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Pullulan is an important polysaccharide with unique characteristics. This natural biopolymer is water-
soluble, non-mutagenic, non-immunogenic, and non-toxic. It produced naturally as extracellular 
polysaccharide by the yeast-like fungi Aureobasidium pullulans. Due to the chemical, biological, and 
physical characteristics, pullulan has become a desired compound for many applications in 
pharmaceutical industry including drug and gene delivery, tissue engineering, medical imaging, plasma 
expander and also in the cosmeceutical industries. This article presents a review of the state-of-the-art 
applications of pullulan by Aureobasidium sp. in the pharmaceutical and cosmeceutical field. Such 
important knowledge was organized and updated on the basis of latest research directions in 
pharmaceutical and cosmeceutical area. The presented information emphasizes an actual outlook and 
the essential steps to improve the utmost exploitation of the scientific advancement documented in the 
pullulan area up to date. 
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INTRODUCTION 

Polysaccharides, at first acquired from plant 
or animal sources, turned out to be effectively 
accessible for a wide scope of uses, particularly 
when they were commercially produced by 
microbial cells using fermentation techniques (El 
Enshasy et al., 2011; El Enshasy et al., 2012; 
Esawy et al. 2013; Dailin et al., 2016 and Elsayed 
et al., 2016). Microorganisms have the capacity to 
generate a wide variety of polysaccharides of 
many desired biological, physical and chemical 
properties (Then et al., 2012; Maftoun et al., 2013 
and Dailin et al., 2019). In general, exo-

polysaccharides can be homo-polysaccharides or 
hetero-polysaccharides and the biological 
functional characteristics are highly dependent on 
composition, molecular weight, branching and 
molecular configuration (Soltani et al., 2013; 
Elsayed et al., 2017; Masri et al., 2017 and Esawy 
et al., 2019). Pullulan is water soluble, 
biodegradable and biocompatible microbial 
biopolymer produced by yeast-like fungus A. 
pullulans. This biopolymer has received gigantic 
attention from worldwide researchers (Su et al., 
2019). It was devoted in optimal cultivation while 
maintaining a high yield, low cost, short cultivation 
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time and high purity of the final product yield 
(Singh et al., 2015). It is proposed for industrial 
and medical purposes as alternation of α-1,4 and 
α-1,6 bonds results in two distinctive properties. 
This special linkage pattern is responsible for the 
solubility and flexibility of pullulan (Leathers, 
2003). 

Pullulan is a linear macromolecule linked by 
α-(1,6) glycosidic linkages of maltotriose repeating 
units (Yang et al., 2018). The chemical formula of 
pullulan is (C6H10O5)n, stable at a wide range of 
pH, can remain stable at temperature up to 280°C 
and the level of solubility can be managed with 
reactive groups by using chemical derivatization 
(Shingel, 2004 and Singh et al., 2015). The 
molecular weight of pullulan is ranging between 
45-600 kDa, optical rotation of 192°C in 1gdL-1 
solution and used as ingredients to develop blood 
plasma substitutes with weight distribution 
(Mw/Mn) of 1.2. Pullulan with molecular weight 
less than 15 kDa can initiate damage to kidneys 
and higher than 150kDa can increase venous 
pressure (Shingel, 2004 and Singh et al., 2015). 
The average molecular weight and molecular 
weight disseminations are significant for its 
bioactivities, for instance, chemical releasing 
capacity and immunomodulatory development 
(Cheng et al., 2011). 

