, 𝑗) −  𝑃(𝑖, 𝑗) , i and j are the pixel 
indices, and their ranges are determined by a block size. 
𝑂(𝑖, 𝑗) and 𝑃(𝑖, 𝑗) are the original and predicted pixel values, 
respectively and T is the transformed coefficients. 

𝑆𝐴𝑇𝐷 =
∑ |𝑇. 𝐷𝑖𝑓𝑓(𝑖, 𝑗)|𝐼,𝐽

𝑖,𝑗

2
 (1) 

𝑆𝐴𝐷 =
∑ |𝐷𝑖𝑓𝑓(𝑖, 𝑗)|𝐼,𝐽

𝑖,𝑗

2
 (2) 

TABLE I.  AVX-512 INSTRUCTION VARIANTS 

AVX-512-F  F for Foundation. 

AVX-512-BW  
Support for 512-bit Byte and Word (16 and 

32-bits) support. 

AVX-512-CD  
Conflict Detect (loop vectorization with 

possible conflicts). 

AVX-512-DQ  
Instructions for Double or Quad math 

operations. 

AVX-512-ER  Exponential and Reciprocal operations. 

AVX-512-IFMA  
Integer Fused Multiply Add with 52-bit 

precision. 

AVX-512-PF  Prefetch Instructions 

AVX-512-VBMI  Vector Byte Manipulation Instructions. 

AVX-512-VL  
Foundation plus of less than 512-bit Vector 

Length support. 

AVX-512-4VNNIW  
Vector Neural Network Instructions Word 

(variable precision). 

AVX-512-4FMAPS  
Fused Multiply Accumulation Packed Single 

precision. 

III. RELATED WORKS 

The work in [9] showed the implementation of SIMD 
optimization for the entire HEVC decoder for all major SIMD 
ISA. The authors provided information on several related 
works that were proposed and reported before them. However, 
most of the works were only focused on one SIMD ISA and 
for one resolution and one platform. Thus, the main 
contribution found [9] is that the authors presented a detailed 
analysis of SIMD implementation on HEVC decoder by 
comparing the optimization done on several SIMD ISAs. All 
the relevant SIMD ISAs used included NEON, and from SSE2 
up to AVX2. In [9], SIMD optimization was mainly 
implemented on the HEVC processing steps which include 
intra-prediction, inter-prediction, inverse transform, 
deblocking filter, Sample Adaptive Offset (SAO) filter and 
various memory operations. The authors also proved that 
SIMD optimization across all SIMD ISAs performs better 
with instructions used per frame reduced drastically. Another 
contribution is the performance evaluation that was conducted 
on 14 platforms which cover several modern architectures of 
the last ten years before 2015 for both main (1080p) and main-
10 (2160p) profiles. The detailed analysis showed that the 
instruction per cycles (IPC) using SIMD ISAs is lower 
compared to the scalar approach. It also showed that AVX2 
had the lowest IPC among all SIMD ISAs due to its wider 
vector properties. However, the work in [9] did not apply 
AVX-512 ISA. 

In [10], the authors focused on the SIMD optimization of 
HEVC encoder on the Intel x86 processor. First, the authors 
identify the most time-consuming modules in HEVC encoder 
and then performed SIMD optimization on the module. The 

311

Authorized licensed use limited to: UNIVERSITY TEKNOLOGI MALAYSIA. Downloaded on March 25,2021 at 03:46:59 UTC from IEEE Xplore.  Restrictions apply. 



 

 

most time-consuming modules include motion compensation, 
Hadamard transform, SAD calculation, and integer transform. 
The main contribution is that the authors presented the 
detailed operation on how the SIMD optimization was 
performed on each of the time-consuming modules. Even 
though SIMD optimization was introduced in this paper, 
SIMD ISAs for AVX/AVX2 and AVX-512 were not utilized 
where further speed-up can be achieved in the encoder 
modules. Based on the results observed in this paper, the time 
saving for motion compensation, Hadamard transform, SAD 
calculation, and integer transform were 77.6%, 68.4%, 85.1%, 
and 56.4% respectively. Nevertheless, the results were based 
on one resolution (720p or HD) test sets only.  

