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Abstract. Motion management strategies are crucial for radiotherapy
of mobile tumours in order to ensure proper target coverage, save or-
gans at risk and prevent interplay effects. We present a feasibility study
for an inter-fractional, patient-specific motion model targeted at active
beam scanning proton therapy. The model is designed to predict dense
lung motion information from 2D abdominal ultrasound images. In a
pretreatment phase, simultaneous ultrasound and magnetic resonance
imaging are used to build a regression model. During dose delivery, ab-
dominal ultrasound imaging serves as a surrogate for lung motion pre-
diction. We investigated the performance of the motion model on five
volunteer datasets. In two cases, the ultrasound probe was replaced after
the volunteer has stood up between two imaging sessions. The over-
all mean prediction error is 2.9 mm and 3.4 mm after repositioning and
therefore within a clinically acceptable range. These results suggest that
the ultrasound-based regression model is a promising approach for inter-
fractional motion management in radiotherapy.
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1 Introduction

Motion management is a key element in external beam radiotherapy of thoracic
or abdominal tumours prone to respiratory movement. Pioneered in photon ther-
apy, 4D treatment planning and motion monitoring techniques have gained in
importance also in the field of particle treatments [13]. Due to higher dose confor-
mity and the absence of radiation dose distal to the Bragg peak, proton therapy
enables precise target treatment while spearing healthy tissue and organs at
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Figure 1: Schematic diagram of the pretreatment phase. Detailed explanations are given in Sec. 3.1.
Fig. 1: Illustration of the pretreatment phase. See Sec. 2 and Sec. 3.1 for details.

risk. However, in presence of organ motion, actively scanned proton beam thera-
pies are hampered by interplay effects and inhomogeneous dose distributions [1]
emphasising the need for sophisticated motion mitigation strategies, such as res-
canning, gating or tracking [1,13]. In tracking, for example, the treatment beam
is adapted to follow the tumour motion with the goal to ensure optimal target
coverage. To do so, however, predictive methods and motion models are crucial
in order to cope with respiratory motion variabilities and system latency.

In the field of radiotherapy, motion variabilities are classified into two cate-
gories: intra-fractional and inter-fractional motion variations [6]. Intra-fractional
variations refer to motion variations between different respiratory cycles observed
within a single treatment session; inter-fractional variations include anatomical
and physiological differences between treatment sessions. Such motion variabil-
ities should be considered for both treatment planning and dose delivery [5].
In this context, 4D imaging and motion modelling are widely discussed tech-
niques. Motion models are necessary when direct imaging of the internal motion
is not feasible. The idea is to estimate the motion of interest based on more
readily available surrogate data. 4D imaging provides dense internal motion in-
formation and therefore constitutes an important element for respiratory motion
modelling. While 4D imaging is traditionally performed with computed tomog-
raphy (4D CT), respiratory-correlated magnetic resonance imaging (4D MRI)
methods have increasingly been developed in the last decade due to their superior
soft-tissue contrast and the lack of radiation dose [12].

In this work, we present an inter-fractional respiratory motion management
pipeline for the lungs based on abdominal ultrasound (US) imaging as illustrated
in Fig. 1. It involves hybrid US/MR imaging, principal component regression,
and a novel 4D MRI technique [4]. The proposed approach follows a typical
motion management scheme: In a pretreatment phase, simultaneous US and
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MR imaging acquisitions are performed and a motion model is computed. During
treatment delivery, online US imaging is used to predict the respiratory motion
for tumour tracking. We demonstrate the feasibility of our approach on five
healthy volunteer datasets for two of which the US probe has been repositioned
between motion modelling and prediction. Although not truly inter-fractional in
the sense that there are days or weeks between two acquisitions, the presented
data serve as preliminary data in this feasibility study.

US imaging has been proposed for image-guided interventions and radiother-
apy before due to its advantages over other imaging modalities and surrogate
signals [8]: it provides internal organ motion information at high temporal res-
olution, and therefore potentially detects phase shifts and organ drift [11], it
is non-invasive and available during treatment delivery. However, as the lungs
cannot be imaged directly, US guidance has mainly been applied for liver, heart
or prostate. In [9], for example, an US-driven respiratory motion model for the
liver has been presented. It requires precise co-registration of US and MR im-
ages in order to establish correspondence between tracked liver points. Indirect
lung tumour tracking strategies based on 2D abdominal US have only been pro-
posed recently [2,7]. Mostafaei et al. [7] combine US imaging and cone-beam
CT (CBCT) in order to reduce the CBCT imaging frequency and therefore
the imaging dose to the patient. However, the tumour motion is estimated in
superior-inferior (SI) direction only. In [2] dense motion information was pre-
dicted based on an adversarial neural network. Although promising, it is not
clear how this approach performs if the US imaging plane is shifted.

