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Abstract

Informed heuristics are essential for the success of heuristic
search algorithms. But, it is difficult to develop a new heuris-
tic which is informed on various tasks. Instead, we propose
a framework that trains a neural network as heuristic for the
tasks it is supposed to solve.
We present two reinforcement learning approaches to learn
heuristics for fixed state spaces and fixed goals. Our first
approach uses approximate value iteration, our second ap-
proach uses searches to generate training data. We show that
in some domains our approaches outperform previous work,
and we point out potentials for future improvements.

Introduction
A key component in classical planning is heuristic search
(Bonet and Geffner 2001). A search algorithm like A* (Hart,
Nilsson, and Raphael 1968) or greedy best-first search uses
an heuristic as guidance to the goal. The heuristic esti-
mates for every visited state its distance to the goal. The
closer those estimates are to the true goal distance, the
faster we expect the search algorithm to find a solution.
Countless researchers designed heuristics for optimal (e.g.,
Helmert and Domshlak 2009; Helmert et al. 2014; Haslum
et al. 2007) and satisficing (e.g., Hoffmann and Nebel 2001;
Richter and Westphal 2010; Domshlak, Hoffmann, and Katz
2015) planning or invented ways to combine the power of
multiple heuristics (e.g., Röger and Helmert 2010; Seipp
2017).

Instead of designing search algorithms or heuristics in-
dependently of the tasks to solve, another line of research
develops algorithms that can be adapted for different tasks.

For example, offline portfolio algorithms learn a sched-
ule which describes a planner order and a time limit per
planner. To solve a new task, the planners are executed in
their order with their time limits (e.g., Helmert et al. 2011;
Seipp 2018). Online portfolio algorithms learn a mapping
that decides for a given task which planner to use (Sievers
et al. 2019; Ma et al. 2020). Gomoluch et al. (2020) apply
reinforcement learning to learn how to modify a running
search algorithm depending on some statistics. Their algo-
rithm switches among others between best-first search, local
search, random walks.

We also use reinforcement learning, but we do not change
the behavior of the search algorithm. Instead, we learn a
heuristic. Arfaee, Zilles, and Holte (2010) learn to combine
multiple feature heuristics into a new heuristic. Iteratively,
they use the feature heuristics and their learned heuristics
to solve a set of task. From every solved task, the states
along the solution together with their estimates of the fea-
ture heuristics and their estimated goal distance are saved.
These estimates are used to improve the learned heuristic. If
they are not able to solve sufficiently many new task, they
generate training tasks by regressing from the goal. This is
possible, because in their domains regression produce com-
plete assignments and quickly leads to random states.

Agostinelli et al. (2019) learn heuristic functions using re-
inforcement learning with approximate value iteration. They
also generate training states using random walks from the
goal. They evaluate training states by minimizing over the
heuristic estimates of the states’ successors. Like previously,
in their domains regression produces complete states and
random walks quickly lead to random states (especially in
the Rubik’s Cube domain).

Ferber, Helmert, and Hoffmann (2020b) take another
route. They use progression from some seed task to gen-
erate training states. They use an arbitrary heuristic search
algorithm to solve sampled states and every state encoun-
tered along a plan is stored for training. The authors train
their heuristics using supervised learning. Contrary to the
previous two approaches they evaluate their technique on
domains for which regression does not produce complete as-
signments.

Like Agostinelli et al. (2019) and Ferber, Helmert, and
Hoffmann (2020b), we learn heuristics for fixed state spaces
and fixed goals. We present two approaches that use rein-
forcement learning to train heuristics on tasks of the Inter-
national Planning Competition (IPC). On some domains we
already outperform previous approaches, and we identified
important future steps that will further improve our perfor-
mance. The paper is organized as follows. First, we provide
some background on planning and reinforcement learning.
Next, we present how we train our heuristics. Then, we eval-
uate our approach on IPC tasks. And finally, we resume our
results and present our next steps.