This work in [11] proposed using load-balanced slice-level 
parallelization by allocating the proper number of Coding 
Tree Units (CTUs) for each core after estimating the 
computational load for one slice. Incorporation of the above 
method with SIMD optimization resulted in an approximately 
ten times the encoding speed compared to the HEVC 
reference model (HM) software with minimal loss of coding 
efficiency. Detailed implementations using SIMD for SAD, 
SATD and inverse transform were provided including the 
SIMD instructions used to perform the cost 16 function and 
transform operation. Besides these works, other works include 
[12, 13] which were based on the ARM NEON SIMD ISA.  

IV. METHODOLOGY 

HEVC encoder Hadamard transform and SAD will be 
subjected to SIMD optimization using Intel AVX-512 ISA to 
improve the performance of intra-prediction mode decision. 
Next is to implement the SIMD optimization on Hadamard 
transform and SAD through Test Development Approach 
(TDD). Since AVX-512 is not widely available mainly on 
consumer laptops or desktops, Intel SDE will be utilized to 
simulate AVX-512 ISA on any device with an x86 processor. 
Then, performance evaluation of the HEVC will be conducted 
with and without SIMD optimization. 

A.  SAD and SATD in HM Reference Software 

Before vectorization, SAD and SATD are identified in the 
HEVC reference software on how they are utilized and where 
they are located. xGetSAD and xGetHAD are the functions 

to implement the SAD and SATD respectively. Throughout 
intra prediction in HEVC reference software, SAD or SATD 
between original and prediction pixels is used to reduce the 
number of luma intra mode candidates before applying rate-
distortion optimization (RDO). Since HEVC adopts additional 
prediction modes as compared to the previous version, SAD 
and SATD are more computational intensive which make 
them perfect subject to vectorization.  

 

B. Software and Hardware Tools 

AVX-512 instructions are not widely available on any 

consumer devices since this ISA is still new and recently 

introduced by Intel. An emulator provided by Intel called 

Software Development Emulator (SDE) is utilized to provide 

emulation of the AVX-512 instructions, especially on the 

SAD and SATD vectorization development. SDE is a 

software created by Intel to allow developers who do not own 

hardware at the time to run their program or test it out before 

deciding to purchase the processors. 

The whole work was developed using C++ based on 

the HEVC TestModel reference software (HM 16.17) [14] on 

Visual Studio 2017 which supports over 1,300 intrinsics that 

corresponds to the AVX-512. Intrinsics are the preferred 

method since instrinsics are more portable, widely supported 

by various compilers, and easier to program [15]. In this 

work, three different C++ compilers were used to compile 

executable files which are Visual C++ version 15.7, Intel C++ 

version 18 and G++ version 7.3.0. Both Visual C++ and Intel 

C++ compilers are setup with Visual Studio on Windows 

Server 2016 and for G++ compiler on Red Hat 4.8.2-15. 

The processor model used on the Windows 

environment is the Intel Core i9 7960X (Skylake Core X 

series, 16 cores, 2.8GHz base frequency, 4.2GHz turbo 

frequency, 22 MB cache, 165W TDP), while the Intel Xeon 

Phi 7250 (Knight Landing series, 68 cores, 1.4GHz base 

frequency, 1.6GHz turbo frequency, 32MB cache, 215W 

TDP) is used for testing under Linux operating system. Both 

processors offer AVX-512 instructions but with a different 

subset. The Intel company is providing the Intel Core i9 series 

used in this work together with the Purley platform (a server 

platform that incorporates the processor with other 

components). Whereas the Colfax Research Company, an 

Intel partner, offered access to the Intel Xeon Phi 7250.  

C. Hadamard Transform AVX-512 Optimization 

In HEVC, the Hadamard transform is divided into two 

different stages: the horizontal and vertical stages. CTU in 

HEVC is usually partitioned into larger than 8×8 block 

compared to the fixed 16×16 macroblock in AVC. Larger 

block is divided into several 8×8 blocks during the Hadamard 

transform operation. Fig.2 shows the overall flow of the 

SATD operation.  

