Supporting Information

One-pot Synthesis of Amphiphilic ABC Triblock Copolymer PEO-b-PEHOx-b-PEtOz and its Self-Assembly into Nanoscopic Asymmetric Polymersomes

Davy Daubian ${ }^{1}$, Alexandra Fillion ${ }^{1}$, Jens Gaitzsch ${ }^{1,2, *}$ and Wolfgang Meier ${ }^{1, *}$
${ }^{1}$ University of Basel, Department of Chemistry, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland.

${ }^{2}$ Institut für Makromolekulare Chemie, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Germany

*corresponding authors: gaitzsch@ipfdd.de and wolfgang.meier@unibas.ch

Table of Contents

1. Synthesis of PEO-b-PEHOx-b-PEtOz polymers ... 2
a. Calculation of EHOx and EtOz block length by ${ }^{1} \mathrm{H}$ NMR .. 2
b. Remaining ABC triblock synthetized ... 3
2. Length of the polymer segments and their conformation .. 4
a. Stretched conformation of PEO and PEHOx (contour length) .. 4
b. Random conformation of PEO and PEHOx (ideal coil).. 4
c. Effective conformation of PEO and PEHOx - Mix of random coil and stretched 5
3. Self-assembly of PEO-b-PEHOx-b-PEtOz .. 6
a. Characterisation of solvent switch of PEO-b-PEHOx-b-PEtOz .. 6
b. Characterisation of film rehydration of PEO-b-PEHOx-b-PEtOz .. 7
c. Orientation of PEO-b-PEHOx-b-PEtOz chains in the membrane of polymersomes.................. 12

1. Synthesis of PEO-b-PEHOx-b-PEtOz polymers

a. Calculation of EHOx and EtOz block length by ${ }^{1} \mathrm{H}$ NMR

The block ratio of ABC PEO-b-PEHOx-b-PEtOz was determined by integrating the PEO backbone peak at 3.60 ppm as a reference (always 45 units for 2000 Da PEO used). Firstly, the peaks of PEHOx side chain at 0.86 ppm are integrated, integral " a " to calculate the PEHOx block length. The PEtOz block length is then calculated by integrating the peaks of the backbone of PEHOx and PEtOz at 3.43 ppm , integral " b ", to which we subtract the number of H coming from PEHOx as summarized in the following Table S1.

Table S1 - Calculations of EHOx block length for 5 different ABC triblock. ${ }^{\text {a }}$ Integral "a" ($\mathrm{m}, 6 \mathrm{H}, \mathrm{CH}_{3}$) 0.86 ppm. ${ }^{\text {b }}$ Integral "b" (m, 4H, N(COCH $\left.\left.\mathrm{CH}_{2}\right)-\mathrm{CH}_{2} \mathrm{CH}_{2}\right) 3.43 \mathrm{ppm}$. ${ }^{\text {c Calculated via } \mathrm{N}(\text { PEHOx length })=~}$ $a / 6$. ${ }^{d}$ Calculated via $N($ PEtOz length $)=(b-3-(N(P E H O x$ length $) * 4)) / 4$. We subtract 3 H from the integral b because of the methyl end-group of PEO which overlap with the peaks of backbone of PEHOx and PEtOz

Triblock terpolymers	Integral " a^{a}	Integral " b^{b}	PEHOx length ${ }^{\mathrm{c}}$	PEtOz length ${ }^{\text {d }}$
PEO $_{45}-b-$ PEHOx $_{30}-b-$ PEtOz $_{14}$	182	179	30	14
PEO $_{45}-b-$ PEHOx $_{65}-b-$ PEtOz $_{19}$	392	341	65	19
PEO $_{45}-b-$ PEHOx $_{53}-b-$ PEtOz $_{56}$	319	440	53	56
PEO $_{45}-b-$ PEHOx $_{87}-b-$ PEtOz $_{10}$	520	390	87	10
PEO $_{45}-b-$ PEHOx $_{138}-b-$ PEtOz $_{14}$	827	610	138	14

b. Remaining $A B C$ triblock synthetized

Table S2 - Remaining characterization of PEO-b-PEHOx-b-PEtOz triblock terpolymers using ${ }^{1} \mathrm{H}$ NMR,

