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Abstract. The analytical or exact mathematical formulation of stresses and 
displacements for plate buckling structure become impossible to develop if the 
plate geometry is so complicated. Numerical technique is one another approach to 
solve this problem and it is chosen in this study for plate structure under in-plane 
and out-plane load. The formulation of elastic stiffness matrix (ke) and geometric 
nonlinear stiffness matrix (kg) of the plate structure due to buckling is presented 
and based on virtual displacement principle. The geometric nonlinear stiffness 
matrix (kg) is found function of internal stresses. The direct iteration technique is 
applied to find nodal displacements. Under this technique, the Gauss points 
stresses are initialized as zeros, then the kg matrix is updated, and then a new nodal 
displacement vector is found for the next approximation of internal stresses. 
Iterative process is done until convergence of displacement is satisfied. The 
rectangular plate with one fixed edge supported is used to test the proposed 
nonlinear formulation and procedure. The compressive in-plane load and moment 
is considered and applied for the tested plate. The plate is discretized with 
appropriate number of triangular finite element mesh. It is found that, the 
convergence of displacement is satisfied by using direct iteration technique. The 
load - deflection curve shows nonlinear relationship and approach to critical load. 
This finding shows that the direct iteration method can be accepted for the 
analyzing of plate buckling by considering geometric nonlinear assumption.  

1. Introduction  
Plate is a two-dimensional structure which its thickness is very small compared to other dimensions. It 
can present either flat or curve surface. Plate can serve either as complete structure like slab or as 
structural component. One typical of structural components in engineering structures can be classified 
as plates is that the web of I beam [1]. 

While a plate is subjected to in plane load, initial deformation occurs in-plane directions which 
called in plane displacement. But, increasing the in-plane load leads to changing the behaviour of plate 
from flat state to curved state (transverse deformation). This load must be considered as load buckle 
which make the plate unstable [2]. 

The first mathematical approach of plate problem was done by Euler [1]. He found solution for 
vibration analysis of plate problems. Another impetus to plate vibration research was done by the 
German physicist Chladni who discover various modes of free vibrations. Sophie Germain developed 
a plate differential equation that lacked the warping term. Cauchy and Poisson were first to formulate 
the problem of plate bending on the basis of general equations of theory of elasticity [3]. Also Navier 
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consider the plate thickness in the general plate equation as a function of rigidity, D. He introduces 
governing differential equation of plates subjected to transverse load. He also introduced an exact 
solution for plate problem by using Fourier trigonometric series. 

The first complete and extended theory of thin plate bending was developed by Kirchhoff [1]. His 
very important contribution to plate theory was the introduction of supplementary boundary forces. He 
also contributes to the theory of plate that consider large deflection. On the other hand, Reissner and 
Mindlin introduce theory of plate bending for moderately thick plate. The plastic analysis of plate, a 
well known as yield line theory application was introduced by Johansen, but the material is assumed 
perfectly plastic. 

The numerical methods normally used to analyse plate structure is finite difference method and 
finite element method. Finite difference method is a straightforward to solve governing differential 
equation proposed by Navier. It limitation is just for rectangular shape of plate and limited to linear 
elastic analysis. The finite element method is an advanced numerical technique to analyse plate 
problems. In this technique, the plate is discretized into quadrilateral or triangular elements and can be 
used to analyse the elastic plates, plastic plates or geometric nonlinear plates. 

Generally, there are not many studies carried out about the behaviour of plate under compression 
load to satisfy a good level of safety because any changing of the plate or web (I steel beam) 
conFigureurations lead to the failure. Most of previous studies were presented rely on the plate 
subjected to transverse load [4,5]. Furthermore, if the compression load is present on plate, most of 
studies focus on in-plane displacement due to compression load and ignoring the buckling or 
geometric nonlinear effects [6,7]. 

Newton-Raphson method is the technique normally used in finite element method to perform 
structural analysis for plastic or nonlinear materials. In this technique, the member forces or stresses 
are initializing as zeros or any initial values, then a new member forces and stresses are updated using 
iteration process. The convergence of member forces and stresses are successfully satisfied for one-
dimensional, beam and two-dimensional elasto-plastic structures [8]. 

In the present work, a formulation for nonlinear geometric analysis of plate structure is develop and 
presented. The formulation is derived based on virtual displacement principle. Based on sample of 
plate structure, the analysis is conducted by applying direct iteration technique. The plate structure is 
modelled by finite element mesh, stresses at Gauss points are initialize to zeros, the direct iteration 
technique is applied until convergence of stresses is satisfied. The convergence, by using direct 
iteration technique is studied for a sample plate problem. 

2. Geometric nonlinear formulation  

2.1 Bending strain formulation  
Figure 1 shows a triangular plate element with displacements u1, v1, w1 at node 1, displacements u2, v2, 
w2 at node 2 and displacements u3, v3, w3 at node 3.  
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Figure. 1. Triangular plate element with deformation variables. 