First, the original and the predicted reference pixels are 

loaded into the AVX-512 registers using VPGATHERDQ 

(Packed GATHER Dword Qword) instruction. 

VPGATHERDQ is used due to the nature of HEVC reference 

software’s access to the pixels in which several pixels will be 

skipped to perform SATD and depends entirely on the block 

sizes (largest block size skip the most pixels). Pixel value 

used in HEVC reference software is 16-bit wide, and this 

allows as much as 32 pixel values to be loaded into the AVX-

512 register at once to perform SATD operation. Then, the 

difference between the pixels is calculated using SIMD 

instructions and loaded into registers using VPSUBSW 

(Packed SUBtract signed SaturationWord) instruction. Sign 

extend is then performed on the result of the difference 

between original and predicted pixel value with VPCMPW 

(Packed CoMPare Word), VPBROADCASTW (Packed 

BROADCAST Word) as well as VPUNPCKHWD (Packed 

UNPaCK High Word Dword) and VPUNPCKLWD (Packed 

UNPaCK Low Word Dword) instruction. Since sign 

extension converts 16-bit to 32-bit per pixel value resulting 

in extra registers to store the results, hence there is not a single 

instruction that allows performing such an operation. Before 

going through the transform, sign extended pixel values will 

have to go through transpose operation. Transpose operation 

allows shuffling of pixel values within the registers by using 

twelve VSHUFF32x4 (SHUFfle Floating-point 32 X 4) and 

four VPERMPS (PERMute Packed Single) instructions. As 

312

Authorized licensed use limited to: UNIVERSITY TEKNOLOGI MALAYSIA. Downloaded on March 25,2021 at 03:46:59 UTC from IEEE Xplore.  Restrictions apply. 



 

 

for the transform operation, addition and subtraction are 

performed to the pixel values within the registers with the use 

of six VPADDD (Packed ADD Dword), six VPSUBD (Packed 

SUB Dword) and eight VSHUFI64x2 (SHUFfle Integer 64 

X 2).  

Both transpose and transform operations are performed 

twice, as the first is for the horizontal stage and the second is 

for the vertical stage. After that, absolute pixel values are 

obtained, and addition is completed across the register before 

returning the final value to the caller function in the HEVC 

reference software. SIMD optimization is also performed on 

block sizes of 4×4 and 2×2. However, due to insufficient 

pixels to be loaded into the registers, AVX-512 was not 

utilized in this situation, and SSE was used instead. Besides, 

utilizing AVX-512 instructions may introduce extra 

instructions compared to SSE because implementing 

Hadamard transform for 4×4 and 2×2 block sizes are less 

complex than 8×8 or larger.  

D. Sum of Absolute Difference AVX-512 Optimization 

The SAD cost function is less complex than Hadamard 

transform in HEVC since it does not perform any 

transformation. Hence, optimization is straight forward and 

less time consuming but still with some challenges especially 

when loading data and filling up the registers with pixel 

values. Fig. 3 presents the overall operation flow for SAD. 

Original and predicted pixel values are loaded into the 

respective registers using VMOVDQU64 (MOVe 

DoubleQword Unaligned 64) instruction. Difference between 

both values is then performed followed by getting the 

absolute using VPSUBSW (Packed SUBtract signed 

Saturation Word) and VPABSW (Packed ABSolute Word) 

instructions respectively. Absolute values are then zero 

extended using VPUNPCKHWD (Packed UNPaCK High Word 

Dword) and VPUNPCKLWD (Packed UNPaCK LowWord 

Dword) instructions due to double amount of width per pixel 

value is needed, resulting in extra registers to store the values.  

Last but not least, all values within the registers are 

added through the use of VPADDD (Packed ADD Dword) and 

VPSUFD (Packed SHUFfle Dwords) instruction. To cater to 

the SAD operation with different block sizes is a challenge 

when loading pixel values to the 512-bits register. There are 

no available instructions that allow a specific amount of data 

to be loaded unless the mask is presented in the instruction. 