Background
We work on planning tasks in Finite-Domain Representa-
tion (FDR) (Bäckström and Nebel 1995). An FDR task Π
is defined as a quad-tuple 〈V,A, I,G〉. V is a set of finite-
domain variables. Every variable v has a domain dom(v)
that contains all values assignable to it. A state assigns to
every variable exactly one value. A fact is a 〈var , val〉 pair
with val ∈ dom(var). Two facts can be mutually exclusive
(mutex), i.e. they cannot be part of the same state. A is a
set of actions. Every action a ∈ A is defined as 〈prea , effa〉
and has a cost associated. Both, prea and effa are partial
assignments to V . An action a is applicable in a state s if
prea ⊆ s. Applying action a in state s leads to a new state
s′ with s′ = {v 7→ effa [v] | v ∈ V and v ∈ effa} ∪ {v 7→
s[v] | v ∈ V and v 6∈ effa}. This is also called progression.
I is the initial state and G is a partial assignment which de-
scribes the goal of the task. A state s is a goal state if s ⊆ G.
A plan is a sequence of actions 〈a1, a2, . . . , an〉 such that
applying one action after another leads from the initial state
to a goal state.

In this paper we do not only use progression, but also re-
gression. A partial state p is regressable with an action a if,
firstly, effa ∩ p 6= ∅, secondly, there is no v ∈ V such that
v ∈ effa and v ∈ p and effa [v] 6= p[v], and thirdly, there is
no v ∈ V such that v 6∈ effa and v ∈ prea and v ∈ p and
prea [v] 6= p[v]. The result of regressing the partial state p
with the action a is defined as {var 7→ val | var 7→ val ∈
p and var 6∈ effa} ∪ {var 7→ val | var 7→ val ∈ prea}
(Alcázar et al. 2013).

Sometimes planning and machine learning use the same
notations, but with different meanings. We annotate vari-
ables with ˜, if we use their machine learning meaning.
We use reinforcement learning to learn a value function
Ṽ : S 7→ R that assigns every state a value. One technique
to learn this function is approximate value iteration (AVI)
(Bertsekas and Tsitsiklis 1996). We start with an arbitrary
function Ṽ0 and iteratively improve it using Equation 1.

Ṽn+1 = ÃT Ṽn (1)
T denotes the Bellman operator and is defined in Equation 2.

T (s) = max
a

[
Ra

s + δ
∑
s′∈S
Pa
s,s′ Ṽ (s′)

]
(2)

For a given state the Bellman operator provides an esti-
mation of the expected total reward given the current value
function Ṽi. We use the simplification of Agostinelli et al.
(2019) shown in Equation 3. Our rewardsR depend only on
the action and can be replaced by the negated action cost.
We do not need a weighted sum over possible successors,
because our actions produce exactly one successor. We set
δ to 1 such that the value function learns to estimate the re-
maining cost to the goal. All our rewards are negative (as-
suming planning tasks with non-negative costs). Therefore,
we change the maximization to a minimization of negative
rewards.

T (s) = min
a

[
cost(a) + Ṽ (s′)

]
(3)

Ã represents an approximation method that incorporates
the sampled states and their values estimated by T and re-
turns a new value function.

Training
We use reinforcement learning to train value functions that
approximate the optimal heuristic for an FDR task Π. As ap-
proximation method Ã we use supervised learning. Our net-
works are residual network (He et al. 2016) with two dense
layers followed by one residual block containing two dense
layers and a single output neuron. Each dense layer contains
250 neurons. All neurons use the ReLU activation function.
The inputs of our networks are states represented as fixed
size Boolean vectors. We associate every entry of the input
vector with a fact of Π. For all facts that are part of the input
state we set their vector entries to 1. All other entries are set
to 0. We train the network using the mean squared error as
loss function and the adam optimizer with its default param-
eters (Kingma and Ba 2015). To prevent performance insta-
bilities during training, we update the model for the sample
generation after at least 50 epochs have passed and the mean
squared error is below 0.1.

Because generating a training batch of 250 samples takes
longer than training on that batch, we use experience replay.
The data generating process pushes all samples into a first-
in-first-out buffer with a maximum size of 25,000. In each
training epoch we choose uniformly 250 samples from the
buffer. This allows us to train multiple times on the same -
recent - samples and to decouple the training from the data
generation.