Pullulan has many potential applications in the 
industries. They found to have outstanding 
medical applications since the mid of 20th century 
exhibiting antitumor, anti-cancer effects, and 
medical devices (Bataille et al., 2011; Mishra et al. 
2011; Mishra and Vuppu, 2012 and Moscovici, 
2015). One of the examples of successful 
commercialized product is a film-based oral 
containing high value added pullulan marketed in 
many countries under the brand name Listerine 
and in capsule types (NPcaps® from Capsugel) 
targeting consumers those who are vegetarians, 
diabetics and obesity patients (Bataille et al., 
2011). Pullulan with such properties of non-toxic, 
non-immunogenic, non-mutagenic, and non-
carcinogenic make it suitable for various 
pharmaceutical uses including granulation and 
coating tablets, biodegradable targeted drug and 
gene delivery, tissue engineering, non-animal 
capsules, oral and wound care products (Mishra 
et al., 2012; Singh and Saini, 2012 and Oğuzhan 
and Yangılar, 2013). This review present current 
findings for applications of pullulan in the 
pharmaceutical and cosmeceutical industries. The 
presented information highlight a real outlook for 
maximal exploitation of the scientific progress 
recorded for pullulan applications up to date.  

 

Biosynthesis of pullulan  
Pullulan is a slimy layer that synthesized in 

the cell wall membrane and being released to the 
cell surface. There are several possible pathways 
for synthesis of pullulan (Cheng et al., 2011). To 
date, only α-phospho glucose mutase, uridine 
diphospho glucose pyrophosphorylase 
glucosyltransferase and pullulansynthase are 
confirmed to involve in biosynthesis of pullulan 
(Chen et al., 2018). Not only glucose or sucrose, 
A. pullulans capable to utilize mannose, fructose, 
galactose or even other carbon sources. The 
pathways with these media for biosynthesis of 
pullulan are still undefined. However, it is only 
known that for the maltose-containing medium, 
carbohydrate metabolites are the precursor for the 
polymer formation which is panose or isomaltose 
can be utilized and synthesized via glucosyl-
transfer reaction in A. pullulans (Shingel, 2004). 
UDPG, the pullulan precursor which plays a 
crucial role in the biosynthesis of pullulan. D-
glucose residue is attached to the lipid molecules 
(LPh) triggered by UDPG with a phosphoester 
bridge. Then, D-glucose residue is further transfer 
from UDPG gives lipid-linked isomaltose. 
Afterwards, isopanosyl residue is generated by 
participated of isomaltosyl in the reaction with 
lipid- linked glucose. Eventually, isopanosyl 
residue as a precursor is polymerized into pullulan 
chain (Cheng et al., 2011). The proposed pathway 
of pullulan synthesis is summarized in Figure 1. 

 
 
Figure (1): Biosynthesis of pullulan (1,α-
phospho glucose mutase; 2,UDPG-
pyrophosphorylase; 3,glucosyltransferase) 
(Adapted from Cheng et al. 2011). 

Pullulan is being synthesized from sucrose by 
cell-free enzymes of A. pullulans when both ATP 
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and UDPG is available in the reaction mixture 
(Cheng et al., 2011). UDPG cannot be replaced 
by ADPG which specifying that from UDPG is the 
initiator of pullulan precursors. In addition, it was 
proved that the processes of transglycosylation of 
ADP- glucose are not involved in biosynthesis of 
pullulan (Shingel, 2004). Singh and Saini (2012) 
reported that the polymerization of the 
carbohydrate precursors stored inside the cell 
apart from the direct conversion of glucose 
residues into EPS. It is being assumed that cells 
will mount up sugars and later will be utilized for 
pullulan production in later stages of cultures life 
cycle. 