Fortunately, most AVX-512 instructions come with a mask 

feature that allows certain data to be excluded from operation.  

E. Performance Evaluation on SATD and SAD with AVX-

512, SSE, and Non-optimized 

Performance for SIMD optimization can be evaluated 

in terms of time-saving or speedup gain on the HEVC 

encoder’s Hadamard transform and SAD modules. 

Evaluation is done by calculating the time taken to execute 

the Hadamard transform and SAD. The evaluation will be 

based on the different set of still images with the range of 

FHD and UHD resolutions in all intra mode in the 

configuration file.  

In HEVC reference software, the default does not 

provide timing evaluation. Thus, HEVC reference software 

was modified to allow timing data collection. The source was 

also modified in a way that only switches or flags are added 

in the command line to generate several executable files with 

different ISA enabled. Different executable files were then 

created using three distinct compilers which include Intel 

C++ v18, Visual Studio C++ v15.7 and G++ 7.3.0. Several 

HEVC executable files were created including non-

optimized, with SSE enabled and with AVX-512 enabled 

with the maximum optimization switch provided (-O2 for 

Visual C++ and -O3 for both G++ and Intel C++). The test 

was executed for five encoding processes with the same 

settings to obtain accurate timing performance. 

V. RESULTS 

A. FHD HEVC Encoding (1080p 8-bits) 

One of the observations that can be seen from Table 2 is 

that the executable generated from the Intel C++ compiler 

executes in the least amount of time in finishing the whole 

encoding process while G++ compiler fared the worst. Intel 

C++ compiler generally can provide the best performance 

compared to other compilers because of the ability to perform 

aggressive microarchitecture optimizations. G++ compiler, 

on the other hand, has the longest encoding time partly 

because it could not generate efficient code for the Knight 

Landing target processor, and that the Knight Landing having 

a much lower base frequency of 1.4 GHz compared to 

Skylake Core X processor with 2.80 GHz base frequency.  

As for the speedup gain analysis (Table 3), it is noticed 

that SAD generally has higher speedup gain compared to 

SATD when using the Intel C++ compiler. Both SSE and 

AVX-512 speedup gain produced the same result. However, 

the complete opposite speedup gain can be observed in the 

Visual C++ compiler, and this applies to both SSE and AVX-

512 ISA. G++ compiler, on the other hand, has the same 

characteristics with Visual C++ on SSE ISA, but noticeable 

lowest speedup gain occurred in the SATD using AVX-512. 

Nevertheless, using AVX-512 ISA has a negative impact on 

speedup gain compared to SSE ISA, and this is true for all 

C++ compilers. 

 

B. UHD HEVC Encoding (2160p 10-bits) 

As for the 4K encoding in HEVC, a  similar trend can be 

observed to FHD encoding results in term of speedup gain for 

all compilers. However, speedup gain is a little bit higher or 

improved in both Intel and Visual C++ compiler for SAD. As 

for SATD speedup gain, improvement is shown in SATD 

with AVX-512 using Visual C++ compiler but remains 

almost the same using SSE ISA in both Intel and Visual C++ 

compilers. The main differences between FHD and UHD 

encoding results are longer total execution time and 

significantly lower speedup gain of SATD using Intel C++ 

compiler. Longer execution time in both SAD and SATD for 

UHD encoding is due to higher resolution, which will have 

more CTU broken down to process. As a result, more costly 

computation is required for UHD 10-bits encoding. 

 

 

 

 

313

Authorized licensed use limited to: UNIVERSITY TEKNOLOGI MALAYSIA. Downloaded on March 25,2021 at 03:46:59 UTC from IEEE Xplore.  Restrictions apply. 



 

 

TABLE II.  COMPARISON OF EXECUTION TIME FOR SATD AND SAD IN 

FHD AND UHD ENCODING USING EXECUTABLES GENERATED FROM VISUAL 

C++,  INTEL C++ COMPILER ON WINDOWS SERVER 2016 ON SKL 

PROCESSOR* AND G++ 7.3.0 ON RED HAT 4.8.2-15 ON KNL PROCESSOR**. 