We run the data generation in four independent processes.
Algorithm 1 provides an overview of them. Each process
calls GENERATE DATA and samples 〈state, value〉 pairs
until we terminate it. First the process checks if a new
value function is available. If yes, it loads the new value
function. Then, the process samples a new state from the
state space of Π using either SAMPLE PROGRESSION or
SAMPLE REGRESSION. It evaluates the state using either
EVALUATE LOOKAHEAD or EVALUATE SEARCH. EVAL-
UATE SEARCH can return multiple 〈state, value〉 pairs for
each sampled state. Each 〈state, value〉 pair will be stored
for training. Depending on some conditions, the process up-
dates the parameters for the sampling methods.

SAMPLE PROGRESSION starts at the initial state of the
task Π, and performs a random walk for walk length steps
using progression. At each step it chooses a random appli-
cable action which does not undo the previous action. SAM-
PLE REGRESSION starts at the goal of Π, and performs a
random walk for walk length steps using regression. At each
step it chooses a random regressable action which again does
not undo the previous action. Unlike the progression walk,
the regression walk ends with a partial assignment. We ran-
domly complete the partial assignment to a state. Therefore,
we assign every unassigned variable a value of its domain.
We use the translator of Fast Downward (Helmert 2009) to



Algorithm 1 Generate Training Data

1: function SAMPLE PROGRESSION(Π,walk length)
2: s, s′ ← Π.I,None
3: for i = 1..walk length do
4: a← choose({a | a ∈ A, applicable(s, a) ∧

s′ 6= apply(s, a)})
5: s, s′ ← apply(s, a), s

6: return s
7: function SAMPLE REGRESSION(Π,walk length)
8: p, p′ ← Π.G,None
9: for i← 1..walk length do

10: a← choose({a | a ∈ A, regressable(p, a) ∧
p′ 6= regress(p, a)})

11: p, p′ ← regress(p, a), p

12: return make complete assignment(p)

13: function EVALUATE LOOKAHEAD(Π, s, Ṽ , lookahead )
14: curr , succs ← [〈s, 0〉], []
15: for i← 1..lookahead do
16: for s ′, c′ ∈ curr do
17: if is goal(Π , s ′) then
18: succs.insert(〈s′, c′〉)
19: continue
20: for a ∈ {a | a ∈ A, applicable(Π, s′, a)} do
21: s′′ ← apply(s ′, a)
22: c′′ ← c′ + cost(Π, a)
23: succs.insert(〈s′′, c′′〉)
24: curr , succs ← succs, []

25: c← min({c′ + (0 if is goal(s ′) else Ṽ (s′)) |
s′, c′ ∈ curr})

26: return [〈s, c〉]
27: function EVALUATE SEARCH(Π, s, Ṽ , search)
28: try
29: plan ← search(Π, s, Ṽ )
30: c← sum([cost(a) | a ∈ plan])
31: evals← [〈s, c〉]
32: for a ∈ plan do
33: s, c← apply(s, a), c− cost(Π, a)
34: evals.insert(〈s, c〉)
35: return evals
36: exceptTIMEOUT, UNSOLVABLE
37: return []

38: function GENERATE DATE(Π,min walk ,max walk , ls)
39: while true do
40: if value function outdated() then
41: Ṽ ← load value function()

42: s← sample X (Π, rnd(min walk ,max walk))

43: evals ← evaluate Y (Π, s, Ṽ , ls)
44: if s, v ∈ evals then
45: store(s, v)

46: if CONDITION (s, v) then
47: min walk ← update min walk length()
48: max walk ← update max walk length()

49:

identify some mutexes of the task Π and enforce that none
of them are violated.

