
 
 

 

Genetic and environmental constraints causing species’ range limits 

 

 

 

Inauguraldissertation 

zur 

Erlangung der Würde eines Doktors der Philosophie 

vorgelegt der 

Philosophisch-Naturwissenschaftlichen Fakultät 

der Universität Basel 

 

von 

Antoine Perrier 

 

Basel, 2020 

 

 

 

 

 

 

Originaldokument gespeichert auf dem Dokumentenserver der Universität Basel 

https://edoc.unibas.ch  

https://edoc.unibas.ch/


 
 

Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät  

auf Antrag von 

 

Prof. Dr. Yvonne Willi (Universität Basel) 

Dr. Kay Lucek (Universität Basel) 

PD Dr. Lukas Schärer (Universität Basel) 

Dr. Joëlle Ronfort (Institut national de Recherche pour l’Agriculture, l’Alimentation et 

l’Environnement, Montpellier, Frankreich) 

 

 

Basel, den 15. September 2020 

 

 

 Prof. Dr. Martin Spiess 

Dekan   



 
 

 

Table of contents 

Acknowledgements ................................................................................................................... 1 

Summary ................................................................................................................................... 3 

Introduction .............................................................................................................................. 5 

Chapter 1: Expressed mutational load increases toward the edge of a species’ 

geographic range .................................................................................................................... 17 

Chapter 2: Environment dependence of the expression of mutational load, and species 

range limits .............................................................................................................................. 65 

Chapter 3: Reduced climate adaptation at range edges in North American Arabidopsis 

lyrata ...................................................................................................................................... 117 

Chapter 4: Divergent adaptive strategies to cold and frost condition the success of 

latitudinal range expansion in two Arabidopsis sister species .......................................... 153 

Chapter 5: Intrinsic and extrinsic postmating barriers contribute to reproductive 

isolation between two recently diverged Arabidopsis species ........................................... 219 

Conclusions ........................................................................................................................... 271 

 

 

  



 
 

  



1 
 

Acknowledgements 

I would like to express my sincere gratitude to my supervisor Prof. Dr. Yvonne Willi for 

providing me the opportunity to conduct research in her laboratory, and for her continued 

guidance and support throughout my work.  

I would like to thank Dr. Lukas Schärer, Dr. Joëlle Ronfort and Dr Kay Lucek for being 

part of my thesis committee and final jury of my PhD defense. I also want to thank Kay Lucek 

for his numerous advices in statistical programing and writing, and the inspiring discussions on 

speciation, and more generally on Evolutionnary Biology. 

I also thank Dr. Josh Van Buskirk, for his advices on statistical analysis and his helpful 

comments on my manuscripts.  

I further want to thank my colleague Darío Sánchez-Castro, for sharing this PhD 

journey, and all the adventures and new experiences in our time spent in the USA.  

 A big thank you also to Olivier Bachmann, Susanna Riedl, Georg Armbruster and 

Markus Funk for their advice and help to carry out all my experiments, and for the countless 

hours spent counting seeds and measuring leaves; and to Franziska Grob and Maura Ellenberger 

for their resourcefulness in solving administrative and organizational questions.  

Many thanks to all my friends and colleagues from the University of Basel, for the great 

discussions, advices and generally the great times spent together: Nora Walden, Selim 

Bouaouina, Alessio Maccagni, Janisse Deluigi, Hannah Augustijnen, Jessica Heblack, Judith 

Schepers, Jennifer Mark, Guillaume Wos, Markus Fracassetti, and all my colleagues from the 

Botanical Institute at Schönbeinstrasse and Hebelstrasse.   

Finally, I would like to thank all the members of my family and my friends from all over 

the planet, for their moral support and encouragement during this thesis, and especially Wesley, 

I could never thank you enough for all the love and support you keep providing me.     



2 
 

  



3 
 

Summary 

Human-caused global change has led to shifts in the geographic distribution of many wild 

species. This has renewed the interest of understanding the factors that shape species’ 

contemporary range limits from both an ecological and evolutionary perspective. Recent 

evolutionary theory particularly emphasized the role of past demographic processes and neutral 

evolution in contributing to range limits. The aim of my thesis was to study these factors and 

their interaction with the environment experienced at range edges in an empirical system, the 

North American plant Arabidopsis lyrata. By crossing populations of varying range position 

and demographic history, and raising their offspring in gardens distributed across and beyond 

the species range, I found that populations with a history of small size due to past range 

expansion or rear-edge isolation suffered from increased expression of mutational load driven 

by genetic drift. This latter effect was even stronger under environmental stress, particularly 

under a warmer climate. Furthermore, populations at range edges with heightened past exposure 

to genetic drift had a reduced signature of climate adaptation. Finally, I compared A. lyrata and 

a novel species it gave rise to, A. arenicola, with a more northern distribution, in a climate 

chamber experiment. This new taxon diverged from A. lyrata in coping with a cool climate and 

strong reproductive isolation, most likely allowing it to to colonize subarctic regions and escape 

maladaptive gene flow. Results generally support the newer evolutionary theory about a 

predominant role of neutral evolution in contributing to geographic range limits, via genetic 

drift opposing purifying and directional selection. The study of sister taxa however shows that 

these constraints to evolution at range limits are not absolute, and can be broken. 
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Introduction 

What shapes a species’ geographic distributions? This question is central to the fields of ecology 

and evolution (Sutherland et al., 2013) and has yet no clear answer. Past theoretical and 

empirical research has identified several intrinsic and extrinsic factors contributing to setting 

range limits, with potentially complex interactions (Gaston, 2009; Roy et al., 2009; Sexton et 

al., 2009; Louthan et al., 2015; Connallon and Sgrò, 2018; Willi and Van Buskirk, 2019). 

Especially genetic drift has been under particular scrutiny in evolutionary research on the causes 

of species’ range limits. Recent evolutionary models have explored how drift accumulating in 

small populations at range limits can constrain range expansion by negatively impacting 

population fitness (Peischl et al., 2013; Henry et al., 2015; reviewed in Willi, 2019) and 

constrain adaptation along environmental gradients (Polechová and Barton, 2015; Polechová, 

2018). While these studies provide a strong framework to explore why species are limited in 

their distributions, empirical evidences of these processes at range limits are still scarce.  

 The classic “center–periphery’ hypothesis”, based on the assumption that the range of a 

species is a representation of its ecological niche (Hutchinson, 1957), states that lower 

population abundance at range limits results from a decline in habitat suitability (Hengeveld 

and Haeck, 1982; Brown, 1984). This hypothesis is supported by meta-analytic studies, 

reporting a general decline in population occurrence and density of individuals toward range 

limits (Pironon et al., 2017), in line with a strong overlap between range limits and niche limits 

(Cahill et al., 2014; Hargreaves et al., 2014; Lee-Yaw et al., 2016). Another evolutionary theory 

states that decline in population size results from serial demographic bottlenecks during range 

expansion (Wade and McCauley, 1988; Peter and Slatkin, 2013) supported by the strong 

relation between decline in genetic diversity and expansion distance (Pironon et al., 2017). 

Evolutionary theory states that population with a history of small size, or which have 

undergone demographic bottlenecks are exposed to strong genetic drift opposing purifying 

selection (Wright, 1931). As a result, (mostly) recessive deleterious mutations accumulate in 
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small populations, negatively affecting fitness, i.e. mutational load (Wright, 1931; Kimura et 

al., 1963; Kirkpatrick and Jarne, 2000; Peischl and Excoffier, 2015). Simulation studies predict 

that mutational load accumulated through serial bottlenecks during fast range expansion could 

be strong enough to slow down or even halt range expansion, if recombination is low (Peischl 

et al., 2013, 2015; Peischl and Excoffier, 2015). With the general decline in habitat suitability 

toward and beyond range limits (Brown, 1984; Cahill et al., 2014; Hargreaves et al., 2014; Lee-

Yaw et al., 2016), the expression of mutational load may also increase in range-edge 

populations due to higher exposure to environmental stress, as has been suggested for 

inbreeding depression (Reed et al., 2012). Strong genetic drift also opposes selection on 

beneficial alleles and erodes selection in small populations (Wright, 1931). Simulation studies 

have identified increased genetic drift as a main constraint to adaptation along environmental 

gradients at range limits (Polechová and Barton, 2015; Polechová, 2018).  

Increased genetic drift could be a predominant factor shaping the range limits of many 

temperate species, often characterized by a history of recent range expansion (Hewitt, 2000, 

2004) since last glacial maximum (LGM), and a general decline in population sizes and genetic 

diversity toward species range limits (Eckert et al., 2008; Sexton et al., 2009; Pironon et al., 

2017). However empirical evidences of the role of drift at range limits are still scarce, leaving 

several open questions. Past empirical studies support the accumulation of mutational load 

toward range limits: Signatures of mutational load have been shown to increase with further 

distance from expansion core in several plant species (González-Martínez et al., 2017; Willi et 

al., 2018; Koski et al., 2019), and phenotypic studies performed in laboratory, greenhouse or 

common gardens hint toward increased expression of mutational load toward range limits 

(Bosshard et al., 2017; Willi et al., 2018; Koski et al., 2019). Whether the patterns of increased 

expression of mutational load are uphold in populations exposed to their natural environment, 

and whether this effect is strong enough to reduce population demographic rates at range limits 

remain to be tested. The environmental dependency of the expression of mutational load has 
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also rarely been observed in natural populations (Fenster and Galloway, 2000; Prill et al., 2014; 

Li et al., 2018) and has never been tested in the context of limits to range expansion. 

Furthermore, local adaptation has been shown to decline in populations at range limits, linked 

to lower census size (Vergeer and Kunin, 2013) or genetic diversity (Halbritter et al., 2015, 

Hämälä et al., 2018), but these patterns are yet to be tested in the context of drift accumulated 

at range limits through a history of fast range expansion or long-term isolation. A final aspect 

to explore is the strength and permeability of the limits to range expansion exerted by drift. In 

fact, in the short evolutionary time since LGM, several taxa have been able to extend their range 

over large ecological gradients (e.g. Skrede et al., 2006; Koch et al., 2006; Smickl et al., 2010), 

hinting toward a leakiness on the constraints imposed by drift. 

 

Study system 

I empirically assessed these open questions in the North American Arabidopsis lyrata subsp. 

lyrata (L.). This species is ideal to explore the role of mutational load and its environmental 

dependency in shaping range limits: the current distribution of A. lyrata is characterized by a 

history of fast post-glacial range expansion from two separate refugia (Willi and Määttänen, 

2010; Griffin and Willi, 2014; Willi et al., 2018). In addition, while most populations are 

outcrossing, selfing population occur predominantly at range limits of each cluster (Griffin and 

Willi, 2014), also expected to lead to increased genetic drift (Pollak, 1987; Nordborg and 

Donelli, 1997) and mutation accumulation (Lynch et al., 1995; Schultz and Lynch, 1997). In 

line, increased genomic signatures of mutational load have been linked with longer range 

expansion distance, or long-term isolation at the rear-edge, further increased in selfing 

populations (Willi et al., 2018). Furthermore, previous distribution modelling suggest that 

current northern and southern range limits of the species are well defined by steep decline in 

habitat suitability, excluding dispersal limitation (Lee-Yaw et al., 2018), but also potentially 

exposing populations to increased environmental stress toward and beyond range limits. 
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Finally, clines in adaptation across the range of this species have also been identified, along its 

main niche defining variables (Paccard et al., 2014; Wos and Willi, 2015; Walden et al., 2020), 

presenting an ideal setup to explore the role of drift in adaption at range limits. 

 

Genetic and environmental constraints shaping the range limits of Arabidopsis lyrata 

In a first project, I explored the variation in expression of mutational load and the variation in 

adaptation in 20 population representing the whole range of A. lyrata (Fig. 1). The expression 

of mutational load is classically inferred from heterosis, the difference in performance between 

hybrid populations, with expected reduced homozygosity on recessive deleterious mutations, 

and their parental populations (dominance model of heterosis, Crow, 1987). I raised offspring 

of laboratory-generated within- (WPC) and between-population crosses (BPC) in a transplant 

experiment along a latitudinal gradient at five sites in the USA, representing the conditions 

within the range, as well as conditions at and beyond the northern and southern edges. 

In Chapter 1, I addressed the question whether the magnitude of the expression of 

mutational load is dependent on the history of range expansion or rear edge isolation, and 

whether this process results from range expansion alone or from the increased occurrence of 

selfing populations at range limits. In Chapter 2, I then tested whether the expression of 

mutational load is dependent on environmental stress resulting from the exposure to climates 

different from those experienced at the site of origin of each population. I also tested specifically 

in range-edge populations, whether the expression of mutational load increases when 

transplanted in unsuitable conditions beyond their respective edges. In Chapter 3, I assessed 

whether range limits actually correspond with niche limits in A. lyrata, by testing if WPC 

population performance estimates and demographic rates declined in sites at and beyond range 

limits. I then tested the levels of local adaptation across this species range, and whether 

adaptation was reduced in range-edge populations, with low levels of genetic diversity. 
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 In a second project, I focused on the difference in adaptation to cold climates between 

A. lyrata and its selfing sister species A. arenicola. Despite sharing a common post-glacial 

ancestor with A. lyrata, A. arenicola successfully colonized subarctic and arctic regions of 

North America (Fig. 1), providing a striking counter-example to the limitations on range 

expansion tested in Chapter 1, 2 and 3. I raised populations of both species, and their previously 

laboratory generated hybrids in a climate chamber experiment simulating stress linked to 

growth in cold climates over a whole life cycle. In Chapter 4, I tested whether A. lyrata and A. 

arenicola differ in their adaptation to cold temperatures and frost events, to understand their 

divergent distribution. Finally, in Chapter 5, I assessed if both A. lyrata and A. arenicola are 

separated by other reproductive barrier contributing to adaptive differentiation in addition to 

their parapatric distribution and the selfing mating system of A. arenicola. I therefore tested the 

levels of intrinsic reproductive isolation by comparing performance of interspecific hybrids and 

their parental populations, and further tested if hybridization disrupted the adaptation strategy 

to cold climates of both species.    
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Figure 1: Distribution of Arabidopsis lyrata subsp. lyrata and Arabidopsis arenicola in 

eastern North America with the locations of the populations studied and the 5 common 

garden sites. Left: The grey shaded area represents the current North-American range of A. 

lyrata, and the blue shaded area the current range of A. arenicola. Circles filled in black or red 

represent outcrossing and selfing populations studied in this thesis. Population labels consist of 

the abbreviation for state (USA) or province (Canada) and a number (as in Willi et al., 2018). 

Green triangles represent the five common garden (CG) sites; numbers added to labels are in 

sequence of north to south. The dashed line is the split between eastern and western genetic 

clusters. Right, top: Flowering A. lyrata individual of the population NY6 in its natural 

localization; bottom: Flowering A. arenicola individual of the populations MB1 raised in a 

climate chamber in Basel. Switzerland (photographs taken by A. Perrier, 2017).  
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Abstract 

There is no general explanation for why species have restricted geographic distributions. One 

hypothesis posits that range expansion or increasing scarcity of suitable habitat result in accumulation 

of mutational load due to enhanced genetic drift, which constrains population performance toward 

range limits and further expansion. We tested this hypothesis in the North American plant, 

Arabidopsis lyrata. We experimentally assessed mutational load by crossing plants of 20 populations 

from across the entire species range and by raising the offspring of within- and between-population 

crosses at five common garden sites within and beyond the range. Offspring performance was tracked 

over three growing seasons. The heterosis effect, depicting expressed mutational load, was increased 

in populations with heightened genomic estimates of load, longer expansion distance or long-term 

isolation, and a selfing mating system. The decline in performance of within-population crosses 

amounted to 80%. Mutation accumulation due to past range expansion and long-term isolation of 

populations in the area of range margins is therefore a strong determinant of population-mean 

performance, and the magnitude of effect may be sufficient to cause range limits. 

 

Keywords: Arabidopsis lyrata, genetic drift, geographic species distribution, heterosis, mutational 

load, range expansion, range limit, small population size. 
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Introduction  

What determines the limits of species’ geographic distributions has been a long-standing question in 

biology, yet the more ultimate evolutionary causes are still not fully understood (Gaston 2009; 

Sutherland et al. 2013; Connallon and Sgrò 2018; Willi and Van Buskirk 2019). Ecological research 

has focused on limiting environmental factors and used the concept of the ecological niche of species 

to understand range limits (e.g., Hargreaves et al. 2014; Lee-Yaw et al. 2016). In contrast, 

evolutionary theory has focused on constrains in adapting to ecological gradients, for which few direct 

empirical tests exist to date (recent theory: e.g., Polechová and Barton 2015; Polechová 2018; older 

theory and empirical work reviewed in: Kawecki 2008; Gaston 2009; Sexton et al. 2009). Another 

evolutionary explanation for distribution limits is enhanced genetic drift and the accumulation of 

deleterious mutations toward the range edge, due to a history of small population size either produced 

by past range expansion or a scarcity of suitable habitat (Peischl et al. 2013; Peischl and Excoffier 

2015; Henry et al. 2015; reviewed in Willi 2019). These theoretical studies have described conditions 

favoring mutational load in contributing to range limits, but few empirical estimates of mutational 

load across species distributions have been made and the fitness consequences of mutational load in 

nature are unknown. If the phenotypic effect of mutational load due to past expansion or habitat 

scarcity is considerable, it may constrain population persistence and establish a range limit by 

preventing further expansion (Peischl et al. 2015; Henry et al. 2015). 

Populations at range edges may often have a history of small size, with the predicted 

consequence of heightened genetic drift that erodes genetic variation and opposes the effect of 

(mostly weak) selection (Wright 1931; Kimura et al. 1963). In long-term small populations, the 

consequence of drift opposing purifying selection is the accumulation of deleterious mutations, 

leading to a reduction in fitness called mutation(al) load (Kimura et al. 1963). Similar to stable small 

population size, demographic bottlenecks are also expected to enhance genetic drift, erode genetic 

variation (Nei et al. 1975), and heighten mutational load (Kirkpatrick and Jarne 2000). Recent 

theoretical work by Peischl and co-workers suggested that serial bottlenecks during rapid range 
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expansion lead to the accumulation of mutational load, in this context termed expansion load, which 

decreases population mean performance and slows down expansion or even halts expansion if 

recombination is low (Peischl et al. 2013, 2015; Peischl and Excoffier 2015). The increased frequency 

of recessive deleterious mutations contributes strongest to mutational load (Peischl and Excoffier 

2015) and load can persist for thousands of generations (Peischl et al. 2013). Most notably, 

predictions of this general model apply in the absence of any environmental gradient. A different type 

of neutral model also predicted stable range margins due to mutation accumulation along a gradient 

of habitat quality. Henry et al. (2015) performed simulations along linear arrays of habitat patches of 

decreasing carrying capacity and found that the range limits retract to a stable point, before reaching 

the limit of habitat patches, due to mutation accumulation if both dispersal and population growth 

rate are small. 

Empirical research suggests that a history of past range expansion is common in many taxa 

and that the habitat often deteriorates at range edges, both of which are associated with enhanced 

genetic drift. Quaternary ice ages caused retraction of the geographic distribution of many species 

into refugia, from which they have re-expanded, leaving many with distribution margins 

characterized by a history of recent range expansion and lowered effective population size (Hewitt 

2000). Furthermore, several recent meta-studies confirmed the general trend for enhanced habitat 

deterioration and habitat isolation toward and around the geographic range limits and lower effective 

population sizes. A meta-study on transplant experiments with sites beyond the range edge revealed 

significant performance declines beyond range edges in about 80% of studies (Hargreaves et al. 

2014), which was paralleled by a decline in habitat suitability deduced by niche modelling (Lee-Yaw 

et al. 2016). Furthermore, the density of individuals and populations of species were found to 

generally decline toward the range edge (Pironon et al. 2017). Other meta-level studies show that 

populations at range edges have reduced within-population genetic marker variation and are 

genetically more differentiated, documenting the enhanced action of genetic drift (Eckert et al. 2008; 

Sexton et al. 2009; Pironon et al. 2017). In the context of range margins, the evolution of mating 
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system shifts received additional attention. In hermaphroditic organisms, the incidence of self-

fertilization increases toward range edges due to a history of mate limitation and the lowering of 

inbreeding load (Pujol et al. 2009; Griffin and Willi 2014; Matos et al. 2015). One consequence of a 

shift to selfing is increased genetic drift (Pollak 1987; Nordborg and Donelli 1997) and mutation 

accumulation (Lynch et al. 1995a; Schultz and Lynch 1997). Indeed, estimates of effective population 

sizes are typically lower in selfing compared to outcrossing taxa (Ingvarsson 2007; Hartfield et al. 

2017). 

The accumulation of deleterious mutations during range expansion has been studied best in 

humans. Populations with a longer history of expansion out-of-Africa, European Americans, had 

higher proportions of non-synonymous to all single-nucleotide polymorphisms (SNPs) compared to 

African Americans (Lohmueller et al. 2008). Similarly, an increased frequency of predicted 

deleterious mutations was observed in out-of-Africa populations compared to humans from southern 

Africa (Henn et al. 2016). In plants, increased genomic estimates of mutational load with range 

expansion have been described in at least three species (González-Martínez et al. 2017; Willi et al. 

2018; Koski et al. 2019). However, empirical evidence of the link between expansion history and 

performance decline are scarce. In an experimental-evolution study with bacteria, lines with high 

mutation rates evolved to have reduced growth under range expansion over 1650 generations 

compared to their ancestral lines, suggesting accumulation of mutational load (Bosshard et al. 2017). 

Increased genomic estimates of mutational load toward the distribution edge were associated with 

reduced performance assessed in a common garden in the species Arabidopsis lyrata (Willi et al. 

2018). In Campanula americana, populations further away from a putative glacial refugium in the 

southern Appalachians expressed increased mutational load in the greenhouse (Koski et al. 2019). 

However, these studies have not tested the contribution of mutational load to reducing population 

performance and demographic rates under natural conditions or across the distribution of a species. 

Moreover, the life stage at which mutational load is expressed is not known (Hansen and Price 1999). 
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Based on theory, we expect that the cumulative effects of numerous deleterious mutations each of 

small effect become most detectable at later life stages (Husband and Schemske 1996). 

In this study, we estimated the expression of mutational load of natural populations of A. 

lyrata subsp. lyrata (L.) from across the species range in common gardens within and beyond the 

distribution range. The species is ideal for investigating genetic causes of range limits because niche 

modelling has shown that the species is not dispersal-limited in the south and north, indicating that 

range limits reflect niche limits (Lee-Yaw et al. 2018). Furthermore, previous population genomics 

studies demonstrate a history of fast post-glacial range expansion from two distinct refugia, resulting 

in two genetically distinct clusters with a small contact zone at Lake Erie (Willi and Määttänen 2010; 

Griffin and Willi 2014; Willi et al. 2018). Distance of expansion or rear-edge distance to the glacial 

refugia was positively associated with genomic estimates of mutational load, indicating that both past 

range expansion and long-term isolation at the south-western range edge left a signature of mutation 

accumulation. The highest genomic estimates of mutational load were found in selfing populations, 

which in this species are restricted to areas at or close to the edge of the range (Griffin and Willi 2014; 

Willi et al. 2018). To estimate expressed mutational load, we used the proxy of heterosis, i.e. the 

increase in fitness of between-population crosses compared to within-population crosses due to 

increased heterozygosity of recessive deleterious mutations (dominance model of heterosis, Crow 

1987). We tested the following predictions: (i) Mutational load expressed in the field is tightly 

correlated with mutational load estimated on a genomic level. (ii) As with genomic estimates of load, 

expressed mutational load is correlated with post-glacial expansion distance or long-term isolation at 

the rear edge and with mating system. (iii) Expressed mutational load is based on weakly deleterious 

mutations, whose cumulative effect is greatest at late life stages. 
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Material and Methods  

Plant material and the crossing of plants 

Twenty populations of A. lyrata subsp. lyrata were selected to represent the whole range of 

distribution of the species (Fig. 1, Table S1). They represented: the two genetic clusters of the species 

in North America; different histories during and since the last glaciation cycle, either one of being 

close to glacial core distribution or one of expansion or rear-edge isolation; different mating systems, 

either being predominantly outcrossing or predominantly selfing (Griffin and Willi 2014). Seeds of 

different maternal plants per population were collected between 2007 and 2014 over an area of about 

450 m2 in each population. Seeds had been stored in separate bags per maternal plant at 4 °C under 

dry, dark conditions. 

We raised 26 plants per population in growth chambers, one per field-collected maternal plant 

and that we assumed were unrelated, for the production of within- and between-population crosses. 

Three seeds per maternal plant were initially sown in individual pots filled with a 1:1 mixture of sand 

and peat. Pots were watered to saturation and seeds stratified for 12 days at 4 °C in the dark. Pots 

were then transferred to growth chambers (CLF Plant Climatics, Wertingen, Germany) with the 

following conditions to promote germination: 8h of light at 100 μmol m-2 s-1 and 20 °C, 16h of dark 

at 20 °C. Germinated plants were thinned to one per pot, 36 days after sowing. To promote growth 

and flowering, day length and light intensity were increased every three days by 1h and 20 μmol m-2 

s-1, respectively, over a period of 25 days, and day temperature was increased by 2 °C. The final 

conditions were kept until the end of the crossing experiment: 16h of light at 240 μmol m-2 s-1 and 22 

°C, 8h of dark at 20 °C. After 25 days, when the first individuals started to bolt, all pots were 

transferred to a greenhouse with similar conditions as in the growth chambers to perform the crosses 

(all growth conditions detailed in Table S2).  

Of the 20 populations, 18 were considered target populations, and two served as pollen donors 

for between-population crosses. The latter two populations were located in the center of distribution 

of the two ancestral clusters and had high genomic diversity (NY1 for the eastern cluster, IA1 for the 
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western cluster). For each of the 18 target populations, 12 of the 26 individuals were randomly chosen 

as being “mothers” (pollen recipients) and 12 individuals as “fathers” (pollen donors); the remaining 

plants were used as backups. The 12 mother plants of a target population were crossed with pollen 

from a randomly chosen father plant of the same population (WPC) and from a randomly chosen 

plant of the partner population (BPC); crosses were non-reciprocal. WPC crosses were also performed 

for the two partner populations (list of families and cross combinations in Table S3). We made hand-

pollinations at the bud stage to exclude unwanted cross- and spontaneous self-pollination. Flower 

buds of the mother plant were opened with tweezers, the immature anthers were removed, and mature 

anthers of a father plant gently rubbed over the stigma. Pollen contamination was avoided by 

sterilizing the tweezers after each contact with a flower, and placing each pollinated plant into an 

insect-proof growth chamber until fruit elongation began (3-5 days). Each cross combination was 

repeated to obtain a sufficient number of seeds for the outdoor common gardens (at least six siliques 

or 60 healthy-looking seeds). Cross combinations were changed if no siliques or no viable seeds could 

be obtained. We collected mature siliques and left them to dry for two weeks at ambient temperature 

in the dark. Afterwards, they were stored at 4 °C, under dry and dark conditions. 