    Visual C++* Intel C++* GCC** 

FHD 

  

  

  

  

  

Non-SIMD SAD 0953.8 0848.2 07998.0 

Non-SIMD SATD 2253.4 1290.2 10426.0 

SSE SAD 0597.6 0492.6 07106.0 

SSE SATD 1321.6 1255.8 07886.0 

AVX512 SAD 0685.0 0591.4 07140.0 

AVX512 SATD 1584.8 1376.8 21516.0 

UHD 

  

  

  

  

  

Non-SIMD SAD 3901.2 3205.2 32724.0 

Non-SIMD SATD 9151.2 6218.2 43662.0 

SSE SAD 2365.6 1815.0 29860.0 

SSE SATD 5414.8 4704.6 33886.0 

AVX512 SAD 2829.8 2809.6 29676.0 

AVX512 SATD 5784.6 7067.0 89438.0 

TABLE III.  COMPARISON OF SPEEDUP FOR SATD AND SAD IN FHD 

AND UHD ENCODING USING EXECUTABLES GENERATED FROM VISUAL C++,  
INTEL C++ COMPILER ON WINDOWS SERVER 2016 ON SKL PROCESSOR* 

AND G++ 7.3.0 ON RED HAT 4.8.2-15 ON KNL PROCESSOR**. 

    Visual C++* Intel C++* GCC** 

FHD 

  

  

  

SSE SAD 1.596 1.722 1.126 

SSE SATD  1.705 1.346 1.322 

AVX512 SAD  1.392 1.434 1.120 

AVX512 SATD 1.422 1.228 0.485 

UHD 

  

  

  

SSE SAD Speedup 1.649 1.766 1.096 

SSE SATD 1.690 1.322 1.288 

AVX512 SAD 1.379 1.534 1.103 

AVX512 SATD  1.582 0.880 0.488 

VI. DISCUSSION AND CONCLUSION 

Several reasons lead to lower speedup gain when using 

AVX-512 ISA. First, too high latency instructions have a 

higher tendency to bring up the total overall execution time. 

This could be seen for VPGATHERDQ instruction in AVX-

512 whenever it tries to get memory content at the right 

position in a register. Another example would be in-lane 

shuffling instructions as seen in the SATD transpose 

operation. In-lane shuffling is still with lower latency on SKX 

and KNL. Thus, they cost as much as multiple simpler 

shuffles found in SSE ISA. Even with the reduction of 

instructions used compared to SSE ISA, really high latency 

can be a bottleneck in achieving overall lower total time 

execution. Besides, dynamic frequency scaling in the Intel 

architecture whenever AVX or AVX-512 are used could 

become a factor that lowers the speedup gain. Intel introduced 

this to keep power in check and avoid power throttling. The 

problem with such wide instructions is that they consume 

much power. Imagine a single instruction that does the work 

of 64 regular byte instructions, or 8 full blown 64-bit 

instructions. Besides, running AVX-512 even just on one 

core on CPU will reduce the base frequency to less than 2 

GHz while running AVX-512 on all cores will cut it to even 

lower frequency. Last but not least, SATD speedup gain 

using G++ compiler was the lowest among other SATD on 

other compilers and having no improvement at all compared 

to SAD. The reason is that the processor used to test this was 

the Knight Landing where byte and word operations (AVX-

512BW) are not available compared to Skylake-X. This could 

lead to extra instructions introduced to the algorithm to 

achieve the same goal. 

In conclusion, speedup gain using AVX-512 on SAD with 

UHD encoding had a slight improvement over the FHD with 

1.5x and 1.4x speedup respectively using the Intel C++ 

compiler. As for SATD, best speedup gains obtained were 

1.42x and 1.52x on FHD and UHD encoding respectively 

using Visual C++ compiler. However, overall the speedup 

gain for using AVX512 ISA is lower compared to SSE ISA. 

Even though speedup gain on AVX512 is much smaller than 

SSE instructions, speedup gain is still visible when compared 

to non-optimized code. 

ACKNOWLEDGMENT 

The authors thank the Ministry of Education Malaysia and 
Universiti Teknologi Malaysia (UTM) for their support under 
the Research University Grant (GUP), grant number  
Q.J130000.2523.19H61. 