Factors affecting pullulan production  

Carbon and nitrogen source 
Černáková et al., (1980) reported that pullulan 

can be produced using wide range of carbon 
sources such as rhamnose, sucrose, maltose, 
lactose, xylose, galactose, inulin, glycerol and 
soluble starch. In general, most reports showed 
that sucrose was the most suitable substrate for 
pullulan production compared to glucose (Ravella 
et al., 2010; Ma et al., 2014 and Sheng et al., 
2016). This is because the activity of β-Fructo 
furanosidase, an enzyme that convert sucrose to 
glucose and fructose when the sucrose 
concentration is low, was the highest when 
sucrose used as the main carbon source (Sheng 
et al. 2016). However, some studies reported 
glucose (Wang et al., 2013 and Tu et al., 2015) 
and fructose (Yang et al., 2018) can produce 
higher amount of pullulan. Fermentation medium 
containing xylose resulted in low cell biomass and 
pullulan production (Duan et al., 2008). 
Nevertheless, other studies found out that the 
biomass obtained was the highest when using 
xylose as carbon source, but lower pullulan 
production (Sheng et al., 2016 and Yang et al., 
2018). These disagreement on the optimum C 
sources used for pullulan and biomass production 
might due to different strains of A. pullulans used 
and culture conditions. When galactose was used 
as C source, almost no or very small amount of 
pullulan can be produced (Wang et al., 2014 and 
Sheng et al., 2016). Agro-industrial wastes, which 
are rich in nutrients were also used as cheap 
substrates for pullulan production, such as De-
oiled rice ban (Singh and Kaur, 2019), beet 
molasses (Lazaridou et al., 2002; Goksungur et 
al., 2004 and Srikanth et al., 2014), cassava 
bagasse (Sugumaran and Ponnusami, 2017), 
sugarcane bagasse (Hilares et al., 2019), potato 

starch water (An et al., 2017), and rice hull (Wang 
et al., 2014). 
Pullulan production was strongly affected by the 
nitrogen source, where decreasing in the amount 
of nitrogen source often indicating the production 
of pullulan in the media (Gibbs and Seviour, 1996; 
Bulmer et al. 1987). Alternate nitrogen source 
from agro-industrial wastes were also used for 
pullulan production, such as corn steep liquor 
(Sharma et al., 2013), jatropha seedcake 
(Choudhury et al., 2012) and soybean pomace 
(Seo et al., 2004 and Sheoran et al., 2012). Jiang 
et al., (2011) studied the fermentation time, 
pullulan production, biomass, and UDPG-
pyrophosphorylase activity affected by different 
nitrogen sources. It showed that NaNO2 and 
(NH4)2SO4 supported both cell growth and pullulan 
production. Their study also showed that nitrogen 
source influenced the optimum pullulan production 
time and the UDPG-pyrophosphorylase activity.  

pH and temperature 
Generally, optimum pH for biomass 

production is different from the optimum pH for 
pullulan production, lower pH increases the cell 
growth but causes reduction in pullulan production 
(Israilides et al., 1998).  Several studies 
suggested that pH in the range of 5.5 to 7.5 was 
found to be optimal for pullulan production (Lee et 
al., 2001 and Li et al., 2009). At lower pH, pullulan 
production was halted but it stimulates the 
synthesis of insoluble glucan (Madi et al., 1997). 
Wang et al., (2013) stated that the production of 
pullulan decreased due to the acid stress if the pH 
is below 2.5. Ji-Hyun et al., (2002) reported that 
letting the pH of the medium to drop naturally was 
found to enhance the pullulan production 
compared to the constant pH.  

To optimize the pH for both biomass and 
pullulan production, two-stage pH profile was first 
proposed by Lacroix et al., (1985). The pH was 
first adjusted to 2.0 to increase the biomass 
production, which was later changed to pH 5.0 for 
pullulan production. A similar study by Wu et al., 
(2010) which employed a two-stage temperature 
fermentation process for pullulan production by 
optimizing the temperature. This is because lower 
temperature is optimum for pullulan production 
while higher temperature for biomass production.  
Wu et al., (2010) found out that pullulan 
production achieved 27.4 gL-1 at optimum 
temperature of 26ºC, and cell growth achieved 
10.0 gL-1 at 32ºC. Typically, temperature ranging 
from 25ºC to 30ºC is optimum for pullulan 
production. A two-stage controlled pH and 
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temperature for pullulan and biomass production 
was also studied by Xia et al., (2011). 

