
Ghafar A. Jaafar et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1609 - 1620

1609


ABSTRACT

A web application utilizes Hypertext Transfer Protocol
(HTTP) to surf client requests. This protocol is used widely,
especially in business areas such as in online transactions and
websites, including in government websites. A client delivers
information to a server carried by a client web browser. An
HTTP distributed denial of service (DDoS) attack occurs
when the attacker is able to mimic client information, which
makes a DDoS attack at the application layer difficult to
distinguish as the traffic pattern is similar to a genuine
request. Furthermore, it is not compulsory for the client to
present the GET headers component to a web server during
the GET request transaction. Existing detection of HTTP
DDoS attacks still faces challenges in differentiating between
authentic and bogus GET requests in real time. In this paper, a
fast algorithm (FARGO) method to detect HTTP DDoS
attacks is introduced. FARGO consists of three detection
algorithms to recognize HTTP DDoS categories as request
flooding attacks. The assessment of the proposed detection
system was conducted in real experimental conditions with
real attack scripts. The proposed detection method provided
expected outcomes with improvements of 11.30% for true
positive rates and 8.9% for false-positive rates.

Key words: DoS, DDoS, Denial of Service attack, Application layer
DDoS

1. INTRODUCTION

A web server utilizes HTTP and HTTPS protocols to surf
client requests through a network. These protocols are widely
used in many business areas such as in payment gateways,
online purchasing, banking, credit card transactions, etc.
Attackers target these services by causing a web server to
become unavailable through launching attacks known as
HTTP DDoS attacks. Most DDoS attacks executed at the
application layer nowadays target the HTTP port [1]. DDoS
attacks lead to loss of trust and revenue [2]. Past studies [2-4]
have found DDoS attack patterns at the application layer as
being similar to genuine request packets. Singh, Singh [5]
attributed the existence of DDoS attacks to application

settings and functions that cause the attack to target web
server resources such as the CPU, network and memory [6].

DDoS attacks execute at layer seven requires establishing
TCP connection to a web server before can perform a
transaction at the application layer. Single TCP connection
can contain multiple GET request [7] due to this circumstance
attacker sent the GET request continuously. To generate
massive traffic, the attacker utilizes botnets to deliver a high
number of requests from a web server. The location of botnets
is also distributed, which makes the generation of enormous
amounts of traffic easy and fast. Aamir and Zaidi [8]
explained that due to botnet architecture being scattered and
comprised of a number of compromised machines, a DoS
attack can easily turn into a DDoS attack.

Nowadays, modern devices adopt the Internet of Things
technology, which refers to everything that can access the
Internet, such as a television set. The Internet of Things (IoT)
opens up a new avenue for an attacker to launch DDoS
attacks, which will contribute to more cyber-attacks. Devices
with IoT technology can become easily accessible tools in a
cyber army’s plan to launch attacks as they are always
connected to the Internet with a naive security update and
patch [9]. The emerging of generation five networks (5G)
deliver a significant impact to formation of HTTP DDoS
attack. The 5G network provides faster speed and more
reliable connection for other equipment’s and smart
phone[10]. HTTP DDoS can be launched in many platforms
such as IOT devices, which comprise of smart phone and
cameras, which can utilize 5G network. These types of
devices are vulnerable to be affected due to week security
patch. Launch HTTP DDoS by adopted 5G network lead to
faster flooding of the web server due to higher speed of the
Internet provided by the network.

Aside from that, the existence of online services, such as
boosters or stressers, to easily facilitate such attacks
contributes to the increase in such attacks [11]. A DDoS
attack is easier to implement than other network attacks as it
only requires a large number of zombie machines and
minimal knowledge of security to execute the attack [12]. By
using an efficient attack script, the attacker requires fewer
resources to generate huge amounts of traffic [13, 14].

Enhanced Detection Algorithms to Detect HTTP DDoS

Ghafar A. Jaafar1, Shahidan M. Abdullah2, Saiful Adli 3

1,2,3 Razak Faculty of Technology and Informatics,
Universiti Teknologi Malaysia (UTM) 54100 Kuala Lumpur, Malaysia.

1 afastars@gmail.com

2 mshahidan@utm.my
 3 saifuladli@utm.my

 ISSN 2278-3091

Volume 8, No.4, July – August 2019
International Journal of Advanced Trends in Computer Science and Engineering

Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse86842019.pdf
https://doi.org/10.30534/ijatcse/2019/86842019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universiti Teknologi Malaysia Institutional Repository

https://core.ac.uk/display/395089647?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Ghafar A. Jaafar et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1609 - 1620

1610

Several detection methods have been introduced to recognize
such attacks. Nevertheless, due to their ability to mimic
normal client behavior, and the different strategies devised to
launch attacks, these attacks are difficult to recognize. In this
paper, a method of detecting HTTP DDoS attacks, focusing
on flooding attacks, is presented. The proposed detection
method is called FARGO and consists of three detection
algorithms segregated into regular inspection, medium
inspection and deep inspection. Each algorithm consists of
GET header components that have been used by authentic
clients to browse the content of a web server.

The proposed detection technique allowed an administrator to
select which inspection they wanted in order to recognize the
attack. Regular inspection determines whether the source of
the GET request was initiated from a web browser or via
automated tools by accessing browser width and height.
Medium inspection combines regular inspection with
checking the existence of GET headers such as user-agent,
accept-language, connection and accept-encoding. Deep
inspection combines regular, medium and query inspection
received in GET requests. The selection of GET components
was based on traffic analysis of components that were
commonly employed by attackers to make the traffic appear
genuine. Results obtained from the experiments (Section 7)
indicated that the detection method worked as expected where
malicious GET requests instituted by HTTP DDoS attacks
were detected successfully. The main contributions of this
paper can be summarized as follows:

i) Introduction of three detection algorithms to detect
HTTP DDoS attacks.

ii) Increasing true positive rates and reducing false
positive rates.

iii) The proposed detection method can be implemented in
production network environments.