To label the sampled state, we use either EVALU-
ATE LOOKAHEAD or EVALUATE SEARCH. EVALU-
ATE LOOKAHEAD is an adaption of the simplified Bellman
operator in Equation 3. Instead of considering only the
direct successors of the current state, the function considers
the n-step successors. If it finds a goal state during the
n-step successor exploration, then it will not further explore
the successors of this state. This is possible, because we
want to learn the distance to the closest goal. Any successor
of a goal state is further afar from us than the goal state
itself. Every n-step successor is evaluated by adding up the
action cost to reach it with its estimate of the value function.
If a successor is a goal state, then the optimal value function
would assign it to 0. Thus, we evaluate goal states with their
action costs only. EVALUATE SEARCH evaluates a state by
executing a - potentially suboptimal - search on the state. If
the search finds a plan, then it stores all states along the plan
for training. Their associated values are the summed action
costs from their position in the plan to the goal.

We use 2 different configuration to generate training
data in our experiments. The first configuration samples
all states using SAMPLE REGRESSION and a random walk
length between 0 and 300. It evaluates states using EVAL-
UATE LOOKAHEAD with a lookahead of 2. We call this
configuration approximate value iteration (AVI). The sec-
ond configuration samples for the first 10 hours with
SAMPLE REGRESSION and afterwards uses both SAM-
PLE REGRESSION and SAMPLE PROGRESSION. To eval-
uate the sampled states it uses EVALUATE SEARCH. As
search engine we use greedy best-first search with a time-
out of 10s. In the beginning the value function is not good
enough to solve sampled states far away from the goal.
Therefore, the sampling starts with a walk length between
0 and 5. We double the maximum random walk length, if
EVALUATE SEARCH finds a plan for more than 95% of the
sampled states. We observed that at some point further in-
creasing the random walk length does not sample states fur-
ther away from the goal, but just wastes computational time.
Thus, we double at most 8 times the maximum walk length.
We call this configuration sampling search (SaSe).

We run the training - including data generation - for 28
hours on 4 cores of an Intel Xeon E5-2600 processor with
3.8 GB of memory. For training the neural networks we used
the Keras framework (Chollet 2015) with Tensorflow (Abadi
et al. 2015) as back-end. We implemented the data genera-
tion and all searches in Fast Downward (Helmert 2006), and
used Lab (Seipp et al. 2017) to setup our experiments.

Experiments
We train neural networks as heuristics to solve different
tasks from the same state space and with the same goal.
We evaluate our training procedure on the domains Ferber,
Helmert, and Hoffmann (2020b) used. They selected a sub-
set of tasks which they deemed hard enough to be interest-
ing, but also easy enough for them to generate training data.
We call their task selection moderate tasks. Because the data



Domain AVI SaSe SL Lama

blocks 0.0 0.0 98.0 96.8
depots 17.7 39.7 64.3 98.7
grid 51.0 86.0 74.0 97.0
npuzzle 1.0 1.5 0.0 97.8
pipesworld-notankage 29.8 50.4 92.8 97.2
rovers 25.8 35.8 12.5 98.0
scanalyzer-opt11-strips 83.3 33.3 77.7 97.7
storage 47.5 71.5 22.0 37.5
transport-opt14-strips 69.0 70.5 98.0 97.5
visitall-opt14-strips 13.0 30.7 0.7 95.0
Average 33.8 41.9 54.0 91.3

Table 1: Coverage of LAMA and greedy best-first search
with heuristics trained using approximate value iteration
(AVI), sampling search (SaSe), or supervised learning (SL)
on the moderate tasks.

generation is not a bottleneck in our method, we also con-
sider the harder tasks they skipped. We call these hard tasks.
For every task selected, we have 50 different initial states
for testing. We use the test states provided for the moder-
ate tasks by Ferber, Helmert, and Hoffmann (2020b). For
the other tasks, we generate new test states in the same way
they did. We start at the initial state of the original task and
perform a 200 step forward random walk.