Mineral salts and surfactants  
West and Reed-Hamer (1992) first reported 

that metal ions like Fe3+, Mn2+ and Zn2+ increased 
the production of A. pullulans ATCC 42023. 
Similar studies by Gao et al., (2010) showed 
increase in cell growth and pullulan production by 
optimizing the mineral salts in the medium 
formulation. Besides, Wang et al., (2016) studied 
the effect of five different mineral salts (FeSO4, 
CuSO4, ZnSO4, MnSO4 and CaCl2) on pullulan 
production, it showed that adding CuSO4 at the 
concentration of 0.2 mgL-1 to the media increased 
the production of pullulan from glucose by 36.2% 
when compared to control. Another recent study 
by Wang et al., (2018) showed that the pullulan 
titer was increased by 26.7% when 3 gL-1 of NaCl 
was added, but the molecular weight of the 
pullulan was reduced to 46.8%. 

Tween 80, a non-ionic surfactant was found to 
improve pullulan production. Sheng et al., (2013) 
studied how different concentration of Tween 80 
(0.1%, 0.5%, 1.0%) affected the production of 
pullulan and cell biomass. The result showed that 
the pullulan production was increased with the 
addition of Tween 80, where the best 
concentration was 0.5%. However, there was no 
increase in biomass, suggesting that Tween 80 
was not degraded to be used as C source by the 
strain. Presence of Tween 80 enhances the 
releasing of pullulan from the cell due to the 
interaction of the surfactant with the cell 
membrane's permeability. Further study by Sheng 
et al. (2015) showed that with the addition of 0.5% 
Tween 80, there was 41% improvement of 
pullulan production compared to the control, with 
a maximum yield of 53.04 gL-1. Another study by 
Tu et al. (2014) showed that polymalic acid and 
pullulan yield was increased to 75.08% and 
27.21% respectively compared to the control 
when 0.05% of Tween 80 was added to the 
media. 

Light intensity 
Ruly et al. (2017) studied the effect of different 

wavelengths' light-emitting diodes in the pullulan 
production by a wild type strain A. pullulans LB8, 
focusing on pullulan with low-melanin content in 
different carbon sources. The study found out that 
when using both white and blue LED lights (450-
470 nm), the pullulan produced (approximately 20 
gL-1) was lower in melanin content in sugarcane 
bagasse (SCB) hydrolysate medium, compared to 

using only white light in glucose-based medium, 
which resulted in lower yield and higher melanin 
pullulan. 

Applications of pullulan in pharmaceutical 
field 

Tissue engineering  
Tissue engineering is a favorable substitute to 

allografts for the rejuvenation of huge bone 
defects. The significance of tissue engineering 
shows restrictions in tissue grafting is increasingly 
clear for a huge variety of diseases including 
osteoarticular pathologies (Fricain et al., 2013). 
Tissue engineering aim to regenerate the injured 
tissue and reinstate a biologically valid articular 
surface (Fisher et al., 2017). The surface 
characteristics of bio materials applied for medical 
implants have been shown directly impacts on the 
active interaction that happen at tissue implant 
boundary. These characteristics and changes 
may take place over time in-vivo and need to be 
recognized for designing biomaterial principally 
pullulan for particular applications (Mishra et al., 
2011). 

Iswariya et al., (2016) developed a good 
absorbent collagen-pullulan hydrogel with 
enhanced mechanical firmness and well-defined 
biocompatibility for skin tissue engineering. The 
scaffolds were constructed using pullulan which is 
mixed with sodium trimetaphosphate and collagen 
to create polymeric linkages. Chen et al., (2016) 
well developed an enzymatically cross-linked 
injectable and biodegradable hydrogel system 
using a micture of carboxymethyl pullulan-
tyramine and chondroitin sulfate-tyramine 
conjugates for cartilage tissue engineering. Fricain 
et al., (2013) reported scaffolds composed of 
pullulan and dextran which is in combination or 
not with nanocrystalline hydroxyapatite particles 
(nHA). This composite matrix is used for 
encouraging bone cell differentiation of host 
mesenchymal stem cells. 