With this work we address the clinically relevant question of how the respira-
tory motion model performs in case of US probe repositioning between two imag-
ing sessions. The novelty of our work does not primarily lie in the methodological
components themselves but rather in their combination into a complete respi-
ratory motion management pipeline. We combine US imaging with a recently
presented 4D MRI technique and present first results in a feasibility study.

2 Background

Dense motion estimation is generally represented as a 3D deformation field
which can be derived from any 4D imaging technique in combination with de-
formable image registration (DIR) methods. The 4D MRI sequence applied here
uses 3D readouts and, unlike most other approaches, is a time-resolved imaging
method [4]. As opposed to respiratory-correlated 4D MRI methods [12], it does
not assume periodic respiration but provides continuous motion information. It
is based on the assumption that the respiratory motion information is mapped
mainly to the low-frequency k-space center. Following this rationale, circular
patches at the k-space center Ct ⊂ C3 capture low-frequency image components
with motion information while peripheral patches Ht ⊂ C3 account for image
sharpness and structural details. Since these patches consist of a small portion
of the k-space only, they can be acquired at a much higher temporal resolution
as compared to the entire k-space. In Fig. 1, the 3D k-space is represented as a
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cube and the patches are illustrated as cylinders with the height pointing into
the phase encoding direction.

Center and peripheral patches are acquired alternately and combined into
patch pairs Pt = {Ct, Ht}. The center patches Ct are transformed to the spa-
tial domain by applying the inverse Fourier transform It = F−1(Ct). Then, a
diffeomorphic registration method is applied to obtain the 3D deformation field
between a reference image and It [10]. For further details, the reader is referred
to [4]. In the following, we refer to the vectorised deformation field at time t as
yt ∈ Rd with dimension d. Note that the peripheral patches Ht are not required
for motion modelling but might be necessary for the treatment planning.

3 Method

3.1 Pretreatment phase

Data acquisition Simultaneous US/MR acquisitions are performed in order
to ensure temporal correspondence between the center patches Ct and the US
images Ut as shown in Fig. 1. The US imaging plane is chosen such that parts
of the liver and the diaphragm motion are clearly visible.

Image processing and reconstruction Following the data acquisition, the
4D MRI is reconstructed and the motion vectors yt are computed. Given 2D
abdominal US images Ut, a low-dimensional respiratory motion surrogate is ex-
tracted using principal component analysis (PCA). By selecting only a small
subset of principal components the model complexity is reduced. In order to
cope with system latencies during dose delivery, it is important for the model to
forecast the motion vectors into the future. Let st ∈ Rk denote the standardised
scores of the k most dominant principal components for image Ut. We apply an
element-wise autoregressive (AR) model of order p for the time series {st}Tt=1:

sjt = θj0 +

p∑

i=1

θji s
j
t−i + εt ∀j ∈ {1, . . . , k}, (1)

where sjt is the jth element of st, θ
j =

[
θj0 θ

j
1 . . . θ

j
p

]T
denotes the model pa-

rameters, and εt is white noise. The parameters θj are estimated using ordinary
least squares. To predict the surrogate n steps ahead of time, the AR model in
(1) is repeatedly applied.

Motion modelling In order for the motion model to capture non-linear re-
lationships between the surrogates and the motion estimates, we formulate a
cubic regression model. Let xt ∈ R3k+1 denote the input vector for the regres-
sion model which includes st, its element-wise square and cube numbers, and a

constant bias, i.e. xt =
[
1 s1t . . . s

k
t (s1t )2 . . . (skt )2 (s1t )3 . . . (skt )3

]T
. The motion

model can thus be written as

yt = βxt + εt, (2)
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with regression coefficients β ∈ Rd×(3k+1) and white noise εt ∈ Rd. Given the
pretreatment data {st,yt}Tt=1, the model parameters β are again approximated
in the least-squares sense.

3.2 Online motion prediction

Having computed both the AR parameters in (1), and the regression coefficients
in (2), the inference during dose delivery is straightforward and computationally
efficient. However, since the motion modelling and treatment planning is per-
formed several days or weeks prior to the dose delivery, the US probe has to be
reattached to the patients’ abdominal wall when they return for the treatment
delivery. Although the location of the probe with respect to the patients chest
can be marked by skin tattoos or similar approaches, it is hardly possible to
recover the exact same imaging plane due to inter-fractional motions, anatomy
changes, or different body positions with respect to the treatment couch [13]. The
online US images can therefore not be projected onto the PCA basis directly, but
a new principal component transformation has to be computed. We use the first
minutes of US imaging after the patient has been setup for treatment as training
data for recomputing a PCA basis. Since the first principal components capture
the most dominant motion information and the scores st are standardised, we
expect the signals to be comparable. Furthermore, the motion vectors yt have
to be warped in order to correspond to the present anatomy. This requires a 3D
reference scan of the patients prior to treatment either using CT or MRI.