For every task, we train a network using the approxi-
mate value iteration (AVI) configuration and a network us-
ing the sampling search (SaSe) configuration. To solve the
test tasks, we use our neural networks as heuristics in an ea-
ger greedy best-first search. Exploratory experiments have
shown that the eager version of greedy best-first search per-
forms better with our heuristic than the lazy version. We run
each search for 10 hours with a memory limit of 3.8 GB on
a single core of an Intel Xeon Silver 4114. We use the first
iteration of LAMA (Richter and Westphal 2010) as baseline.
On the moderate tasks we also compare to the networks of
Ferber, Helmert, and Hoffmann (2020b) used in a greedy
best-first search. Because they used supervised learning, we
call this baseline supervised learning (SL).

All code, benchmarks, and experimental results are online
available (Ferber, Helmert, and Hoffmann 2020a).

Moderate Tasks
Table 1 shows the coverage of our configurations (AVI,
SaSe) against the supervised learning (SL) and the LAMA
baseline on the moderate tasks. On average LAMA outper-
forms all other techniques. Given enough time to generate its
training data (400 hours) the supervised training approach
solves more tasks than our current approach. From our two
approaches, the sampling search configuration outperforms
the approximate value iteration approach.

A more detailed view shows that whether an approach
works well or not depends on the domain. There are some
domains on which the supervised learning approach works
well, but our reinforcement learning approach does not work

Domain AVI SaSe Lama

depots 15.1 6.9 80.6
grid 0.0 0.0 90.0
npuzzle 0.0 0.0 84.0
pipesworld-notankage 1.4 25.1 68.7
rovers 0.1 0.8 97.7
scanalyzer-opt11-strips 34.0 3.3 98.7
storage 18.8 26.5 11.0
visitall-opt14-strips 0.0 36.0 98.0
Average 8.7 12.3 78.6

Table 2: Coverage of LAMA and greedy best-first search
with heuristics trained using approximate value iteration
(AVI), sampling search (SaSe) on the hard tasks.

at all (e.g. Blocksworld) and some domains where the rein-
forcement learning works better than the supervised learn-
ing(e.g. VisitAll). In Storage we outperform not only the su-
pervised learning approach, but also LAMA.

Figure 1 shows for each domain how the coverage in-
creases over time. We see that LAMA quickly reaches its
coverage limit. The supervised learning approach takes a bit
longer. The two reinforcement learning approaches require
the most time until they converge to their final coverage.

Hard Tasks
Table 2 shows the coverage on the hard tasks. The
Blocksworld and Transport domains have no tasks in this
category. The hard tasks show a similar picture than the
moderate tasks. All techniques solve fewer tasks, but LAMA
is still the best technique, and the sampling search configura-
tion is still better than the approximate value iteration tech-
nique. Furthermore, in the Storage domain reinforcement
learning outperforms LAMA.

Robustness
We observe that for some tasks within a domain our ap-
proaches solve either almost none or almost all states (see
Table 3, columns x1). We speculate that the randomness dur-
ing training sometimes produces good and sometimes bad
models. To verify this, we train for the domains Depots and
Scanalyzer four additional models per task. We run each of
our five models on a fifth of the test states. If our assumption
is correct, then we expect for the same task some models
which solve almost all test states, and some models which
solve almost no test states. Column x5 of Table 3 shows for
each of the five models how many test states they solves. As
expected, most of the trained models solve either all or none
of their test states and for the same task it is possible to ob-
tain good and bad models. We also see that for some tasks it
is more likely to train a good model than for other tasks.

This raises the question of what would be our perfor-
mance if we could detect which models are good? For every
task we select the model with the highest coverage out of
the five models in column x5 and use those on all test states.
Columns x1’ shows that this greatly increases our coverage.
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Figure 1: Cumulative coverage of LAMA and greedy best-first search with the heuristic trained using approximate value itera-
tion (AVI), sampling search (SaSe), and the supervised learning (SL) baseline on the moderate tasks.
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Figure 2: Cumulative coverage of LAMA and greedy best-first search with the heuristic trained using approximate value itera-
tion (AVI), sampling search (SaSe), and the supervised learning (SL) baseline on the hard tasks.