 

Raising of plants in common gardens 

Expressed mutational load, the heterosis effect in F1 individuals, was assessed at five common garden 

sites along a 1400 km latitudinal gradient in the eastern USA (Fig. 1). One site was in the center of 

the range of A. lyrata, in Harrisonburg, VA, two sites were close to the southern and northern borders 

of the range, in Winsten-Salem, NC, and Williamstown, MA, respectively, and two sites were beyond 

the southern and northern range edge, in Athens, GA, and the Adirondacks, NY, respectively (Table 

S4). In the analyses presented here, sites were treated as a level of replication for estimating 

mutational load. Our main goals were to analyze the relationships between expressed mutational load 

and a genomic estimate of mutational load (prediction i) and between expressed mutational load and 

past range dynamics or mating system (prediction ii). The common garden study started in fall 2017 
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and used the same protocol for each garden, with slight deviations due to local facilities. We sowed 

seeds from all successful cross combinations that had more than 15 healthy seeds in each garden. If 

a cross combination failed to produce enough viable seeds, we added an additional cross combination 

from the same population with a sufficient number of seeds. In total, 401 cross combinations 

contributed to the field experiment (Table S3). Per cross combination and common garden, three pots 

were filled each with two seeds (in some cases only one seed was available). Pots were randomly 

positioned across thirteen 38-cell propagation trays within each of three blocks per common garden. 

Across the five gardens, a total of 12,933 seeds were sown. In all common gardens, we used the same 

substrate mixture of washed river sand and peat (1:1.5 sand:peat). Sowing was done in early fall to 

early winter and started at the northernmost site. To prevent seeds from being washed away by heavy 

rainfall, germination was carried out under a ventilated greenhouse or temporary tent for 17-19 days 

until the peak of germination was reached. The trays were then exposed to natural conditions for the 

rest of the experiment. During fall 2017, the trays were regularly watered during periods of no rain, 

to ensure a constant moisture of the substrate, until snow fell or the first night frosts occurred. We 

weeded the pots manually, and seedlings were thinned starting 11 weeks after sowing to keep only 

one individual per pot. Herbivory by grazing was prevented by a fence, and organic slug repellent 

was used in the beginning of spring, after snowmelt. No further interventions were made until the end 

of the experiment in summer 2019 (2018 for Harrisonburg because the garden was needed for another 

experiment).  

We measured performance on the level of the individual pot/plant. Day of germination, when 

a seedling had two fully open cotyledons, was checked three times a week until the peak of 

germination was over (4-5 weeks after sowing) and then once a week until the first thinning. 

Germination was again checked in spring 2018. Death of seedlings was recorded at the same time as 

germination was checked, and later, mortality was checked once a week unless there was a snow 

cover. We scored the day of first flower opening three days a week, starting when bolting was 

observed in 2018. Day of germination, death, and flowering were corrected by the mid-time between 
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previous checking and actual observation. Reproductive output was estimated in 2018 and 2019 by 

counting the number of fruits, pedicels (flowers that did not develop into a fruit), open flowers, and 

flower buds on all inflorescences. Female reproductive output of each individual was the total number 

of fruits and potential additional fruits that could have formed from buds and open flowers: fruits + 

((flowers + buds) × (fruits / (fruits + pedicels))). We assessed reproductive output several weeks after 

peak flowering: in 2018 ~ 9 weeks after opening of the first flowers within each common garden, and 

in 2019 ~ 5 weeks after first flowering, estimated from flowering dates of the previous year.  

To assess the contribution of the seed bank to population growth, we carried out a seed 

survival experiment over the winter of 2018/19. One hundred healthy seeds of five to twelve mother 

plants from each WPC and BPC cross combination were pooled on the level of the population and 

cross type, and packed in groups of 10 seeds in 10 separate bags made out of micro-perforated fabric 

(nonwoven polypropylene-felt, 40 g/m2) that allowed the penetration of air and moisture. Two bags 

of each pool were placed in each of the five common gardens in October 2018 on freshly weeded and 

homogenized soil next to the pots to expose them to natural conditions, and they were retrieved in 

late spring 2019. Each pool was then visually screened to discriminate between seedlings and seeds. 

We then judged survival by first stratifying seeds on filter paper disks soaked with 1.5 ml of 0.05% 

gibberellic acid in petri-dishes (10 days, 4 °C, no light). Germination was assessed under similar 

conditions as detailed for the crossing experiment and scored over 20 days. Seed survival over winter 

was then estimated for each bag as: (germinated seedlings + germinated seedlings with gibberellic 

acid)/10. 

 

Statistical analysis 

We analyzed two measures of performance, using pot as the level of replication. Multiplicative 

performance I was the fraction of seeds that germinated multiplied by the total reproductive output 

in year 2 plus in year 3, and multiplicative performance II was germination multiplied by the number 

of fruits only. Components of these overall performance estimates were analyzed separately and are 
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described in Table S5; these analyses were used to identify the life stages most impacted by 

mutational load (prediction iii). Finally, to assess how mutational load affected demography, we 

estimated population growth rates for all WPC (20) and BPC combinations (18) in each common 

garden by constructing stage-classified matrices (Caswell 2001), based on population mean data of 

each common garden. The matrices were composed of three stages: 1–healthy seeds, 2–individuals 

capable of reproducing in spring of year 2 (2018), 3–individuals capable of reproducing in spring of 

year 3 (2019), with a projection interval set to one year for each stage. The exact parametrization of 

the matrices is described in Fig. S6. For each combination of population, cross type and common 

garden, we calculated λ, the finite rate of increase in one time-step (Caswell 2001). 

Preliminary analyses on the level of the pot/plant (described below) revealed that the effect 

of cross-type was highly significant for multiplicative performance I and II, and therefore we present 

the analyses and results on heterosis first. Population-level heterosis was calculated as the increase in 

performance due to between-population crossing relative to within-population crossing, as follows: 

(WBPC - WWPC)/WWPC. WWPC and WBPC were calculated for each population in each common garden 

based on family means. In the case of WWPC, the final value was an average of the two types of WPC, 

of the target and the pollen-donor population. In case either WBPC or WWPC was equal to zero for a 

specific cross combination in a specific common garden, we chose to replace this value by the 

smallest non-zero value observed within cross type (12 cases for survival summer year 2, three cases 

for survival winter year 2). Heterosis estimates were log10-transformed (after making all values 

positive by adding +1), and tested by hierarchical mixed-effects models using restricted maximum 

likelihood with the packages lme4 (Bates et al. 2015) and LmerTest (Kuznetsova et al. 2017; model 

parametrization in Appendix S7A) in R (R Core Team 2019). Fixed effects were either the genomic 

estimate of mutational load, or the recent range-dynamics history of a population and mating system. 

The genomic estimate of mutational load (hereafter genomic load) was the ratio of non-synonymous 

polymorphic sites to synonymous polymorphic sites, adjusted for their mean derived allele frequency 

relative to A. thaliana, Pnfn/Psfs (Willi et al, 2018). The range-dynamics history of a population was 
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its log10-transformed distance to distribution cores. Cores were glacial refugia that gave rise to range 

expansion, identified by means of the map-projection of a population phylogeny. More precisely, 

cores were defined as the location of the ancestral node from which a first ancestral population 

appeared that was located in an area covered by ice during the last glacial maximum (Willi et al. 

2018). For younger populations, distance to core was calculated as the sum of great circle distances 

[km] from the location of the extant population back along the map-projected phylogeny to the core 

and reflected the expansion distance. Populations that had diverged earlier were considered rear-edge 

relative to the core sites. For these, the direct great-circle distance to the ancestral core population 

was calculated. The two Missouri populations, although part of a separate third cluster, were 

considered as being part of the western cluster due to proximity and a closer shared history of 

admixture (Willi et al. 2018). As a proxy for mating system we used the population inbreeding 

coefficient, FIS (Griffin and Willi 2014). Continuous fixed effects were mean-centered before running 

each analysis. The random part of models included the crossed effects of maternal population and 

common garden.  

Further analyses validated the use of heterosis as a proxy of expressed mutational load. First, 

we verified consistency in results between population-level analyses and pot/plant-level analyses. 

Dependent variables were the two measures of multiplicative performance and the separate 

performance components. Fixed effects were cross type, genomic load, and their interaction. 

Preliminary analyses showed that the best random structure was: maternal plant nested within 

maternal population and maternal population, for which intercepts and slopes of cross type were 

estimated, and block nested within common garden, and common garden. The two multiplicative 

performance variables were 0 inflated, which suggested the modelling of two processes, a Gaussian 

process (for log10-transformed performance values > 0), and a logistic process (modelling the 

probability of 1, assigned to performance values > 0). Analyses were performed in a Bayesian 

framework, with the package MCMCglmm (Hadfield 2010, 2019) on 10 parallel chains (model and 

prior parametrization detailed in Appendix S7B). Analyses on variables depicting life stage 
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components made use of restricted maximum likelihood (model parametrization detailed in Appendix 

S7C). Next, analyses were repeated on (log10-transformed) population means for each cross type and 

each common garden, by use of restricted maximum likelihood. Fixed effects were cross type, mean-

centred genomic load and the interaction between the two. Crossed random effects were maternal 

population and common garden. To validate if heterosis is the result mainly of dominance and load 

due to fully recessive deleterious mutations, we tested for a relationship between WWPC and genomic 

load, and WBPC and genomic load similar to above. 

 

 

Results 

Overall, 64.2% of all seeds germinated (Table S8). Plants had high survival rates at each life stage 

(61.8-99.6%), except for survival summer year 2, which was the most critical life stage (29.8%), with 

most deaths happening after reproducing. Surprisingly, despite high survival to flowering year 2 

(99.6%), only 60.2% initiated flowering, while 95% of plants that survived to year 3 initiated 

flowering (data not shown). Finally, individuals that flowered in year 2 produced on average 135 

flowers, with values ranging from 1 to 2607 flowers, with an average fertilization rate of 67.2%. 

Heterosis in multiplicative performance I and II up to year 3, assessed per population and common 

garden, ranged from -0.96 to 23.50 (mean: 1.88) and from -0.92 to 30.23 (mean: 2.65), respectively 

(Table S8). Finally, heterosis estimated on λ was between -0.53 and 7.29 (mean: 0.73; Table S8). 

Expressed mutational load, here estimated by heterosis in multiplicative performance I and II 

up to year 3, was positively related with the genomic estimate of mutational load (Table 1, Fig. 2; 

results on MP I and II to year 2 reported for comparison). The model-predicted increase between the 

population with the lowest and that with the highest genomic load was up to 5.6-fold (Table S9). 

Also, heterosis in multiplicative performance I and II up to year 3 significantly increased with the 

distance between the site of origin of a population and the glacial core distribution (Table 1, Figs. 2, 

3). The predicted maximal increase in heterosis between the closest and farthest population from the 
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glacial cores was up to 3.4-fold (Table S9). Analyses on outcrossing populations confirmed the 

positive effect of distance to core on heterosis (Table S10). Heterosis was higher in selfing 

populations for multiplicative performance I and II up to year 2 but not to year 3 (Table 1). The 

predicted maximal increase in heterosis between the most outcrossed and the most inbred population 

was 3.3-fold for multiplicative performance II to year 2 (Table S9). The intercept of the linear models 

was significant for heterosis in multiplicative performance I and II to year 3, indicating that the 

average population suffered from mutational load (Table 1). 

Heterosis associated with genomic load was significant relatively early in life (Table 1). 

Survival fall year 1 was the second variable after germination in the life stage analyses and for this 

variable a significant positive relationship between heterosis and genomic load was found. Further 

variables with a significant positive relationship between heterosis and genomic load were: bolting, 

reproductive output and number of fruits produced, all in year 2. Germination was the first life stage 

for which the relationship between heterosis and distance to core was significant (Table 1). Further 

variables with a significant positive relationship between heterosis and distance to core were 

reproductive output and number of fruits produced in year 2. Results were similar when analysis was 

restricted to outcrossing populations (Table S10). Heterosis in survival fall year 1, survival winter 

year 2, and bolting were significantly positively related with FIS (Table 1). Finally, heterosis for λ 

was positive and significant for genomic load, and as a trend for distance to core, and for FIS (Table 

1, Fig. 2). The model-predicted increase between the population with the lowest genomic load to the 

population with the highest genomic load was 1.3-fold (Table S9). For FIS, the model-predicted 

increase between the most outbred to the most inbred population was 1.7-fold (Table S9). 

Analyses similar to those presented above were performed on the level of individual 

pots/plants, with cross-type in the fixed effects part of the model (Table S11). Hierarchical mixed-

effects model analyses revealed a significant effect of cross type on multiplicative performance I and 

II to year 3 in both the log-normal process and the logistic process (Table S11A; results on MP I and 

II to year 2 reported for comparison). Between-population crosses (BPC) had higher performance 
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than within-population crosses, supporting a general heterosis effect. No direct effect of genomic load 

on multiplicative performances was observed. However, the cross type-by-genomic load interaction 

was significantly positive in the log-normal aspect of both multiplicative performance estimates; the 

performance of BPC declined less with genomic load than the performance of WPC. Similarly, when 

averaging both multiplicative performance estimates on the level of population for each cross type 

and common garden (Table S12), BPC performed significantly better than WPC. Furthermore, both 

multiplicative performance estimates were negatively related with genomic load, while again the 

cross type (BPC)-by-genomic load interaction had a significant positive effect on multiplicative 

performance I (marginally significant for multiplicative performance II). These results indicated that 

the relationship between performance and genomic load was more negative for WPC than BPC. Also 

analyzing both cross types separately confirmed the negative relationship between multiplicative 

performance I and II of WPC and genomic load, while no significant relationship was found for BPC 

(Table S13, Fig. 4). The predicted decline of WPC performance had a maximum value of 80.3% for 

multiplicative performance I to year 3(Table S9). 

 

 

Discussion 

Recent evolutionary theory proposes that the neutral process of genetic drift can contribute to slowing 

further range expansion in a species or cause stable range edges due to the accumulation of mutational 

load (reviewed in Willi 2019). Here we showed experimentally that both leading and rear edge 

populations suffered from the increased expression of mutational load – estimated by heterosis based 

on life-time performance, demographic rates, and performance at individual life stages. The 

expression of mutational load was also higher in selfing populations predominantly located at the 

distribution edge, aggravating the negative effect of load at range edges. Overall, this study provides 

empirical support for an important role of mutational load in range limits. 
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The expression of mutational load increased by a factor of 3.4 with distance along the 

expansion route or distance from the historic core of distribution toward the distribution edges of A. 

lyrata. The decline in population mean multiplicative performance of within-population crosses due 

to increasing genomic load was up to 80%. These results constitute some of the first in-situ evidence 

on the expression of mutational load toward range limits, and support predictions from simulation 

studies (Peischl et al. 2013; Peischl and Excoffier 2015), genomic data (Willi et al. 2018), or similar 

phenotypic data from the greenhouse or garden (Willi et al. 2018; Koski et al. 2019). The strong link 

between expressed mutational load, mutational load estimated with sequence data, and range position 

observed in our study system sheds light on the processes shaping range limits (reviewed in Willi 

2019). Further colonization by leading edge populations, already suffering from high levels of load, 

may be impeded by additional accumulation of mutational load, reducing performance below critical 

thresholds necessary to maintain persisting populations. Similarly, at the rear edge, population 

isolation and low effective population sizes may lead to mutational melt-down (Lynch et al. 1995b), 

such that rear-edges are unstable over the long term and in a state of gradual retraction. 

We found that the most inbred populations, the three predominantly selfing populations 

located at the northern, eastern, and southern edges of the western cluster, expressed even higher 

levels of load than outcrossing populations, with a predicted 3.3-fold maximal increase in heterosis 

based on multiplicative performance (up to the second year), and 1.3-fold increase in heterosis based 

on demographic rates. A similar result was found earlier on a different set of selfing populations of 

A. lyrata (Willi 2013). Higher levels of mutational load in selfing populations is expected due to their 

generally lower effective population size combined with increased exposure to genetic drift (Lynch 

et al. 1995a). Indeed, genomic signatures of mutational load are increased in several other selfing taxa 

(reviewed in Wright et al. 2013; Laenen et al. 2018). Theoretical and empirical studies predict higher 

rates of selfing toward range limits (reviewed in Pannell 2015), as observed in A. lyrata (Griffin and 

Willi 2014). This overrepresentation of selfing populations at range edges could lead to a biased 

estimation of the effect of expansion on mutational load, but our conclusions are not affected by this 
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because the statistical models accounted for mating system. This was also confirmed by analysis of 

outcrossing populations only, which produced similar effect sizes for distance to core on heterosis. 

The most important insight, however, is that selfing populations may often bear a double load, one 

from the long expansion history and one from selfing. Both are likely to increase extinction risk 

(Goldberg et al. 2010) and be effective in causing range limits (Peischl et al. 2015).  

As predicted, our results generally supported the expectation that the correlation between load 

and either a genomic estimate of load or distance to core strengthened over the life cycle of the plants. 

In an early phase of the life cycle, survival shortly after germination showed heightened heterosis 

with genomic load, and germination showed heightened heterosis with distance to core. But effect 

sizes were weaker than those found for later life stages (Table 1). Heterosis linked to genomic load 

or distance to core was found consistently for several performance variables of the first reproductive 

period (bolting, reproductive output, and number of fruits). Finally, the strongest associations 

between heterosis and either genomic load or distance to core occurred in the multiplicative 

performance estimates. These results agree with the prediction that expression of load is due to 

deleterious mutations with cumulative effect over an organism’s life (Husband and Schemske 1996). 

More and more genes contribute to performance over the course of the life of an organism, so the 

number of genes potentially experiencing load also increases, and this should produce a cumulative 

effect. Other empirical support for this model comes from studies assessing inbreeding depression in 

long lived perennials (e.g., Koelewijn et al. 1999; Griffin et al. 2019). Another prediction, according 

to theory, is that the magnitude of genetic drift determines the effect sizes of mutations that become 

targets of neutral evolution and are freed from purifying selection (Kimura et al. 1963). Here our 

results suggest that drift associated with past range dynamics must have been very strong, allowing 

mutations with significant phenotypic effect to accumulate in the presumably fewer genes relevant 

early in life (e.g., already at the time of germination). 

For selfing populations, the pattern of expression of mutational load through the life cycle is 

probably similar to that in outcrossing populations. Survival shortly after germination showed 
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heightened heterosis in populations with a selfing mating system. Later life stages with significantly 

increased heterosis were bolting during the first reproductive season and the survival during the 

second winter. In a previous study including five other selfing or mixed-mating populations of A. 

lyrata, Willi (2013) reported heightened heterosis associated with selfing only in reproductive output 

in the third year, but not in earlier life stages. However, another study focusing only on early life 

stages reported lower performance of within-population crosses for germination in selfing A. lyrata 

(Joschinski et al. 2015). Overall, it seems that also in selfing populations, the magnitude of the 

expression of load increases over the lifetime of a plant, and that early life phases can already be 

affected. 

Our results suggest that heterosis accurately reflects the fitness effect of mutational load. Just 

as the phenotypic comparison between in- and outbred individuals can accurately estimate inbreeding 

depression (Keller and Waller 2002), heterosis can indicate the expression of mutational load in vivo 

and, with an appropriate rearing design, in situ. One advantage of this approach is that other 

confounding effects can be excluded. For example, by using between-population crosses as the 

reference for performance, we control for the potential influence of population-specific local 

adaptation of within-population crosses. However, this method depends on two important 

assumptions: that heterosis is affected only by dominance (and not overdominance) and that load is 

primarily due to fully recessive deleterious mutations (Oakley et al. 2015; Peischl and Excoffier 

2015). We verified both assumptions. The fact that performance of between-population crosses did 

not increase with genomic estimates of load indicates that overdominance was not important. 

Likewise, the fact that performance of BPC did not decline with genomic load suggests that partially 

recessive deleterious mutations do not contribute appreciably to mutational load. A previous common 

garden study with A. lyrata found that part of the load was caused by partially recessive mutations 

(Willi et al. 2018). A further challenge is that heterosis can be affected by a performance decay due 

to outcrossing with distantly-related individuals, due to hybrid breakdown or disruption of coadapted 

gene complexes. In fact, the negative estimates of heterosis in our study, which occurred in nearly a 
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fourth of the BPC, may reflect genetic incompatibilities such as the Dobzhansky-Muller type (Lynch 

1991; reviewed in Oakley et al. 2015). Peripheral populations were generally genetically more 

isolated, so we assume that outbreeding depression was stronger for these populations. If this is true, 

our estimates of mutational load for range-edge populations would be slight underestimates, and the 

increasing load with post-glacial expansion distance would be even greater than reported here. 

Our findings clearly show that populations with the longest expansion history suffer most 

from the expression of mutational load. Populations with the highest genomic signatures of load, 

located at both leading and rear-edges of the distribution, suffer from the expression of load to the 

extent that it impairs their demographic rates. The accumulation of mutational load is therefore likely 

to be involved in shaping range limits by impeding further expansion at the leading edge and causing 

retraction at the rear edge. The discovery that population history impacts population persistence at 

range edges argues for the integration of evolutionary history into biodiversity conservation 

management (Hoffmann et al. 2015). These processes are also important in the context of climate 

change: strong mutational load at range edges could impair expansion into newly available habitats 

while rear-edge populations would suffer from increasing isolation due to habitat fragmentation, 

mutation accumulation, and eventual extinction. Genetic drift at range margins is predicted to limit 

adaptation and expansion into empty habitat (Polechová and Barton 2015; Polechová 2018). Our 

results imply that models of range limits along environmental gradients should integrate increasing 

drift and mutation accumulation toward range edges. This will produce deeper insights in the relative 

importance of factors contributing to maladaptation, range limits, and responses to climate change. 
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Table 1: Summary of models testing for the effect of genomic estimates of mutational load or geographic distance to core and mating system 

(FIS) on population-level heterosis at five common garden sites 

 

    Genomic load   Distance to core [km]   FIS            

Dependent variable N  Estimate χ²      R²m  R²c    Estimate χ²      Estimate χ²      R²m  R²c   

                      

Multiplicative performance (MP)                     

MP I to year 3 89  1.90 6.99 **  0.117 0.342 †,‡,§ 0.75 6.53 *  0.32 2.05   0.175 0.350 †,‡,§ 

MP II to year 3 89  2.11 9.30 **  0.138 0.431 †,‡ 0.75 6.94 **  0.38 3.12 (*)  0.188 0.438 †,‡ 

MP I to year 2 89  2.47 14.31 ***  0.179 0.405 ‡,§ 0.68 5.85 *  0.50 5.35 *  0.200 0.414 ‡,§ 

MP II to year 2 89  2.52 14.65 ***  0.168 0.423  0.72 6.52 *  0.51 5.66 *  0.192 0.431  

                     

Life stage components                     

Germination 89  -0.10 0.19   0.005 0.465 § 0.19 4.61 *  -0.10 2.18   0.105 0.470  

Survival fall year 1 89  0.24 7.38 **  0.056 0.334  0.00 0.01   0.10 10.43 **  0.087 0.361 § 

Survival winter year 1 89  0.02 0.18   0.002 0.077 ‡ 0.03 1.19   0.00 0.04   0.013 0.088 ‡ 

Survival summer year 2 89  0.07 0.04   0.000 0.160  0.13 0.69   -0.03 0.06   0.007 0.161  

Survival winter year 2 44  0.27 0.45   0.010 0.010 † -0.25 2.19   0.29 4.78 *  0.113 0.113 † 

                     

Reproduction year 2                     

Survival to flowering year 2 89  0.06 2.81 (*)  0.026 0.178 § -0.01 1.02   0.02 3.57 (*)  0.035 0.186  

Bolting 89  0.64 9.90 **  0.067 0.408  0.05 0.3   0.16 4.83 *  0.050 0.399  

Reproductive output 82  1.24 7.51 **  0.127 0.281 ‡ 0.45 5.4 *  0.16 1.07   0.151 0.301 ‡,§ 

Number of fruits 82  1.09 6.26 *   0.104 0.244 ‡ 0.45 6.39 *   0.13 0.87     0.150 0.263 ‡ 

                     

Demographic rate                     

λ 89  0.31 6.16 *  0.108 0.470  0.17 2.71 (*)  0.23 4.51 *  0.160 0.476  

 

Population heterosis estimates (log10-transformed) were assumed to follow Gaussian distributions. The effect of distance to core and FIS were assessed 

in the same model. Test statistics include regression coefficient (estimate), χ²-value and the marginal and conditional R2 of the model. Genomic load, 

distance to core and FIS were standardized prior to analyses (mean = 0). Estimates with P-values < 0.05 are written in bold; significance is indicated: 

(*) P<0.1, * P<0.05, ** P<0.01, *** P<0.001. Results for random effects are not shown.  

†For one of the five common gardens (CG3), the experiment stopped early and variables consider performance to year 2 only. 

‡Model fits with significant (positive) intercept.  

§The bobyqa optimizer was used when models initially failed to converge.
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Figure 1: Distribution map of Arabidopsis lyrata in eastern North America with the locations of 

the 20 populations studied and the 5 common garden sites. Circles filled in white or red represent 

outcrossing and selfing populations, respectively. Population labels consist of the abbreviation for 

state (USA) or province (Canada) and a number (as in Willi et al. 2018). Green triangles represent 

the five common garden (CG) sites; numbers added to labels are in sequence of north to south. The 

dashed line is the split between eastern and western genetic clusters. Of the 20 populations, two were 

used as partner-populations for between-population crosses, NY1 for crosses with eastern 

populations, and IA1 for crosses with western populations. 