The rest of the paper is organized as follows. Section 2
explains DDoS attack categories at the application layer.
Section 3 provides an overview of detection systems proposed
by prior studies. Section 4 explains the experiment
architecture and datasets. Section 5 describes about traffic
analysis and feature extraction. Section 6 elaborates about the
analysis command. Dataset analysis conducted in Section 7,
while Section 8 explained about the proposed detection
algorithms while section 9 provides details about evaluation
architecture. Result and discussion in section 10 and continue
with section 11 comparison with other studies. A summary
and future works are described in Section 12.

2. HTTP DDOS ATTACK CATEGORIES

DDoS attacks at the application layer are divided into several
categories, as explained by previous researchers [15-20].
Detailed explanations pertaining to the categories are as
follows:

2.1 Session Flooding Attack: Server resources become
overloaded due to enormous session request rates. This type
of attack is known as DDoS flooding and the attacker requires
a large number of genuine HTTP requests. The attacker
usually utilizes a botnet because it has the ability to launch a
valid request. Commonly, GET requests initiated by a botnet
exceed 10 requests per second.

2.2 Request Flooding Attack: This attack category takes
advantage of HTTP 1.1 structure, which allows multiple
requests in one session. Due to this vulnerability, attackers
generate vast numbers of requests in one session, which are
larger than genuine users’ requests. Rai and Challa [21] stated
that the attacks utilized botnets to launch the attack. This type
of attack is able to cause a server to become unresponsive
when it receives the huge number of HTTP GET requests
generated by a botnet.

2.3 Asymmetric Attack: A server experiences a high
workload when an attacker employs an HTTP session to send
a high number of requests to download files from a database
server, or excessive requests to execute queries from the
server.

2.4 Slow Request/Response Attack: Partial HTTP requests
are sent, which grow quickly, slowly update and never close
the connection, which makes the server socket unavailable.
The attack operates under the threshold limit and with traffic
patterns similar to authentic patterns, which make it difficult
to detect [21]. A server will continuously remind clients to
open its connections as each GET request received fails to
complete the transaction, which will result in clients being
unable to gain access to a server due to full concurrent
connections.

3. RELATED WORKS

In this paper, HTTP GET header components are utilized as a
form of detection to recognize DDoS attacks executed at the
application layer, in order to improve true positive rates and
false positive rates. Many prior studies have introduced
solutions pertaining to such attacks. This section summarizes
the current research work on detecting HTTP DDoS attacks.

Hameed and Ali [11] introduced a DDoS detection method
that executes at the network and application layers. The
detection method consists of two components called the
capture server and detection server. The detection server will
receive live network traffic from a capture server for
processing. The detection method counts incoming packets
and will detect them as attacks when the source connection
exceeds a pre-defined threshold responsible for capturing live
traffic. The authors used timestamps, source IPs, destination
IPs, packet protocols and packet headers to constitute
detection.

Ghafar A. Jaafar et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1609 - 1620

1611

Idhammad, Afdel [22] proposed information theoretic entropy
and machine learning to detect HTTP DDoS attacks in cloud
services. The detection technique proposed by the authors
consists of three steps: entropy estimation, pre-processing and
classification. Features of the network headers for inbound
network traffic are used to estimate entropy, which is
performed by an algorithm called the time-based sliding
window. A pre-processing algorithm will execute when the
entropy exceeds normal range. Clarification of HTTP DDoS
attacks will occur at this stage, and network traffic will be
cleaned and normalized to recent time windows.

Behal, Kumar [23] introduced a flexible, automated and
collaborative defense system called D-FACE to detect and
mitigate impacts of DDoS attacks. The idea behind this
defense strategy is to compute the information of the distance
between authentic and network traffic anomalies by
employing information theory-based divergence metrics, to
recognize types of DDoS attacks. The proposed detection
technique has a minimal overhead for computational speed
and memory compared with other types of deployment such
as a victim-end defense.

Singh, Singh [24] employed a machine learning method to
recognize HTTP DDoS attacks. The proposed detection
method is able to differentiate botnets from authentic users in
malicious traffic, legitimate user traffic and flash crowd
traffic. The detection method is also able to identify botnet
locations and assess client attitudes to detect attack traffic
towards a web server. The detection technique employs
request index, response index, popularity index, repetition
index and classifier algorithms in order to examine user
behavior and is deployed as a proxy. Meanwhile, Zhao, Zhang
[25] introduced a detection method based on user access
behavior characteristics. URL access pattern is used to detect
DDoS attack at application layer.

Sreeram and Vuppala [26] recommended fast and early
detection to recognize HTTP DDoS attacks by using a
machine-learning matrix. Instead of sessions from users and
packet patterns, the authors utilized time intervals to
constitute a detection algorithm. Maximum sessions for
one-time intervals are processed by the machine-learning
matrix to detect DDoS attacks at the application layer. The
authors also counted the frequency of web pages being
browsed and the time gaps between first-page access and
second-page access by the user to evaluate client access
patterns.

Aborujilah and Musa [27] introduced a detection technique
based on behavior and proposed two training and testing
algorithms to identify different categories of HTTP flooding
attacks. The authors utilized TCP packet headers and
statistical approaches with a covariance matrix to detect
HTTP DDoS attacks in the cloud environment. Normal access
patterns are constructed by the training algorithm while types
of traffic received are identified by the testing algorithm.