AVI SaSe

Depots x1 x5 x1’ x1 x5 x1’

p05 50 10 10 10 9 9 50 0 10 10 0 0 0 41
p06 0 0 0 0 0 0 0 0 1 1 1 0 0 10
p08 1 7 5 2 0 0 28 19 10 10 6 6 0 47
p09 0 8 0 0 0 0 32 50 10 1 0 0 0 44
p11 2 10 1 1 0 0 50 0 10 7 0 0 0 49
p12 0 0 0 0 0 0 0 5 0 0 0 0 0 3
p14 11 10 10 9 9 3 50 1 0 0 0 0 0 0
p15 0 0 0 0 0 0 0 0 0 0 0 0 0 0
p16 0 9 7 0 0 0 45 50 10 10 10 0 0 50
p18 0 0 0 0 0 0 0 0 0 0 0 0 0 0
p19 42 7 2 2 0 0 42 18 6 3 1 0 0 23
p20 0 0 0 0 0 0 0 0 0 0 0 0 0 0
p22 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Sum 106 150 297 143 123 267

AVI SaSe

Scanalyzer x1 x5 x1’ x1 x5 x1’

p07 0 2 0 0 0 0 16 0 0 0 0 0 0 0
p10 50 10 9 3 0 0 50 0 0 0 0 0 0 0
p13 50 10 9 9 9 9 50 50 10 10 10 10 10 50
p15 50 10 10 10 9 8 50 50 10 10 10 10 10 50
p16 50 10 10 10 10 10 50 0 0 0 0 0 0 0
p17 50 10 10 9 8 1 50 0 0 0 0 0 0 0
p18 1 8 8 3 0 0 49 0 0 0 0 0 0 0
p19 0 0 0 0 0 0 0 5 2 0 0 0 0 11
p20 50 10 9 9 9 9 50 0 10 0 0 0 0 50

Sum 301 288 365 105 112 161

Table 3: Absolute coverage for greedy best-first search using heuristics trained by the approximate value iteration (AVI) con-
figuration and by the sampling search (SaSe) configuration. x1 uses one model for all test states. x5 uses five models (10 states
per model). x1’ uses the best model from x5 on all test states. (Top) Shows the results for Depots. (Bottom) Shows the results
for Scanalyzer.

Moderate Tasks Hard Tasks

Domain AVI SaSe SL AVI SaSe

depot 68.8 77.0 64.3 26.3 10.3
scanalyzer 88.7 50.0 77.7 66.0 7.3

Table 4: Coverage on Depots and Scanalyzer if the best mod-
els from Table 3 column x5 are used to solve all test states.

The performance of a model on a subset of test states ap-
proximates well the performance of the model on all test
states. Table 4 shows how this increases the coverage frac-
tions. For the moderate tasks of Depots this increases the
coverage by 50% (AVI) resp. 40% (SaSe) and our approach
would outperform the supervised learning baseline.

A followup question is, how can we detect whether a
model will be good on the test states? We saw that a subset
of test states approximates well the performance of model
on all test states. Thus, a first approach could be to create
an additional set of validation states which is independent

of the test states. The performance of every trained model is
evaluated on the validation states, and we select the model
with the best performance on the validation states.

Conclusion
We presented two approaches to learn heuristics for fixed
state spaces and goals using reinforcement learning. The first
one uses approximate value iteration the other one uses a
search in its data generation. We showed that our approaches
can outperform the previous state of the art on some domains
while requiring only 1/16 of the time for training. Further-
more, our approach can easily be applied to hard planning
tasks.

We observed that most of our trained models are either
very good or very bad at solving the test states. We presented
a naive test to detect good models and showed that this can
drastically improve our coverage. In our next steps, we plan
to examine how we can detect during training if a model is
on its way to become a good or bad model. We expect to
see the performance boost shown for Depots and Scanalyzer
also on the other domains.



We also observed that increasing the random walk length
to sample states farther away from the goal suffers from di-
minishing returns. Adding 10 additional steps to the walk
does not lead us 10 steps farther away from the goal. We
started preliminary experiments which use a known heuris-
tic or the current value function as bias. We believe that bias-
ing the random walk, especially with the trained value func-
tion, is an essential step for learning the heuristic estimates
of large state spaces.
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