The surrogate signal st at time t is obtained by projecting the US image
Ut onto the new PCA basis. Given the p latest surrogates {st−i}p−1

i=0 , the signal
st+n at time t+ n is approximated by applying the AR model n times. Finally,
the motion estimate yt+n is computed given equation (2) and warped in order
to match the actual patient position.

4 Experiments and Results

Data acquisition The proposed motion management pipeline was tested on
5 healthy volunteers. The 4D MRI sequence [4] was acquired on a 1.5 T MR-
scanner (MAGNETOM Aera, Siemens Healthineers, Erlangen, Germany) under
free respiration and with the following parameters: TE = 1.0 ms, TR = 2.5 ms,
flip angle α = 5◦, bandwidth 1560 Hz px−1, isotropic pixel spacing 3.125 mm,
image matrix 128×128×88 and field of view 400×400×275 mm3 (in LR×SI×
AP). The radius of Ct and Ht were set to 6 px and 5 px, respectively, resulting
in 109 k-space points or 272.5 ms per center patch Ct, and 69 k-space points or
172.5 ms per peripheral patch Ht. The total acquisition time per subject was set
to 11.1 min or T = 1500 center-peripheral patch pairs, Pt. For the reconstruction
of the 4D MRI, a sliding organ mask was created semi-automatically [14].

US imaging was performed simultaneously at fUS = 15 Hz on an Acuson clini-
cal scanner (Antares, Siemens Healthineers, Mountain View, CA). A specifically
developed MR-compatible US probe was attached to the patient’s abdominal
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Table 1: Overview of the model settings and the respiratory motion characteris-
tics for each subject s separately. The datasets with US probe repositioning are
marked in grey.

s model details respiratory motion [mm]
AR model motion model training test

train train test µ95 max µ95 max

1 600 640 200 13.31 40.92 15.65 40.96
2.1 600 470 200 5.68 29.81 4.65 29.96
2.2 600 470 200 5.68 29.81 12.83 45.76
3 600 530 200 4.35 19.80 4.95 19.03
4 600 660 200 6.92 24.49 7.32 23.92
5 600 630 200 5.63 25.74 4.87 16.34

4 – – 690 6.92 24.49 6.99 27.48
5 – – 830 5.63 25.74 6.43 25.31

wall by means of a strap. The MRI and US systems were synchronised via opti-
cal triggers emitted by the MR scanner after every 6.675 s or 15 patch pairs Pt.
The optical signal triggered the US device to record a video for a duration of
5 s. The time gap of 1.675 s was chosen to compensate for the US system latency
while storing the video file. As a consequence, however, 4 patch pairs Pt per
trigger interval are not usable due to missing US images. Despite this time gap,
it sporadically happened that the trigger signal occurred before the preceding
video file was stored resulting in an omission of the video just triggered. The
time delay between the MR trigger and the start of the US video was negligible.

For subjects 4 and 5, the US probe was removed and reattached after they had
been standing for several minutes. The US imaging plane was visually matched
with the preceding imaging plane as good as possible. The MR images were
aligned based on diffeomorphic image registration of two end-exhalation master
volumes and inverse displacement field warping [10,3].

Model details The first 8 US videos, corresponding to 200 images, were used
to determine the AR parameters θ. The remaining data was split into a training
and test set according to Table 1 in order to estimate β and validate the motion
model performance, respectively. For each subject, the last 200 US/MR image
pairs, or 133.5 s of data acquisition, were used for validation. For subject 2,
however, a drastic change in respiratory motion characteristics was observed in
the test set; the baseline motion more than doubled as compared to the training
set. To take this observation into account, two test sets were created by dividing
the last 267 s into equal parts. Below, the test set which includes deep respiratory
motion is discussed separately and referred to as 2.2. Table 1 shows the maximum
and the baseline respiratory motion for each subject. The baseline motion µ95 is
defined as the 95th percentile of the deformation field magnitude averaged over
all time points.
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For subjects 4 and 5, the parameters θ and β were estimated based on the
primary dataset. After the probe repositioning, the first 270 US images were
used for recomputing the PCA basis. For all the experiments, the number of
principal components was set to k = 3, and an AR model of order p = 5 was
built. The surrogate st was predicted n = 2 steps, or tn = n/fUS = 133 ms, into
the future.