Singh and De [28] employed multilayer perceptron with a
genetic algorithm (MLP-GA) to detect HTTP DDoS attacks.
The detection system utilizes the number of HTTP counts, the
number of IP addresses, the constant mapping function and
fixed frame lengths. A GET request received by a web server
will be counted and any IP address accessing a web server for
more than 20 seconds will be evaluated. According to the
authors, attackers utilize static protocol lengths, hence fixed
frame lengths were used to conduct detection. The authors
used three datasets: EPA-HTTP, CAIDA 2007 and
Experiment Dataset.

Hoque, Kashyap [29] utilized correlation measures to detect
real-time DDoS attacks at the victim-end. The detection
approach extracts three features during pre-processing of
network traffic, i.e., entropy of source IPs, variation index of
source IPs and packet rate, to create a normal profile. The
authors explained that the proposed system would detect
attacks when the distance between normal and live traffic was
more than the threshold value. The study used three datasets:
CAIDA, TUIDS and DARPA.

Liao, Li [30] utilized request interval sequences and request
frequency sequences to develop a detection method based on
user access frequencies. According to the authors, time
interval for authentic user will be longer when visiting
interesting pages. However, time interval for DDoS is much
shorter. The studies utilized ClarkNet HTTP and Experiment
Dataset.

A client will deliver several GET header requests to a web
server during the transaction of an HTTP GET request. The
GET headers contain several components such as user-agent,
accept-language, connection status, query, accept charset and
any related header available from the client. Most of the
HTTP DDoS attack detection approaches proposed in the
literature exhibited minimal inspection of these components
during the operation of GET requests. DDoS attacks at the
application layer deliver incorrect GET headers and provide
false GET header values to mimic authentic requests, in order
to conceal their activity. Additionally, the use of automated
tools to generate a large amount of requests is one of the
minimal approaches to detection in prior studies. It is
proposed here that inspection of GET header components and
browser features will provide fast detection, i.e., before the
attack causes a web server to become unresponsive due to
enormous amounts of GET requests.

4. EXPERIMENTAL ENVIRONMENT FOR DATASET
PREPARATION

This section explains the experimental equipment used to
evaluate the proposed detection method and the self-generated
datasets for the purpose of analysis of HTTP DDoS traffic.
Due to the unavailability of datasets for HTTP DDoS attacks,
this research executed real experiments to self-generate HTTP
DDoS attack datasets to analyze the attack patterns. The
existence of datasets for HTTP DDoS attacks has been

Ghafar A. Jaafar et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1609 - 1620

1612

mentioned in several past studies. The Jazi, Gonzalez [31]
limitation to gain datasets led to all prior studies utilizing
simulation software like NS2 and MATLAB. Existing
datasets for DDoS attacks only capture network layer
information while concealing application layer information
[32]. Jaafar, Abdullah [33] used real HTTP DDoS tools to
predict future HTTP DDoS attack strategy and for input on
recent attack patterns. Past studies adopt obsolete dataset for
validation hence generate the dataset close to actual network
topologies is necessary [34].

The experimental architecture consisted of a web server
running on Windows 2012 R2 while the client and attacker
machines were run as virtual machines. The attacker’s
operating system was Ubuntu while the authentic client used
Windows 8. A simple HTML page was designed and run as
HTTP protocol for the genuine client to access and for the
attacker to launch the attack against. Four attack scripts were
then selected to launch attacks against the web server. The
tools used to launch the HTTP DDoS attacks were publicly
available. Table 1 provides a summary.

Table 1: Experiment Components
Web

Server
Client /
Attack

Machine

Attack
Scripts

Attack
Duration

Target
URL

Intel(R)
Core
(TM)
i7-6700
CPU @
3.40GHz,

8GB
Memory

Intel(R)
Core
(TM)
i7-3770
CPU @
3.40GHz

12GB /
8GB
Memory

Golden
Eye.py

5 Minutes

http://lab
.com.my
 Blackho

rizon.py
ChiHul
k.py
HOIC.e
xe

5. TRAFFIC ANALYSIS AND FEATURE
EXTRACTION

An analysis of HTTP DDoS attack traffic was conducted
utilizing four real DDoS tools executed at the application
layer. This analysis mainly focused on GET header
components, with each tool being launched separately to
acquire traffic patterns. DDoS attacks launched at the
application layer are able to create a large number of GET
requests with the help of efficient attack scripts and a minimal
number of resources [13, 14]. The attack duration was
specified as five minutes. Figure 1 provides a graphical view
of the attack analysis architecture.

Figure 1: Analysis Environment

An HTTP DDoS attack has the ability to mimic human
requests. Due to this characteristic, a number of attack
strategies were utilized to mimic user access patterns.
Nonetheless, for DDoS flooding attacks at the application
layer, the high-frequency access pattern was equal for all
attack scripts. To overwhelm web server resources
immediately, the attack must be sent in high frequency.
Although attacks of 5-minute duration were launched against
the web server, the attack script had the capability to send
large amounts of traffic against the web server. All attack
scripts utilized in this paper generated thousands of requests
for GET requests. A summary of generated GET requests is
shown in Table 2.

Table 2: Total Traffic Generated by HTTP DDoS Attacks
No. Attack script Number of GET

Requests
1. ChiHulk.py 88,769
2. Golden Eye.py 21,257
3. Blackhorizon.py 23,974
4. HOIC.exe 97,332

6. HTTP COMMANDS ANALYSIS

Traffic analysis of web applications requires several
commands to observe communications between the client and
the web server. A type of software known as Wireshark
provides many commands to analyze HTTP GET headers. To
facilitate the analysis process, this research outlined several
commands required to execute to examine DDoS traffic
patterns at the application layer. Table 3 presents the
commands.