  



46 
 

 
 

 

Figure 2: Relationship between heterosis in multiplicative performance or demographic rate 

and a genomic estimate of mutational load or geographic distance to core. Heterosis was 

estimated based on multiplicative performance I up to year 3 (top) or on λ (bottom) at the population 

level within each common garden site (CG1-5). Outcrossing populations are indicated by dots, selfing 

populations are indicated by crosses. Black lines represent the significant (full) or marginal (dashed) 

model-predicted slopes for heterosis (from test statistics in Table 1). The gray dashed line represents 

the value at which heterosis drops below 0, indicating outbreeding depression. Genomic estimate of 

mutational load (genomic load, left) was the ratio of genome-wide non-synonymous polymorphic 

sites multiplied by their derived mean frequency to synonymous polymorphic sites multiplied by their 
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derived mean frequency. Geographic distance to core (right) was the distance of a population back 

to the glacial refugium along the map-projected population phylogeny, or the direct great-circle 

distance to the glacial refugium for older populations. Test statistics are reported in Table 1 and Table 

S10.  
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Figure 3: Expressed mutational load estimated by heterosis is increased at range edges of 

Arabidopsis lyrata. The 18 populations studied are represented by dots of varying diameter, 

porportional to their log10-transformed mean heterosis across common garden sites, calculated based 

on multiplicative performance including flower production during two reproductive seasons 

(log10(heterosis multiplicative performance I to Y3 + 1) ranging from -1.4 to 1.4). Solid lines in purple and blue 

indicate the map-projected phylogeny from the western and eastern cores (presumed glacial refuge 

areas indicated by trianges) or connections to the core for older populations in the southwest (dashed 

purple lines). Mating system of populations is indicated by circle color: black for outcrossing and red 

for selfing. The two populations used as pollon donors in between-population crosses are represented 

by green squares. The approximate range of the species is shown by the gray-shaded area. 
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Figure 4: Relationshisp between population mean performance of within- (WPC) or between-

population crosses (BPC) and THE genomic estimate of mutational load. Lines represent model-

predicted slopes for population mean multiplicative performance I up to year 3 of WPC (solid black) 

and BPC (dashed red) (from test statistics in Table S13). Genomic estimate of mutational load was 

the ratio of the genome-wide number of non-synonymous polymorphic sites multiplied by their mean 

derived frequency to the number of synonymous polymorphic sites multiplied by their mean derived 

frequency (Pnfn/Psfs). Arrows represent the direction of change in mean performance across common 

garden sites from WPC (tail of the arrow) to BPC (head of the arrow). Fifteen out of 18 populations 

have arrows pointing upward, indicating heterosis.  
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Supporting information 

 

Table S1: Information on the Arabidopsis lyrata populations studied 

 

Population 

code 

Latitude 

[° N] 

Longitude 

[° W] 

Ecological 

variables 
 Variables on population history 

 

Min. 

temp. 

early 

spring 

[°C] † 

Mean 

prec. 

summer 

[mm] † 

 Cluster‡ 
Mating 

system § 

Genomic 

load 

(Pnfn/Psfs) 

‡ 

Distance 

to core 

[km]‡ 

FIS § 

 

IA1 41.97 90.37 -6.65 106.3  West outcrossing 0.80690 402.03 0.065  

IN1 41.61 87.19 -4.60 97.3  West outcrossing 0.83283 761.43 -0.031  

MD2 38.99 77.25 -1.75 95.3  East outcrossing 0.78476 230.85 0.017  

MO1 37.72 92.06 -2.40 94.3  West outcrossing 0.90542 893.01 0.090  

MO2 38.47 90.71 -2.65 88.0  West selfing 1.03637 791.00 0.677  

NC2 36.04 81.16 -1.65 118.3  East outcrossing 0.91391 686.11 0.043  

NC4 36.41 79.96 0.20 104.0  East outcrossing 0.86410 593.27 0.021  

NY1 41.30 73.98 -3.90 100.0  East outcrossing 0.77297 193.11 0.051  

NY4 42.35 76.39 -7.25 94.0  East outcrossing 0.77737 273.62 0.011  

NY5 42.66 74.02 -8.45 97.3  East outcrossing 0.78503 400.86 0.094  

NY6 43.00 76.09 -7.25 93.3  East outcrossing 0.77053 348.12 -0.047  

ON1 42.87 79.18 -6.10 82.3  West selfing 0.96393 1105.49 0.700  

ON11 48.77 87.13 -15.60 81.7  West selfing 1.09270 417.24 0.950  

ON12 49.65 94.92 -16.75 84.7  West outcrossing 0.85352 690.89 0.025  

ON3 43.26 81.84 -6.80 79.7  West outcrossing 0.86054 872.34 -0.041  

ON8 47.93 84.85 -14.70 84.0  West outcrossing 0.88166 479.45 -0.038  

PA3 41.28 77.87 -5.60 101.0  East outcrossing 0.76180 230.24 0.020  

VA1 37.42 77.02 0.35 108.0  East outcrossing 0.81838 403.90 0.026  

WI1 43.83 89.72 -10.00 98.7  West outcrossing 0.73834 213.46 0.033  

WV1 38.96 79.29 -3.70 96.0  East outcrossing 0.82191 342.15 -0.052  

 

† Data extracted from WorldClim database version 1.4 (Hijmans 2005). ‡ Willi et al. 2018. § 

Griffin and Willi, 2014   
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Table S2: Growth conditions during the crossing experiment 

 

Growth Phase 
Duration 

[days] 

Temperature 

daytime [°C] 

Temperature 

nighttime [°C] 

Day length 

[h] 

Light intensity 

[µmol m-2 s-1] 

Stratification  12 4 4 0 0 

Germination 22 20 20 8 100 

Growth † 21 22 20 10 140 

Flowering initiation 10 22 20 16 240 

Flowering and crossing 205 22 20 16 240 

 

† Day length and light intensity were gradually increased every three days by 1h and 20 µmol m-2 s-

1, respectively. 
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Table S3: Summary of the crossing experiment and number of seeds sown in each common 

garden 

Mother 

population 

Father 

population 

No. of cross 

families 

No. of seeds sown in each common 

garden Cross 

type 
CG1 CG2 CG3 CG4 CG5 

NY1 NY1 9 70 69 63 69 66 WPC 

NY5 NY5 12 72 72 72 72 72 WPC 

IN1 IN1 11 72 72 72 72 72 WPC 

MO1 MO1 12 72 72 69 72 72 WPC 

ON11 ON11 12 72 69 66 72 66 WPC 

ON12 ON12 12 69 69 72 72 72 WPC 

MO2 MO2 12 72 72 72 72 72 WPC 

NC2 NC2 12 69 70 72 72 72 WPC 

NC4 NC4 11 72 72 72 72 72 WPC 

IA1 IA1 9 70 72 57 72 66 WPC 

VA1 VA1 9 72 72 72 72 72 WPC 

MD2 MD2 10 69 69 69 72 69 WPC 

WV1 WV1 12 69 69 66 72 60 WPC 

PA3 PA3 11 72 72 72 72 72 WPC 

NY6 NY6 12 72 72 66 72 63 WPC 

NY4 NY4 10 70 69 69 72 72 WPC 

WI1 WI1 10 66 72 72 72 72 WPC 

ON8 ON8 6 27 30 27 37 27 WPC 

ON3 ON3 8 69 69 69 72 66 WPC 

ON1 ON1 12 72 72 72 72 69 WPC 

NY5 NY1 12 72 72 72 72 72 BPC 

IN1 IA1 11 72 69 69 72 72 BPC 

MO1 IA1 12 72 72 72 72 72 BPC 

ON11 IA1 9 55 54 54 0 72 BPC 

ON12 IA1 10 72 72 72 72 72 BPC 

MO2 IA1 12 72 72 72 72 72 BPC 

NC2 NY1 12 69 70 69 69 72 BPC 

NC4 NY1 10 72 72 72 72 72 BPC 

VA1 NY1 10 72 72 72 78 72 BPC 

MD2 NY1 9 72 72 72 72 72 BPC 

WV1 NY1 11 72 72 66 72 66 BPC 

PA3 NY1 11 72 72 72 72 72 BPC 

NY6 NY1 11 72 72 72 72 72 BPC 

NY4 NY1 11 72 72 72 72 72 BPC 

WI1 IA1 11 78 72 72 72 72 BPC 

ON8 IA1 5 34 35 33 39 33 BPC 

ON3 IA1 10 63 63 63 72 63 BPC 

ON1 IA1 12 72 72 72 72 69 BPC 
 

Total number of seeds sown: 12,933 

Total number of cross combinations: 401 
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Table S4: Information on common garden sites 

 

Transplant site Location 

Latitude 

[° N] 

Longitude 

[° W] 

Min. temperatures 

early spring (°C) † 

CG1 (NY) Beyond northern edge 44.51 74.02 -5.65 

CG2 (MA) Northern edge 42.72 73.22 -2.40 

CG3 (VA) Center 38.43 78.86 1.60 

CG4 (NC) Southern edge 36.13 80.28 4.90 

CG5 (GA) Beyond southern edge 33.93 83.36 6.95 

Mean northern pop. ‡ North - - -2.13 

Mean center pop. ‡ Center - - 1.01 

Mean southern pop. ‡ South - - 3.98 

 

† Data extracted from WorldClim database version 1.4 (Hijmans 2005); ‡ Data measured for mean 

population of the eastern cluster. Northern populations: NY4, NY5, NY6; center populations: PA3, 

MD2, WV1; southern populations: VA1, NC2, NC4.  
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Table S5 Description of performance estimates 

 

* Soil temperature was monitored every hour over the whole length of the experiment by 5 iButton® (Maxim Integrated, San Jose, CA, USA) per 

common garden site, buried under 5 cm of substrate in an empty pot. 

† except for CG3: no survival after assessment of reproductive output 2018 

‡ except for CG1: second cohort in spring 2018 

§ except for CG4: experiment restarted in December 2017

Performance estimate Type Level Description     Analysis 

       

Multiplicative performance (MP)       

MP I to year 3 continuous Pot Germination rate * reproductive output 2018 + 2019 † MCMC 

MP II to year 3 continuous Pot Germination rate * number of fruits 2018 + 2019 † MCMC 

MP I to year 2 continuous Pot Germination rate * reproductive output 2018  † MCMC 

MP II to year 2 continuous Pot Germination rate * number of fruits 2018  † MCMC 

       

Life stage components   From  To   

Germination binary Seed Day 0 31 days after sowing ‡ REML 

Survival fall year 1 binary Seed 31 days after sowing Soil temp. <5 °C (fall 2017) *§ REML 

Survival winter year 1 binary Pot Soil temp. <5 °C (fall 2017) Soil temp. >10 °C (spring 2018) *§ REML 

Survival summer year 2 binary Pot Soil temp. >10 °C (spring 2018) Soil temp. <5 °C (fall 2018) * REML 

Survival winter year 2 binary Pot Soil temp. <5 °C (Fall 2018) Count of reproductive output (spring 2019) *† REML 

       

Reproduction year 2      

Survival to flowering year 2 binary Pot Plants that survived from end of winter 2017/18 to flowering 2018  REML 

Bolting binary Pot Plants that survived to flowering and produced inflorescences or not  REML 

Reproductive output continuous Pot Sum of all flower organs for plants that bolted   REML 

Number of fruits continuous Pot Potential total number of fruits from plants that produced at least one flower   REML 
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Figure S6: Estimation of population growth rate. For each combination of population, cross type 

and common garden site, a stage-classified matrix (right) was constructed based on assumptions 

about the life cycle (left). The life cycle was composed of three stages: 1–healthy seeds, 2–individuals 

capable of reproducing in the second year, 3–individuals capable of reproducing in the third year. 

The projection interval was set to one year for each stage. Survival between stage 1 and 2 (P1) was 

estimated as: germination rate in 2017 x survival from the seedling stage until the date of first 

flowering in the first reproductive period (year 2) at each site. Survival between stage 2 and 3 (P2) 

was estimated as the survival from the date of first flowering in the first reproductive period to the 

date of recording of reproductive output in the second reproductive period (year 3). We assumed that 

seeds that did not germinate in the first year (graduation from step 1 to 2) could survive over winter 

and contribute to the seed pool of the next years. We defined the probability to remain at the same 

stage (S1) as the survival of seeds over one winter. This estimate was calculated based on the seed 

burial experiment over one winter. The probability to remain at the same stage was set to 0 for both 

stage 2 and 3, assuming that no plants survived after the third year. Preliminary analysis showed that 

allowing individuals to remain in stage 3 indefinitely with the same probability of surviving each year 

than between stage 2 and 3 did not significantly affect the population growth rates (data not shown). 

Fecundity of stage 2 and 3 (F1 and F2 respectively) were estimated for each stage separately as: 

probability to reproduce * number of fruits * number of healthy seeds per fruit. While an estimate of 

the latter could have come from the crossing experiment, we assumed that these values were not 

reflective of the natural conditions and could introduce too much bias. Furthermore, fecundity of both 

stages would need to be adjusted for the chance of landing in a suitable environment for germination 

(including environmental effects, inter- and intraspecific competition, predation, etc.). We therefore 

decided to assign to all populations a standard value representing both number of healthy seeds per 

fruit and the probability to land in an environment suitable for germination, estimated as the value 

that yielded an average λ of 1 across all WPC over all sites.  
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Appendix S7: Parametrization of the hierarchical mixed-effects models  

 

S7A: Hierarchical mixed-effects model with population heterosis as dependent variable 

Model = lmer(log10(heterosis + 1) ~ genomic load + (1 | maternal population) + (1 | common 

garden),  

 data = data) 

 

S7B: Priors, and hierarchical mixed-effects model analyzed in a Bayesian (MCMC) 

framework, with individual multiplicative performance as dependent variable 

Priors 

Priors were set to be weak, using parameter expansion to improve convergence. R specifies the priors 

for the fixed effects, G specifies the priors for the random effects. 

priors.model=list( 

  R=list(V=diag(2), n=1, fix = 2), 

  G=list(G1=list(V=diag(2), n=2, alpha.mu = rep(0,2),alpha.V = diag(2)*25^2), 

         G2=list(V=diag(4), n=4, alpha.mu = rep(0,4),alpha.V = diag(4)*25^2), 

         G3=list(V=diag(2), n=2, alpha.mu = rep(0,2),alpha.V = diag(2)*25^2), 

         G4=list(V=diag(4), n=4, alpha.mu = rep(0,4),alpha.V = diag(4)*25^2), 

         G5=list(V=diag(2), n=2, alpha.mu = rep(0,2),alpha.V = diag(2)*25^2), 

         G6=list(V=diag(2), n=2, alpha.mu = rep(0,2),alpha.V = diag(2)*25^2))) 

 

 

Parametrization of hierarchical mixed-effects models analyzed in a Bayesian (MCMC) framework 

Multiplicative performance estimates were split into two datasets: the zero_part, a binary 

transformation of performance estimates with zero_part = 1 if performance > 0, else zero_part = 0; 

and the norm_part containing only the performance measures if zero_part = 1. 

 

model = MCMCglmm(cbind(norm_part, zero_part) ~ trait -1 + trait:cross type * trait:genomic load, 

                  random = ~ us(trait):maternal population  

                  + us(trait:cross type):maternal population  

                  + us(trait): maternal population: maternal family  

                  + us(trait: cross type):maternal population:maternal family 

                  + us(trait):common garden + us(trait):common garden:block, 

                  prior = priors.model, 

                  rcov = ~idh(trait):units, 

                  family=c('gaussian', 'categorical'), 

                  burnin = 5000, thin = 100, nitt = 50000, 

                  data=data) 
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S7C: Hierarchical mixed-effects model with individual performance estimate as dependent 

variable 

Dependent variable with binary distribution 

Model = glmer(performance ~ cross type * genomic load  

+ (1 + cross type | maternal population / maternal family)  

+ (1 | common garden / block),  

family = “binomial”, 

 data = data) 

 

 

Dependent variable with log-normal distribution 

Model = lmer(log10(performance + 1) ~ cross type * genomic load  

+ (1 + cross type | maternal population / maternal family)  

+ (1 | common garden / block),  

 data = data) 
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Table S8: Summary of individual performance, and heterosis based on population mean 

performance (in % for binary variables) up to three years at five common garden sites 

 

  
Individual 

performance 
  

Population heterosis 

Dependent variable N Mean   N Min. Mean Max. 

        

Multiplicative performance (MP)        

MP I to year 3 6703 58.50  89 -0.96 1.88 23.50 

MP II to year 3 6703 36.67  89 -0.92 2.65 30.23 

MP I to year 2 6703 37.54  89 -0.95 2.96 41.21 

MP II to year 2 6703 26.27  89 -0.97 3.89 71.45 

        

Life stage components        

Germination 12933 64.2 %  89 -0.68 0.01 0.75 

Survival fall year 1 7214 77.6 %  89 -0.40 0.10 1.75 

Survival winter year 1 5072 85.2 %  89 -0.28 0.07 0.48 

Survival summer year 2 4319 29.8 %  89 -0.83 0.64 12.42 

Survival winter year 2 608 61.8 %  44 -0.68 0.11 5.00 

        

Reproduction year 2        

Survival to flowering year 2 3731 99.6 %  89 -0.25 0.17 2.46 

Bolting 3719 60.2 %  89 -0.53 0.57 5.42 

Reproductive output † 2240 134.72  89 -0.82 0.69 8.00 

Number of fruits  2218 96.09  82 -0.84 0.74 8.98 

Fertilization rate ‡ 2240 67.2 %   82 -0.47 0.09 0.76 

        

Demographic rate        

λ 189 1.18  89 -0.53 0.73 7.29 

 

† Sum of buds, flowers, fruits and pedicels produced by one individual 

‡ Not analyzed 
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Table S9: Magnitude of effect of the genomic estimate of mutational load or geographic distance to core and mating system (FIS) on (log10-

transformed) heterosis, and magnitude of effect of the genomic estimate of mutational load on (log10-transformed) multiplicative performance 

(MP) of within-population crosses (WPC) 

 

 

 

 

 

 

 

 

 

For the general models of Table 1 analyzing heterosis, the magnitude of effect of a predictor variable was calculated as: ratio between the back-

transformed predicted heterosis corresponding to the maximal value of a predictor variable, compared to the back-transformed predicted heterosis 

corresponding to the minimal value of a predictor variable. As in some cases outbreeding depression (negative heterosis values) was observed, 1 was 

added to predicted heterosis as outbreeding depression can take the maximal value of -1. For the general model of Table S13 analyzing WPC, the 

magnitude of effect of genomic load was calculated as: percentage difference between the back-transformed predicted performance corresponding to 

the maximal value of the predictor variable (in parenthesis, right) in our sampling and the back-transformed predicted performance corresponding to 

the minimal value of the predictor variable (in parenthesis, left).  

  Increase in heterosis + 1 (x-fold)  Decrease in WPC performance (%)  

Dependent variable N  Genomic load  Distance to core  FIS  N Genomic load  

MP I to year 3 89  4.7 (1.0; 4.6)  3.4 (0.9; 3.0)  NS  189 -80.3 (32.6; 6.4)  

MP II to year 3 89  5.6 (1.1; 6.1)  3.4 (1.0; 3.6)  NS  189 -73.3 (19.8; 5.3)  

MP I to year 2 89  7.5 (1.0; 7.2)  3.1 (1.1; 3.3)  3.2 (1.5; 4.8)  189 -75.7 (21.0; 5.1)  

MP II to year 2 89  7.9 (1.0; 8.0)  3.2 (1.1; 3.6)  3.3 (1.6; 5.3)  189 -69.5 (14.4; 4.4)  

λ 89  1.3 (1.06; 1.36)  NS  1.7 (1.0; 1.7)  - -  
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Table S10: Summary of models testing for the effect of geographic distance to core on heterosis of outcrossing populations only, estimated on 

population mean performance estimates up to three years at five common garden sites  
 

    Distance to core      

Dependent variable N Estimate χ²      R²m  R²c   

         

Multiplicative performance (MP)         

MP I to year 3 75 0.75 4.69 *  0.096 0.289 †,§ 

MP II to year 3 75 0.76 5.43 *  0.101 0.373 † 

MP I to year 2 75 0.65 3.75 (*)  0.080 0.331 § 

MP II to year 2 75 0.68 4.26 *  0.081 0.341  

         

Life stage components         

Germination 75 0.10 1.90   0.033 0.455  

Survival fall year 1 75 0.02 0.19   0.002 0.243 § 

Survival winter year 1 75 0.01 0.14   0.002 0.040 ‡ 

Survival summer year 2 75 0.10 0.42   0.005 0.132  

Survival winter year 2 38 -0.23 1.63   0.042 0.042 † 

         

Reproduction year 2         

Survival to flowering year 2 75 -0.01 0.13   0.001 0.249  

Bolting 75 0.08 0.70   0.007 0.310  

Reproductive output 70 0.45 4.08 *  0.097 0.286 ‡,§ 

Number of fruits 70 0.43 4.57 *  0.096 0.235 ‡ 

 

Population heterosis estimates (log10-transformed) were assumed to follow Gaussian distributions. Test statistics include the regression coefficient 

(estimate), χ²-value, and the marginal and conditional R2 of the model. Distance to core was standardized prior to analyses (mean = 0). Model fits with 

significant (positive) intercept are indicated by ‡. Estimates with P-values < 0.05 are written in bold; significance is indicated: (*) P<0.1, * P<0.05, 

** P<0.01, *** P<0.001. The bobyqa optimizer was used when models initially failed to converge (§). Results for random effects are not shown. For 

one of the five common gardens (CG3), the experiment stopped early and variables consider performance to year 2 only (indicated by †).  
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Table S11A: Summary of models performed on the level of individual pots, testing for the effect of cross type (between- compared to within-

population crosses [0]), genomic estimate of mutational load and their interaction on multiplicative performance (MP) based either on flower 

production (MP I) or fruit production (MP II) up to one or two reproductive seasons, at five common garden sites 

 

    Log-normal process, fixed effects  

  Cross type   Genomic load   Cross type * genomic load  

Dependent variable N Mean HPD interval    Mean HPD interval    Mean HPD interval    

MP I to year 3 6703 0.134 (0.021,0.229) *  -0.708 (-1.465,0.113) (*)  0.995 (0.252,1.774) *** †,‡  

MP II to year 3 6703 0.143 (0.049,0.243) **  -0.517 (-1.308,0.241)   0.844 (0.148,1.574) *** †,‡  

MP I to year 2 6703 0.121 (0.026,0.222) *  -0.635 (-1.415,0.137)   0.87 (0.081,1.573) *** ‡ 

MP II to year 2 6703 0.135 (0.04,0.233) **   -0.494 (-1.202,0.283)     0.82 (0.044,1.533) *** ‡ 

  Logistic process, fixed effects  

  Cross type   Genomic load   Cross type * genomic load  

Dependent variable N Mean HPD interval    Mean HPD interval    Mean HPD interval    

MP I to year 3 6703 0.491 (0.226,0.754) ***  -0.972 (-3.438,1.803)   1.568 (-0.446,3.644)  † 

MP II to year 3 6703 0.497 (0.241,0.742) ***  -1.15 (-3.713,1.447)   1.756 (-0.103,3.610) (*) † 

MP I to year 2 6703 0.471 (0.223,0.761) ***  -1.134 (-3.788,1.713)   1.594 (-0.492,3.641)   

MP II to year 2 6703 0.462 (0.221,0.703) ***   -1.172 (-3.835,1.321)     1.632 (-0.262,3.432) (*)  
 

 

Multiplicative performance estimates (log10-transformed if >0) were assumed to follow Gaussian distributions with 0-inflation. Therefore, models 

assessed all fixed and random effects for their importance in both the Gaussian process (total number of flowers or fruits produced during one or two 

reproductive seasons) and the logistic process (binary variable depicting germination combined with survival and the capacity to initiate flowering). 

Estimates of coefficients are modes of an MCMC sample from the posterior distribution of parameters (mean and higher posterior density, HPD 

interval). The logistic part of the model predicts non-zeros in the distribution on the logit scale. Genomic load was standardized prior to analyses 

(mean = 0). Model fits with significant (positive) intercept are indicated by ‡. Estimates with P-values < 0.05 are written in bold; significance is 

indicated: (*) P<0.1, * P<0.05, ** P<0.01, *** P<0.001. Results for random effects are not shown. For one of the five common gardens (CG3), the 

experiment stopped early and variables consider performance to year 2 only (indicated by †).   
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Table S11B: Summary of mixed-effects models performed on the level of individual pots, testing for the effect of cross type (between- 

compared to within-population crosses [0]), genomic estimate of mutational load and their interaction on performance based on germination 

and survival up to three years at five common garden sites, and reproduction in the second year 

 

    Cross type (CT)   Genomic load   CT * genomic load     

Dependent variable N Estimate χ²     Estimate χ²     Estimate χ²     R²m  R²c   

                 

Life stage components                 

Germination 12933 0.07 0.32   0.42 0.08   -1.15 0.71   0.001 0.260  

Survival fall year 1 7214 0.22 11.78 ***  -1.10 1.34   0.23 0.10   0.003 0.237 ‡ 

Survival winter year 1 5072 0.47 22.40 ***  -0.53 0.34   0.92 0.66   0.006 0.297 ‡,§ 

Survival summer year 2 4319 0.51 17.40 ***  -0.96 0.40   1.57 1.29   0.008 0.552 § 

Survival winter year 2 608 -0.16 0.60   1.60 0.63   -0.11 0.00   0.003 0.227 †,‡,§ 

                 

Reproduction year 2                 

Survival to flowering year 2 3731 0.18 2.96 (*)  0.22 0.04   1.30 1.10   0.002 0.404 ‡ 

Bolting 3719 0.51 14.62 ***  -4.49 8.25 **  3.00 3.97 *  0.019 0.453  

Reproductive output 2240 0.12 5.75 *  -1.01 3.81 (*)  0.99 3.04 (*)  0.018 0.314 ‡,§ 

Number of fruits 2218 0.14 7.88 **   -0.73 2.04     0.85 2.24     0.014 0.306 ‡,§ 

 

Germination, survival and bolting were binary variables; the respective models predict non-zeros on the logit scale. All other performance estimates 

were log10-transformed and assumed to follow Gaussian distributions. Test statistics include regression coefficients of each fixed effect (estimate), χ²-

values, and the marginal and conditional R2 of the model. Genomic load was standardized prior to analyses (mean = 0). Model fits with significant 

(positive) intercept are indicated by ‡. Estimates with P-values < 0.05 are written in bold; significance is indicated: (*) P<0.1, * P<0.05, ** P<0.01, 

*** P<0.001. The bobyqa optimizer was used when models initially failed to converge (§). Results for random effects are not shown. For one of the 

five common gardens (CG3), the experiment stopped early and variables consider performance to year 2 only (indicated by †).  
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Table S12: Summary of models performed on the level of population means, testing for the effect of cross type (between- compared to within-

population crosses [0]), genomic estimate of mutational load and their interaction on mean performance up to three years (per cross type) at 

five common garden sites 
 

    Cross type (CT)   Genomic load   CT * genomic load     

Dependent variable N Estimate χ²     Estimate χ²     Estimate χ²     R²m  R²c   

                 

Multiplicative performance (MP)                 

MP I to year 3 189 0.29 12.75 ***  -1.99 5.20 *  1.91 4.57 *  0.097 0.571 †,‡ 

MP II to year 3 189 0.31 16.03 ***  -1.62 3.92 *  1.62 3.79 (*)  0.096 0.606 †,† 

MP I to year 2 189 0.28 15.35 ***  -1.73 5.76 *  1.71 4.70 *  0.086 0.685 ‡ 

MP II to year 2 189 0.28 17.03 ***  -1.45 4.56 *  1.54 4.31 *  0.083 0.692 ‡ 

                 

Life stage components                 

Germination 189 0.01 0.75   0.01 0.02   -0.10 1.61   0.007 0.806  

Survival fall year 1 189 0.01 8.66 **  -0.08 3.19 (*)  0.05 1.53   0.015 0.829 ‡ 

Survival winter year 1 189 0.01 13.59 ***  0.02 0.60   0.00 0.02   0.029 0.642 ‡,§ 

Survival summer year 2 189 0.02 6.93 **  0.02 0.11   0.04 0.28   0.006 0.909 ‡,§ 

Survival winter year 2 189 -0.01 0.31   -0.10 0.62   0.15 0.74   0.008 0.317 †,‡,§ 

                 

Reproduction year 2                 

Survival to flowering year 2 189 0.00 0.67   0.01 0.22   0.03 1.68   0.007 0.807 ‡ 

Bolting 189 0.02 11.31 ***  -0.19 10.12 **  0.15 5.44 *  0.021 0.862 ‡ 

Reproductive output 189 0.11 4.00 *  -1.00 3.79 (*)  1.32 4.69 *  0.041 0.651 ‡,§ 

Number of fruits 189 0.13 6.03 *   -0.75 1.84     1.15 3.69 (*)   0.038 0.672 ‡,§ 
 

Population mean performance estimates for each cross type (log10-transformed) were assumed to follow Gaussian distributions. Test statistics include 

regression coefficients of each fixed effect (estimate), χ²-values, and the marginal and conditional R2 of the model. Genomic load was standardized 

prior to analyses (mean = 0). Model fits with significant (positive) intercept are indicated by ‡. Estimates with P-values < 0.05 are written in bold; 

significance is indicated: (*) P<0.1, * P<0.05, ** P<0.01, *** P<0.001. The bobyqa optimizer was used when models initially failed to converge (§). 