${ }^{c}$ Calculated by the equation $f=\left(\mathrm{M}_{n}(\right.$ PEO $\left.)+\mathrm{M}_{\mathrm{n}}(\mathrm{PEtOz})\right) /\left(\mathrm{M}_{\mathrm{n}}(\mathrm{PEO})+\mathrm{M}_{\mathrm{n}}(\mathrm{PEHOx})+\mathrm{M}_{\mathrm{n}}(\mathrm{PEtOz})\right) .{ }^{\text {d Ratio }}$ Monomer (EHOx) to Initiator (PEO-Nos).

PEO $_{\mathrm{t}}-b-\mathrm{PEHOx}_{\mathrm{i}}-b-$ PEtOz $_{\mathrm{g}}$	$\mathrm{M}_{\mathrm{n}}[\mathrm{Da}]^{\mathrm{a}}$	$\bigoplus_{\mathrm{M}}{ }^{\mathrm{b}}$	$f[\%]^{\mathrm{c}}$	Ratio $(\mathrm{Mono} / \mathrm{Ini})^{\mathrm{d}}$	$\mathrm{R}_{\mathrm{h}}[\mathrm{nm}]$	$\mathrm{R}_{\mathrm{g}}[\mathrm{nm}]$	$\rho=\mathrm{R}_{\mathrm{g}} / \mathrm{R}_{\mathrm{h}}$
$\mathrm{A}_{45} \mathrm{~B}_{49} \mathrm{C}_{9}$	12600	1.35	23	50	103 ± 9	100	0.97
$\mathrm{~A}_{45} \mathrm{~B}_{51} \mathrm{C}_{11}$	13200	1.32	24	50	107 ± 12	103	0.96
$\mathrm{~A}_{45} \mathrm{~B}_{45} \mathrm{C}_{11}$	12000	1.36	26	50	102 ± 13	103	1.01
$\mathrm{~A}_{45} \mathrm{~B}_{43} \mathrm{C}_{11}$	11600	1.34	27	50	98 ± 9	98	1.00
$\mathrm{~A}_{45} \mathrm{~B}_{57} \mathrm{C}_{12}$	14400	1.35	22	60	105 ± 15	106	1.01
$\mathrm{~A}_{45} \mathrm{~B}_{53} \mathrm{C}_{16}$	14000	1.40	25	50	105 ± 16	105	0.98

2. Length of the polymer segments and their conformation

a. Stretched conformation of PEO and PEHOx (contour length)

Although the average bond length of PEHOx is not reported, the chemical structure is similar to PEO (however, Nitrogen instead of Oxygen). Since any changes of the average bond length are not likely to be substantial, we rounded the above distance to 145 pm as bond length and 109.5 as angle for a perfect tetrahedron. The repeating unit has three atoms (I), which has to be multiplied with the number repeating units (n).

$$
\begin{aligned}
& R_{\text {contour }}=l * n * \sin \left(\frac{\theta}{2}\right) \\
& R_{\text {contour }}=3 * 10 * 145 \mathrm{~nm} * \sin \left(\frac{109.5}{2}\right)=3.5 \mathrm{~nm} \text { for PEtOz-10 } \\
& R_{\text {contour }}=3 * 45 * 145 \mathrm{~nm} * \sin \left(\frac{109.5}{2}\right)=16.0 \mathrm{~nm} \text { for PEO-45 } \\
& R_{\text {contour }}=3 * 48 * 145 \mathrm{~nm} * \sin \left(\frac{109.5}{2}\right)=17.0 \mathrm{~nm} \text { for PEHOx-48 } \\
& R_{\text {contour }}=3 * 65 * 145 \mathrm{~nm} * \sin \left(\frac{109.5}{2}\right)=23.1 \mathrm{~nm} \text { for PEHOx-65 } \\
& R_{\text {contour }}=3 * 87 * 145 \mathrm{~nm} * \sin \left(\frac{109.5}{2}\right)=30.9 \mathrm{~nm} \text { for PEHOx-87 } \\
& R_{\text {contour }}=3 * 139 * 145 \mathrm{~nm} * \sin \left(\frac{109.5}{2}\right)=49.3 \mathrm{~nm} \text { for PEHOx- } 139
\end{aligned}
$$