Drug delivery  
Current progresses in the field of drug delivery 

are targeted at discovering sufficient strategies for 
the administration of different drugs. One of the 
most central characteristics of drug to be deliver is 
their stability. It is essential to provide an 
appropriate protection of the drugs against 
stresses both during manufacturing and storage. 
Studies have shown that pullulan is well-matched 
when injected in blood vessel (U.S Congress 
Publications, 1993). In targeted drug delivery 
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system such as for tumor drug delivery, pullulan 
has been used for surface modification of the drug 
carrier to reduce the hematological toxicity to the 
neighboring cells (Wang et al., 2013 and 2014). 
Pullulan was used to coat magnetic nanoparticles 
for better compatibility when used in various 
biomedical applications such as for hyperthermia 
therapy for heating cancer cell (Saranya et al., 
2015). Henry et al., (2017) propose the design of 
a new injectable biphasic system, based on the 
association of pullulan microbeads into a 
cellulose-based hydrogel used for the TGF-β1 and 
GDF-5 growth factors. Their loading and 
discharge capacities were able to show a 
persistent release of both growth factors for up to 
28 days. Chassot et al., (2016) reported the 
preparation of poly (ε-caprolactone) nano-
capsules using pullulan as a stabilizer for drug 
delivery. The formulations develop showed 
physicochemical characteristics steady with 
nanocarriers for drug delivery.  

Gene delivery  
Non-viral vectors are preferred to deliver 

nucleic acid materials, to improve the transport 
and avoid degradation by lysosomal enzymes 
(Moscovici, 2015). Pullulan due to its specificity 
for liver has been widely used for biomedical 
applications. Successful delivery of genes was 
reported in the presence of carrier made of 
cationized pullulan. The polycations cause DNA 
condensation, enhance the DNA half-life and 
prevent it from being degraded by plasma 
nucleases (Askarian et al., 2017). Yang et al., 
(2014) reported that a tailor-made bio cleavable 
pullulan-based gene vector with good hemo 
compatibility was successfully proposed via atom 
transfer radical polymerization for efficient liver 
cell-targeting gene delivery. Polyethyleneimne 
(PEI) is a very efficient transfecting agent but is 
toxic due to high charge density. Ambattu et al., 
(2015) reported that PEI conjugated with pullulan 
is hemocompatible and nontoxic while ensuring 
remarkable transfection efficiency.  

Antimicrobial activity 
Pullulan itself does not show antimicrobial 

activity. However, due to their promising outcome 
to be used as coating in biomedical applications 
there are several studies that had been conducted 
showing the functionalization of pullulan for anti-
microbial activities. Fernandes et al., (2014) 
reported that functionalized pullulan powder 
chemically modified with 3-
aminopropyltrimethoxysilane showed antimicrobial 

activity toward S. aureus and E. coli attributed to 
the presence of aminopropyl groups in the 
pullulan chains. Another study reported by 
Synowiec et al., (2014) shows the antimicrobial 
activities of pullulan films containing sweet basil 
extract (SBE). Pullulan coating with SBE showed 
low antibacterial activity on mesophilic bacteria 
and good antifungal protection against Rhizopus 
arrhizus. 

Medical Imaging  
Medical imaging is a technique used for visual 

representation of body interior by labeling the 
inner body cells with fluorescent probes. Quantum 
dots (QDs) can be used as fluorescent probes for 
live cell imaging to track whole cells or 
intracellular biomolecules. These QDs are 
semiconductor nanocrystals with excellent 
properties such as broad excitation, bright 
fluorescence, high photo-stability and narrow 
emission spectra. Prajapati et al., (2013) reported 
that pullulan-coated iron oxide nano-particles 
were used for medical imaging such as lymph 
node, receptor, perfusion, vascular compartment 
imaging, and target specific imaging. Jo et al., 
(2010) reported that pullulan coated iron oxide 
nanoparticles were used as magnetic resonance 
contrast agent for labelling mesenchymal stem 
cells.  