REFERENCES 

[1] Sze, V., Budagavi, M. and Editors, G. J. S. Integrated Circuits and 
Systems High Efficiency Video Coding (HEVC). ISBN 
9783319068947. 

[2] Sullivan, G. J., Wang, Y.-k. and Wiegand, T. High Efficiency Video 
Coding (HEVC) text specification draft 10, 2013. 

[3] Sullivan, G. High Efficiency Video Coding ( HEVC ) and its 
Extensions H .264 / MPEG-4 Advanced Video High Efficiency Video 
Coding. 2015. 2(January 2013): 1–10. 

[4] Main, H. and Picture, S. Objective Performance Evaluation of the. 
2015, 25(5): 790–797. 

[5] Cauldron, G. N. U. T. and Yukhin, K. Intel Advanced Vector 
Extensions Support in GNU Compiler Collection Legal Disclaimer & 
Optimization Notice. 2015. 2014(July 2014). 

[6] Colfax Research. Capabilities of Intel AVX-512 in Intel Xeon Scalable 
Processors (Skylake), 2017. URL https://colfaxresearch.com/skl-
avx512/ 

[7] Silveira, E., Diniz, C., Beck Fonseca, M. and Costa, E. SATD hardware 
architecture based on 88 Hadamard Transform for HEVC encoder. 
Proceedings of the IEEE International Conference on Electronics, 
Circuits, and Systems, 2016. 2016-March: 576–579. 

[8] Swaroop Krishna Rao, Nikita Thakur, S. K. A. HEVC Intra Prediction. 
2016. (1001256012): 1–30. 

[9] Chi, C. C., Alvarez-Mesa, M., Bross, B., Juurlink, B. and Schierl, T. 
SIMD acceleration for HEVC decoding. IEEE Transactions on Circuits 
and Systems for Video Technology, 2015. 25(5): 841–855. ISSN 
10518215. 

[10] Chen, K., Duan, Y., Yan, L., Sun, J. and Guo, Z. Efficient SIMD 
optimization of HEVC encoder over X86 processors. Apsipa Asc, 
2012. (61071082): 1–4. 

[11] Ahn, Y.-J., Hwang, T.-J., Sim, D.-G. and Han, W.-J. Implementation 
of fast HEVC encoder based on SIMD and data-level parallelism. 
EURASIP Journal on Image and Video Processing, 2014. 2014(1): 16. 
ISSN 1687-5281.  

[12] Van Dien, N. and Ryu, E. S. Performance comparison of SIMD-based 
HEVC decoders on mobile processor. Proceedings of KICS-IEEE 
International Conference on Information and Communications with 
Samsung LTE and 5G Special Workshop, ICIC 2017, 2017: 298–303. 

[13] Bariani, M., Lambruschini, P., Raggio, M., Architectures, N. and 
Pezzoni, L. An Optimized Software Implementation of the HEVC / 
H.265 Video Decoder. Consumer Communications and Networking 
Conf. (CCNC), 2014:83–88. 

[14] HEVC Test Model. URL https://hevc.hhi.fraunhofer.de/svn/ 
svn_HEVCSoftware/trunk/ 

[15] Jeffers, J., Reinders, J., Sodani, A., Jeffers, J., Reinders, J. and Sodani, 
A. Chapter 12 Vectorization with AVX-512 intrinsics. 2nd ed. Elsevier 
Inc. 2016. ISBN 9780128091944. 

 

314

Authorized licensed use limited to: UNIVERSITY TEKNOLOGI MALAYSIA. Downloaded on March 25,2021 at 03:46:59 UTC from IEEE Xplore.  Restrictions apply. 



 

 

 
Fig.2. Flowchart for SATD implementation 

 

 

 

 

 
Fig.3. Flowchart for SAD implementation. 

315

Authorized licensed use limited to: UNIVERSITY TEKNOLOGI MALAYSIA. Downloaded on March 25,2021 at 03:46:59 UTC from IEEE Xplore.  Restrictions apply. 