b. Random conformation of PEO and PEHOx (ideal coil)

The average bond length and effective bond length can be taken from the equation above ($\mathrm{d}=$ 145 pm and the tetraedric bond angle (109.5 degrees)). Similar to the equation above, the repeating unit has three atoms (I), which has to be multiplied with the number repeating units (n).
$R_{\text {coil }}=\frac{1+\cos \theta}{1-\cos \theta} * \sqrt{l * n} * d * \sin \left(\frac{109.5}{2}\right)$
$R_{\text {coil }}=\frac{1.33}{0.67} * \sqrt{3 * 45} * 145 \mathrm{pm} * \sin \left(\frac{109.5}{2}\right)=2.7 \mathrm{~nm}$ for PEO-45
$R_{\text {coil }}=\frac{1.33}{0.67} * \sqrt{3 * 48} * 145 \mathrm{pm} * \sin \left(\frac{109.5}{2}\right)=2.8 n m$ for PEHOX-48
$R_{\text {coil }}=\frac{1.33}{0.67} * \sqrt{3 * 65} * 145 \mathrm{pm} * \sin \left(\frac{109.5}{2}\right)=3.3 \mathrm{~nm}$ for PEHOx -65
$R_{\text {coil }}=\frac{1.33}{0.67} * \sqrt{3 * 87} * 145 \mathrm{pm} * \sin \left(\frac{109.5}{2}\right)=3.8 \mathrm{~nm}$ for PEHOx -87
$R_{\text {coil }}=\frac{1.33}{0.67} * \sqrt{3 * 139} * 145 \mathrm{pm} * \sin \left(\frac{109.5}{2}\right)=4.8 \mathrm{~nm}$ for PEHOx- 139

c. Effective conformation of PEO and PEHOx - Mix of random coil and stretched

Since PEHOx is a polymer with a branched side chain, the ideal random coil cannot be formed. It also not completely stretched, but has a mixed conformation of both components. The amount of stretching (x) can be calculated, since the real length is known from Cryo-TEM. Since it is an $A B C$ triblock this length can be taken as it has been measured as Reff.
$R_{\text {eff }}=x * R_{\text {contour }}+(1-x) * R_{\text {coil }}$ reforming the equation towards x yields
$x=\frac{R_{\text {eff }}-R_{\text {coil }}}{R_{\text {contour }}-R_{\text {coil }}}$ for the specific polymers, this yields x as dimensionless number:
$x_{P E O, 45}=\frac{12.6-2,7}{16.0-2.8}=75 \%$
$x_{\text {PEHOX }, 48}=\frac{6.3-2,8}{17.0-2.8}=25 \%$
$x_{\text {PEHOX,65 }}=\frac{7.8-3.3}{23.1-3.3}=23 \%$
$x_{\text {PEHOX, } 87}=\frac{9.9-3.8}{30.9-4.0}=22 \%$
$x_{\text {PEHOX, } 138}=\frac{12.6-4.8}{49.3-4.8}=18 \%$

PEO-45 is 74% stretched within the cavities of the tubes
PEHOx-48 is 25% stretched within the polymersome membrane

PEHOx-65 is 23% stretched within the polymersome membrane

PEHOx-87 is 22% stretched within the MCV membrane PEHOx-139 is 18% stretched within the membrane of the polymersomes with a thicker membrane

3. Self-assembly of PEO-b-PEHOx-b-PEtOz

a. Characterisation of solvent switch of PEO-b-PEHOx-b-PEtOz

Figure S1 -Representative TEM image of micelles formed by solvent switch of $\mathrm{PEO}_{45}-b-\mathrm{PEHOx}_{65}-b$ PEtO_{19}.