Validation The predicted deformation field ŷt was compared to the reference
yt. We define the prediction error as the magnitude of the deformation field dif-
ference for the masked region including the lungs as well as parts of the liver and
the stomach. Fig. 2 exemplarily illustrates the organ mask for volunteer 4 and 5
on a coronal slice of the master volume. In addition, the reference and the pre-
dicted deformation field magnitude, and the prediction error are shown. Highest
motion magnitudes are observed in the region of the diaphragm. As expected,
the prediction errors are higher for both volunteers after repositioning. It can
be further observed that the motion model has a tendency to underestimate the
respiratory motion. For volunteer 5, this becomes more evident when compar-
ing the respiratory motion characteristics in Table 1 or Fig. 3: the respiratory
motion has substantially increased after repositioning and therefore cannot be
predicted precisely. Additionally, an organ drift of about 2 mm is observed in
volunteer 5 after repositioning if all 830 test samples are considered which fur-
ther decreases the prediction accuracy. The highest prediction errors are found
at the lung boundaries.

Fig. 3 shows the mean prediction error and the respiratory motion for the
first 200 test samples. The shaded area marks the 5th and 95th percentile of the
prediction error. The respiratory motion is defined as the 95th percentile of the
reference deformation field magnitude. Since an end-exhalation master volume
was used for registration, in general higher prediction errors are observed at end-
inhalation. However, despite the decreased performance of the motion model
after repositioning, the mean prediction error is substantially lower than the
respiratory motion for most time points.

The box plots in Fig. 4 show the distributions of both the mean prediction
error and the 95th percentile computed for each time point. Without US probe
repositioning, the mean error is less or equal to 3 mm for all subjects except for
volunteer 4 where it shows an outlier at 3.5 mm. The 95th percentile reaches a
maximum value of 7.0 mm for volunteer 4 while 95% of the prediction errors for
subjects 1, 2.1, and 3 are smaller than 6.0 mm, 5.4 mm, and 5.2 mm, respectively.
The last column in Fig. 4 shows the results for the second test set of subject 2
where the respiratory motion was more pronounced as compared to the training
data. The maximum values for the mean prediction error and 95th percentile
are 12.7 mm and 27.4 mm, respectively.

After US probe repositioning, the mean prediction error is below 8.0 mm
and 6.0 mm for volunteers 4 and 5, respectively. There are, however, outliers of
up to 14.5 mm for the 95th percentile of volunteer 4. By visual inspection of
the prediction errors, it could be observed that these major discrepancies are
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Fig. 2: Coronal cuts through sample end-inhalation volumes of volunteer 4 and 5
for both with and without repositioning. From left to right: master volume with
the masked region marked in yellow, reference deformation field magnitude, pre-
dicted deformation field magnitude, and prediction error.
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Fig. 3: Respiratory motion and prediction error over time for volunteer 4 and 5.
For illustration purposes, only the first 200 test samples after repositioning are
shown.
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Fig. 4: Prediction error distribution for all volunteers; without (white back-
ground) and with (grey background) US probe repositioning. The whiskers of the
box plots extend to the most extreme values within 1.5 times the interquartile
range.

located in the region of the stomach at the organ mask boundaries. In summary,
the overall mean prediction error is 2.9 mm and 3.4 mm for volunteers 4 and 5,
respectively.

5 Discussion and Conclusion

In this feasibility study we examined the performance of abdominal US surro-
gate signals in combination with a novel 4D MRI technique for lung motion
estimation. The model predicts dense motion information 133 ms into the future
which allows for system latency compensation. The obtained results are simi-
lar in terms of accuracy to those presented in previous studies [2,9]. However,
we additionally present preliminary findings for inter-fractional motion mod-
elling which involves a repositioning of the US probe. Although the accuracy
decreased when compared to intra-fractional modelling, overall mean prediction
errors of 2.9 mm and 3.4 mm demonstrate that the proposed US surrogate signal
is suitable even if the imaging plane is not identical for two fractions.

The presented results should, however, be treated with caution as the reposi-
tioning of the US probe has only been tested on two healthy volunteers and the
time interval between the two measurements was in the range of minutes rather
than days or weeks. Also, there exists no real ground-truth data for the respi-
ratory motion. The reference deformation field might itself be corrupted due to
registration errors. An additional error source is introduced with the alignment
of the MR volumes between the two imaging sessions. Since this transformation
was computed based on two exhalation master volumes, it might not be accurate
for other respiratory states. Moreover, it was observed that the motion model
does not generalise well if the respiration characteristics vary substantially as it
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was the case for subject 2. Although this limitation is inherent to the problem
formulation and occurs in most motion models, it demands further investigations
and characterisation. Also, further work is necessary to investigate the effect of
dense motion predictions on treatment plan adaptations and dose distribution
in proton therapy.
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