Ghafar A. Jaafar et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1609 - 1620

1613

Table 3: Analysis Commands
No Command Details
1. http Shows protocol HTTP only
2. http.request Displays HTTP GET

request
3. http.user_agent Displays user agent in GET

request
4. http.referrer Displays HTTP referrer in

GET request
5. http.request.uri.query Displays HTTP query in

GET request
9. http.connection Shows HTTP Status in GET

request

7. DATASET ANALYSIS RESULTS

The analysis conducted on all attack scripts found that a
variety of user-agents were employed, which showed that a
web server was accessible from a different machine without it
observing the source IP address of the GET request. The
attack traffic also generated query strings that could not be
understood by humans, with a combination of upper-case
letters, lower case letters and special characters. In addition,
the source of the HTTP referral came from a valid resource
with a combination of queries that consisted of numbers and
characters. Table 4 presents the attack logs from the HTTP
GET requests.

Table 4: Attack Logs
User Agent

String
Request Query HTTP

Referrer
Mozilla/4.0
(compatible;
MSIE 8.0;
Windows NT
5.2; Win64;
x64;
Trident/4.0)

KEAWOCO=Z
FSUSO

http://filehippo.
com/search?q=\
221y\203\231\2
13{\214\217\22
2\215\r\n

Mozilla/5.0
(Windows; U;
MSIE 7.0;
Windows NT
6.0; en-US)

QJCQABP=MI
GMQXRML

http://taginfo.o
penstreetmap.o
rg/search?q=~\
177\235z\227\2
36\r\n

Mozilla/5.0
(Windows; U;
Windows NT
5.2; en-US;
rv:1.9.1.3)
Gecko/2009082
4 Firefox/3.5.3
(.NET CLR
3.5.30729)

QJCQABP=MI
GMQXRML

http://www.bao
xaydung.com.v
n/news/vn/searc
h&q=\225\211\
224\235|\240\22
7\215\216\r\n

Mozilla/4.0
(compatible;
MSIE 6.1;
Windows XP)

DYH=GFOUW https://steamco
mmunity.com/m
arket/search?q=\
217x\205\203\2

User Agent
String

Request Query HTTP
Referrer

26\235{\r\n
Opera/9.80
(Windows NT
5.2; U; ru)
Presto/2.5.22
Version/10.51

GQHCIZNYO=
ZHILUY

https://www.np
mjs.com/search
?q=\212\205\20
7x}\220\232\21
7\217\r\n

Mozilla/5.0
(Windows; U;
MSIE 7.0;
Windows NT
6.0; en-US)

\357\277\275\3
57\277\275{\35
7\277\275\177

=\357\277\275\
357\277\275y

Mozilla/5.0
(Windows; U;
Windows NT
5.1; en-US)
AppleWebKit/5
32.1 (KHTML,
like Gecko)
Chrome/4.0.219
.6 Safari/532.1

\357\277\275\3
57\277\275\357

\277\275
=\357\277\275\
357\277\275\35
7\277\275

Mozilla/5.0
(Windows; U;
Windows NT
6.1; en-US;
rv:1.9.1.1)
Gecko/2009071
8 Firefox/3.5.1

\357\277\275\3
57\277\275{\35
7\277\275\177

=\357\277\275\
357\277\275y

Detailed analysis found that the DDoS attacks launched at the
application layer presented inconsistent GET headers, where
some of the GET headers were missing during the transaction
of the GET requests. According to [35], common GET
headers utilized are Host, Connection, Accept-Encoding,
User-Agent, Accept-Language, Accept and Content-Type.
Besides these common headers, GET headers also contain a
Keep-Alive header. Keep-Alive is a component for HTTP
response that indicates attackers accidentally assigning that
header to GET requests, which shows evidence that the HTTP
GET request is malicious. Figure X presents the HTTP logs.
Figure 2 shows Keep-Alive in the GET headers component.

Figure 2: Keep-Alive in GET Header

Ghafar A. Jaafar et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1609 - 1620

1614

Based on the analysis of this research, six components of GET
headers had the potential to be utilized to detect HTTP
flooding attacks occurring at the application layer. Table 5
presents the GET header components and the proposed
detection.

Table 5: GET Header Components
No Proposed

Detection
GET Header
Component

1. Detects existence
of GET headers
for each request
received.

HTTP user agent
HTTP accept
language
HTTP connection
HTTP accept
encoding

2. Detects false and
irrelevant query in
GET request.

HTTP request query

3. Detects irrelevant
URL

HTTP referrer

8. PROPOSED DETECTION ALGORITHMS

In this section, the process flows to detect HTTP DDoS
attacks, as well as the components of the proposed detection
system, are given. The detection component comprises of
GET header components, which inspired by past studies [36,
37]. The proposed detection method, called FARGO fast
algorithm to recognize HTTP DDoS attacks, consists of three
detection algorithms and was designed in pairings where an
administrator can choose to utilize GET header inspection,
query inspection or HTTP referrer inspection. FARGO was
designed to be located at the front-end of the web server and
behind a firewall. This design is also known as a victim-end
defense. [15] explained a victim-end defense as detection
placed within a victim border at the front-end of a web server.
Figure 9.1 presents the logical architecture for this detection
strategy. A detailed explanation of the detection process for
each detection algorithm is set out in Sections 8.2 to 8.3.
FARGO was developed using VB.Net programming language
by adapting GET header components. Figure 3 illustrated the
architecture the position of the detection algorithm.

Figure 3: Logical Architecture of Proposed

 Detection Method

8.1 GET HEADER INSPECTION ALGORITHM

Each request received required adherence to GET header
rules. This inspection was performed by the GET header
inspection algorithm. The GET request connection had to
present common GET headers with the same genuine request.
A GET request that successfully passed this inspection was
also required to pass a sub-inspection. The sub-inspection
examined the connection status of either “Keep-Alive”,
“keep-alive” or “close”. If the received GET header had a
status of “close”, the connection was detected as an HTTP
DDoS attack. The use of upper case or lower-case letters for
“Keep-Alive” depends on the web browser. Internet Explorer
and Google Chrome use “Keep-Alive”, while Mozilla Firefox
uses “keep-alive”. All the components inspected by this
algorithm had been tested as components used by authentic
users to browse the content of a web server. Figure 4 presents
the algorithm.