Plasma expander  
Pullulan is also used as plasma expander to 

treat volume deficiency of the vascular system. 
Treatment with blood is not a compulsory when 
blood loss does not exceed 30% of the total blood 
volume. Alternatively, plasma expander has 
almost infinite supply, has longer shelf life, 
independence on blood type and free of 
pathogens, hence could alternatively be used to 
replace blood for certain cases. Plasma expander 
acts as blood plasma substitute to maintain blood 
circulation and the osmotic pressure of blood 
vessels (Singh et al., 2017). Derivatized pullulan 
colloid has great therapeutic potential to be used 
as blood plasma substitute (Kulicke and Heinze, 
2006). Pullulan needs to be modified to enhance 
biocompatibility as well as to prevent it from 
amylase attack. Such biocompatibility properties 
are lower molecular weight and lower viscosity 
(Shingel and Petrov, 2002). 

Film forming agent  
Pullulan has also been used as film forming 

agent for orally disintegrating drug delivery 
system. The hydrophilic characteristic allows it to 
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disintegrate quickly in the mouth, thus releasing 
incorporated active pharmaceutical ingredient 
within seconds. Furthermore, pullulan possesses 
high mechanical strength property and thermal 
stability, thus easy to handle (Irfan et al., 2016). 
When tested for film forming properties, pullulan 
or pullulan in combination with other organic 
polymers formed an excellent film with high tensile 

strength and fast disintegration and dissolution 
times (Kulkarni et al, 2010; Murata et al, 2010; 
Choudhary et al., 2011 and Saini et al., 2011). 
Evaluation of pullulan as a film agent for various 
active pharmaceutical ingredients resulted in 
excellent performance for high and fast drug 
release. These are summarized in Table 1. 

 
Table (1): Applications of pullulan as film forming agent for various active pharmaceutical 

ingredients. 
Film agent formulation Active pharmaceutical ingredient References 

HPMC, pullulan, polyvinyl pyrrolidone 
(PVP) 

Nebivolol HCl 
Parejiya et al. (2012) 

 

Pullulan and HPMC 
Granisetron 

hydrochloride 
Chaudhary et al. (2013) 

Pullulan Cetirizine Mishra & Amin (2011) 

Modified pea starch (Lycoat RS 720) 
and pullulan 

Tramadol Hydrochloride Kathpalia et al. (2013) 

Pullulan Ropinirole hydrochloride Panchal et al. (2012) 

 
Vaccination  
Pullulan has also been used as antigen delivery 
system for vaccines via nasal 
administration. Mucosal vaccines, especially 
nasal, when compared to major subcutaneous 
and intramuscular route are more effective in 
preventing infection via the respiratory tract and it 
induces immunity in both the systemic and 
mucosal parts (Nakahashi-Ouchida et al., 2018). 
Cholesteryl pullulan (CHP) is amphiphilic 
copolymers that form hydrophobic internal core 
space and hydrophilic external surface. The 
internal space could entrap various molecules by 
hydrophobic forces and the hydrophilic surfaces 
stabilizes interface between the hydrophobic core 
and the external aqueous environment. The CHP 
serves as a great carrier for active compounds as 
it protects the encapsulated molecule from attacks 
from the surrounding environment and it allows 
slow release of the entrapped materials (Ohta, 
2016). CHP was used as a carrier for NY-ESO-1 
protein cancer vaccine and the safety and 
immunogenicity has been confirmed by testing 
with patients with advanced/metastatic 
esophageal cancer (Kageyama et al., 2013). The 
CHP was also proven safe and effective in 
delivering PspA nasal vaccine with specific target 
for pneumococcal respiratory infection (Kong et al. 
2013) and tumor necrosis factor-α (TNF-α) (Ohta, 
2016). 