 
 The deflection function, w(x,y), is a assumed a polynomial of the form 

   2 2 3 2 2 3
1 2 3 4 5 6 7 8 9,w x y a a x a y a x a xy a y a x a x y xy a y           Xa  (1) 

where 
2 2 3 2 2 31 x y x xy y x x y xy y   X  

 1 2 3 4 5 6 7 8 9

T
a a a a a a a a aa   

 
The slopes, which are dependent variables to w(x,y) are given as follow 
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Apply boundary conditions, the constants a1, a2, … a9 are found and given as follow 
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1 1 1 2 2 2 3 3 3=
T

x y x y x yw w w       q  

 
Substituting Equation (2) into Equation (1), gives 

  1
,w x y


 XX q       (3) 

 
From Kirchhoff’s plate theory assumption [1], the bending and shear strains can be related to 

deflection as follow 
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Substituting Equation (3) into Equation (4), and re-arrange, it is found that 
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b  Bq        (5) 

where 
1
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Constitutive equation of classical plate material is given by [1] 
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and E is modulus of elasticity, and  is a Poisson ratio of the plate. 

2.2 Axial strain formulation  
The axial strain formulation is derived based on second order effect. The in-plane displacements, 
u(x,y) and v(x,y), are assumed linear functions and given follow: 
 

  1 1 2 2 3 3, uu x y N u N u N u   Nq      (7) 

  1 1 2 2 3 3, = vv x y N v N v N v   Nq      (8) 
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A = Area of triangular element 
 

The axial strains, x
a and y

a, are formulated based on second order effect, as follow 
2
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      (9) 
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      (10) 

 
The axial stresses, a

x  and a
y , are derived by substituting Equation (9) and (10) into equations 

a a
x xE   and a a

y yE  , and then considering Equation (3), (7), (8) for w, u and v, respectively. The 

detail derivation is given as follow: 
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2.3 Formulation of Stiffness Matrix  
Figure. 2 shows a triangular plate element under real forces. Each node has five internal forces, i.e. 
out-plane load P, bending moments Mx and My, and in-plane loads Nx and Ny. The load P and 
moments Mx and My are the forces normally considered in the normal plate bending without buckling. 
 

 
Figure 2. System of real forces. 

 
The stiffness matrix is found by using principle of virtual work for deformable bodies. Under this 

principle, the deformable structure is in equilibrium state under a system of forces if the virtual 
external work done by the real external forces and moments acting through the virtual external 
displacements and rotations is equal to the virtual strain energy stored in the structure. Thus, 
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and  denote virtual term. 
 

Substituting Equation (5), (6), (9) and (10) into Equation (13), gives 
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Substituting Equation (5) into Equation (14) and re-arrange, we found that 
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The first, second and third terms at right-hand side of Equation (15) represent linear terms which 
come from first order bending and axial effects. The last two terms at right-hand side of this equation 
represent nonlinear term which come from second order effect of axial stresses. 
 

Substituting x
a = Eu/x and y

a = Ev/y on linear terms of Equation (15), gives 
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Substituting Equation (7) and (8) into Equation (16) and re-arrange the equation, gives 
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Application of variational calculus to the last two terms in Equation (17), leads 
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Substituting Equation (3) into Equation (18) and cancelled out the virtual displacement vectors at 
left and right hand side of the equation, the expanded form yields 
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

 (19) 

Equation (19) is a proposed equilibrium equation for isotropic plate under buckling. The in-plane 
displacement vectors, qu and qv, are additional variables to normal plate without buckling. The first 
matrix at right-hand side of Equation (19) represent the linear stiffness matrix which is under normal 
plate without buckling. The second matrix at right-hand side of this equation represent the proposed 
nonlinear stiffness matrix of plate under buckling state.  

2.4 Analysis procedure using direct iteration technique  
Once formulations has been setup, the analysis procedure of plate structure considering geometric 
nonlinear analysis is suggested as follow: 

1. Discretize the plate structure into a number of triangular elements. 
2. Calculate ke matrix (Equation (19)) for all elements 
3. Initialize the stresses, x

a and y
a, at every Gauss points equal to zeros. 

4. Calculate kg matrix (Equation (19)) for all elements 
5. Assemble all elements ke and kg matrices to form Ke and Kg matrices, respectively. Then find 

the structure stiffness matrix K. 
6. Solve for the nodal displacement vector, Q, using Q = K-1R, where R = Nodal external force 

vector 
7. Extract the element displacement vector q, qu and qv, from Q for each and every element in 

the structure 
8. For each element, calculate the new stresses, x

a and y
a, at every Gauss points by using 

Equation (11) and (12). 
9. Check the convergence of x

a and y
a. If not converge, repeat steps 4 through 8 as many times 

as possible until convergence. 
A schematic representation of the above procedure is shown in Figure. 3 for a one degree of 

freedom structure. In performing the above procedure, the complete load-deflection response of the 
plate can be traced, and the stability limit point is obtained as the peak point of this load-deflection 
curve. 
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Figure 3. Direct iteration technique for instability plate analysis. 