Figure 4: GET Header Inspection Algorithm

8.2 HTTP REQUEST QUERY INSPECTION
ALGORITHM

The use of a query in HTTP GET requests makes a request
much closer to a human request. Furthermore, with the help of
automated tools, the query can be simply generated. Hence, a
query inspection algorithm was introduced to recognize bogus
queries generated by HTTP DDoS attacks. A received GET
request was inspected to assess whether it contained a request
query or not. A GET request had to contain a query with an
upper-case letter, and special characters were rejected. This
strategy was based on user’s behavior when querying

Ghafar A. Jaafar et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1609 - 1620

1615

information on a web server where it was noted that users
seldom included upper case letters or other characters. They
used lower case letters such as “a”, “b”, or “c” to “z”. The
query also had to be short and not longer than four letters.
DDoS attacks try to mimic human language and generate
words that can be understood by humans, but that situation
was not relevant here as the algorithm used compared the
query received with a string database. The string database
contained a list of keywords that related to a web server. A
GET request was marked as genuine by this algorithm if it
passed all inspections or did not contain a query in the GET
request. Figure 5 displays the algorithm.

Figure 5: Request Query Inspection Algorithm

8.3 HTTP REFERRER INSPECTION ALGORITHM

HTTP DDoS attacks have the ability to mimic human access.
Hence, an attacker makes use of HTTP referrals to make a
GET request more genuine and appear to come from a human
access pattern. The HTTP referrer inspection algorithm
scrutinized HTTP referrals in each GET header to inspect
their relevancy. For example, a university website should
have links related to the website such as from search engines
like Google or any related education site. If the referral
contains a link from an online shopping website, the
connection is suspicious. When a value of HTTP referral is
referred to the URL, it shows the previous website address of
the current website being accessed [38]. Figure 6 presents the
algorithm.

Figure 6: HTTP Referrer Inspection Algorithm

9. EVALUATION ARCHITECTURE

This section describes the experiments conducted and the
performance metrics used to evaluate the proposed approach.
All proposed algorithms were tested before being compared.
Test results showed that DDoS attacks could be fully detected
by using the proposed algorithms. They also showed that
utilizing GET header components and strategies to recognize
the attacks worked as expected. However, a comparison with
past studies showed a detection performance drop. The
researchers believe that the performance drop was due to the
huge number of requests generated by the DDoS attacks,
which made the detection device unable to handle such
requests. The comparison utilized real HTTP DDoS tools
such as HULK, GoldenEye and HOIC, which were also used
by prior studies to evaluate their proposed detection methods.
Genuine HTTP GET requests and HTTP DDoS attacks were
executed simultaneously. The measurement unit to evaluate
detection performance utilized a confusion matrix to observe
true positives and false positives. Figure 7 shows the physical
detection architecture for evaluation, while Table 6 presents
the confusion matrix.

Figure 7: Experiment Architecture

Ghafar A. Jaafar et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1609 - 1620

1616

 Table 6: Confusion Matrix

10. RESULTS AND DISCUSSION

The detection performance shown by the FARGO fast
algorithm method displayed expected performance where all
detection matrices provided 100% detection for true positive,
true negative, precision, false positive, false negative and
accuracy. The results showed that inspection of GET headers
to recognize HTTP DDoS attacks in real time was
successfully achieved. The GET header inspection algorithm
ensured that genuine components must appear during HTTP
transactions and failure to present the components would
result in detection of an HTTP DDoS attack. The results also
showed that the first algorithm had the capability to
differentiate between complete and incomplete GET header
requests performed either by an attacker or an authentic user.
Figure 8 shows the performance graph for Algorithm 1.

Figure 8: Detection Performance of GET Header Inspection

During HTTP GET request transaction a web server will be
received GET header from client to inform the identity of the
source request. However, during the occurrence of HTTP
DDoS, the pattern is absolutely differed, which make FARGO
reach 100% detection for matrix measured. Although HTTP
DDoS had an ability to manipulate GET header components
to look genuine, part of the components not able to be
manipulated by the attacker such as Accept-Language. Gou,

Bai [35] explained an authentic GET request deliver complete
components. Figure 9 illustrates genuine GET header
component.

Figure 9: Genuine GET Header Component

The outcomes from the request query inspection algorithm,
when checking against GET header requests, either contained
a request query or were empty. The outputs from this
algorithm signified that false GET header requests were able
to be distinguished satisfactorily. The outputs also provided
clear indicators to recognize bogus queries sent by HTTP
DDoS attacks to mimic human requests. The achievement of
these results also showed that extraction of request queries
from received GET headers worked smoothly in real time.
Figure 10 shows the performance graph for Algorithm 2.

Figure 10: Detection Performance - Query Inspection

Results at section 7.0 indicate HTTP DDoS delivery
unreadable format for request query in HTTP GET request.
Human query is readable, which contradict with the query
patterns deliver by HTTP DDoS. HTTP DDoS generate false
query to emulate authentic request to conceal their activity to
make a web server overwhelmed with plenty of requests.
Furthermore, there is no mechanism to detect HTTP DDoS
through request query. FARGO performs inspection against
the request query to determine the relevancy of query in GET
request, which makes the detection matrix reach 100%
detection. A web server adopts in this research hosted a web

Detection Matrix Description
True Positive (TP) Number of attacks

correctly classified
as attacks

False Positive (FP) Number of normal
traffic incorrectly
recognized as
attacks

Confusion Matrix Calculation Formula
True Positive Rate TP / (TP + FN)
False Positive Rate FP / (FP + TN)

Ghafar A. Jaafar et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1609 - 1620

1617

page that has been design not to accept query. However,
results received at section 8.0 indicate false query received by
a web server which a sign of HTTP DDoS has been occurred.
The performance of the HTTP referrer detection algorithm
also indicated a positive output. Results gained from this
algorithm showed that irrelevant HTTP referrers were able to
be recognized as expected. Figure 11 shows the performance
graph for Algorithm 3.