Results for random effects are not shown. For one of the five common gardens (CG3), the experiment stopped early and variables consider performance 

to year 2 only (indicated by †).  
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Table S13: Summary of models testing for the effect of genomic estimate of mutational load on population mean performance up to three 

years of within- (WPC) and between-population crosses (BPC) separately, at five common garden sites  
 

  Genomic load      Genomic load     

Dependent variable N (WPC) Estimate χ²   R²m R²c  N (BPC) Estimate χ²   R²m R²c  

                 

Multiplicative performance (MP)                 

MP I to year 3 100 -1.99 5.20 *  0.082 0.575 †,‡ 89 -0.02 0.00   0.000 0.552 †,‡ 

MP II to year 3 100 -1.62 3.92 *  0.060 0.622 †,‡ 89 0.04 0.00   0.000 0.568 †,‡ 

MP I to year 2 100 -1.73 5.76 *  0.060 0.704 ‡ 89 -0.01 0.00   0.000 0.652 ‡ 

MP II to year 2 100 -1.45 4.56 *  0.047 0.718 ‡ 89 0.09 0.01   0.000 0.649 ‡ 

                 

Life stage components                 

Germination 100 0.01 0.02   0.785 0.784  89 -0.08 0.78   0.817 0.827  

Survival fall year 1 100 -0.08 3.38 (*)  0.825 0.836 ‡ 89 -0.02 0.33   0.824 0.824 ‡ 

Survival winter year 1 100 0.02 0.47   0.603 0.621 ‡,§ 89 0.02 1.15   0.699 0.715 ‡,§ 

Survival summer year 2 100 0.02 0.11   0.889 0.865 ‡,§ 89 0.06 2.68   0.923 0.920 ‡,§ 

Survival winter year 2 100 -0.25 0.27   0.232 0.232 †,‡,§ 89 0.05 0.22   0.431 0.472 †‡,§ 

                 

Reproduction year 2                 

Survival to flowering year 2 100 0.01 0.26   0.782 0.782 ‡ 89 0.04 3.67 (*)  0.799 0.807 ‡ 

Bolting 100 -0.19 10.45 **  0.870 0.875 ‡ 89 -0.02 0.20   0.856 0.866 ‡ 

Reproductive output 100 -1.00 3.72 (*)  0.045 0.625 ‡,§ 89 0.27 0.26   0.004 0.647 ‡,§ 

Number of fruits 100 -0.75 1.84   0.023 0.670 ‡,§ 89 0.37 0.55   0.007 0.646 ‡,§ 
 

Population mean performance estimates for each cross type (log10-transformed) were assumed to follow Gaussian distributions. Test statistics include 

regression coefficient (estimate), χ²-value, and the marginal and conditional R2 of the model. Genomic load was standardized prior to analyses (mean 

= 0). Model fits with significant (positive) intercept are indicated by ‡. Estimates with P-values < 0.05 are written in bold; significance is indicated: 

(*) P<0.1, * P<0.05, ** P<0.01, *** P<0.001. The bobyqa optimizer was used when models initially failed to converge (§). Results for random effects 

are not shown. For one of the five common gardens (CG3), the experiment stopped early and variables consider performance to year 2 only (indicated 

by †).  
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Summary:  

 Theoretical and empirical research on the causes of species’ range limits suggests the 

contribution of several intrinsic and extrinsic factors, with potentially complex interactions. 

Recent theory proposes that populations at geographic range limits suffer from mutational 

load, due to increased genetic drift resulting from past range expansion or long-term 

population isolation. High mutational load at range edges may coincide with eroding 

environmental quality, and both may interact such that the expression of load becomes 

enhanced under the stressful conditions.  

 Here we tested the hypothesis of environment dependence of the expression of mutational 

load associated with range limits in the North American plant Arabidopsis lyrata. For twenty 

populations from across the species range, within- and between-population crosses were 

performed and offspring raised at sites across the distribution and beyond.  

 Heterosis, reflecting the expression of load, increased with heightened estimates of genomic 

load and with increasing environmental stress.  

 We conclude that range-edge populations suffer from a two-fold genetic Allee effect, one by 

increased mutational load, and one by adverse environmental conditions that increase the 

expression of load, independent of its magnitude. Estimates of decline in demographic rates 

suggest that the two Allee effects may strongly contribute to range limits. 

 

Keywords: Arabidopsis lyrata, environmental stress, genetic drift, geographic distribution limits, 

heterosis, mutational load, range dynamics, small population size. 
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Introduction 

Geographic species distributions can be constrained by multiple factors, which may interact in 

complex manners (Gaston, 2009; Roy et al., 2009; Sexton et al., 2009; Louthan et al., 2015; 

Connallon & Sgrò, 2018; Willi & Van Buskirk, 2019). One body of theory proposes that range 

expansion and long-term isolation of populations away from the distribution core are associated with 

enhanced genetic drift. The resulting accumulation of deleterious mutations contributes to range 

limits or may be a sole explanation under some circumstances (Peischl et al., 2013; Henry et al., 

2015; reviewed in Willi, 2019). Environmental conditions may also degrade toward and beyond a 

species’ range limits (Brown, 1984; Cahill et al., 2014; Hargreaves et al., 2014; Lee-Yaw et al., 

2016). In addition to their respective effects on population performance, mutational load and 

environmental stress may interact synergistically, as has been suggested for inbreeding depression 

(Roff, 1997, pages 285-338; Reed et al., 2012). If this applies, the contribution of mutational load to 

range limits may be much stronger (Liao & Reed, 2009), and likely be relevant in shaping the 

distribution of many species with a recent history of dynamic ranges. Here we studied the 

environment dependence of mutational load at species range limits. 

In populations of small effective size (Ne), the accumulation of deleterious mutations results 

from genetic drift opposing purifying selection (Kimura et al., 1963), with as consequence reduced 

mean performance and persistence of populations (Lynch et al., 1995). Mutational load was predicted 

to accumulate under range expansion accompanied by serial bottlenecks (Peischl et al., 2013, 2015; 

Peischl & Excoffier, 2015). The accumulation of mutational load at the expansion front slows down 

further expansion or may even halt the expansion when genome-wide recombination is low (Peischl 

et al., 2015). Theoretical work also showed that this so-called expansion load depends mostly on 

recessive deleterious mutations (Peischl & Excoffier, 2015), and can persist in populations for 

thousands of generations (Peischl et al., 2013). Mutation accumulation may also set range limits 

without expansion but when the carrying capacity of suitable habitats declines along a line of habitat 
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patches, particularly under low dispersal and population growth rates (Henry et al., 2015). In nature, 

mutational load may play an important role in explaining species distribution, as many temperate taxa 

are characterized by a history of post-glacial expansion (Hewitt, 2000, 2004) and population isolation 

generally increases toward range limits (Pironon et al., 2017). In line there is a general trend of 

reduced genetic diversity and effective population size toward range limits (Eckert et al., 2008; 

Pironon et al., 2017). Genomic evidence for the accumulation of mutational load following range 

expansion was found for humans (Lohmueller et al., 2008; Henn et al., 2016; Peischl et al., 2018) 

and in plants for expansion and rear-edge isolation (Zhang et al., 2016; González-Martínez et al., 

2017; Willi et al., 2018; Koski et al., 2019). Phenotypic studies, though scarce, also provided 

evidence for the increased expression of mutational load toward the edges of species distribution in 

natural systems (Willi et al., 2018; Koski et al., 2019; Perrier et al., 2020), and in experimental 

evolution with bacteria (Bosshard et al., 2017). In the former studies, the expression of mutational 

load was estimated by crossing experiments and the estimation of the heterosis effect of between- 

compared to within-population crosses. Heterosis should depict load adequately if it is due to 

recessive deleterious mutations that are then paired with healthy, wild type alleles in the between-

population crosses (dominance model of heterosis, Crow, 1987). 

Toward range limits, apart from the accumulation of mutational load, the environment may 

exhibit a pattern of increasing stressfulness. Empirical studies indeed documented a general decline 

in habitat suitability toward range limits in many taxa (Sexton et al., 2009; Pironon et al., 2017). A 

more consistent and pronounced effect was found when species were experimentally transplanted 

beyond their range edges (Sexton et al., 2009; Hargreaves et al., 2014). For the same set of transplant 

experiments, reduced fitness beyond range edges coincided with a decline in predicted habitat 

suitability revealed by niche modelling (Lee-Yaw et al., 2016). These studies suggest that the decay 

in habitat suitability acts additionally to mutational load. The two together may cause a double load 

in range-edge populations and be the cause of range limits, by impeding colonization beyond the 

current range limits at the leading edge and reducing persistence at the rear edge. 
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Furthermore, the expression of mutational load may become even stronger under 

environmental stress. Mechanisms of an interaction between mutational load and environmental 

stress are still not completely understood (Fujimoto et al., 2018). The interaction has been discussed 

and tested extensively in the context of inbreeding depression (Armbruster & Reed, 2005; Willi et 

al., 2007; Fox & Reed, 2010). Three mechanisms have been proposed (Reed et al., 2012). A first and 

empirically well-supported mechanism is that stress induces the expression of deleterious mutations 

normally silent under benign conditions (Kondrashov & Houle, 1994; Elena & de Visser, 2003; Reed 

et al., 2012). Such mutations were found for example in Drosophila, where recessive alleles were 

linked to increased mortality under temperature stress in inbred lines (Vermeulen & Bijlsma, 2004). 

Extreme stress and inbreeding impede the function of heat shock proteins such as Hsp90, which are 

essential for the buffering of the expression of deleterious mutations (Rutherford & Lindquist, 1998; 

Queitsch et al., 2002; Bergman & Siegal, 2003). A second mechanism is that mutational load lowers 

stress resistance or tolerance, by impairing the maintenance of cellular homeostasis under stress, or 

affecting tissue and genome repair after stress exposure (reviewed in Agrawal & Whitelock, 2010; 

Reed et al., 2012). For example, hybrids of Arabidopsis thaliana expressed more metabolites from 

central pathways linked to higher freezing tolerance compared to inbred lines (Korn et al., 2010), and 

the regulation of stress-response pathways led to higher recovery after stress exposure (Miller et al., 

2015). The third mechanism is that stress increases phenotypic variance, increasing the opportunity 

for relative fitness measures to be lower in inbred individuals compared to outbred ones (Waller et 

al., 2008). Reed et al., (2012) found that variation in inbreeding depression in nine studies was 

predicted by stress itself and – to a weaker extent – also by phenotypic variance. In natural 

populations, the effect of stress on heterosis caused by crossing divergent populations, as a way of 

estimating the expression of mutational load, has rarely been investigated (Fenster & Galloway, 2000; 

Prill et al., 2014; Li et al., 2018), and never in the context of range limits.  

In this study, we tested for environment dependence of the expression of mutational load at 

the range limits of the North American species Arabidopsis lyrata subsp. lyrata (L.). Distribution 
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modelling showed that the current range limits of the species reflect niche limits well in the south and 

the north (Lee-Yaw et al., 2018). Furthermore, the current distribution has been strongly impacted by 

fast post-glacial range expansion from two separate refugia (Willi & Määttänen, 2010; Griffin & 

Willi, 2014; Willi et al., 2018). Expansion was associated with an increase in mutational load, with 

the highest load nowadays found at range edges (Willi et al., 2018; Perrier et al., 2020). Here we 

estimated the expression of mutational load via a heterosis effect and tested whether it was increased 

under stress at range limits. Plants of within- and between-population crosses were raised in a 

latitudinal transplant experiment with five common garden sites within and beyond the distribution 

range. Environmental stress was estimated by the difference in conditions experienced by populations 

in each common garden compared to their site of origin (Hoffmann & Hercus, 2000), assuming local 

adaptation to the site of origin, and by relative performance of each population at a site compared to 

the best site. We tested three main hypotheses: (i) Heterosis, the expression of mutational load, is 

higher under more environmentally stressful conditions (significant effect of environmental stress on 

heterosis). (ii) Heterosis is highest for populations with high genomic estimates of load when raised 

under stressful conditions (significant interaction between a genomic estimate of load and 

environmental stress). (iii) Heterosis is highest when range-edge populations with highest load are 

transplanted beyond range limits.  

 

 

Materials and Methods 

Plant material and crossing design 

We selected 20 populations of A. lyrata subsp. lyrata of a species-wide seed collection for a crossing 

experiment within and between populations (Fig. 1, Supporting Information Table S1). The 

populations represented the two ancestral clusters existing in the species (Griffin & Willi, 2014; Willi 

et al., 2018), different positions within the range, the two mating systems of predominant outcrossing 

and predominant selfing (MO1, ON1, ON11), and the range of genomic signatures of mutational load 



 

71 
 

(Willi et al., 2018). Selfing populations were shown to occur predominantly at the range edges 

(Griffin & Willi, 2014). Eighteen of the populations (9 per ancestral cluster) were considered target 

populations in the assessment of the expression of mutational load by heterosis. The remaining two 

were partner populations for producing between-population crosses (NY1 for the eastern cluster, IA1 

for the western cluster). These partner populations were selected because they occurred in the core of 

each ancestral cluster and had high genomic diversity, indicating a history of little genetic drift. Seeds 

of all selected populations had been collected homogeneously over an area of about 450 m2 in each 

population, between 2007 and 2014. Seeds of individual mother plants (seed families) had been stored 

separately in bags, at 4 °C under dry and dark conditions. 

We raised individuals of 26 randomly selected seed families per population in growth 

chambers, assuming low relatedness between families. Three haphazardly chosen seeds per family 

were initially sown in separate pots filled with a 1:1 mixture of sand and peat. Pots were saturated 

with water and kept 12 days at 4 °C in the dark to stratify the seeds. To promote germination, pots 

were then transferred to growth chambers (CLF Plant Climatics, Wertingen, Germany) with the 

following conditions: 8h of light at 100 μmol m-2 s-1 and 20 °C, 16h of dark at 20 °C. Seedlings were 

thinned to one per pot 36 days after sowing. To promote growth and flowering, day length, light 

intensity and temperatures were increased over 25 days to reach the final conditions kept until the 

end of the crossing experiment: 16h of light at 240 μmol m-2 s-1 and 22 °C, 8h of dark at 20 °C. Then, 

when the first plants started to bolt, all pots were transferred to a greenhouse with similar conditions, 

to perform the crosses.  

 Plants of each population were randomly appointed to “mothers”/pollen recipients (12), 

“fathers”/pollen donors (12), and backups (2). Each mother plant was crossed using pollen from two 

“fathers”: one of the same population (WPC), and one of the partner population (BPC). The WPC 

crosses were also performed for the two partner populations (families and cross combinations listed 

in Table S2). Crosses were non-reciprocal. Pollination was performed at the bud stage to prevent 

spontaneous cross- or self-pollination. Flower buds were opened with sterile tweezers and immature 
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anthers removed. Mature anthers of the father plant were gently rubbed over the stigma. Unwanted 

pollination by insects was avoided by placing pollinated plants into insect-proof growth chambers 

until fruit formation (3-5 days). Mature siliques were collected and pooled in seed bags per family-

cross-combination, and left to dry for two weeks at ambient temperature in the dark. We repeated 

each cross combination per mother plant to obtain enough seeds to perform the outdoor experiment 

(at least 60 healthy-looking seeds). In case of systematic cross failure, we replaced the father plant 

with a backup plant. Seeds were stored at 4 °C, under dry and dark conditions. In total, 401 family-

cross type combinations where kept for the common garden experiment (Table S2).  

 

Transplant experiment 

Five common garden sites (CG) were selected along a ca. 1400 km latitudinal gradient crossing the 

species distribution of A. lyrata in the eastern USA (Fig. 1). The five sites represented the centre of 

the range of A. lyrata (CG3, Harrisonburg, VA), the southern and northern range edges (CG4, 

Winsten-Salem, NC, and CG2, Williamstown, MA, respectively), and areas beyond the edges (CG5, 

Athens, GA, and CG1, in the Adirondacks, NY, respectively). Sites were chosen based on 

extrapolations of their minimum temperature in early spring (WorldClim database version 2.0, Fick 

& Hijmans, 2017; Table S3), the most constraining environmental variable of A. lyrata at the southern 

and northern range edges (Lee-Yaw et al., 2018). In each common garden, seeds of all crosses were 

sown in pots randomly distributed within each of three spatial blocks. In each pot, two seeds of a 

cross were sown, later thinned to one per pot (at least five weeks after sowing). Sowing was performed 

in early fall to early winter 2017, starting in CG1, timed about 6 weeks before the long-term daily 

average temperature fell below 10°C. Initially we protected the seeds from heavy rainfall by a 

temporary tent during the first 17 to 19 days after sowing. At CG4 we had to restart the experiment 

because of issues with water quality; we started the experiment again in December 2017 and kept the 

plants initially in a greenhouse but moved pots outdoors after an acclimation period and before the 

main winter frosts occurred. In all common gardens, the sowing substrate was regularly kept moist 
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until the first day of snow or night frost. Herbivory was prevented with organic slug repellent in an 

early phase, and by setting up a permanent fence to keep out larger herbivores. No further 

interventions were made until the end of the experiment in summer 2019. (At CG3, the experiment 

had to be stopped in fall 2018 because the garden was needed for another experiment). Five data 

loggers (iButton®, Maxim Integrated Products, Inc) were used to monitor air temperature every hour 

(1.5 m above ground, in the shadow) at each common garden site for the duration of the experiment. 

From the day of sowing until the first thinning, individual performance was tracked on the level 

of the seedling and later on the level of the pot/plant. Germination, defined as when a seedling had 

two fully opened cotyledons, was recorded three days a week for four to five weeks until the peak of 

germination was over, then once a week until thinning. Death was recorded at the same time as 

germination was checked, later once a week unless there was a snow cover. Once bolting was 

observed at a common garden in 2018, day of first flower opening was recorded on three days a week. 

Germination, death and day of flowering were corrected by the mid-time between recording. 

Reproductive output of a plant was assessed several weeks after peak flowering: ~ 9 weeks after 

opening of the first flowers within each common garden in the second year (2018), and ~ 5 weeks 

after first flowering, in the third year (2019), estimated from flowering dates of the previous year. 

Total reproductive output was the sum of fruits, pedicels (flowers that did not develop into a fruit), 

flowers and flower buds. Female reproductive output was calculated as the total number of fruits and 

potential additional fruits that could have formed from buds and open flowers: fruits + ((flowers + 

buds) × (fruits / (fruits + pedicels))).  

During the second winter, we also carried out a seed survival experiment to assess the 

potential contribution of the seed bank to population performance. For each combination of cross 

type and population, we pooled 100 seeds gathered from five to twelve mother plants. Seeds were 

then randomly dispatched in 10 groups of 10 seeds, placed in separate bags made out of micro-

perforated fabric allowing moisture and air exchange (nonwoven polypropylene-felt, 40 g/m2). Two 

replicate bags per cross combination were randomly attributed to each common garden site. Bags 
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were placed in common gardens in October 2018 on bare ground next to pots, exposed to natural 

conditions. Bags were retrieved in late spring 2019 and visually screened to count germinated 

seedlings and seeds. Survival of non-germinated seeds was tested by first stratifying them on filter 

paper disks soaked with 1.5 ml of 0.05% gibberellic acid in petri-dishes (10 days, 4 °C, no light), then 

keeping them under similar conditions as for the crossing experiment. Germination was scored four 

times over 20 days. Seed survival was then estimated for each replicate bag as: (germinated seedlings 

+ germinated seedlings with gibberellic acid)/10. 

 

Statistical analysis 

Main analyses were based on lifetime performance calculated on the level of the pot up to year 3 (or 

year 2 for CG 3). Multiplicative performance (MP) I was the product of the fraction of seeds that 

germinated and the sum of total reproductive output recorded in year 2 and 3. MP II was germination 

multiplied by the sum of total number of fruit recorded up to year 3 (or year 2). Initial analyses 

checked for a general effect of cross type, genomic load and environmental stress, and were 

performed on the level of the pot. As cross type and interactions were significant, main analyses were 

done on the level of population heterosis. Population-level heterosis was calculated as the increase in 

performance due to between-population outcrossing relative to within-population crossing: (WBPC - 

WWPC)/WWPC. WWPC and WBPC were estimated as the performance within each common garden 

averaged on the level of population-cross type combination (population means of family means of 

individual performance, within cross-type). For heterosis, the final WWPC was the average of the 

population-level performance of each target population and its partner population within a common 

garden. Heterosis was also assessed for the finite rate of increase, λ, per year. We constructed stage-

classified matrices (Caswell, 2001) for each combination of population and cross type in each 

common garden, based on population mean performance over the three years. These matrices 

comprised three stages: (1) healthy seeds in year 1, (2) reproducing individuals of year 2, (3) 
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reproducing individuals of year 3, with a projection interval of one year between each stage. The 

parametrization of the matrices is detailed in Fig. S1.  

Pre-analysis on MP on the level of the pot were performed in a Bayesian framework on 10 

parallel chains, with the package MCMCglmm (Hadfield, 2010, 2019), because MP was zero-inflated 

(parametrization of models and details on analyses given in Method S1). Main analyses focused on 

the effect of genomic load, environmental stress and their interaction on log10-transformed heterosis 

by hierarchical mixed-effects models based on restricted maximum likelihood, using the packages 

lme4 (Bates et al., 2015) and LmerTest (Kuznetzova et al., 2017) in R (R Core Team, 2020). Crossed 

random effects were population and common garden, while fixed effects were environmental stress, 

the genomic estimate of mutational load of the mother population, as well as their interaction (model 

parametrization detailed in Method S2A). The genomic estimate of mutational load (hereafter 

genomic load) was the ratio of non-synonymous polymorphic sites to synonymous polymorphic sites, 

adjusted for their mean derived allele frequency (relative to A. thaliana), Pnfn/Psfs (calculated in Willi 

et al., 2018). Environmental stress was the difference in the average minimum temperature in April 

and May between common garden and site of origin of populations: ∆ Tmin = Tmin CG - Tmin origin. Tmin 

CG was calculated based on records taken by the temperature loggers (Table S4). Tmin origin was 

calculated based on the WorldClim 2.0 database and averaged over target and partner population 

(spatial resolutions of 30 seconds, Fick & Hijmans, 2017; Table S1). Positive values of ∆ Tmin 

indicated transplanting toward warmer temperatures, and negative values a transplant toward colder 

temperatures. As we had no expectation about the sign of stressfulness, whether it was relevant or 

not, and whether its relation with heterosis was linear or quadratic, we first performed model selection 

based on AICc values. The fixed effects were either signed or absolute ∆ Tmin, included an orthogonal 

quadratic term or not, and included no interaction or interaction terms. Covariates were mean-

centered and square terms were calculated based on the mean-centered values. For the best model, 

we tested the significance of the effect of stress, genomic load, and their interaction by calculating 

the likelihood-ratio χ2 using the Anova function (type III) of the package car (Fox & Weisberg, 2019).  
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To test whether heterosis is highest when range-edge populations with highest load are 

transplanted beyond range limits, we considered only the performance of six northern edge 

populations (ON8, ON11, ON12, NY4, NY5, NY6; in blue in Fig. 1) raised at the northern edge site 

(CG2) and the site beyond-northern edge (CG1), and the six southern edge populations (MO1, MO2, 

IN1, NC2, NC4 and VA1; in red in Fig. 1) raised at the southern edge site (CG4) and beyond the 

southern edge (CG5). Log10-transformed heterosis was tested in hierarchical mixed-effect models 

based on restricted maximum likelihood. Crossed random effects were population and common 

garden, while fixed effects were the binary effect of transplant (edge = 0), the position of the edge 

(north = 0), as well as their interaction (model parametrization detailed in Method S2B).  

In further analyses we used another estimate of stress, the performance decline at a site relative 

to the most favourable site (Reed et al., 2012). For each target population in each common garden 

site, we calculated the relative decline in population-level performance as 1 - WWPC/Wmax., where 

WWPC was the performance in each site averaged on both target and partner populations, and Wmax 

was the highest WWPC for the population pair within our experiment. Stress values close to 0 represent 

conditions of maximal performance, and values close to 1 represent maximal stress (i.e. WWPC = 0). 

We performed model selection based on AICc values, comparing models including an orthogonal 

quadratic term of stress or not, with or without interaction with genomic load. On the best model, we 

then tested the effect of genomic load, stress and their interaction in similar analyses as described 

before. A further set of similar analyses as described above were performed on mean population WPC 

estimates of all 20 populations instead of heterosis. Here Tmin origin was calculated for each of the 20 

populations.  

 

 

 

 

 



 

77 
 

Results 

Pre-analysis on multiplicative performance on the level of the pot supported a role of cross type (WPC 

versus BPC) and its interaction with genomic load and environmental stress (Table S5), which 

motivated our focus on analyses based on population-level heterosis, on MP I and II up to year 3. 

Model selection on heterosis revealed that the best model was the one with signed stress, meaning 

that the difference in minimum temperature in early spring at the common garden site and the site of 

population origin (∆ Tmin = Tmin CG - Tmin origin) was allowed to be positive (warmer common garden) 

or negative (colder common garden), that considered the quadratic term for stress and included 

interactions (Table 1). The estimation of coefficients for the best model with MP I and II up to year 

3 and λ revealed that genomic load and the linear term of stress had both a significant positive effect 

on heterosis (Table 2, Fig. 2a; results on MP I and II to year 2 reported in Table S6 for comparison). 

Heterosis increased with genomic load. Furthermore, heterosis was higher when the common garden 

was warmer compared to the site of origin of populations, i.e. with heat stress, but not when the 

common garden was colder. In contrast, the quadratic term of stress was not significant and 

interactions were generally not significant. Population-level heterosis based on MP I and II up to year 

3 in the five common gardens ranged from -0.96 to 23.50 (mean: 1.88) and from -0.92 to 30.23 (mean: 

2.65), respectively (Table S7). Heterosis based on λ ranged from -0.53 to 7.29 (mean: 0.73; Table 

S7). 