Figure S 2 - Representative TEM image of polymer films observable after solvent switch of $\mathrm{PEO}_{45}-b-$ $\mathrm{PEHOx}_{138}-b-\mathrm{PEtOz}_{14}$.
b. Characterisation of film rehydration of PEO-b-PEHOx-b-PEtOz

Figure S3 - Supplementary Cryo-TEM images of polymersomes formed by film rehydration of $\mathrm{PEO}_{45}-$ $b-$ PEHOx $_{48-65-}-b-\mathrm{PEtOz}_{8-35}$.

Figure S4 - Supplementary Cryo-TEM images of multicompartment vesicles formed by film rehydration of $\mathrm{PEO}_{45}-b-\mathrm{PEHO} x_{87-96}-b-\mathrm{PEtO}_{10-11}$.

Figure S5 - Supplementary Cryo-TEM images of tubes and polymersomes formed by film rehydration of $\mathrm{PEO}_{45}-b-\mathrm{PEHOx}_{138-139-b-\mathrm{PEtOz}_{10-11} \text {. }}$.

Figure S6 - Representative MIE plot and DLS profile of ABC triblock, here $\mathrm{PEO}_{45}-b-\mathrm{PEHOx}_{49}-b-\mathrm{PEtOz}_{17}$. R_{g} of 108 nm was calculated from the MIE Plot fit at 140 nm .

Figure S7- Representative TEM and Cryo-TEM images of polymersomes formed by film rehydration of $\mathrm{PEO}_{45}-b-\mathrm{PEHOx}_{48-65}-b-\mathrm{PEtOz}_{8-35}$.

Figure $\mathrm{S8}$ - Representative TEM images of polymersomes formed by film rehydration of $\mathrm{PEO}_{45}-b$ -$\mathrm{PEHOx}_{48-65}-b-\mathrm{PEtO}_{8-35}$ (left) and $\mathrm{PEO}_{45}-b-\mathrm{PEHOx}_{138-139-b-\mathrm{PEtOz}_{10-14} \text { (right). The orange arrows highlight }}$ the white halo of contrast that suggests the presence of a membrane.

Figure S9- Representative TEM and Cryo-TEM images of multicompartment vesicles formed by film rehydration of $\mathrm{PEO}_{45}-b-\mathrm{PEHOx}_{87-96}-b-\mathrm{PEtO}_{10-11}$.

Figure S10- Representative TEM and Cryo-TEM images of tubes and vesicles formed by film rehydration of $\mathrm{PEO}_{45}-b-\mathrm{PEHOx} 138-139-b-\mathrm{PEtOz}_{10-14}$.

c. Orientation of PEO-b-PEHOx-b-PEtOz chains in the membrane of polymersomes

Figure S11 - Representative ${ }^{1} \mathrm{H}$ NMR Spectra in $\mathrm{D}_{2} \mathrm{O}$ of polymersomes formed by film rehydration with $A B C$ triblock with $C(E t O z)$ inferior to 32 blocks, here $\mathrm{PEO}_{45}-b-\mathrm{PEHOx}_{54}-b-\mathrm{PEtOz}_{24}$ (left) and with ABC triblock with $\mathrm{C}(E t O z)$ superior or equal to 32 blocks, here $\mathrm{PEO}_{45}-b-\mathrm{PEHOx}_{54}-b-\mathrm{PEtOz}_{32}$ (right). The ratio of the intensity of the peak at 3.60 ppm of the backbone of PEO (3.60 ppm) and the intensity of the overlapping peaks at 0.96 ppm of the methyl group of the side chain of $\mathrm{PEtOz}(0.96 \mathrm{ppm})$ and the protons of the side chain of PEHOx (0.96 ppm) is calculated and compared.