Figure 11: Detection Performance - HTTP Referrer

Inspection

HTTP referrer refer to past web site address accessible by
users to browse the current web page. Occurrence of HTTP
DDoS attack shows at section 8.0 the attack capable to mimic
valid URL of past web page. This indicates detection of HTTP
DDoS become difficult due to its ability to mimic authentic
GET request as the GET header component is appeared with
correct value assign to GET header components. 100%
detection gained by FARGO due to inspection against HTTP
referral value to check either the value of HTTP referrer is
relevant to be referral of the current page accessed. Real
attack was launched against test web site as explained at
section 4.0 and existence of not related URL as referrer proof
that HTTP DDoS utilize HTTP referrer in HTTP GET request
to make a request look genuine. Examine the existence of the
component will not work as the component is not consistently
presented during GET request. The header is not presented
when refer to local request [39].

11. COMPARISON WITH PAST STUDIES

Comparison with past studies to indicate an improvement
makes by proposed detection named as FARGO to detect
HTTP DDoS. Comparison was done by using actual HTTP
DDoS attack script which same used by prior studies.

11.1 COMPARISON WITH TIMES SERIES
PREDICTION MODEL

Comparison with past studies disclosed that the proposed
detection method was still able to maintain its performance
under certain specified circumstances. A comparison was
carried out against the Times Series Prediction Model of [40],
utilizing the HOIC DDoS attack tool (which was also used by
that study) to evaluate their proposed detection method. The
FARGO detection algorithms showed an improved result of
11.30% for the true positive rate and an 8.90% enhancement
for the false positive rate. The HOIC is a real HTTP DDoS
attack tool and delivers a minimum number of GET requests.
Due to this type of delivery, the proposed algorithm was able
to distinguish whether the requests came from a DDoS attack
or from authentic traffic.

The FARGO detection algorithms also performed inspections
of common GET headers delivered by a requestor to a web
server. Incomplete information during a transaction of a GET
request resulted in detection of an HTTP DDoS attack, which
meant that the FARGO detection algorithms could fully
recognize the attack. The achievement of this result showed
that DDoS attacks at the application layer could be detected
with high true positives if the attack provides minimal
information in the GET request, as genuine traffic will
provide more information during the transaction between
client and web server. Figure 12 indicate the detection
performance.

Figure 12: Comparison with the Time

Series Prediction Model

11.2 COMPARISON WITH LOGISTIC REGRESSION
ANALYSIS OF INFORMATION ENTROPY

A final comparison using logistic regression analysis of
information entropy produced expected results with
improvements of 1.16% for true positive rates and 1.70% for
false positive rates. The true positive rate showed that the
proposed detection method correctly recognized bogus traffic,

Ghafar A. Jaafar et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1609 - 1620

1618

which caused the proposed detection method to acquire
99.95%. The false positive rate indicated no missed
classifications for authentic traffic detected as false traffic,
which led to a result of 0.00% for the false positive rate.

Nevertheless, there were instances of attack traffic being
recognized as genuine, which caused the detection rate for
true positives to drop. The performance drop was due to
several possible reasons, such as missed detection due to the
high amount of GET requests generated by the attack and
traffic pattern similarities with genuine requests, which made
the proposed detection method unable to differentiate between
authentic and forged requests. Table 7 presents the
comparison results while Figure 13 provide graphical views
of the detection performance.

Table 7: Comparison with Past Studies
No Detection

Technique
True Positive

Rate
False

Positive Rate
1. Times Series

Prediction Model
[40]

88.70% 8.90%

2. FARGO
(Proposed
Detection
Method)

100.00% 0.00%

3. Improvement 11.30% 8.90
1. Logistic

Regression [37]
98.79% 1.70%

2. FARGO
(Proposed
Detection
Method)

99.95% 0.00%

3. Improvement 1.16% 1.70%

Figure 13: Comparison with Logistic Regression

A result at section 11.1 and comparison with Times Series
Prediction Model shows the proposed detection able to
maintain it performance. However, comparison with Logistic
Regression detection technique indicates a performance drop
due to several reasons such as: This research adopts real
hardware with actual attack scripts to perform experiment and
dealing with real atmosphere of HTTP DDoS. Hence
limitation against devices is one of the main factors the
performance was dropped. Each device had a specific
workload can handle. Furthermore, there are no such devices
can handle the infinity workload. Higher speed GET request
generate by HTTP DDoS is the second reason why the
detection performance drop. Besides that, the higher speed is
continuously generating which make the workload of the
detection device gradually increase until overwhelmed by
massive GET request. Apart from that the proposed detection
requires time to scrutinize each received GET request to
determine the source request is authentic of comes from
malicious.

Appearance of HTTP version 2 to provide enhancement
against HTTP version 1.1. However, HTTP 2 still utilize the
same GET header components utilize by HTTP 1.1. Header
compression introduce by HTTP 2 reduce number of bytes
sending by each request. Ludin and Garza [41] explained only
unique byte are sending to a web server unlike HTTP 1.1 the
entire bytes will be resent. Table 8 illustrate the explanation
where second request only sent the unique byte, in this case
the unique byte is only 10 bytes.