For range-edge populations, heterosis based on MP I and II up to year 3, and λ, showed no 

significant variation between common gardens simulating respective range-edge conditions and 

common gardens simulating respective conditions beyond the edge (Table 3, Fig. 2c; results on MP 

I and II to year 2 reported in Table S8 for comparison). The position of the edge had a significant 

positive effect on heterosis based on MP I and II up to year 3, indicating that southern populations 

expressed generally higher heterosis. No significant interaction was observed 

When stress was estimated based on relative performance decline compared to difference in 

temperature, the best model predicting heterosis was again one considering the quadratic term for 
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stress and including interactions (Table S9). Genomic load showed a significant positive effect on 

heterosis based on MP I and II up to year 3 (Table S10, results on MP I and II to year 2 reported for 

comparison). Heterosis significantly increased with stress (except MP I to year 3) and the quadratic 

term of stress (marginally significant for λ). The latter relationship pointed to an increase in heterosis 

both toward minimal and maximal stress. Genomic load and the quadratic term of stress further 

showed a significant positive interaction on heterosis based on λ, indicating that heterosis increased 

with increasing stress in populations with positive centered genomic load (i.e. genomic load > 0.86), 

but decreased in populations with negative centered genomic load. 

Similar analyses to those testing the effect of environmental stress and genomic load on 

heterosis were performed on population-level WPC performance. Genomic load showed no 

significant effect on population-level WPC performance based on multiplicative performance I and 

II up to year 3, and λ, despite a consistent negative trend (Table S6, results on MP I and II to year 2 

reported for comparison). Stress and the quadratic term of stress had both a significant negative effect 

on MP I and II up to year 3, and λ (Table S6, Fig. 2b). WPC performance decreases when plants were 

exposed to both warmer and colder temperatures, with a stronger effect toward warmer temperatures. 

The model-predicted decrease in WPC performance for MP I and II up to year 3 and λ was of 87%, 

93% and 90% respectively when exposed to warmer temperatures (Table S11). When exposed to 

colder temperatures, MP I and II up to year 3 decreased of 14% and 7% respectively, while λ increased 

of 24% (Table S11). No significant interaction was observed  

For range-edge populations, transplanting from common gardens simulating these populations 

respective range-edge conditions to common gardens simulating their respective beyond range-edge 

conditions significantly reduced only λ (Table S8, Fig. 2d; results on MP I and II to year 2 reported 

for comparison). The position of the edge interactions were generally not significant. 
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Discussion 

Recent evolutionary theory proposes that species’ geographic range limits result from the 

accumulation of mutational load in range-edge populations as a consequence of heightened levels of 

genetic drift (reviewed in Willi, 2019). Here we tested whether the expression of such mutational 

load is enhanced under stress (Reed et al., 2012). In an experimental study on natural populations we 

found that heightened levels of genomic load and increased exposure to stress independently 

increased the expression of mutational load. Furthermore, while the exposure to warmer climates than 

the one experienced at the site of origin of populations led to heightened expression of mutational 

load, cooler climates led to lower heterosis. Overall, our study provides empirical evidences that edge 

populations, already suffering from high levels of genomic load, could suffer from additional load 

particularly under warmth stress, raising concern about the effects of rapidly warming climate on the 

persistence of small and isolated populations.  

The expression of mutational load was generally stronger in populations with the highest 

levels of genomic load. Latter was found to accumulate in small populations with a history of long 

range expansion or isolation at the range limits of A. lyrata due to heightened exposure to drift (Willi 

et al., 2018), resulting in increasing expression of mutational load toward range limits (Perrier et al., 

2020). The expression of mutational load was also higher in the populations most exposed to 

environmental stress in the transplant experiment, independently of the populations’ levels of 

genomic load. The measure of environmental stress showed more consistent results on the expression 

of mutational load than stress based on relative performance. The latter also revealed increased 

expression of mutational load under stress, however following either or both linear and quadratic 

relationships, depending on which variable was assessed. Both calculations of stress are 

complementary: differences in environmental variables specifically assess the contribution of 

different types of stresses, while stress based on performance integrates other stressors that were not 

measured in our study, such as herbivory or soil properties. Most studies in the field of inbreeding 

depression do not test a range of stressors, but rather test benign conditions against stressful 
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conditions (Fox & Reed, 2010). Relative performance measures allow to characterize the strength of 

the stress applied. Here, our experimental design was based on the knowledge that our study organism 

was mostly constrained in its distribution by temperature (Lee-Yaw et al., 2018), justifying using this 

variable as a main quantitative expression of stress. The results presented in this study represent some 

of the few empirical evidences that the expression of mutational load in natural populations is 

conditioned by environmental factors in addition of their evolutionary history. The environmental 

dependency of the expression of mutational load has often been suggested in previous studies due to 

similarity between heterosis and inbreeding depression (e.g. Oakley et al., 2015), but has rarely been 

observed. Heterosis varied depending on the transplant environment in crosses between natural 

populations of Chamaecrista fasciculate with varying degrees of isolation (Fenster & Galloway, 

2000), however the effect of the growth environment and resulting stress was not tested. Exposure to 

drought stress reduced heterosis in crosses between randomly paired natural populations of Brassica 

nigra in a recent greenhouse experiment (Prill et al., 2014), linked to outbreeding depression 

counteracting heterosis. In contrast, drought stress increased heterosis based on survival and 

propensity to flower in crosses between native and invasive populations of Mimulus guttatus (Li et 

al., 2018), latter populations having experienced a mild bottleneck and likely to have accumulated 

mutational load. Agricultural research has also provided examples of heterosis variation under stress 

(reviewed in Blum, 2013, Fujimoto et al., 2018), but with little context on population’s demographic 

history. The strong effect of environmental stress on the expression of mutational load further 

highlights potential mechanisms for drift and environmental conditions to shape range limits.  

The increased expression of mutational load under environmental stress was especially strong 

when populations were exposed to warmer climates than at their site of origin. This effect was 

supported by a strong decline of population mean multiplicative performance in within-population 

crosses, and a drop of 90% in demographic rates of within-population crosses when exposed to 

warmer climates. In contrast, the exposure to colder climates reduced the expression of mutational 

load, while leading to a decline in within-population crosses mean multiplicative performance, but a 
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25% increase in within-population cross demographic rates. These results suggest that populations 

exposed to warmer climates than at their site of origin were more stressed than when exposed to 

colder climates, latter potentially even increasing population persistence. Similar patterns were 

reported in a parallel study based on this transplant experiment (Sánchez‐Castro et al., in prep.): the 

conditions at the northern edge and beyond were found to be not stressful, as performance and growth 

rates did not differ between sites at the centre of distribution, the northern edge and beyond, while 

performance and growth rates strongly declined at the southern edge and beyond. Furthermore, in A. 

lyrata, populations at lower latitudes are exposed to higher temperatures in summer but also to 

increased frost in winter, while populations at higher latitudes benefit from the snow cover to escape 

most frost events, therefore less frost tolerant than populations at lower latitudes (Wos & Willi, 2015). 

Transplanting frost sensitive northern populations in the southern sites most likely exposed them to 

increased frost, explaining the high stressfulness of transplanting toward warmer climates. On the 

contrary, southern populations transplanted in northern sites likely experienced lower stress than at 

their site of origin due to the longer snow cover, explaining the increased population growth rates 

when transplanted toward colder climates.  

In our main analysis, genomic load and environmental stress both affected the expression of 

mutational load assessed over the three years, but did not interact. Previous studies in our study 

system showed that range-edge populations with the highest levels of genomic load suffer from 

increased levels of expressed load, linked to decrease in lifetime performance and demographic rates 

(Willi et al., 2018; Perrier et al., 2020), in line with predictions from simulation and genetic studies 

(reviewed in Willi, 2019). In Perrier et al. (2020), constraint on further colonization have been 

suggested to result from a genetic Allee effect (Luque et al., 2016), due to additional accumulation 

of mutational load above tolerable levels to maintain population demographic rates. Both increase in 

expression of mutational load and decline in demographic rates under environmental stress suggest 

that range-edge populations could suffer from a second, stress-dependent genetic Allee effect, 

independent of the magnitude of mutational load. Small populations are more sensitive to random 
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environmental fluctuations, resulting in ecological Allee effects (Fauvergue et al., 2012). Beyond 

range limits, where habitats are often unsuitable (Heargraves et al., 2014; Lee-Yaw et al., 2016), both 

genetic Allee effects could interact with ecological Allee effects in small populations (Wittmann et 

al., 2016), precipitating their extinction faster than the sole magnitude of mutational load.  

In populations originating from the northern and southern distribution edge, the expression of 

mutational load was however not affected when transplanting these populations from common 

gardens sites simulating their respective edge condition to sites simulating conditions beyond their 

respective edge. Demographic rates declined in both beyond-edge sites compared to their respective 

edge sites, implying that environmental conditions beyond the edge were stressful for range-edge 

populations, as suggested by the strong decline in habitat suitability at both northern and southern 

edge in our system (Lee-Yaw et al., 2018). Several factors could explain why this specific stress did 

not trigger the stress-dependent genetic Allee effect described before. The extent to which 

environmental stress affects the expression of mutational load is dependent on the strength and the 

type of stress (Fox & Reed, 2010; Sandner & Matthies, 2016). The strength of the stress caused by 

transplanting beyond the edge might have been reduced by pre-adaptation in edge populations, if this 

stress does not differ in magnitude from conditions experienced in unfavorable years at range limits. 

While adaptive potential is predicted to be low in populations of small Ne (Weber, 1990; Willi et al., 

2006; Markert et al., 2010; Polechová & Barton, 2015), especially under strong environmental 

gradient (Polechová, 2018), locally adapted populations could persist at range limits along 

environmental gradients despite expansion load (Gilbert et al., 2017). In addition, frequent pre-

exposure to stress caused by transplanting beyond the edge in the evolutionary history of edge 

populations could increase selection against deleterious alleles expressed under this particular type 

of stress (Hedrick, 1994; Bijlsma et al., 1999; Plough, 2012; Enders & Nunney, 2016). Alternatively, 

the stress-dependent genetic Allee effect may have been masked by outbreeding depression resulting 

from outcrossing (Lynch, 1991), counteracting heterosis. In fact, outbreeding depression has also 

been reported to be sensitive to environmental conditions, reducing heterosis under stress (e.g. Prill 
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et al., 2014). In our experiment, nearly a fourth of the heterosis observation were negative in our 

study, suggesting the common occurrence of genetic incompatibilities such as the Dobzhansky-

Muller type (Lynch, 1991; e.g. in Oakley et al., 2015). Especially range-edge populations of A. lyrata 

exposed to higher genetic drift (Willi et al., 2018) could have accumulated genetic incompatibilities 

leading to partial reproductive isolation, hence outbreeding depression (Orr & Turelli, 2001). Overall, 

while our results do not support an increased expression of mutational load due to stress in sites just 

beyond the range limits, the stress-dependent genetic Allee effect could be triggered by extreme 

environmental events occurring more frequently beyond range limits, and could impair long range 

dispersal in habitats less suitable than the immediate conditions beyond range limits. Future 

simulation studies based on range dynamic models (e.g. Gilbert et al., 2017; Polechová, 2018) should 

therefore also consider the consequences of the additional stress-dependent genetic Allee effect on 

range expansion. 

Our results contradict at the first glance the expectation that the magnitude of effect of stress 

on the expression of mutational load is dependent on the levels of genomic load. However, if the 

fitness effect of stress and genomic load were indeed independent i. e. if the proportion of fitness 

decline due to stress was similar for between- and within-population crosses, heterosis should not 

vary under stress. In our secondary analysis, genomic load and stress based on relative performance 

decline showed an interaction on heterosis based on demographic rates, suggesting that the interaction 

with environmental stress could be masked by other processes impacting heterosis. Stronger 

outbreeding depression in edge populations could lower heterosis measures as discussed above. In 

addition, populations with the lowest estimates of load may show higher heterosis under stress as 

expected. In A. lyrata, populations with the lowest levels of genomic load occur predominantly in 

suitable habitats (Lee-Yaw et al., 2018). This could lead to the accumulation of mutation on genes 

not under selection in benign conditions, but expressed under stress (Hoffmann & Merilä, 1999). The 

increase in outbreeding depression in populations bearing high levels of genomic load and the 

increased heterosis in populations with lower levels of genomic load could artificially mask the 
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interaction between environmental stress and genomic load. In addition, genomic load and 

environmental stress interacted when tested on heterosis based on multiplicative performances up to 

the second year, suggesting that the processes masking the interaction gain in magnitude later in life. 

This supports the involvement of either outbreeding depression or heterosis as described above, the 

expression of different types of load being generally stronger in late life stages (Husband & 

Schemske, 1996). Already outlined by previous studies (Oakley et al., 2015; Fujimoto et al., 2018), 

more knowledge on the genetic basis of the environmental dependency of heterosis and outbreeding 

depression is required to fully understand their interplay in natural populations. 

Our study is one of the first to empirically highlight how the expression of mutational load is 

dependent on the exposure to environmental stress, independently of population’s levels of genomic 

load. The magnitude of this second genetic Allee effect might very well contribute in constraining 

range expansion in unfavorable habitats, in addition to additional accumulation of mutational load. 

The effect of environmental stress on the expression of mutational load was especially strong when 

populations were exposed to warmer conditions than at their location of origin, raising concerns for 

the persistence of small isolated populations under climate change. The rapidly declining habitat 

suitability at the warmer range limits could precipitate the extinction of already fragile rear-edge 

populations (Hampe & Petit, 2005; Lenoir & Svenning, 2013). At the leading edge, while new 

suitable habitats should be available, colonization could still be impaired by genomic load. The 

conjoint effect of both genetic Allee effects could lead to drastic range contraction rather than shift 

predicted from range dynamics simulations.   
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Tables: 

Table 1: Model selection on potential predictors of heterosis 

 

Model AICc Δi wi 

Genomic load + stress + stress2 + (genomic load * stress) + (genomic load * stress2 ) 115.2 0.0 0.93 

Genomic load + stress + stress2 121.0 5.8 0.05 

Genomic load 123.3 8.2 0.02 

Genomic load + stress  129.1 14.0 0.00 

Genomic load + |stress| 131.2 16.0 0.00 

Genomic load + stress + (genomic load * stress)  134.0 18.8 0.00 

Genomic load + |stress| + (genomic load * |stress|)  135.2 20.0 0.00 

 

The dependent variable was heterosis based on multiplicative performance I to year 3. Genomic load 

was the ratio of genome-wide non-synonymous to synonymous polymorphic sites adjusted by their 

mean derived ferquency (Willi et al., 2018), and stress was the difference in minimum temperature 

in spring between common garden and site of origin (∆ Tmin = Tmin CG - Tmin origin). Models are ranked 

from best to worst fit, with lower AICc values indicating a better fit. The difference between the best 

fit model and the others is indicated as Δi, while the weight of each model is indicated by wi.  
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Table 2: Summary of mixed-effects models testing for the effect of the genomic estimate of mutational load, environmental stress (∆ Tmin = Tmin CG 

- Tmin origin) and their interaction on population-level heterosis based on multiplicative performance (MP) up to 3 years or the finite rate of increase, 

λ, at five common garden sites 

 

    Genomic load (GL)   Stress (S)   Stress2 (S2)     GL * S   GL * S2         

Dependent variable N β χ²   β χ²   β χ²   β χ²   β χ²    R²m  R²c    

MP I to year 3 89 1.89 6.63 *   1.03 5.77 *   -0.73 2.98 (*) -3.38 0.48     3.78 0.70     0.19 0.38 † 

MP II to year 3 89 1.96 7.46 **   1.76 19.07 *** -0.26 0.45     -1.48 0.10     6.89 2.62     0.28 0.47 † 

λ (Heterosis) 89 0.82 5.30 *   0.79 15.45 *** -0.08 0.16     0.14 0.00     1.72 0.75     0.24 0.47 † 

 

Population heterosis estimates were log10-transformed prior to analysis. Each model was optimized with the bobyqa optimizer to improve convergence. 

Test statistics include regression coefficient (β), χ²-value of each fixed effect and the marginal and conditional R2 of the model. Model fits with significant 

(positive) intercept are indicated by †. Regression coefficient with P-values < 0.05 are written in bold; significance is indicated: (*) P<0.1, * P<0.05, ** 

P<0.01, *** P<0.001. Results for random effects are not shown. 
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Table 3: Summary of mixed-effects models testing for the effect of transplant (beyond the edge compared to edge [0]), edge position (south 

compared to north [0]) and their interaction on population-level heterosis based on multiplicative performance (MP) up to 3 years or the finite rate 

of increase, λ, of range-edge populations transplanted in edge and beyond edge common garden sites 

 

    Transplant  

 

Edge position  
    

Transplant *  

edge position    
    

Dependent variable N β χ²   β χ²   β χ²     R²m  R²c  

MP I to year 3 24 0.10 0.16   0.55 5.09 *  -0.15 0.18  0.25 0.25 

MP II to year 3 24 0.14 0.34   0.57 5.28 *  -0.12 0.12  0.28 0.28 

λ (Heterosis) 24 0.05 0.04   0.17 0.53   -0.04 0.01    0.09 0.40 

 

Population heterosis estimates were log10-transformed prior to analysis. Each model was optimized with the bobyqa optimizer to improve convergence. 

Test statistics include regression coefficient (β), χ²-value of each fixed effect and the marginal and conditional R2 of the model. Regression coefficient with 

P-values < 0.05 are written in bold; significance is indicated: (*) P<0.1, * P<0.05, ** P<0.01, *** P<0.001. Results for random effects are not shown.  
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Figures 

 

 

 

Figure 1: Map of the distribution of Arabidopsis lyrata in eastern North America, with 

information on habitat suitability and the location of the 20 populations studied and the 5 

common garden sites. The range of A. lyrata is represented by a dotted line, habitat suitability by 

shades of blue, with darker blue indicating higher suitability (as in Lee-Yaw et al., 2018). Populations 

are shown by circles, with abbreviations for state (USA) or province (Canada) and a number (as in 

Willi et al., 2018). Blue and red circles represent northern and southern edge populations in our 

analysis. Green triangles represent the five common garden (CG) sites; numbers added to labels are 

in sequence of north to south. State outlines for the USA are shown, and the split between eastern and 

western genetic cluster is represented by the dashed line. Of the 20 populations, two were used as 

partner-populations for between-population crosses, NY1 for crosses with eastern populations, and 

IA1 for crosses with western populations.  
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Figure 2: Environment dependence of the expression of mutational load. (a) and (c): Population 

heterosis was estimated based on the intrinic rate of increase, λ. The horizontal grey dashed line 

represents the value at which heterosis drops below 0, indicating outbreeding depression. (b) and (d): 

λ was calculated based on performance of within-population crosses (WPC). The horizontal grey 

dashed line represents the value at which λ drops below 1, indicating a decline in population size. (a) 

and (b): Environmental stress (∆ Tmin) was the difference in minimum temperature in early spring 

between common garden minus that at the site of origin. The black lines represent model-predicted 

slopes (from test statistics Table 2, Table S6). The vertical grey dashed line represents the transition 

between a negative and a positive ∆ Tmin, indicating respectively a transplant toward colder and 

warmer sites. Genomic estimate of mutational load (Pnfn/Psfs) is represented in shades of yellow (low) 

to red (high). Genomic load was the ratio of genome-wide non-synonymous to synonymous 

polymorphic sites adjusted by their mean derived frequency (as in Willi et al., 2018). (c) and (d): 
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The effect of transplanting beyond the range edge was tested for both northern (blue) and southern 

(red) populations at their respective northern and southern edge (CG2, CG5) and beyond the edge 

(CG1, CG5). Lines indicate the change in heterosis or WPC performance of each populaton. Test 

statistics are reported in Table 3 and Table S8. Significance of the effect of ∆ Tmin or transplant is 

indicated as: NS P>0.1, (*) P<0.1, * P<0.05, ** P<0.01, *** P<0.001.  
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Supporting information 

Method S1: Parametrization of priors, and hierarchical mixed-effects model analyzed in a Bayesian 

(MCMC) framework, with individual multiplicative performance I up to year 3 as dependent variable 

Method S2: Parametrization of the hierarchical mixed-effects models, with heterosis as dependent 

variable 

Figure S1: Estimation of population growth rate 

Table S1: Information on the Arabidopsis lyrata populations studied 
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Method S1: Parametrization of priors, and hierarchical mixed-effects model analyzed in a 

Bayesian (MCMC) framework, with individual multiplicative performance I up to year 3 as 

dependent variable 

 

S1A: Priors 

Priors were set to be weak, using parameter expansion to improve convergence. R specifies the priors 

for the fixed effects, G specifies the priors for the random effects. 

 

priors.model=list( 

  R=list(V=diag(2), n=1, fix = 2), 

  G=list(G1=list(V=diag(2), n=2, alpha.mu = rep(0,2),alpha.V = diag(2)*25^2), 

         G2=list(V=diag(4), n=4, alpha.mu = rep(0,4),alpha.V = diag(4)*25^2), 

         G3=list(V=diag(2), n=2, alpha.mu = rep(0,2),alpha.V = diag(2)*25^2), 

         G4=list(V=diag(4), n=4, alpha.mu = rep(0,4),alpha.V = diag(4)*25^2), 

         G5=list(V=diag(2), n=2, alpha.mu = rep(0,2),alpha.V = diag(2)*25^2), 

         G6=list(V=diag(2), n=2, alpha.mu = rep(0,2),alpha.V = diag(2)*25^2))) 

 

 

S1 B: Parametrization of hierarchical mixed-effects models analyzed in a Bayesian framework 

Multiplicative performance estimates were split into two parts: the zero_part, a binary transformation 

of performance estimates with zero_part = 1 if performance > 0, or else zero_part = 0; and the 

norm_part containing only the log10 transformed performance measures if zero_part = 1. 

 

model = MCMCglmm(cbind(norm_part, zero_part) ~ trait -1 + trait:cross type * trait:genomic load 

* trait:poly(stress, degree = 2), 

                  random = ~ us(trait):maternal population  

                  + us(trait:cross type):maternal population  

                  + us(trait): maternal population: maternal family  

                  + us(trait: cross type):maternal population:maternal family 

                  + us(trait):common garden + us(trait):common garden:block, 

                  prior = priors.model, rcov = ~idh(trait):units, 

                  family=c('gaussian', 'categorical'), 

                  burnin = 5000, thin = 100, nitt = 50000,  

      data=data) 
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Method S2: Parametrization of the hierarchical mixed-effects models, with heterosis as 

dependent variable 

 

S2A: Hierarchical mixed-effects model testing for the effect of stress and genomic load 

Model = lmer(log10(heterosis + 1) ~ genomic load * poly(stress, degree = 2)  

+ (1 | maternal population)  

+ (1 | common garden),  

 data = data) 

 

S2B: Hierarchical mixed-effects model testing for the effect of transplant and genomic load 

Model = lmer(log10(heterosis + 1) ~ transplant * edge posisition 

+ (1 | maternal population)  

+ (1 | common garden),  

 data = data) 
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Figure S1: Estimation of population growth rate. We estimated population growth rate for all 20 

WPC and 18 BPC combinations by constructing stage-classified matrices (left) at the level of the 

cross type of each population in each common garden. Each matrix was constructed to reflect the life 

cycle of individuals assessed in the common garden over three years. The life cycle (right) was 

composed of three stages: 1–healthy seeds (sown in 2017), 2–individuals capable of reproducing in 

spring of year 2 (2018), 3–individuals capable of reproducing in spring of year 3 (2019), each with a 

projection interval of one year. The transition from stage 1 to 2 (P1) was estimated as: proportion of 

germinated seedlings (2017) x survival of germinated seedlings until the date of first flowering in the 

first reproductive period (year 2) at each site. Transition from stage 2 to 3 (P2) was estimated as the 

survival of individuals alive at stage 2 to the date of recording of reproductive output in the second 

reproductive period (year 3). Seeds that did not germinate in the first year (transition from step 1 to 

2) were assumed to remain at the same stage (S1) and to contribute to the seed pool of stage 1 in the 

next years. S1 was defined as the probability of non-germinated seeds to survive over one winter. 

This estimate was calculated based on the seed survival experiment over one winter (2018 – 2019). 

We assumed no plants survived after the third year, and set the probability to remain at stage 2 or 3 

at 0. Allowing individuals to remain in stage 3 indefinitely with a probability to survive each year 

equalling P2 did not significantly affect the population growth rates (data not shown). Fecundity of 

stage 2 (F1) and 3 (F2) were estimated separately as: probability to reproduce * number of fruits * 

number of healthy seeds per fruit. The latter should reflect the effect of natural conditions on seed 

formation, as well as the chance of seeds landing in suitable environments to germinate. As these 

factors could not be estimated in the field experiment, number of fruits was a standard value 

representing both number of healthy seeds per fruit and the probability to land in an environment 

suitable for germination, calculated to yield an average λ of 1 across all WPC over all sites. 
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Table S1: Information on the Arabidopsis lyrata populations studied 

 

Population 
Latitude 

[° N] 

Longitude 

[° W] 

Ecological variable   
Variables of population 

history 

Min. temp. early 

spring [°C] † 
  Cluster 

Genomic load 

(Pnfn/Psfs) ‡ 

IA1 41.97 90.37 -0.9   West 0.8069 

IN1 41.61 87.19 0.0   West 0.83283 

MD2 38.99 77.25 3.8   East 0.78476 

MO1 37.72 92.06 4.5   West 0.90542 

MO2 38.47 90.71 4.0   West 1.03637 

NC2 36.04 81.16 3.8   East 0.91391 

NC4 36.41 79.96 5.0   East 0.8641 

NY1 41.3 73.98 0.4   East 0.77297 

NY4 42.35 76.39 -2.5   East 0.77737 

NY5 42.66 74.02 -3.0   East 0.78503 

NY6 43 76.09 -2.1   East 0.77053 

ON1 42.87 79.18 -1.7   West 0.96393 

ON11 48.77 87.13 -7.9   West 1.0927 

ON12 49.65 94.92 -7.8   West 0.85352 

ON3 43.26 81.84 -2.6   West 0.86054 

ON8 47.93 84.85 -7.5   West 0.88166 

PA3 41.28 77.87 -1.4   East 0.7618 

VA1 37.42 77.02 5.5   East 0.81838 

WI1 43.83 89.72 -3.3   West 0.73834 

WV1 38.96 79.29 1.1   East 0.82191 

 

† Data extracted from WorldClim database version 2.0 (Fick and Hijmans, 2017). ‡ Willi et al., 2018. 
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Table S2: Summary of the crossing experiment and of the seeds sown in each common garden 

Mother 

population 

Father 

population 

No. of cross 

families 

No. of seeds sown in each common garden Cross 

type CG1 CG2 CG3 CG4 CG5 

NY1 NY1 9 70 69 63 69 66 WPC 

NY5 NY5 12 72 72 72 72 72 WPC 

IN1 IN1 11 72 72 72 72 72 WPC 

MO1 MO1 12 72 72 69 72 72 WPC 

ON11 ON11 12 72 69 66 72 66 WPC 

ON12 ON12 12 69 69 72 72 72 WPC 

MO2 MO2 12 72 72 72 72 72 WPC 

NC2 NC2 12 69 70 72 72 72 WPC 

NC4 NC4 11 72 72 72 72 72 WPC 

IA1 IA1 9 70 72 57 72 66 WPC 

VA1 VA1 9 72 72 72 72 72 WPC 

MD2 MD2 10 69 69 69 72 69 WPC 

WV1 WV1 12 69 69 66 72 60 WPC 

PA3 PA3 11 72 72 72 72 72 WPC 

NY6 NY6 12 72 72 66 72 63 WPC 

NY4 NY4 10 70 69 69 72 72 WPC 

WI1 WI1 10 66 72 72 72 72 WPC 

ON8 ON8 6 27 30 27 37 27 WPC 

ON3 ON3 8 69 69 69 72 66 WPC 

ON1 ON1 12 72 72 72 72 69 WPC 

NY5 NY1 12 72 72 72 72 72 BPC 

IN1 IA1 11 72 69 69 72 72 BPC 

MO1 IA1 12 72 72 72 72 72 BPC 

ON11 IA1 9 55 54 54 0 72  BPC † 

ON12 IA1 10 72 72 72 72 72 BPC 

MO2 IA1 12 72 72 72 72 72 BPC 

NC2 NY1 12 69 70 69 69 72 BPC 

NC4 NY1 10 72 72 72 72 72 BPC 

VA1 NY1 10 72 72 72 78 72 BPC 

MD2 NY1 9 72 72 72 72 72 BPC 

WV1 NY1 11 72 72 66 72 66 BPC 

PA3 NY1 11 72 72 72 72 72 BPC 

NY6 NY1 11 72 72 72 72 72 BPC 

NY4 NY1 11 72 72 72 72 72 BPC 

WI1 IA1 11 78 72 72 72 72 BPC 

ON8 IA1 5 34 35 33 39 33 BPC 

ON3 IA1 10 63 63 63 72 63 BPC 

ON1 IA1 12 72 72 72 72 69 BPC 

Total number of seeds sown: 12,933; total number of cross combinations: 401; total number of 

population-level WPC: 100; total number of population-level BPC: 89. † ON11 x IA1 missing in 

CG4 due to too low numbers of seeds after restarting the experiment in December. Heterosis was not 

calculated for this cross-site-combination  
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Table S3: Information on the common garden sites 

 

Transplant site Location 
Latitude 

[° N] 

Longitude 

[° W] 

Min. temperatures 

early spring (°C) † 

CG1 (NY) Beyond northern edge 44.51 74.02 -6.5 

CG2 (MA) Northern edge 42.72 73.22 -3.3 

CG3 (VA) Center 38.43 78.86 1.8 

CG4 (NC) Southern edge 36.13 80.28 5.6 

CG5 (GA) Beyond southern edge 33.93 83.36 8.0 

Mean northern pop. ‡ North - - -2.5 

Mean center pop. ‡ Center - - 1.1 

Mean southern pop. ‡ South - - 4.7 

 

† Data extracted from WorldClim database version 2.0 (Fick and Hijmans, 2017); ‡ Data measured 

for mean population of the eastern cluster. Northern populations: NY4, NY5, NY6; center 

populations: PA3, MD2, WV1; southern populations: VA1, NC2, NC4.  