Molecular chaperons  
Amphiphilic polymer can also be used to 

mimic protein chaperone for regulating protein 

folding. This system could enhance the protein 
thermal stability, assist protein folding and prevent 
aggregation. Nomura et al., (2003) has developed 
amphiphilic polysaccharide self-assembled 
nanogels using CHP. The hydrophobic cholesteryl 
groups form hydrophobic binding sites in the core 
structure to bind the denatured proteins through 
hydrophobic interactions when heated. The 
release of protein was induced by addition of β-
cyclodextrin which would bind to the cholesteryl 
groups as the temperature was cooling down. 
Dynamic cholesteryl-group-bearing pullulan 
(CHP)-CD supramolecular polysaccharide 
nanogel was also developed as artificial 
chaperone to enhance the thermal stability of 
protein (Takeda et al., 2013). Recently, the 
polysaccharide self-assembled nano-gel has been 
tested for protein or protein-based drug carrier for 
therapeutic purposes, hence serves as a 
promising protein carrier for effective protein drug 
delivery system (Hashimoto et al., 2018). 

Applications of pullulan in cosmeceutical field 
Pullulan is one of the bioactive 

exopolysaccharides which involved in many 
mechanisms from attachment of intra- and 
interspecific communication and competition. It 
can be produced either by bacteria, fungi and 
other microalgae by fermentation process. 
However, bacteria are more preferable due to its 
large production of these exopolysaccharides. 
Examples of several microorganisms that are able 
to produce these exopolysacchrides include 
Agrobacterium sp., Alcaligenes faecalis, 
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Xanthomonas campestris, Bacillus sp., Zymonas 
mobilis and A. pullulans (Corinaldesi et al., 2017). 
The special characteristic and physical properties 
imparted by pullulan makes the biopolymer a 
good feature to be applied in the cosmeceuticals 
industries. The quality and effect of cosmeceutical 
products can be upgraded and improved when 
fused with pullulan (Nakashio et al., 1976). One of 
the excellent applications is in oral care products. 
Pullulan-based oral care products have been 
widely commercialized all over the world (Singh 
and Saini, 2012). The biopolymer has been 
characterized to have several advantages such as 
having the ability to form an excellent transparent 
film, significant moisture absorptivity, tackiness, 
tolerable water solubility, edibility, good 
dispersibility and non-toxicity. The different 
linkages of α(1-4) and α(1-6) in the pullulan 
structure has made pullulan nonimmunogenic, 
non-mutagenic and having non-cancerous traits 
(Dubey & Kashyap, 2018). Additionally, pullulan is 
non-irritant to the human skin while being 
tasteless and odorless as well. The relatively-low 
viscosity exerted by pullulan has made it a good 
binder in various kind of fields including 
cosmeceuticals.  

Conventionally, the cosmeceutical industries 
have been utilizing high polymers which have 
water-soluble polysaccharides characteristic such 
as starch, methyl cellulose, carboxy-methyl 
cellulose, hydroxyethyl cellulose and sodium 
alginate. Nevertheless, pullulan has a different 
molecular structure and thereof better properties 

such as easily soluble even in cold water, and the 
aqueous solution containing pullulan is stable over 
a long period of time without any gelation 
formation or ‘aging’ phenomenon occur.  These 
kind of excellent properties can overtake the 
starch with the additional advantage being low 
viscosity in aqueous solution even when in the 
same solute concentration or molecular weight. 
Due to these excellent features of pullulan, it may 
be applied as one of the cosmetic ingredients in 
body lotion, compact and loose powders, hair 
shampoos and tooth care products. The 
potentiality of pullulan to be used as facial pack 
has long time been patented by Japan inventors 
20 years ago (Ozaki et al., 1995). The facial pack 
was prepared by mixing homogeneously 0.5 parts 
by weight of linolenic acid with a mixture 
consisting 1.5 parts by weight of squalane, 0.5 
parts by weight of polyoxyethylene hydrogenated 
castor oil, 5.5 parts by weight of L-sodium lactate, 
4.0 parts by weight of glycerine, 50.0 parts by 
weight of 40% pullulan mixture, 10.0 parts by 
weight of ethyl alcohol, and 33.0 parts by weight 
of refined water. The product developed is 
claimed to be suitable for skin-whitening agent 
and also very useful to prevent and treat local and 
systemic hyperpigmentation in the skin such as 
freckle, sunburn and chloasma. This high values 
of pullulan have increase its interest to be widely 
used for the development of cosmeceutical and 
skin regeneration products. Table 2 summarizes 
the general features of pullulan and main 
applications in cosmeceutical industries. 