Table 8: HTTP 2 GET headers
Request 1 # Total

Bytes 220
Request 2 # Total

Byte 230
: Authority:
www.akamai.com
: Method: GET
: Path:/
: scheme: https
accept:
text/html,application/x
html+xml
accept-anguange:en-U
S,en;q=0.8
cookie:last_page=286
A7F3DE
upgrade-insecure-requ
est:1
user-agent:mozilla
http2

: Authority:
www.akamai.com
: Method: GET
: Path:/style.css
: scheme: https
accept:
text/html,application/x
html+xml
accept-languange:en-
US,en;q=0.8
cookie:last_page=*39
8AB8E8F
upgrade-insecure-requ
est:1
user-agent:mozilla
http2

 * The bold is the different

Ghafar A. Jaafar et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1609 - 1620

1619

12. CONCLUSION

All proposed algorithms showed their ability to detect false
GET requests instituted by HTTP DDoS attacks and the
achievement of this target illustrated that the detection
strategy of utilizing GET header components to perform
HTTP DDoS attack detection worked as expected. Real
experiments were conducted to indicate that the proposed
detection method had the potential to be used in production
network environments and revealed that the proposed method
worked not only to reach academic targets but also to provide
supplementary information in the detection of such attacks.

To ensure that the proposed detection method has the ability
to work in a production network environment, a variety of
DDoS attack strategies should be further tested. Detection
times and the workloads that can be supported by the
proposed detection method are components that need to be
tested in the future. HTTP DDoS attacks launched through a
proxy and behind NAT should be another research area. In
addition, the use of other platforms to execute HTTP DDoS
attacks, such as IoT devices, should be examined. Further, the
proposed method could have the potential to detect DDoS
attacks classified as low rate and flash crowd with
enhancements of several sections in the proposed detection
algorithms. The proposed detection is possible to work with
HTTP 2 as GET the header components to form detection in
this research is still utilized by HTTP 2. However, DDoS
attack occurs at the application layer employ HTTP 2 are still
uncertain. Moreover, HTTP 1.1 is still widely used, and
require time to entirely move to HTTP 2.

ACKNOWLEDGMENT

This research paper was compiled at University Technology
Malaysia (UTM).

REFERENCES

1. Zolotukhin, M., et al. Increasing web service

availability by detecting application-layer DDoS
attacks in encrypted traffic. in Telecommunications
(ICT), 2016 23rd International Conference on (pp.
1-6). IEEE. 2016. IEEE.
https://doi.org/10.1109/ICT.2016.7500408

2. Beitollahi, H. and G. Deconinck, Analyzing
well-known countermeasures against distributed
denial of service attacks. Computer
Communications, 2012. 35(11): p. 1312-1332.
https://doi.org/10.1016/j.comcom.2012.04.008

3. Subramanian, K., P. Gunasekaran, and M. Selvaraj,
Two Layer Defending Mechanism against DDoS
Attacks. International Arab Journal of Information
Technology (IAJIT), 2015. 12(4).

4. Yuan, X., C. Li, and X. Li. DeepDefense: Identifying
DDoS Attack via Deep Learning. in Smart
Computing (SMARTCOMP), 2017 IEEE
International Conference on. 2017. IEEE.
https://doi.org/10.1109/SMARTCOMP.2017.7946998

5. Singh, K., P. Singh, and K. Kumar, Application layer
HTTP-GET flood DDoS attacks: Research
landscape and challenges. Computers & Security,
2017. 65: p. 344-372.
https://doi.org/10.1016/j.cose.2016.10.005

6. Ni, T., et al., Real-Time Detection of
Application-Layer DDoS Attack Using Time Series
Analysis. Journal of Control Science and
Engineering, 2013. 2013: p. 1-6.
https://doi.org/10.1155/2013/821315

7. Ziyad R. Al Ashhab, et al., Detection of HTTP
Flooding DDoS Attack using Hadoop with
MapReduce : A Survey. International Journal of
Advanced Trends in Computer Science and
Engineering, 2019. Volume 8, No.1, January –
February 2019: p. 1-7.

8. Aamir, M. and S.M.A. Zaidi, Clustering based
semi-supervised machine learning for DDoS attack
classification. Journal of King Saud University -
Computer and Information Sciences, 2019.
https://doi.org/10.1016/j.jksuci.2019.02.003

9. Kolias, C., et al., DDoS in the IoT: Mirai and Other
Botnets. Computer, 2017. 50(7): p. 80-84.
https://doi.org/10.1109/MC.2017.201

10. Amin Salih Mohammed, et al., Analysis of Mobile IP
Wireless Networks in 5G. International Journal of
Advanced Trends in Computer Science and
Engineering, 2019. Volume 8, No.1.2, 2019: p. 1-4.

11. Hameed, S. and U. Ali, HADEC: Hadoop-based live
DDoS detection framework. EURASIP Journal on
Information Security, 2018. 2018(1): p. 11.
https://doi.org/10.1186/s13635-018-0081-z

12. Cheng, J., et al., Adaptive DDoS Attack Detection
Method Based on Multiple-Kernel Learning.
Security and Communication Networks, 2018. 2018:
p. 1-19.
https://doi.org/10.1155/2018/5198685

13. Rahman, R.u., D.S. Tomar, and J. A.V, Application
Layer DDOS Attack Detection Using Hybrid
Machine Learning Approach. International Journal
of Security and Its Applications, 2017. 11(4): p.
85-96.
https://doi.org/10.14257/ijsia.2017.11.4.07

14. Beitollahi, H. and G. Deconinck, ConnectionScore:
a statistical technique to resist application-layer
DDoS attacks. Journal of Ambient Intelligence and
Humanized Computing, 2013. 5(3): p. 425-442.
https://doi.org/10.1007/s12652-013-0196-5

15. Hoque, N., D.K. Bhattacharyya, and J.K. Kalita,
Botnet in DDoS Attacks: Trends and Challenges.
IEEE Communications Surveys & Tutorials, 2015.
17(4): p. 2242-2270.