 

 

Table S4: Environmental stress per site 

 

Site 

Tmin year 2 

[° C] 

Tmin year 2 + 3 

[° C] 

CG1 (NY) -5.8 -6.0 

CG2 (MA) -2.8 -1.7 

CG3 (VA) 2.2 † 
CG4 (NC) 5.2 7.0 

CG5 (GA) 6.4 7.0 

 

Temperature recordings from data loggers (iButton®, Maxim Integrated Products, Inc) placed in each 

common garden site (1.5 m above ground, in the shadow). 

† In the analysis, replaced by the value of year 2 
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Table S5: Results of analysis performed on the level of individual pots, with a model testing for the effect of cross type (between- compared to 

within-population crosses [0]), genomic estimate of mutational load, environmental stress (∆ Tmin = Tmin CG - Tmin origin) and their interactions on 

multiplicative performance I up to year 3, at five common garden sites 

 

  

Cross 

type (CT)   Genomic load (GL)   Stress (S)   S2   

   CT  

* GL   

   CT  

* S   

   CT  

* S2   

   GL  

* S   

   GL  

* S2   

   CT  

* GL  

* S   

   CT  

* GL  

* S2  

Process Mean     Mean     Mean     Mean     Mean     Mean     Mean     Mean     Mean     Mean     Mean    

Log-normal 0.15 *  -1.35 *  16.91 *  -8.14 **  1.53 *  -4.95   -2.26   69.36   -14.58   -24.26   37.86  † 

Logistic 0.63 ***   -2.65     79.58 **   -58.54 ***   2.79     -65.53 ***   15.24     384.49 ***   61.25     163.79     -30.87    

 

Multiplicative performance (log10-transformed if >0) was assumed to follow a Gaussian distribution with 0-inflation. Therefore, the model assessed all 

fixed and random effects for their importance in both the Gaussian process (total number of flowers during one or two reproductive seasons) and the logistic 

process (binary variable depicting germination combined with survival and the capacity to initiate flowering). Estimates of coefficients are modes of an 

MCMC sample from the posterior distribution of parameters (mean). The logistic part of the model predicts non-zeros in the distribution on the logit scale. 

Genomic load and stress were standardized prior to analyses (mean = 0). Model fits with significant (positive) intercept are indicated by †. Estimates with 

P-values < 0.05 are written in bold; significance is indicated: (*) P<0.1, * P<0.05, ** P<0.01, *** P<0.001. Results for random effects are not shown. 
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Table S6: Summary of mixed-effects models testing for the effect of the genomic estimate of mutational load, environmental stress (∆ Tmin = Tmin 

CG - Tmin origin) and their interaction on population-level heterosis or within-population cross performance based on multiplicative performance (MP) 

up to year 2 or 3, and the finite rate of increase (λ), at five common garden sites 

 

    Genomic load (GL)   Stress (S)   Stress2 (S2)     GL * S   GL * S2        

Dependent variable N β χ²   β χ²   β χ²   β χ²   β χ²     R²m  R²c   

Heterosis                         

MP I to year 2 89 2.21 9.48 ***  1.61 15.10 *** -0.24 0.34   3.06 0.42   8.90 4.25 *  0.31 0.48 † 

MP II to year 2 89 2.21 9.49 **  2.00 21.66 *** -0.04 0.01   2.94 0.36   9.92 4.93 *  0.35 0.50 † 

                         

Performance (WPC)                         

MP I to year 3 100 -1.42 3.38 (*)  -2.39 7.19 **  -1.50 9.93 **  -6.99 1.76   6.33 1.91   0.28 0.61 †, ‡ 

MP II to year 3 100 -1.17 2.61   -2.58 9.11 **  -1.41 10.77 **  -4.65 0.95   6.46 2.56   0.30 0.65 †, ‡ 

MP I to year 2 100 -1.39 4.66 *  2.45 8.90 **  -1.25 9.73 **  6.78 2.34   10.43 7.60 **  0.28 0.71 † 

MP II to year 2 100 -1.19 3.71 (*)  2.37 9.13 **  -1.14 9.30 **  5.90 2.04   9.71 7.64 **  0.27 0.72 † 

λ 100 -0.22 1.41   -0.84 15.63 **  -0.24 5.38 *  -0.01 0.00   1.91 3.72 (*)  0.35 0.68 † 

 

Population heterosis estimates and within-population cross (WPC) performance estimates were log10-transformed prior to analysis. Each model was 

optimized with the bobyqa optimizer to improve convergence. Test statistics include regression coefficient (β), χ²-value of each fixed effect, and the marginal 

and conditional R2 of the model. Model fits with significant (positive) intercept are indicated by †. Regression coefficients with P-values < 0.05 are written 

in bold; significance is indicated: (*) P<0.1, * P<0.05, ** P<0.01, *** P<0.001. Results for random effects are not shown. For one of the five common 

gardens (CG3), the experiment stopped early and variables consider performance to year 2 only (indicated by ‡). 
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Table S7: Summary of population-level heterosis or within-population cross performance based 

on multiplicative performance (MP) up to year 3 or 2, and the finite rate of increase (λ), at five 

common garden sites 

 

  

Population heterosis 

  

 Population  

performance  

(WPC) 

Dependent variable N Min. Mean Max.  N Mean 

MP I to year 3 89 -0.96 1.88 23.50  100 41.31 

MP II to year 3 89 -0.92 2.65 30.23  100 25.66 

MP I to year 2 89 -0.95 2.96 41.21  100 28.75 

MP II to year 2 89 -0.97 3.89 71.45  100 20.00 

λ 89 -0.53 0.73 7.29  100 1.00 
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Table S8: Summary of mixed-effects models testing for the effect of transplant (beyond the edge 

compared to edge [0]), edge position (south compared to north [0]), and their interaction on 

population-level heterosis or within-population cross performance based on multiplicative 

performance (MP) up to year 2 or 3, and the finite rate of increase (λ), of range-edge populations 

transplanted in edge and beyond edge common garden sites 

 

    Transplant (T)  Edge position (E)      T * E         

Dependent variable N β χ²   β χ²   β χ²     R²m  R²c    

Heterosis                                

MP I to year 2 24 0.04 0.00   0.34 0.11   0.30 0.04   0.10 0.74   

MP II to year 2 24 0.21 0.34   1.91 1.95   -1.23 0.40   0.09 0.38   

                   

Performance (WPC)                  

MP I to year 3 24 -0.45 0.73   -0.12 0.05   0.20 0.07   0.08 0.32 ‡ 

MP II to year 3 24 -0.56 1.17   -0.29 0.30   0.38 0.27   0.12 0.41 ‡ 

MP I to year 2 24 -0.42 5.08 *  -0.45 3.16 (*)  0.27 1.02   0.21 0.56   

MP II to year 2 24 -0.48 0.28   -0.54 0.35   0.42 0.10   0.10 0.85   

λ 24 -0.15 5.34 *  -0.11 1.94   0.03 0.14   0.28 0.48   

 

Population heterosis and within-population cross (WPC) performance were log10-transformed prior 

to analysis. Each model was optimized with the bobyqa optimizer to improve convergence. Test 

statistics include regression coefficient (β), χ²-value of each fixed effect and the marginal and 

conditional R2 of the model. Regression coefficient with P-values < 0.05 are written in bold; 

significance is indicated: (*) P<0.1, * P<0.05, ** P<0.01, *** P<0.001. Results for random effects 

are not shown. For one of the five common gardens (CG3), the experiment stopped early and variables 

consider performance to year 2 only (indicated by ‡).  
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Table S9: Model selection on potential predictors of heterosis 

 

Model AICc Δi wi 

Genomic load + stress + stress2 + (genomic load * stress) + (genomic load * stress2) 111.1 0.0 0.93 

Genomic load + stress + stress2 116.3 5.2 0.07 

Genomic load 123.3 12.2 0.00 

Genomic load + stress + (genomic load * stress)  127.0 16.0 0.00 

Genomic load + stress 127.4 16.4 0.00 

 

The dependent variable was heterosis based on multiplicative performance I to year 3. Genomic load 

was the ratio of genome-wide non-synonymous to synonymous polymorphic sites adjusted by their 

mean derived ferquency (Willi et al., 2018), and stress was the relative difference of within-

population cross performance of each population at a site compared to the best site. Models are ranked 

from best to worst fit, with lower AICc values indicating a better fit. The difference between the best 

fit model and the others is indicated as Δi, while the weight of each model is indicated by wi.  
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Table S10: Summary of mixed-effects models testing for the effect of the genomic estimate of mutational load, stress based on relative 

performance, and their interaction on population-level heterosis based on multiplicative performance (MP) up to year 3 or 2 and the finite rate 

of increase (λ), at five common garden sites 

 

    Genomic load (GL)   Stress (S)   Stress2 (S2)     GL * S   GL * S2        

Dependent variable N β χ²   β χ²   β χ²   β χ²   β χ²     R²m  R²c   

MP I to year 3 89 1.90 6.77 **  0.36 0.60   1.42 11.29 ***  -0.15 0.00   -0.91 0.03   0.20 0.44 †, ‡ 

MP II to year 3 89 1.80 6.13 *  1.07 4.05 *  1.07 6.73 **  0.32 0.01   6.66 2.20   0.23 0.51 †, ‡ 

MP I to year 2 89 2.40 17.70 ***  0.94 5.01 *  1.77 19.06 ***  1.99 0.23   5.07 1.85   0.37 0.49 † 

MP II to year 2 89 2.26 11.19 ***  1.43 7.24 **  1.84 17.09 ***  1.38 0.11   7.14 2.95 (*)  0.38 0.55 † 

λ (heterosis) 89 0.63 2.70    0.92 16.98 *** 0.38 3.21 (*)  0.89 0.24   4.16 4.82 *  0.29 0.59 † 

 

Population heterosis estimates were log10-transformed prior to analysis. Each model was optimized with the bobyqa optimizer to improve convergence. Test 

statistics include regression coefficient (β), χ²-value of each fixed effect the marginal and conditional R2 of the model. Model fits with significant (positive) 

intercept are indicated by †. Regression coefficient with P-values < 0.05 are written in bold; significance is indicated: (*) P<0.1, * P<0.05, ** P<0.01, *** 

P<0.001. For one of the five common gardens (CG3), the experiment stopped early and variables consider performance to year 2 only (indicated by ‡). 
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Table S11: Magnitude of effect of the genomic estimate of mutational load and environmental 

stress (∆ Tmin = Tmin CG - Tmin origin) on (log10-transformed) multiplicative performance (MP) up to 

year 3 or the finite rate of increase, λ, of within-population crosses (WPC), at five common 

garden sites 

 

    Stress 

Dependent variable N Genomic load  Warmer CG Colder CG 

MP I to year 3 100 -56.1 (0.74; 1.09)  -86.9 (0; 14.7) -14.2 (0; -11.4) 

MP II to year 3 100 -54.9 (0.74; 1.09)  -92.6 (0; 14.7) -6.6 (0; -11.4) 

λ 100 -41.1 (0.74; 1.09)  -90.4 (0; 14.7) 24.1 (0; -11.4) 

 

For the general model of Table S6 analyzing WPC performance, the magnitude of effect of genomic 

load and environmental stress was calculated as: percentage difference between the back-transformed 

predicted performance corresponding to the maximal value of the predictor variable (in parenthesis, 

right) in our sampling and the back-transformed predicted performance corresponding to the minimal 

value of the predictor variable (in parenthesis, left). The effect of genomic load was not significant in 

the analysis, but is reported for comparison. The magnitude of effect of genomic load was estimated 

considering temperatures close to those of the site of origin (stress = 0). The magnitude of effect of 

environmental stress was estimated considering mean genomic load values, and calculated separately 

if the common gardens (CG) were warmer or colder than the site of origin of the population.  
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Abstract 

Species range limits, when not caused by dispersal limitation, reflect constraints in the evolution of 

the ecological niche. Here we tested whether a history of small size and enhanced genetic drift of 

range-edge populations was linked with reduced adaptation. We performed a transplant experiment 

with sites across and beyond the species distribution of North American Arabidopsis lyrata, with 

plants from the centre of distribution, and the periphery with a history of range expansion or long-

term isolation. Performance declined toward the southern range limit and beyond, suggesting that 

southern range limits – but not northern ones – reflected niche limits. Furthermore, we found 

adaptation to two important niche- and range-determining environmental variables, temperature in 

spring and precipitation during the wettest quarter. However, the signature of adaptation to 

precipitation was reduced in populations with a history of small population size. Therefore we 

conclude that reduced adaptation is a contributor to range limits. 

 

Keywords: genetic diversity, genetic drift, local adaptation, marginal population, niche limits, range 

edge, small population size, transplant experiment. 
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Introduction 

Several hypotheses have been put forward for why species are limited in their geographic distribution, 

but so far, it is unclear what the main constraining processes are (Hoffmann & Blows 1994; Kawecki 

2008; Sexton et al. 2009; Willi & Van Buskirk 2019). If dispersal limitation is found not to be relevant 

at species range limits, geographic distributions reflect niche limits (Chown & Gaston 1999; 

Hargreaves et al. 2014). The evolutionary explanation for range limits then is that populations at the 

edges fail to adapt and expand their ecological niche. Evolutionary models have suggested the 

conditions under which adaptation at range edges fails and which therefore cause range limits 

(reviewed in Sexton et al. 2009). Here we focused on the fact that many species show enhanced 

signatures of genetic drift toward range edges (Pironon et al. 2017), which may be linked with the 

reduced adaptive potential. The lack of adaptation to range-edge conditions due to genetic drift may 

prevent the further spread of the species into more extreme environments and be one of the causes of 

range limits. Here, we tested the hypothesis that adaptation at current range edges is reduced and that 

this is connected with a history of long-term small size. 

The role of increasing genetic drift toward range limits on adaptation has not been explored 

conclusively by evolutionary theory on species ranges. One set of models tracks adaptation and range 

expansion by assuming a linear gradient of environmental change and a polygenic trait under 

selection. Adaptation is predicted to lead to the expansion of the range unless dispersal is long and 

the environmental gradient steep, which leads to maladaptation, the gradual decline in population 

mean fitness, and eventually to range limits (Kirkpatrick & Barton 1997). When the action of both 

selection and genetic drift are considered, the same sort of model predicts that range limits establish 

by two contributors: steep environmental gradients, and either genetic drift opposing selection or 

genetic drift eroding genetic variation (Polechová & Barton 2015; Polechová 2018). Two aspects are 

noteworthy. Dispersal has a mixed effect; it increases dispersal load but lowers the magnitude of 

genetic drift. Furthermore, population sizes and genetic drift are fairly constant across the range. A 

second set of models works with source-sink dynamics and addresses whether a sink site that differs 
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in ecological conditions can be occupied and adapted to (reviewed in Kawecki 2008). Here the 

prediction is that adaptation and persistence in the sink is more likely if gene flow is not too restricted 

because it brings in recruits and genetic variation important for local adaptation (Holt & 

Gomulkiewicz 1997; Holt et al. 2003). While some of the source-sink models included the action of 

genetic drift, its role in the source, which could stand for the outermost edge-population, was not 

explored.  

There are several reasons why range edges may commonly have a history of small population 

size that then affects the potential to adapt via genetic drift opposing selection or eroding genetic 

variation. First, based on empirical observations, a purely ecological hypothesis was formulated, 

namely that species have high abundance in the range centre and lower abundance at the range 

periphery because of a decline in habitat quality or habitat availability (abundant-centre hypothesis; 

Hengeveld & Haeck 1982; Brown 1984). A recent meta-study provided strong support for this 

hypothesis as 81% of studies were found to report a significant decline in population occurrence from 

the centre to the periphery (Pironon et al. 2017). In principle, this should lead to the enhanced 

exposure to genetic drift, as was suggested by the population-genetic extension of the abundant-centre 

hypothesis (Eckert et al. 2008). A completely different hypothesis advocates that during range 

expansion, serial demographic bottlenecks accompanied by genetic drift leave a pattern of declining 

genetic diversity from the area of expansion start toward the expansion end (Excoffier et al. 2009). 

Indeed, many species underwent relatively recent range expansion due to Pleistocene glaciation 

cycles, which left an imprint of small population size toward range edges (Hewitt 1996; Hewitt 2000). 

In support of both hypotheses outlined above, Pironon et al. (2017) found an overall significant 

decline in genetic marker diversity from the centre to the periphery across species ranges, with 47% 

of studies showing a significant decline. Therefore, we can conclude that many edges of species 

ranges, have a history of small size and heightened exposure to genetic drift, either due to less 

available habitat or past range expansion. 
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This motivates the question of whether range edge populations with a history of increased 

genetic drift are less adapted to local environmental conditions. The testing for local adaptation is 

best done with a reciprocal transplant experiment (Kawecki & Ebert 2004). By performing a general 

transplant experiment across a species distribution and beyond, we asked whether range limits 

coincide with niche limits (I), whether populations were adapted to the local climate (II), and whether 

range edge populations with low genetic diversity were less adapted (III). Study organism was the 

short-lived perennial plant Arabidopsis lyrata subsp. lyrata from North America. A previous niche-

modelling study on A. lyrata indicated that northern and southern range limits coincided with niche 

limits, with minimum temperature in early spring and precipitation during the wettest quarter being 

the variables that predicted species occurrence best (Lee-Yaw et al. 2018). Furthermore, populations 

toward range edges were shown to have a history of small population size due to post-glacial range 

expansion and rear-edge isolation, and mating system shifts to selfing associated with range edges 

(Griffin & Willi 2014; Willi et al. 2018). In line, higher genetic diversity and therefore larger effective 

population sizes were found in areas from which colonization started, which nowadays are near to 

the geographic centre of distribution (Willi et al. 2018). The twenty populations involved in the study 

represented the geographic centre of distribution as well as the peripheries. 

 

 

Material and methods 

Study organism and within-population crosses 

North American A. lyrata subsp. lyrata (from now on abbreviated as A. lyrata) is distributed along 

the eastern US, from North Carolina to Upstate New York, and in the Midwest, from Missouri to 

south-western Ontario, forming two distinct ancestral clusters (Willi & Määttänen 2010; Griffin & 

Willi 2014; Willi et al. 2018). It is a mostly self-incompatible, insect-pollinated plant that produces 

basal rosettes. However, a fraction of self-compatible and selfing populations were found at the edges 



 

122 
 

of species distribution (Griffin & Willi 2014). The species is found on sand dunes and rocky outcrops, 

as well as on sandy or rocky riverbanks and shorelines. 

Twenty populations of A. lyrata were selected because they represented the total distribution 

in North America from south to north, two ancestral genetic clusters and both mating systems (Fig. 

1, Table S1). For each natural population, in 2007, 2011, and 2014, mature fruits of 30-50 plants were 

collected over a surface area of about 450 m2. To reduce the effects of the site of origin and to get a 

high number of seeds of known genotypic composition, we raised plants indoors to perform within-

population crosses. For each population, two seeds of 26 seed families were sown in pots and later 

thinned to one plant per pot (see Table S2 for raising conditions). Plants of each population were 

randomly assigned to be either mother plants/dams receiving pollen (12), father plants/sires being 

pollen donors (12), and backup plants (2). Each dam was randomly assigned a sire from the same 

population. Hand pollinations were performed on emasculated flowers at the bud stage. The crossing 

was repeated until 6-7 fruits or about 60 seeds were available per cross combination. The experiment 

resulted in 224 crosses with seeds for sowing in the transplant experiment. 

 

Transplant experiment 

Five transplant sites were established along a latitudinal gradient in the eastern US (Fig. 1). Sites were 

selected based on the position relative to the species range: beyond the northern edge, in the 

Adirondacks, NY (CG1); near the northern range edge, in Williamstown, MA (CG2); in the centre of 

distribution, in Harrisonburg, VA (CG3); near the southern range edge, in Winston-Salem, NC (CG4); 

and, beyond the southern range edge, in Athens, GA (CG5), (Fig. 1, Table S3). The start of 

transplanting at the sites was adjusted to the local climate, about 6 weeks before the long-term daily 

average temperature fell to 10 °C. The setup started in August 2017 for the site beyond the northern 

edge (CG1) and ended two months later at the southernmost site (CG5). At the southern range edge 

(CG4), sowing had to be repeated in December of the same year because of chloride in the water. 
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At each transplant site, three replicate pots with two seeds each were prepared per cross 

combination. The three pots per cross were then split into three spatial blocks, and within the block, 

they were randomly assigned to 13 multi-pot trays with 38 pots each (note that not all pots were filled 

with seeds analyzed here; others contained between-population crosses; see Perrier et al. 2020). Pots 

had a diameter of 7 cm, a depth of 6 cm, were perforated at the bottom, and filled with a 1.5:1 mix of 

unfertilized peat moss and washed sand. The same protocol was followed at all sites. As some crosses 

had produced only a few seeds (cross combinations with less than 30 seeds), we replaced them with 

another maternal line of the same population, or only one seed was sown per pot. A total of 7,098 

seeds were sown (5 transplant sites x 20 populations x 12 maternal lines x 3 blocks x 2 seeds per pot 

– 102 missing seeds, Table S4). 

Pots were immediately placed outdoors, into a meadow, under a portable walk-in greenhouse 

to keep conditions favorable for germination for the first 10-12 days; an exception was the transplant 

site at the southern range edge where the second round of germination occurred inside the university 

glasshouse. When the portable greenhouse was removed, a white mesh cloth protected seedlings from 

being washed away for another week. Plants were watered as needed, keeping the soil surface moist 

during the first month to promote germination. Later on, plants were exposed to the natural local 

conditions at each site. However, competitive interactions were avoided by removing other plant 

species and covering the surrounding area with a black foil. Herbivore pressure was partially 

controlled: with a fence around the blocks, ant traps against seed predation in the first fall, and organic 

slug repellent in the first spring. When in the same pot two seedlings germinated, one was haphazardly 

removed. 

Plant performance was tracked weekly or more regularly, starting with the sowing of seeds in 

late summer 2017 until the end of the reproductive season in June 2019 (for a list and description of 

traits see Table S5). Reproductive output was assessed in each of the two reproductive seasons, 9 

weeks after the first few plants flowered at a site in year 2 (2018), and 5 weeks after the start of 

flowering in year 3 (2019). It was the total number of fruits, pedicels (flowers that did not produce a 
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fruit but contributed with pollen), flowers, and buds. Finally, multiplicative performance (MP) was 

calculated as germination rate observed in a pot times reproductive output up to year 3. At the end 

of the experiment, root length was measured as the distance from the centre of the rosette to the end 

of the longest root. Unfortunately, the transplant in the centre (CG3) had to be removed in fall 2018 

because the site was needed for another experiment; to compare across sites, we therefore performed 

also analyses on MP up to year 2. Between fall 2018 and spring 2019, we additionally performed a 

seed-burial experiment to study seed survival. Seeds of multiple maternal plants of a population were 

pooled, packed in bags, and left on the soil surface in every common garden (Fig. S1). 

 

Climate data 

Analysis of climate adaptation focused on the two most niche- and range-determining climatic 

variables, minimum temperature in early spring and precipitation during the wettest quarter (Lee-

Yaw et al. 2018). This data of the sites of origin of populations, and – for precipitation – for the 

transplant sites, was extracted from WorldClim database version 2.0 (Fick & Hijmans 2017). 

Temperature data at the transplant sites was collected by loggers in each garden. Five of them per site 

were installed 1.5 m above the ground, close to the pots and in shade, and recorded at an interval of 

1 h. The difference between WorldClim-based minimum temperature in early spring, in March and 

April, at the site of origin of a population and the corresponding temperature measured with loggers 

at a transplant site was calculated and abbreviated with Temp. The difference between WorldClim-

based precipitation during the wettest quarter at the site of origin of a population and a transplant site 

was abbreviated with Prec. The testing for local adaptation was based on absolute values, |Temp| and 

|Prec|, with estimates close to zero indicating little difference in conditions between those populations 

had experienced at their site of origin and those experienced at a transplant site. 
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Statistical analysis  

All main analyses were performed on multiplicative performance as the dependent variable. A first 

generalised linear mixed model (GLMM) tested whether range limits coincide with niche limits 

(research question I). The analysis was performed in a Bayesian framework (MCMCglmm in R; 

Hadfield 2009; R Core Team 2019) because MP was 0-inflated and required the analysis of both the 

logistic part with the 0s and the Gaussian part of the distribution (values log10-transformed if >0). 