3. Implementation of proposed formulation to plate sample 

3.1 Analysis of plate sample  
The proposed formulation given in Equation (19) and the convergence of direct iteration technique 
applied to plate problem are tested to sample plate structure shown in Figure. 4. The plate is meshing 
by 36 triangular elements with 28 nodes. The bottom edge of the plate is fixed and the left and right 
edges are restrained in x direction. The load variable, P, is applied to the plate and the constant 
moment, Mx, is applied at top edge of the plate to initiate the instability. The modulus of elasticity, E, 
Poisson’s ratio, , and thickness of the plate are 200 kN/mm2, 0.2 and 8 mm, respectively. 

 

Figure 4. Plate structure with triangular element meshing. 
 
 The analysis is done iteratively for eight load levels, i.e. P = 1.92 kN, 3.84 kN, 7.68 kN, 15.36 kN, 
17 kN, 20 kN, 22 kN and 23 kN using the procedure given in Section 2.4 and with the aid of 
MATLAB software [9]. The first step is to introduce four Gauss points coordinates in each triangular 
element. Then, for each element, find ke matrix by using the first part formula at right-hand side of 
Equation (19). We use Gaussian quadrature formula with four Gauss points to evaluate all integrations 
in ke matrix given in Equation (19) [9]. The kg matrix in Equation (19) is evaluated by initiating the 
stresses, x

a and y
a, at every Gauss points equal to zero, then evaluated numerically for all 
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integrations by using four points Gaussian quadrature formula. Once all ke and kg were found for all 
elements, standard assembly process of ke and kg matrices is done. Then, the nodal displacements are 
found. By using Equation (11) and (12), the values of x

a and y
a at every Gauss points are evaluated. 

The new value of kg matrix is evaluated and updated again for each element and the process of 
analysis (previously explained) is repeated until all x

a and y
a converge to a certain value. 

3.2 Results and discussion  
Table 1 shows the deflections at node 25 for several load levels and a few iteration steps. It is found 
that, when the load levels less or equal to 7.68 kN, the convergence of deflection is achieved at second 
iteration. For load levels between 15.36 kN and 20 kN, the convergence of deflections is achieved at 
fourth iterations. For load levels 22 kN and 23 kN, the convergence is achieved at iteration 6 and 10, 
respectively. This finding shows that the direct iteration technique with the proposed nonlinear 
formulation given in Equation (19) can be used to analyse the plate instability structure. 
 

Table 1. Deflections at node 25 for different load levels and iteration steps. 

Load, P 
(kN) 

Deflections (mm) 
Iteration 2 Iteration 4 Iteration 6 Iteration 10 Iteration 12 

1.92 0.0065 0.0065 0.0065 0.0065 0.0065 
3.84 0.0592 0.0592 0.0592 0.0592 0.0592 
7.68 0.0726 0.0726 0.0726 0.0726 0.0726 
15.36 0.1313 0.1309 0.1309 0.1309 0.1309 

17 0.1584 0.1576 0.1576 0.1576 0.1576 
20 0.2536 0.2483 0.2483 0.2483 0.2483 
22 0.4215 0.3887 0.3878 0.3878 0.3878 
23 0.629 0.529 0.515 0.5128 0.5128 

 
 It is also found that, when the load level is greater than 23 kN, such as 24 kN, the convergence of 
deflection is not satisfactory. This result show that the 23 kN is an estimated critical load for the 
sample plate chosen and the convergence of deflection is cannot achieve when the load level is greater 
than the critical load. 
 Based on the results given in Table 1, the load, P versus deflection is plotted and shown in Figure. 
5. From this Figureure, the shape of load-deflection graph is nonlinear and the load converge to limit 
load or critical load, Pcr. The slope of the graph decreased and show that the deflection increment or 
instability of the plate is increased at higher load level. The deformed shape of the plate or geometric 
effect will play important role to reduce the stiffness of the plate. Based on these results, predictions 
using equilibrium equation given in Equation (19) and considering direct iteration technique in 
analysis of plate structure are found satisfactory. 
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Figure 5. Nonlinear P-deflection graph. 

4. Concluding remarks  
To conclude this paper, the following remarks are noted. 

1. The stiffness matrix for plate structure considering geometric nonlinearity or instability is 
successfully develop and based on the principle of virtual work for deformable bodies. 

2. By using direct iteration technique, the convergence of iteration process at any load steps for 
plate structure considering geometric nonlinearity is successfully achieved. 

3. The nonlinearity of load-deflection graph was found and the predicted loads converge to 
critical load, Pcr. 
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