16. Zargar, S.T., J. Joshi, and D. Tipper, (2013-Q1) A
Survey of Defense Mechanisms Against Distributed
Denial of Service (DDoS) Flooding Attacks. IEEE
communications surveys & tutorials, 2013. 15(4): p.
2046-2069.

17. Ranjan, S., et al., DDoS-Shield: DDoS-Resilient
Scheduling to Counter Application Layer Attacks.

Ghafar A. Jaafar et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1609 - 1620

1620

IEEE/ACM Transactions on Networking, 2009.
17(1): p. 26-39.

18. Yadav, S. and S. Subramanian. Detection of
Application Layer DDoS attack by feature learning
using Stacked AutoEncoder. in Computational
Techniques in Information and Communication
Technologies (ICCTICT), 2016 International
Conference on. 2016. IEEE.

19. Kumar, V. and K. Kumar. Classification of DDoS
attack tools and its handling techniques and strategy
at application layer. in Advances in Computing,
Communication, & Automation (ICACCA)(Fall),
International Conference on (pp. 1-6). 2016. IEEE.

20. Prasad, K.M., A.R.M. Reddy, and K.V. Rao,
BARTD: Bio-inspired anomaly based real time
detection of under rated App-DDoS attack on web.
Journal of King Saud University - Computer and
Information Sciences, 2017.

21. Rai, A. and R.K. Challa, Survey on Recent DDoS
Mitigation Techniques and Comparative Analysis.
2016: p. 96-101.
https://doi.org/10.1109/CICT.2016.27

22. Idhammad, M., K. Afdel, and M. Belouch, Detection
System of HTTP DDoS Attacks in a Cloud
Environment Based on Information Theoretic
Entropy and Random Forest. Security and
Communication Networks, 2018. 2018: p. 1-13.

23. Behal, S., K. Kumar, and M. Sachdeva, D-FAC: A
novel ϕ -Divergence based distributed DDoS defense
system. Journal of King Saud University - Computer
and Information Sciences, 2018.
https://doi.org/10.1016/j.jksuci.2018.03.005

24. Singh, K., P. Singh, and K. Kumar, User behavior
analytics-based classification of application layer
HTTP-GET flood attacks. Journal of Network and
Computer Applications, 2018. 112: p. 97-114.

25. Zhao, Y., et al., A Classification Detection Algorithm
Based on Joint Entropy Vector against
Application-Layer DDoS Attack. Security and
Communication Networks, 2018. 2018: p. 1-8.

26. Sreeram, I. and V.P.K. Vuppala, HTTP flood attack
detection in application layer using machine
learning metrics and bio inspired bat algorithm.
Applied Computing and Informatics, 2017.

27. Aborujilah, A. and S. Musa, Cloud-Based DDoS
HTTP Attack Detection Using Covariance Matrix
Approach. Journal of Computer Networks and
Communications, 2017. 2017: p. 1-8.

28. Singh, K.J. and T. De, MLP-GA based algorithm to
detect application layer DDoS attack. Journal of
Information Security and Applications, 2017. 36: p.
145-153.

29. Hoque, N., H. Kashyap, and D. Bhattacharyya,
Real-time DDoS attack detection using FPGA.
Computer Communications, 2017. 110: p. 48-58.

30. Liao, Q., et al., Application layer DDoS attack
detection using cluster with label based on sparse
vector decomposition and rhythm matching. Security
and Communication Networks, 2015. 8(17): p.
3111-3120.

31. Jazi, H.H., et al., Detecting HTTP-based application
layer DoS attacks on web servers in the presence of
sampling. Computer Networks, 2017. 121: p. 25-36.
https://doi.org/10.1016/j.comnet.2017.03.018

32. Behal, S. and K. Kumar, Trends in Validation of
DDoS Research, in International Conference on
Computational Modeling and Security (CMS 2016).
2016, Elsevier. p. 7-15.

33. Jaafar, G.A., S.M. Abdullah, and S. Ismail, Review of
Recent Detection Methods for HTTP DDoS Attack.
Journal of Computer Networks and
Communications, 2019. 2019: p. 1-10.

34. Behal, S. and K. Kumar, Detection of DDoS attacks
and flash events using novel information theory
metrics. Computer Networks, 2017. 116: p. 96-110.
https://doi.org/10.1016/j.comnet.2017.02.015

35. Gou, G., et al., Discovering abnormal behaviors via
HTTP header fields measurement. Concurrency and
Computation: Practice and Experience, 2017.
29(20): p. e3926.

36. Saleh, M.A. and A. Abdul Manaf, A Novel Protective
Framework for Defeating HTTP-Based Denial of
Service and Distributed Denial of Service Attacks.
ScientificWorldJournal, 2015. 2015: p. 238230.

37. Yadav, S. and S. Selvakumar. Detection of
application layer DDoS attack by modeling user
behavior using logistic regression. in Reliability,
Infocom Technologies and Optimization
(ICRITO)(Trends and Future Directions), 2015 4th
International Conference on. 2015. IEEE.

38. Reid, F., 4 - HTTP: Communicating with Web
Servers, in Network programming in .NET, F. Reid,
Editor. 2004, Digital Press: Burlington. p. 87-130.

39. Fielding, R. and J. Reschke, Hypertext transfer
protocol (HTTP/1.1): Semantics and content. 2014.
https://doi.org/10.17487/rfc7231

40. Wang, Y., et al. A novel approach for countering
application layer DDoS attacks. in 2017 IEEE 2nd
Advanced Information Technology, Electronic and
Automation Control Conference (IAEAC). 2017.
https://doi.org/10.1109/IAEAC.2017.8054326

41. Ludin, S. and J. Garza, Learning HTTP/2: A
Practical Guide for Beginners. 2017: " O'Reilly
Media, Inc.".