Fixed effect was common garden, with the reference garden in the centre of the range (CG3). Random 

effects were block nested within transplant site, population, and family nested within population. 

MCMCglmm analysis was run on 10 parallel chains, with a burnin of 5000, thining of 100, and a nitt-

value of 200,000. To assess whether the species had self-persistent populations within the range but 

not beyond the range limits, we estimated the growth rate of each population at each transplant site 

by creating stage-classified matrices (Caswell 2001; see Fig. S1). Furthermore, life stages were tested 

for their contribution to performance in the common gardens. Germination and survival were 

estimated as binary variables (0, 1). Survival year 1 took into account the germination state (i.e. NA if 

the seed did not germinate; 0 if the plant died before the end of winter in 2017/18; 1 if it survived); 

and survival year 2 was based on survival in year 1 (i.e. NA if the plant had died before). Damage on 

the rosette or on the inflorescence was also treated as binary. Time to flowering, the severity of the 

damage (1: 0-25%; 2: 26-50%; 3: 51-75%; 4: 76-100%), reproductive output, and root length were 

continuous variables. All these variables were analysed individually with restricted maximum 

likelihood, with the R package lme4 (Bates et al. 2015) and lmerTest (Kuznetsova et al. 2017). Fixed 

and random effects were the same as specified above. 

In the second part of the analyses, tests addressed whether populations showed a signature of 

climate adaptation (research question II) and whether that signature depended on the history of 

genetic drift (III). The main dependent variable was again multiplicative performance, analysed by a 

GLMM and Bayesian statistics. Fixed effects were |ΔTemp|, |ΔPrec|, genomic diversity, and the 

interaction between the former two variables and genomic diversity. Genomic diversity was assumed 
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to reflect long-term population size, and species-wide estimates were shown to be well explained by 

expansion distance or rear-edge isolation, mating system and ancestral cluster (74% of variation 

explained; Willi et al. 2018). The estimate of genomic diversity was Tajima’s  of intergenic regions 

revealed by pool-sequence analyses of population samples (Willi et al. 2018, Table S1). Random 

effects were common garden, block nested within common garden, population, and family nested 

within population. Secondary analyses focused on the role of the same fixed effects on life stage 

variables. 

 

 

Results 

Environmental conditions  

Climate differed strongly between the five transplant sites (Table S2). Minimum temperature in early 

spring increased gradually from north to south, while precipitation during the wettest quarter 

increased from the centre toward beyond the range edges. Mean annual temperature at each transplant 

site was slightly warmer than expected based on longer-term averages depicted by the WorldClim 

data set (Table S2). The trend was strongest for the central and northern common garden sites. 

 

I. Do range limits reflect niche limits? 

A first main model tested for the effect of the position of common gardens across the A.lyrata 

distribution on multiplicative performance up to year 3 (Table 1; mean values of common gardens in 

Table S6). The effect of the common garden was significant in the logistic part of the model, depicting 

whether plants made it to flowering, for the site in the north, south, and beyond the southern edge. 

Values were significantly higher at the northern edge, and lower at the southern edge and beyond the 

southern edge compared to the common garden in the centre of distribution, CG3. For the log-normal 

part of the model, depicting the number of flowers produced, only the common garden at the northern 

edge differed, with lower values compared to CG3. Figure 2A combines results of the two parts of 
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distribution, illustrating low overall multiplicative performance at the gardens at the southern edge 

and beyond the southern edge of distribution, but little difference between common gardens in the 

north. In line, the population growth rate, r, was much reduced and median values across populations 

around 0 at the southern edge and beyond the southern edge, indicating that populations are mostly 

non-persistent when transplanted beyond the southern edge (Fig. 2B, Tables S6, S7). Growth rates at 

the northern sites were not significantly different from those in CG3 and overall on the positive side. 

Results indicate that southern range limits reflect niche limits, while northern range limits do not 

seem to represent the species niche limits. 

 Further analyses focused on the effect of the common garden on life stage components as 

summarized in Table S7. Germination was significantly lower in the north and beyond the northern 

edge, but significantly increased at the southern edge (there seeds were raised in a greenhouse). In 

the first year, survival was significantly higher in the northern sites and at the southern edge, 

compared to CG3, while survival year 2 was significantly lower in all common gardens compared to 

CG3, and strongest in the south and at the northern range edge. Time to flowering in year 2 was not 

significantly different at the northern edge and beyond the northern edge but significantly longer at 

the southern edge and beyond the southern edge, indicating that plants in the south flowered later 

relative to when soil temperature increased above 5°C (or after snowmelt). The reproductive output 

to year 2 was significantly lower at both southern sites, but also in the north, and here in year 2 and 

when the output of year 2 and year 3 were added (Table S7). Roots were longer at the southern sites 

(not measured at CG3 and therefore comparison made with CG1). Finally, damage to rosettes was 

more common in the north and beyond the northern edge, but damage severity was lower compared 

to CG3. Damage severity on rosettes was also reduced at southern sites. Overall, these results 

supported the much reduced performance and population growth rate in the southern-most transplant 

site mainly due to reduced overall longevity of plants. 
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II. Are populations adapted to the climate conditions of their site of origin?  

III. Is the effect of adaptation reduced in populations of range edges with low genetic 

diversity and a history of stronger genetic drift? 

The main model on multiplicative performance revealed adaptation to both temperature and 

precipitation (Table 2). The absolute difference in minimum temperature in early spring between 

population origin and transplant site, ǀTempǀ, had a negative effect on the logistic process of 

performance, with fewer non-zero values the larger the difference was (Fig. 3A). In other words, 

plants had a higher chances to succeed from the seed stage to reproduction under more similar 

temperature conditions between home and transplant site, indicating temperature adaptation. A trend 

was already observed up to year 2, and the correlation became significant up to year 3. The absolute 

difference in precipitation during the wettest quarter between the site of population origin and 

transplant site, ǀPrecǀ, had also a negative effect but this time on the log-normal part of the distribution 

of multiplicative performance. Once plants reproduced successfully, a greater performance was 

observed under similar precipitation as at the site of origin, indicating adaptation to the precipitation 

regime. Tajima’s  did not affect the plant performance, however, there was an interaction with the 

ecological predictor of ǀPrecǀ, with an effect on the normal part of the distribution for multiplicative 

performance. Once plants succeeded with germination and achieved reproduction, they revealed a 

signature of stronger climate adaptation the higher genomic diversity was and the weaker the history 

of genetic drift characteristic of marginal populations was (Fig. 3B). 

Analyses on life-stage variables showed when patterns of adaptation emerged (Table S8). 

Adaptation to temperature was already expressed at the life stage of germination. Germination was 

reduced the more different the temperature regime was between the site of origin and site of 

assessment. Other life stages that contributed as a trend were reproductive output to year 3 and root 

length. Reproductive output tended to be lower and the roots shorter the more different the 

temperature regime was between site of origin and site of assessment. Adaptation to precipitation was 

expressed in later stages, by a decrease in survival year 2, while the damage of inflorescences decreased 
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under more different precipitation conditions population experienced. However, there was no 

particular life stage when the interaction between Tajima’s  and ǀPrecǀ was significant. 

 

 

Discussion 

I. Do range limits reflect niche limits? 

Our study attempted to first answer the question of whether range limits are the spatial representation 

of niche limits by combining results from species distribution modelling and transplant experiments. 

For A. lyrata, Lee-Yaw et al. (2018) had found that southern and even more so northern range limits 

were predicted well by habitat suitability, mainly defined by average minimum temperature in early 

spring, and precipitation of the wettest quarter. Results of the transplant experiment across the 

distribution and beyond confirmed that range limits reflect niche limits in the south. At the southern 

edge and beyond, plant performance was significantly lower compared to the centre of distribution 

and growth rates were around 0 at the southern edge and beyond the southern edge (Fig. 2). However, 

the northern range edge may not be a reflection of niche limits anymore. At the northern edge and 

beyond, plant performance seemed comparable with that at the centre of distribution and growth rates 

were not significantly different. Overall, for the southern range edge of A. lyrata, there is good 

agreement with meta-analyses showing that range limits often equal niche limits (Hargreaves et al. 

2014; Lee-Yaw et al. 2016). 

 However, secondary analysis performed on life stage variables showed that conditions in the 

north were not systematically better for A. lyrata. Germination was lower at northern sites. Then 

subsequent survival (survival year 1) was initially higher at the northern sites but then changed to lower 

during the second year. Furthermore, the total reproductive output to year 2 was greater at the centre 

and was lower at least at the northern edge. Plants in the north seemed to be more affected by 

herbivores, while the severity of the damage was higher at the centre site. These results provide partial 

support that also northern conditions may be constraining for the species and to some extent limiting. 
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We also found that the climatic conditions during the study were on average warmer than the long-

term average based on WorldClim data, with strongest increase in the centre and at the northern two 

sites, which may have made especially northern sites more benign for A. lyrata than they used to be. 

While the prevailing conditions may have been unusually warm during our study, the trend is also 

the one observed with climate warming. Therefore, we hypothesize that northern range limits may 

not reflect niche limits any more for A. lyrata due to global warming, but that the species is nowadays 

dispersal limited at the cold end of distribution. Such a result was found for example for 38% of non-

forest plant species of the European Alps (Rumpf et al. 2019). 

 

II. Are populations adapted to the climate conditions of their home site?  

Adaptation to local conditions is a common finding of transplant studies (Leimu & Fischer 2008; 

Hereford 2009). Furthermore, local adaptation may most often be due to climate or other abiotic 

factors but to a lesser extent due to biotic interactions (Hargreaves et al. 2020). Here we found 

evidence for adaptation to minimum temperature in early spring, the most niche- and range-

determining variable formerly revealed by distribution modelling, and precipitation during the wettest 

quarter; plant performance was better when conditions at transplant sites were similar to those at the 

site of origin. These signatures of adaptation measured on plant multiplicative performance were 

detected in the logistic part of the distribution for temperature, with more zeros when conditions were 

different than those at the sites of origin. Adaptation to precipitation was detected in the normal part 

of the distribution of multiplicative performance, determined by the total number of reproductive 

organs produced once plants reached the flowering stage. Similar results were found in the analysis 

of life stages. Adaptation to temperature was expressed early in life, mainly during germination (with 

additional trends for reproductive organs and root length). In contrast adaptation to precipitation was 

revealed later in life, in survival of the second year. This difference in timing of expression suggests 

that adaptation to temperature may involve fewer selection targets already expressed during 

germination, while adaptation to precipitation may be due to more genetic variants of small 
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phenotypic contribution with cumulative effect only visible later in life. Evidence for local adaptation 

to temperature has been numerous in plants, e.g., shown in transplant experiments performed across 

latitude (e.g., Ågren & Schemske 2012), or across elevation (Halbritter et al. 2018). Furthermore, it 

may not be uncommon that local adaptation to temperature is expressed at an early life phase, as also 

in A. thaliana adaptation to southern versus northern conditions strongly involved the seedling 

establishment phase (Postma & Ågren 2016). 

 

III. Is the effect of adaptation reduced in populations of range edges with low genetic 

diversity and a history of stronger genetic drift? 

A main result of this study is that adaptation to the second important niche- and range-determining 

variable was dependent on the history of genetic drift experienced by populations. Results pointed to 

long-term small populations having a relatively low fitness peak when the precipitation regime was 

similar between the site of origin and site of assessment, but that this fitness peak was higher and 

wider for populations with long-term large size, coming from the centre of the distribution. In this 

sense, populations of large size may be more tolerant of a wider range of precipitation regimes (Fig. 

3B). In A. lyrata, populations with low genomic diversity and therefore a history of small size and 

genetic drift generally have a history of either post-glacial range expansion or long-term rear-edge 

isolation. The pattern was found for outcrossing populations, and the handful of selfing populations 

detected at range edges were confirmed to have an even more pronounced pattern of reduced genetic 

variation (Willi et al. 2018). The result of a reduced signature of adaptation in populations with a 

history of stronger genetic drift are in line with a result from European A. lyrata. A transplant 

experiment over an elevational gradient revealed local adaptation in one pair of low-/high-elevation 

populations with higher genetic diversity, but no signature of such adaptation in another pair of 

populations with lower genetic diversity (Hämälä et al. 2018). Higher tolerance to extreme 

environmental conditions in populations of range cores compared to peripheral populations was found 

in a Triticum species. Plants of the core of distribution and range edges were exposed to experimental 
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conditions found beyond the range edge, and core populations coped better with those (Volis et al. 

2014). In our study, life-stage analyses did not reveal a particular timing of when genetic drift inferred 

with local adaptation or the evolution of tolerance, suggesting that its expression is due to many 

genetic variants each of small effect, which are more prone to be affected by genetic drift. 

Range limits have recently been suggested to be a result of a failure of local adaptation due to 

genetic drift opposing selection or genetic drift eroding genetic variation (Polechová & Barton 2015; 

Polechová 2018). Our study supports that local adaptation is constrained by genetic drift associated 

with range-edge position. In line, Vergeer & Kunin (2013) found in a transplant experiment with sites 

and populations from the core and periphery of European A. lyrata that plant performance was 

generally higher in the core of distribution. Furthermore, populations from the southern range edge 

with the smallest census sizes were the least locally adapted. In Plantago major, a transplant 

experiment including a site in the core of distribution and two toward the northern edge revealed local 

adaptation of both core and edge populations, but the extent of local adaptation in edge populations 

with lower genetic diversity tended to be lower (Halbritter et al. 2015). In A. lyrata, the likely 

mechanism for this reduced adaptation is that genetic drift opposes selection. The alternative, that 

genetic drift impedes adaptation via a loss of genetic variation seems less likely. A quantitative 

genetics experiment involving populations from the centre and edges of distribution of A. lyrata 

showed that genetic variation for ecologically relevant traits was not much reduced in range-edge 

populations, and genetic correlations among them were weaker, which overall produced a pattern of 

similar adaptive potential (Paccard et al. 2016). 

Our study reinforces the idea that populations at range margins with a history of strong genetic 

drift, caused by past range expansion, rear-edge isolation, or a selfing mating system, have a reduced 

signature of adaptation and lower tolerance of atypical environmental conditions. This puts them in 

a position of a lower population mean performance due to maladaptation on the one hand and makes 

them weak colonizers on the other hand. Apart from their higher mutational load by genetic drift 
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opposing purifying selection (Perrier et al. 2020), narrow and low adaptation to climate may together 

be main causes of geographic species distribution limits. 

 

  



 

134 
 

Acknowledgments 

This research was supported by the Swiss National Science Foundation (31003A_166322). We are 

thankful to Celia Evans (Paul Smith’s College, Paul Smith, NY), Joan Edwards (Williams College, 

Williamstown, MA), Heather Peckham Griscom (James Madison University, Harrisonburg, VA), 

William K. Smith (Wake Forest University, Winston‐Salem, NC) and Rodney Mauricio (University 

of Georgia, Athens, GA) for logistical support in the USA. For field assistance we thank Mary 

Anderson, Michael Boyd, Bennet Coe, Scott Cory, Rachel Hillyer, Andrew Jones, Deidre Keating, 

Larry Kummer, David Lampman, Anastasia Levie‐Sprick, Blake Macko, Shannon Malisson, Kathryn 

McGee, Althea Neighbors, Debra Rogers‐Gillig, Caleb Rose, Amber Scarabaggio, Anna Shutley, 

Caroline Vath and Audrey Werner. For assistance with seed counts we thank Olivier Bachmann, 

Markus Funk, and Susanna Riedl. Collection permits were provided by the Clinton County 

Conservation Board, Cornell University, Fort Leonard Wood Army Base, Iowa Department of 

Natural Resources, Missouri Department of Conservation, New York State Office of Parks, Ontario 

Parks, Palisades Interstate Park Commission, Rock Island Lodge, United States National Park 

Service, Virginia Department of Conservation and Recreation and the Wisconsin Department of 

Natural Resources. The authors declare no conflicts of interest. 

 

Data accessibility statement: All data is stored in Dryad (https://doi.org/10.5061/dryad.cc2fqz642) 

 

 

  

https://doi.org/10.5061/dryad.cc2fqz642


 

135 
 

References 

Ågren, J. & Schemske, D.W. (2012). Reciprocal transplants demonstrate strong adaptive 

differentiation of the model organism Arabidopsis thaliana in its native range. New Phytol. 

194:1112–1122. 

Bates, D., Mächler, M., Bolker, B. & Walker, S. (2015). Fitting linear mixed-effects models using 

lme4. J. Stat. Softw. 67:1–48.  

Brown, J.H. (1984). On the relationship between abundance and distribution of species. Am. Nat. 

124:255–279. 

Caswell, H. (2001). Matrix Population Models: Construction, Analysis, and Interpretation, 2nd 

edition. Sinauer Associates, Inc., Sunderland, MA. 

Chown, S.L. & Gaston, K.J. (1999). Exploring links between physiology and ecology at macro-

scales: the role of respiratory metabolism in insects. Biol. Rev. 74:87–120. 

Eckert, C.G., Samis, K.E. & Lougheed S.C. (2008). Genetic variation across species’ geographical 

ranges: the central-marginal hypothesis and beyond. Mol. Ecol. 17:1170–1188. 

Excoffier, L., Foll, M. & Petit, R.J. (2009). Genetic consequences of range expansions. Annu. Rev. 

Ecol. Evol. Syst. 40:481–501. 

Fick, S.E. & Hijmans, R.J. (2017). WorldClim 2: new 1-km spatial resolution climate surfaces for 

global land areas. Int. J. Climatol. 37: 4302–4315. 

Griffin, P.C. & Willi, Y. (2014). Evolutionary shifts to self-fertilisation restricted to geographic range 

margins in North American Arabidopsis lyrata. Ecol. Lett. 17:484–490. 

Hadfield, J.D. (2009). MCMC methods for multi-response generalized linear mixed models: the 

MCMCglmm R package. https://cran.r-project.org/. 

Halbritter, A.H., Billeter, R., Edwards, P.J. & Alexander, J.M. (2015). Local adaptation at range 

edges: comparing elevation and latitudinal gradients. J. Evol. Biol. 28:1849–1860. 

Halbritter, A.H., Fior, S., Keller, I., Billeter, R., Edwards, P.J., Holderegger, R. et al. (2018). Trait 

https://cran.r-project.org/


 

136 
 

differentiation and adaptation of plants along elevational gradients. J. Evol. Biol. 31:784–800. 

Hämälä, T., Mattila, T.M. & Savolainen, O. (2018). Local adaptation and ecological differentiation 

under selection, migration, and drift in Arabidopsis lyrata. Evolution 72:1373–1386. 

Hargreaves, A.L., Samis, K.E. & Eckert, C.G. (2014). Are species' range limits simply niche limits 

writ large ? A review of transplant experiments beyond the range. Am. Nat. 183:157–173.  

Hargreaves, A.L., Germain, R.M., Bontrager, M., Persi, J. & Angert, A.L. (2020). Local adaptation 

to biotic interactions: a meta-analyses across latitudes. Am. Nat. 195:395–411. 

Hengeveld, R. & Haeck, J. (1982). The distribution of abundance. 1. Measurements. J. Biogeogr. 

9:303–316. 

Hereford, J. (2009). A quantitative survey of local adaptation and fitness trade-offs. Am. Nat. 

173:579–588. 

Hewitt, G.M. (1996). Some genetic consequences of ice ages , and their role in divergence and 

speciation. Biol. J. Linn. Soc. 58:247–276. 

Hewitt, G. (2000). The genetic legacy of the Quaternary ice ages. Nature 405:907–913. 

Hoffmann, A.A. & Blows, M.W. (1994). Species borders: ecological and evolutionary perspectives. 

Trends Ecol. Evol. 9:223–227. 

Holt, R.D. & Gomulkiewicz, R. (1997). How does immigration influence local adaptation? A 

reexamination of a familiar paradigm. Am. Nat. 149:563–572. 

Holt, R.D., Gomulkiewicz, R. & Barfield, M. (2003). The phenomenology of niche evolution via 

quantitive traits in a ‘black-hole’ sink. P. Roy. Soc. B. 270:215–224. 

Kawecki, T.J. & Ebert, D. (2004). Conceptual issues in local adaptation. Ecol. Lett. 7:1225–1241. 

Kawecki, T.J. (2008). Adaptation to marginal habitats. Annu. Rev. Ecol. Evol. Syst. 39:321–342. 

Kirkpatrick, M. & Barton, N.H. (1997). Evolution of a species’ range. Am. Nat. 150:1–23. 

Kuznetsova, A., Brockhoff, P.B. & Christensen, R.H.B. (2017). lmerTest package: tests in linear 

mixed effects models. J. Stat. Softw. 82:1–26. 

Lee-Yaw, J.A., Kharouba, H.M., Bontrager, M., Mahony, C., Csergő, A.M., Noreen, A.M.E. et al. 



 

137 
 

(2016). A synthesis of transplant experiments and ecological niche models suggests that range 

limits are often niche limits. Ecol. Lett 19:710–722. 

Lee-Yaw, J.A., Fracassetti, M. & Willi, Y. (2018). Environmental marginality and geographic range 

limits: a case study with Arabidopsis lyrata ssp. lyrata. Ecography 41:622-634. 

Leimu, R. & Fischer, M. (2008). A meta-analysis of local adaptation in plants. PLoS ONE, 3, e4010. 

Paccard, A., Van Buskirk, J. & Willi, Y. (2016). Quantitative genetic architecture at latitudinal range 

boundaries: reduced variation but higher trait independence. Am. Nat. 187:667– 677. 

Perrier, A., Sánchez-Castro, D. & Willi, Y. (2020). Expressed mutational load increases toward the 

edge of a species’ geographic range. Evolution 74: 1711–1723. 

Pironon, S., Papuga, G., Villellas, J., Angert, A.L., García, M.B. & Thompson, J.D. (2017). 

Geographic variation in genetic and demographic performance: new insights from an old 

biogeographical paradigm. Biol. Rev. 92:1877–1909. 

Polechová, J. & Barton, N.H. (2015). Limits to adaptation along environmental gradients. PNAS 

112:6401–6406. 

Polechová, J. (2018). Is the sky the limit? On the expansion threshold of a species' range. PLoS Biol., 

16, e2005372. 

Postma, F.M. & Ågren, J. (2016). Early life stages contribute strongly to local adaptation in 

Arabidopsis thaliana. PNAS 113:7590–7595. 

R Core Team (2019). R: A Language and Environment for Statistical Computing. R Foundation for 

Statistical Computing, Vienna, Austria. URL: https://www.R-project.org/. 

Rumpf, S.B., Hülber, K., Wessely, J., Willner, W., Moser, D., Gattringer, A., et al. (2019). Extinction 

debts and colonization credits of non-forest plants in the European Alps. Nat. Commun. 10:4293. 

Sexton, J.P., McIntyre, P.J., Angert, A.L. & Rice, K.J. (2009). Evolution and ecology of species range 

limits. Annu. Rev. Ecol. Evol. Syst. 40:415–436. 

Vergeer, P. & Kunin, W.E. (2013). Adaptation at range margins: common garden trials and the 



 

138 
 

performance of Arabidopsis lyrata across its northwestern European range. New Phytol. 

197:989–1001. 

Volis, S., Ormanbekova, D., Yermekbayev, K., Song, M. & Shulgina, I. (2014). Introduction beyond 

a species range: a relationship between population origin, adaptive potential and plant 

performance. Heredity 113:268–276. 

Willi, Y. & Määttänen, K. (2010). Evolutionary dynamics of mating system shifts in Arabidopsis 

lyrata. J. Evol. Biol. 23:2123–2131. 

Willi, Y., Fracassetti, M., Zoller, S. & Van Buskirk, J. (2018). Accumulation of mutational load at 

the edges of a species range. Mol. Biol. Evol. 35:781–791. 

Willi, Y. & Van Buskirk, J. (2019). A practical guide to the study of distribution limits. Am. Nat. 

193:773–785.



 

139 
 

Table 1. Summary of model testing for the effect of common garden on multiplicative performance (MP) in a transplant experiment of 

Arabidopsis lyrata 

 

      Fixed effects, logistic process 

   CG1   CG2   CG4   CG5  

   (Beyond north)   (North, edge)   (South, edge)   (Beyond south)  

Dependent variable N  Mean HPD     Mean HPD     Mean HPD     Mean HPD    

MP to year 3 1950  -0.154 (-0.821,0.365)   0.599 (-0.000,1.165) *  -0.978 (-1.578,-0.428) **  -1.499 (-2.136,-0.941) *** 

MP to year 2 1950  -0.215 (-0.838,0.358)   0.545 (-0.035,0.137) (*)  -1.055 (-1.637,-0.497) **  -1.556 (-2.149,-0.951) *** 

                                    

   Fixed effects, log-normal process 

   CG1   CG2   CG4   CG5  

   (Beyond north)   (North, edge)   (South, edge)   (Beyond south)  

Dependent variable N  Mean HPD     Mean HPD     Mean HPD     Mean HPD    

MP to year 3 1950  0.061 (-0.126,0.278)   -0.522 (-0.730,-0.283) ***  0.176 (-0.069,0.412)   0.103 (-0.241,0.0.392)  

MP to year 2 1950  -0.034 (-0.237,0.164)   -0.532 (-0.746,-0.317) ***  -0.256 (-0.498,0.019) (*)  -0.085 (-0.450,0.218)  

                                    

 

The effect of each common garden is compared with the one in the centre of distribution (CG3). Multiplicative performance (log10-transformed if >0) 

followed a Gaussian distribution with 0-inflation. Therefore, models assessed all fixed and random effects for their importance in both the logistic 

process (binary variable depicting germination, survival and capacity to initiate flowering; prediction of non-zeros) and the Gaussian process (total 

number of reproductive organs). Estimates of coefficients are modes of an MCMC sample from the posterior distribution of parameters (mean and 

higher posterior density, HPD, interval). Estimates with P-values < 0.05 are written in bold; significance is indicated: (*) P<0.1, * P<0.05, ** P<0.01, 

*** P<0.001. Results for random effects are not shown.  
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Table 2. Summary of model testing for the effect of the absolute difference in temperature between site of origin of populations and transplant 

site, |ΔTemp|, the absolute difference in precipitation, |ΔPrec|, genomic diversity depicted by Tajima’s  and interactions on multiplicative 

performance (MP) in a transplant experiment of Arabidopsis lyrata 

 

    Fixed effects, logistic process 

  ǀΔTempǀ  ǀΔPrecǀ  Tajima's   ǀΔTempǀ*  ǀΔPrecǀ* 

Dependent 

variable 
N Mean HPD     Mean HPD     Mean HPD  

 
Mean HPD   Mean HPD    

MP to year 3 1950 -0.042 (-0.076,-0.004) *  -0.002 (-0.007,0.004)   0.064 (-0.063,0.193)  -0.004 (-0.013,0.007)  0.0001 (-0.0014,0.0016)  

MP to year 2 1950 -0.035 (-0.075,-0.003) (*)  -0.001 (-0.007,0.005)   0.081 (-0.047,0.216)  -0.006 (-0.017,0.004)  0.0002 (-0.0013,0.0018)  

                                      

  Fixed effects, log-normal process 

  ǀΔTempǀ  ǀΔPrecǀ  Tajima's   ǀΔTempǀ*  ǀΔPrecǀ* 

Dependent 

variable 
N Mean HPD     Mean HPD  

   
Mean HPD  

 
Mean HPD   Mean HPD    

MP to year 3 1950 -0.020 (-0.047,0.008)   -0.005 (-0.010,-0.001) *  0.016 (-0.065,0.099)  0.002 (-0.005,0.010)  0.001 (0.0002,0.0025) * 

MP to year 2 1950 0.007 (-0.019,0.035)   -0.005 (-0.009,-0.000) *  0.038 (-0.047,0.113)  -0.004 (-0.011,0.003)  0.001 (0.0002,0.0026) * 

                                      

 

Multiplicative performance (log10-transformed if >0) followed a Gaussian distribution with 0-inflation. Therefore, models assessed all fixed and 

random effects for their importance in both the logistic process (binary variable depicting germination, survival and capacity to initiate flowering; 

prediction of non-zeros) and the Gaussian process (total number of reproductive organs). Estimates of coefficients are modes of an MCMC sample 

from the posterior distribution of parameters (mean and higher posterior density, HPD, interval). Estimates with P-values < 0.05 are written in bold; 

significance is indicated: (*) P<0.1, * P<0.05. Results for random effects are not shown. 
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Figure 1. Distribution of the 20 selected Arabidopsis lyrata populations and the location of 

the five common gardens (CG) transplant sites in North America. Orange dots accompanied 

by a three-digit abbreviation represent the sites of origin of populations (Table S1, the two letters 

stand for the state in the US or the province in Canada, the number for latitudinal position within 

state, or longitudinal position within province as in Willi et al. 2018). Red triangles represent the 

location of each transplant site, followed by a number in sequence of initial sowing. The dashed 

line is the minimum convex polygon connecting the outermost populations of west and east. 