 
Table (2): The features of pullulan and its application in the cosmeceutical field. 

Features of pullulan Application in cosmeceutical industries 

Odorlessness, tastelessness, non-toxicity, high water 
solubility and tackiness. Covering power, adsorptivity and 
tackiness. Ingredient for rouges (liquid rouges and paste 
rouges) 

Ingredient for rouges (liquid rouges and paste 
rouges) 

Non-toxicity, non-irritability, and film- forming ability 
Ingredient for cosmetics around the eyes (eye 
liners and eye shadows) 

Film-forming ability, adsorptivity, water retainability, 
continuity of film at peeling time, and ability of giving tension 
to the skin due to shrinkage of film at drying time 

Ingredient for facial packs 

Foaming-promoting effect and builder effect Ingredient in hair shampoos 

Tackiness, ability of forming tough film, 
hair setting ability, and high water solubility necessary for 
removal after use 

Ingredient in body lotions and hair lacquers 

Excellent coherence (protective 
colloid-forming ability), foamability, high viscosity, non-
toxicity and storage stability 

Ingredient in tooth paste 

Excellent water-soluble film forming with transparent in color Face mask and hair styling 
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As pullulan is safe and non-toxic biopolymer, 
it can be used freely without any limitation in 
terms of the amount and composition when 
preparing the cosmetics. It may be combined and 
mixed with other polymers such as low molecular 
weight compounds, inorganic compounds, 
fragrance and preservatives during the time of 
preparation for the cosmetics. The pullulan 
obtained from microbial strain may varies in the 
physical properties depending on the type of 
strain from which it is produced. However, this 
does not greatly impact the efficiency to be used 
in the cosmeceutical products. Pullulan, being a 
carbon neutral, sustainable, biodegradable and 
palatable substrate in nature has provide a good 
alternative to the conventional polysaccharides 
substrates (Dubey and Kashyap, 2018). 
Alternatively, pullulan represent sustainable, low-
cost with fast-production compared to other 
natural molecules which can be used in photo-
protection, skin-whitening and anti-aging products 
for total body care (face, body and hair) 
(Corinaldesi et al., 2017). The photo-protective 
characteristic of pullulan has increased the 
demand for skin-care and hair-care products with 
the surplus of consumers’ demand for natural 
products instead of chemical-based cosmetics. 
The mixture of pullulan with other ingredients 
obtained from fermentation products has enhance 
the synthesis of collagen I which contribute 
towards the amelioration of structural properties 
on human skin (Martins et al., 2014). As 
nowadays, people are looking into natural 
products for their everyday usage, pullulan has 
represented the future for cosmeceutical 
industries. The biological properties of pullulan 
have received great attention. The natural and 
biodegradable pullulan extracted from selected 
microorganism may reduce the use of synthetic 
compound in the cosmetics.  

Nevertheless, despite the high benefits being 
imparted by pullulan, its high production cost 
greatly limits its wide application. Thus, 
optimization of the fermentation condition for 
pullulan production is highly needed for an 
effective production with reduced production cost 
(Yang et al., 2018). For these reasons, Yang et 
al., (2018) have manipulated several parameters 
such as varying the carbon source, hydrolysate 
content, and medium composition and the results 
obtained has shed some lights for further pilot-
scale production. 

CONCLUSION 
Research studies in the ground of 

polysaccharides have shown that pullulan is a 
distinctive polysaccharide with a vast variety of 
potential in pharmaceutical and cosmeceutical 
applications. The unique and promising 
characteristics of pullulan including thermal 
stability and non-poisonous allows them to be 
utilized in many different ways. More research 
need to be done to explore in depth the 
technology of applying pullulan in the field of 
pharmaceutical and cosmeceutical. 
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