Shades of blue indicate habitat suitability revealed by niche-modelling (Lee-Yaw et al. 2018). 
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Figure 2. Multiplicative performance (A) and population growth rate (B) of Arabidopsis 

lyrata differing between transplant sites, sorted from north (left of the x-axis) to south 

(right). Panel A shows box plots based on population mean multiplicative performance up to year 

2 or year 3. Population means were based on family means of pot-level multiplicative performance 

that was first log-transformed. Panel B shows box plots of population growth rate, r, of 

Arabidopsis lyrata populations at the five transplant sites, again sorted from north to south. The 

thick line of each box plot represents the median, the coloured box represents the interquartile 

range, the whiskers represent the variability outside the upper and lower quartiles, and individual 

dots represent the outliers.  

B A 
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Figure 3. Relationship between multiplicative performance up to year 3 and absolute 

difference in temperature (A) and in precipitation, and genomic diversity, in Arabidopsis 

lyrata (B). In panel A, the population mean logistic response of multiplicative performance (0 or 

1) is plotted against the absolute difference in minimum temperature in early spring between site 

of origin of populations and transplant site, |ΔTemp| in °C. The model-predicted regression line is 

shown in blue, with the lower and upper 95% confidence interval. Panel B is a contour plot 

representing the predicted relationship between multiplicative performance up to year 3 (if values 

>0, in shades from blue to yellow) and both, the absolute difference in precipitation of the wettest 

quarter between site of origin of populations and transplant site, |ΔPrec| in mm, and genomic 

diversity, Tajima’s π. In both panels, dots are population means based on family means, for each 

common garden. Red dots represent selfing populations located at range edges, black dots the 

outcrossing populations.
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Supporting Information 

Table S1. Ecological and genomic information on the 20 Arabidopsis lyrata populations studied 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The list reports: the name of the populations used in the experiment; the state (US) or province (CAN); coordinates; the position within the distribution area of 

A. lyrata; the average minimum temperature in early spring (Tminespr); precipitation of the wettest quarter (PrecWQ); length of the growing season, defined as 

the number of months with a mean temperature higher than 5 °C; Tajima’s  of intergenic regions; the mating system. Data extracted from WorldClim (†). 

Genomic data from Willi et al. (2018) (‡).  

Population State/Province 
Latitude Longitude 

Position 
Tminespr PrecWQ Growing 

season † 
Tajima’s  ‡ 

Mating 

system ‡  [° N] [° W] [°C] † [mm] † 

IA1 Iowa 41.97 90.37 Center -0.9 319 7 0.0040 Outcrossing 

IN1 Indiana 41.61 87.19 South 0.0 296 7 0.0034 Outcrossing 

MD2 Maryland 38.99 77.25 Center 3.8 290 9 0.0055 Outcrossing 

MO1 Missouri 37.72 92.06 South 4.5 324 9 0.0020 Outcrossing 

MO2 Missouri 38.47 90.71 South 4.0 292 9 0.0006 Selfing 

NC2 North Carolina 36.04 81.16 South 3.8 363 9 0.0022 Outcrossing 

NC4 North Carolina 36.41 79.96 South 5.0 326 9 0.0029 Outcrossing 

NY1 New York 41.30 73.98 Center 0.4 326 8 0.0051 Outcrossing 

NY4 New York 42.35 76.39 North -2.5 283 7 0.0051 Outcrossing 

NY5 New York 42.66 74.02 North -3.0 296 7 0.0051 Outcrossing 

NY6 New York 42.99 76.09 North -2.1 292 7 0.0049 Outcrossing 

ON1 Ontario 42.87 79.18 Center -1.7 281 7 0.0014 Selfing 

ON11 Ontario 48.77 87.13 North -7.9 283 6 0.0004 Selfing 

ON12 Ontario 49.65 94.92 North -7.8 275 6 0.0029 Outcrossing 

ON3 Ontario 43.26 81.84 Center -2.6 278 7 0.0028 Outcrossing 

ON8 Ontario 47.93 84.85 North -7.5 302 6 0.0028 Outcrossing 

PA3 Pensylvania 41.28 77.87 Center -1.4 316 7 0.0049 Outcrossing 

VA1 Virginia 37.42 77.02 South 5.5 332 10 0.0049 Outcrossing 

WI1 Wisconsin 43.83 89.72 Center -3.3 307 7 0.0047 Outcrossing 

WV1 West Virginia 38.96 79.29 Center 1.1 294 9 0.0045 Outcrossing 
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Table S2. Conditions at each stage of the crossing experiment of A. lyrata for seed propagation 

Process  Location  
Temp. daytime 

[°C]  
Temp. nighttime 

[°C]  
Day length 

[h]  
Light intensity 

[μmol m-2 s-1]  
Relative 

humidity [%]  Duration 

Stratification  Cold room  -  4  0  0  0  12 days 

Germination  Growth chambers *  20  20  8  150  50  22 days 

Plant growth †  Growth chambers *  22  20  16  240  50  46 days 

Crossing  
University glasshouse  22  20  16  240  50  6 moths 

Storage of siliques  
Cold room  -  4  0  0  0  1-3 months 

 

* CLF Plant Climatics, Wertingen, Germany 

† Day length and light intensity were gradually increased every three days by 1 h and 20 µmol m-2 s-1, respectively. 
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Table S3. Ecological information on transplant sites 

 

The list reports: the abbreviation of the transplant site (CG, common garden); the location; the position within the distribution area of A. lyrata; the coordinates; 

distance to the closest known natural population; the date of sowing; minimum temperature in early spring (Tminespr); mean annual temperature measured with 

loggers at each site, and extracted from WorldClim (†); precipitation of the wettest quarter (PrecWQ); the number of days with snow cover; and the growing 

season as the number of months when average monthly temperature was higher than 5°C.  

 

Transplant site Location Position 
Lat. [° N] Dist. to pop 

Starting date 
Tminespr 

[°C] 

Tmeanannual 

[°C] 

Tmeanannual 

[°C] † 

PrecWQ 

[mm] 

Snow cover 

[days] 

Growing 

season 
Long. [° W] [km] 

CG1 
Adirondacks 

(NY) 

Beyond northern 

edge 

43.96 
120 11.08.2017 -5.8 6.3 4.4 333 173 6 

74.22 

CG2 
Williamstown 

(MA) 
Northern edge 

42.71 
8 28.08.2017 -2.9 9.0 7.4 307 116 7 

73.20 

CG3 
Harrisonburg 

(VA) 
Center 

38.42 
10 29.09.2017 2.2 13.6 11.8 281 10 10 

78.86 

CG4 
Winston-Salem 

(NC) 
Southern edge 

36.12 
41 07.12.2017 5.2 15.3 14.3 321 0 11 

80.28 

CG5 Athens (GA) 
Beyond southern 

edge 

33.90 
152 19.10.2017 6.5 16.6 16.6 375 0 12 

83.38 
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Table S4. Summary of the total number of cross families and seeds sown per population in 

each common garden (CG) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Population  N° of cross families 
Seeds sown in each transplant site 

 
CG1 CG2 CG3 CG4 CG5 

IA1  9 70 72 57 72 66  

IN1  11 72 72 72 72 72  

MD2  10 69 69 69 72 69  

MO1  12 72 72 69 72 72  

MO2  12 72 72 72 72 72  

NC2  12 69 70 72 72 72  

NC4  11 72 72 72 72 72  

NY1  9 70 69 63 69 66  

NY4  10 70 69 69 72 72  

NY5  12 72 72 72 72 72  

NY5  12 72 72 72 72 72  

NY6  12 72 72 66 72 63  

ON1  12 72 72 72 72 69  

ON11  12 72 69 66 72 66  

ON12  12 69 69 72 72 72  

ON3  8 69 69 69 72 66  

ON8  6 27 30 27 37 27  

PA3  11 72 72 72 72 72  

VA1  9 72 72 72 72 72  

WI1  10 66 72 72 72 72  

WV1  12 69 69 66 72 60  
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Table S5. Description of the traits measured and their analyses 

 

† except for CG3: no data after summer 2018 

‡ except for CG1: second cohort in spring 2018 

Trait Category Level Explanation Measured   Analysis 

Multiplicative performance    From To   

MP to year 2 Continuous Pot Germination rate * repro. output year 2 Sowing Summer year 2  MCMC 

MP to year 3 Continuous Pot Germination rate * (repro. output year 2 + 3) Sowing Summer year 3 † MCMC 

        

Demographic rate        

 Continuous Pop Finite rate of increase    REML 

r Continuous Pop Growth rate, log-e transformation of     REML 

        

Germination & survival        

Germination  Binary Seed Plants germinated (0/1) Sowing day (day 0) Spring year 2 ‡ REML 

Survival year1 Binary Seed Survival until end winter year 1 (0/1) Germination  Snowmelt or soil T°>5  REML 

Survival year 2 Binary Seed Survival spring year 2 to spring year 3 (0/1) End of winter year 1 Snowmelt or soil T°>5 † REML 

        

Reproduction        

Time to flowering year 2 Continuous Pot Number of days to flower Snowmelt or soil T°>5 Spring/summer year 2  REML 

Reproductive output year 2 Continuous Pot Sum of flowers and buds in year 2 Once, 9 weeks after flowering   REML 

Reproductive output to year 3  Continuous Pot Sum of flowers and buds in year 2 + year 3 Spring/summer year 2 Spring/summer year 3 † REML 

Root length year 3 Continuous Pot Length of the longest root, in mm Once, 5 weeks after flowering  † REML 

        

Damage in year 2        

Damage to  rosettes Binary Pot Damaged rosettes (0/1) Once, 9 weeks after flowering   REML 

Damage to inflorescences Binary Pot Damaged inflorescences (0/1) Once, 9 weeks after flowering   REML 

Damage severity rosettes Categorical Pot Severity of damage categorized from 1 to 4 Once, 9 weeks after flowering   REML 

Damage severity inflorescences Categorical Pot Severity of damage categorized from 1 to 4 Once, 9 weeks after flowering   REML 
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Table S6. Summary of means with standard error (SE) of traits measured in each of the five common gardens (CG) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Means were calculated based on population means of family means.  

  
CG1   CG2    CG3   CG4   CG5 

(Beyond north)  (North, edge)  (Centre)  (South, edge)  (Beyond south) 

Trait  Mean SE  Mean SE  Mean SE  Mean SE  Mean SE 

Multiplicative performance               

MP to year 2 52 8  22 3  69 12  54 23  13 3 

MP to year 3 44 8  20 3  69 12  8 2  7 2 

               

Demographic rate               

 1.89 0.14  1.15 0.09  1.70 0.17  1.20 0.17  0.98 0.15 

r 0.57 0.09  0.07 0.10  0.42 0.12  -0.14 0.23  -0.53 0.32 

               

Germination & survival               

Germination  0.33 0.03  0.65 0.04  0.71 0.03  0.82 0.03  0.75 0.03 

Survival year1 0.75 0.02  0.61 0.02  0.37 0.02  0.70 0.01  0.27 0.03 

Survival year 2 0.34 0.03  0.06 0.01  0.24 0.03  0.04 0.01  0.005 0.002 

               

Reproduction               

Time to flowering year 2 26 1  27 1  25 1  54 2  56 4 

Reproductive output year 2 137 16  33 4  154 22  35 7  95 30 

Reproductive output to year 3  172 18  35 4  154 22  198 65  175 47 

Root length year 3 131 5  59 6  NA   193 18  285 52 

               

Damage in year 2               

Damage to  rosettes 0.51 0.05  0.82 0.04  0.35 0.04  0.32 0.06  0.33 0.08 

Damage to inflorescences 0.59 0.05  0.79 0.04  0.94 0.06  0.38 0.05  0.44 0.05 

Damage severity rosettes 0.62 0.04  0.20 0.04  0.74 0.03  0.38 0.09  0.65 0.09 

Damage severity inflorescences 0.27 0.02  0.44 0.07  0.26 0.01  0.27 0.04  0.29 0.04 
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Table S7. Summary of models testing for the effect of common garden on population growth rate and several plant traits of different life stages in a 

transplant experiment of Arabidopsis lyrata 

 

The effect of each common garden was compared with the one in the centre of the distribution (CG3; except for root length – CG1). Germination, survival, 

damage to rosettes or inflorescences were binary variables, all other variables were continuous. Test statistics include regression coefficients of each fixed 

effect (estimate) and standard error (SE). Coefficients are written in bold when P< 0.05. Significance is indicated: (*) P<0.1, * P<0.05, ** P<0.01, *** P<0.001. 

The bobyqa optimizer was used to improve model converge. 

    CG1   CG2   CG4   CG5 

  (Beyond north)  (North, edge)  (South, edge)  (Beyond south) 

Dependent variable N Estimate   SE  Estimate   SE  Estimate   SE  Estimate   SE 

Demographic rate                 

r 100 0.153  0.219  -0.35  0.219  -0.562 * 0.219  -0.952 *** 0.235 

                 

Germination & survival                 

Germination  7,098 -1.722 *** 0.239  -0.513 * 0.237  0.795 *** 0.241  0.167  0.238 

Survival year 1 3,844 2.424 *** 0.480  1.602 *** 0.463  1.736 *** 0.460  -0.626  0.458 

Survival year 2 2,205 -1.062 * 0.521  -3.355 *** 0.546  -3.614 *** 0.532  -5.045 *** 0.685 

                 

Reproduction                 

Time to flowering year 2 1,073 0.276  1.633  1.021  1.601  24.805 *** 1.886  32.620 *** 2.317 

Reproductive output year 2 1,256 -19.747  20.019  -137.534 *** 19.398  -135.530 *** 21.955  -88.346 *** 26.539 

Reproductive output to year 3  1,256 5.713  39.087  -133.515 *** 38.168  62.822  42.167  6.139  49.748 

Root length year 3 226     -66.875 *** 12.666  82.772 *** 11.658  150.498 *** 28.645 

                 

Damage in year 2                 

Damage to  rosettes 1,255 0.305 *** 0.104  0.585 *** 0.104  0.073  0.107  0.007  0.114 

Damage to inflorescences 1,079 0.013  0.154  -0.386 * 0.153  -0.184  0.158  0.027  0.166 

Damage severity rosettes 676 -0.303 *** 0.059  -0.118 * 0.056  -0.540 *** 0.071  -0.477 *** 0.091 

Damage severity inflorescences 527 0.021  0.069  0.185 *** 0.072  0.010  0.075  0.049  0.078 
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Table S8. Summary of models testing for the effect of the absolute difference in minimum temperature in early spring between site of origin of 

populations and transplant site, |ΔTemp|, the absolute difference in precipitation of the wettest quarter, |ΔPrec|, genomic diversity depicted by Tajima’s 

 and interactions on several plant traits in a transplant experiment of Arabidopsis lyrata 

    ǀTempǀ   ǀPrecǀ   Tajima's    ǀTempǀ*   ǀPrecǀ* 

Dependent variable N Estimate   SE  Estimate   SE  Estimate   SE  Estimate   SE  Estimate   SE 

Germination & survival                     

Germination 7,098 -0.063 *** 0.019  0.001  0.003  -0.057  0.091  -2E-04  0.005  -1E-05  0.001 

Survival year 1 3,844 -0.041  0.030  -0.004  0.003  0.078  0.068  -0.007  0.009  -5E-04  0.001 

Survival year 2 2,205 -0.037  0.048  -0.019 * 0.009  -0.023  0.130  -0.004  0.014  0.002  0.003 

                     

Reproduction                     

Time to flowering year 2 1,073 0.476  0.293  0.079  0.049  -0.704  0.683  0.017  0.080  -0.007  0.013 

Reproductive output year 2 1,256 2.884  3.928  0.155  0.617  16.988 (*) 9.084  -1.332  1.107  0.058  0.164 

Reproductive output to year 3 1,256 -11.789 (*) 6.830  -1.380  1.068  1.903  15.072  1.104  1.926  0.267  0.285 

Root length year 3 226 -5.610 (*) 3.321  -0.047  0.759  -4.948  8.921  1.067  0.925  0.196  0.198 

                     

Damage in year 2                     

Damage to  rosettes 1,255 0.004  0.010  -0.001  0.002  0.003  0.022  -0.003  0.003  2E-05  -4E-04 

Damage to inflorescences 1,079 0.011  0.011  -0.004 * 0.002  0.022  0.022  -0.005  0.003  0.001  0.001 

Damage severity rosettes 676 0.017  0.011  0.002  0.002  0.027  0.028  -0.005 (*) 0.003  -0.001  0.001 

Damage severity inflorescences 527 -0.005  0.007  0.001  0.001  -0.012  0.014  0.003 (*) 0.002  -4E-04  -3E-04 

                                          

 

Germination, survival, damage to rosettes or inflorescences were binary variables, all other variables were continuous. Test statistics include regression 

coefficients of each fixed effect (estimate) and standard error values (SE). Coefficients are written in bold when P< 0.05. Significance is indicated: (*) P<0.1, 

* P<0.05, ** P<0.01, *** P<0.001. The bobyqa optimizer was used to help models to converge.
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Figure S1: Estimation of population growth. For each population and common garden site, a stage-

classified matrix (panel B) was constructed assuming three plant stages (panel A). The three stages 

were: 1– healthy seeds, 2– plants in spring of year 2 (2018), 3– plants in spring of year 3 (2019), with 

a projection interval for each stage set to one year. Survival between stage 1 and 2 (P1) was estimated 

as: germination rate x survival rate from the seedling stage to the reproduction period in year 2. 

Survival between stage 2 and 3 (P2) was calculated as: the survival rate from the first reproductive 

season to the second reproductive season (year 3). Seeds that did not germinate in the first year could 

have survived over winter and contributed to the seed pool of the next year, defined as the probability 

to remain at the same stage (S1). This was calculated based on a seed-burial experiment* over one 

winter. The probability to remain at the same stage was set to 0 for both stage 2 and 3, assuming that 

no plants survived after the third year. Reproduction in stage 2 and 3 (R1 and R2 respectively) were 

estimated as: probability to reproduce x number of fruits (plus fruits that were expected from flowers 

and buds) x number of healthy seeds per fruit that end in an environment suitable for germination. As 

we did not have any information on the latter term, we assigned to all populations a standard value 

leading to an average finite rate of increase in one time-step, λ, of 1 across common gardens. Estimates 

were loge-transformed, revealing the population growth rate, r. 

 

*Seed-burial experiment  

One hundred healthy seeds per population coming from five to twelve different family lines of a 

population were pooled and then packed in 10 bags (nonwoven polypropylene-felt, 40 g/m2), with 10 

seeds each. Bags were brought to the transplant sites in fall 2018. In each of the five common gardens, 

the two bags of each population were split between two spatial blocks. Bags were placed on the 

ground and covered with a thin mixture of sand and peat. Seeds experienced the same ecological 

conditions as the plants in the transplant site until early summer 2019. Then bags were collected and 

examined. We distinguished between germinated and non-germinated seeds. Those seeds that had 

not germinated were stratified on paper disks saturated with 1.5 ml of 0.05% gibberellic acid in Petri-

dishes for 10 days at 4 °C, and no light. Then, germination was assessed once every two days over a 

period of 20 days. Seed survival over winter was calculated for each replicate bag as: (germinated 

seedlings + germinated seedlings with gibberellic acid)/10.   

A B 
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Abstract:  

1. Past and present climate warming have forced species to colonize higher latitudes and altitudes. 

Such range expansion may reflect the occupation of newly available space tracking the species’ 

niche shift, but particularly successful expansion may occur and be linked with niche evolution.  

2. Here, we tested if the differential success of northern range expansion after last glacial maximum 

was linked to an evolutionary shift in coping with cold and frost in the two North American sister 

species Arabidopsis lyrata and A. arenicola. The former remained constrained to the northern 

shore of the Great Lakes, while the latter emerged there from A. lyrata and colonized subarctic 

regions. We tested differences in adaptation to cold and frost by tracking the performance of 

plants of replicate populations per species, raised under experimentally manipulated temperatures.  

3. Subarctic A. arenicola was more tolerant to cold growth temperatures and more frost tolerant 

under mild conditions. In contrast, A. lyrata was more tolerant and resistant to frost under cold 

growth temperatures. The successful colonization of high latitudes by A. arenicola was most 

likely favored by higher tolerance to the generally colder growing season, and by higher frost 

tolerance during mid-summer, while A. lyrata persisted at mid-latitudes by evolving higher 

protection against frost in the cold periods early and late in the growing season, however 

constraining northward colonization.  

4. Synthesis: Two closely related North American Arabidopsis species with a common post-glacial 

origin show differences in adaptation strategies to cold climates assessed in a climate chamber 

experiment: Arabidopsis arenicola was more adapted to cold growth temperatures and frost 

occurring in the warmer season at high latitudes, favoring the colonization of subarctic regions. 

Arabidopsis lyrata, was more adapted to frost occurring in the colder season at mid-latitudes, but 

less adapted to climates at higher latitudes, constraining northward post-glacial colonization.  

 

Keywords: Adaptation, Arabidopsis arenicola, Arabidopsis lyrata, cold tolerance, frost resistance, 

frost tolerance, range expansion.   
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Introduction 

 Species distribution ranges are dynamic. Their fluctuations have been mainly linked to 

changes in climate, as observed under contemporary climate change (Parmesan 2006; Chen, Hill, 

Ohlemüller, Roy, & Thomas, 2011; Lenoir & Svenning, 2013; Bellard, Bertelsmeier, Leadley, 

Thuiller, & Courchamp, 2012), renewing the interest in understanding factors shaping species’ range 

limits (Sutherland et al., 2013). The contemporary distributions of many temperate and arctic species 

result from past range shifts, expansions or contractions during the Pleistocene glacial cycles 

(Schluter, 2001; Hewitt, 2000, 2004), with a general trend of colonization toward high latitudes and 

altitudes after last glacial maximum (LGM, c. 23 000–19 000 years ago; Hughes, Gibbard & Ehlers, 

2013). Most subarctic and arctic plant species are thought to have closely tracked the shift in their 

ecological niche during the last warming period, migrating northwards following the retreat of the ice 

sheet (Brochmann, Gabrielsen, Nordal, Landvik, & Elven, 2003; Schmitt, 2007; Birks, 2008). In the 

short evolutionary time since LGM, several taxa have also been able to extend their range while still 

persisting in areas close to former glacial refugia, resulting in ranges spanning from now temperate 

climate up to subarctic or arctic climates (e.g. Skrede, Eidesen, Portela, & Brochmann, 2006; Koch 

et al., 2006; Schmickl, Jørgensen, Brysting, & Koch, 2010). The evolutionary shifts required to 

successfully colonize over broad ecological gradients toward colder climates are not yet fully 

understood.  

In plants, survival under cold climates at high latitudes and altitudes requires adaptation to 

long periods of non-lethal cold temperatures, and to extreme events of negative temperature 

(reviewed in Körner, 2016). Cold temperatures constrain development by reducing cellular 

respiration (Ap Rees et al., 1988) and cell division (Francis & Barlow, 1988). Frost leads to ice 

formation within tissues, resulting in cell membrane ruptures (Loehle, 1998). Ice forms first in 

extracellular compartments (Pearce & Ashworth, 1992), drawing water from cells (Thomashow, 

1999), resulting in membrane damaging cellular dehydration (Pearce, 2001). Adaptation to cold 

temperatures has mostly been linked to increased cellular respiration (Wright et al., 2006), e.g. by 



 

156 
 

increasing the numbers of mitochondria (Miroslavov & Kravkina, 1991). Adaptation to frost relies 

on two mechanisms: tolerance, to mitigate the negative fitness impact of frost damage; and resistance, 

to reduce damage itself (Agrawal, Conner & Stinchcombe, 2004). Tolerance can be based on 

increased vegetative and reproductive regrowth after frost events, achieved by increased storage of 

resources (Baptist & Aranjuelo, 2011) and dormant meristems (Klimešomá & Klimeš, 2007). Frost 

resistance in plants is well documented (Sakai & Larcher, 1987; Pearce, 2001; Heidarvand & Amiri, 

2010; Baxter, 2014; Körner, 2016), and mainly relies on preventing intracellular damage by favoring 

extracellular ice formation (Körner, 2016). This process is assisted by the production of metabolites 

such as membrane stabilizing sugars (Heidarvand & Amiri, 2010) or dehydration protective enzymes 

(Kosova et al., 2008). 

Plants occurring in cold climates also adapted to avoid stress for most of their life cycle. 

Perennial plants survive the most stressful periods by entering a frost-resistant dormancy state over 

winter (Havranek & Tranquillini, 1995), and only re-initiate the production of sensitive tissue after 

the strongest frost events (reviewed in Neuner, 2014). Escaping stress is also achieved by small 

stature, to benefit from warmer conditions close to the ground (reviewed in Körner, 2012). Dormancy 

and small size also allow to exploit the insulating properties of snow cover in winter (constant 0°C to 

-5 °C; Larcher, Kainmuller & Wagner, 2010). Deep snow layers take time to melt, preventing 

premature exposition to stress and favoring delayed phenology until milder conditions (Inouye & 

Wielgolaski, 2003). Adapting phenology to exploit mild conditions comes at the cost of a short 

reproductive season, often requiring fast development and fast transition to flowering in the mild 

season (Prevéy et al., 2017). 

While avoidance strategies reduce requirements for frost tolerance and resistance, plants 

growing in cold climates are still exposed to sharp frost events at the transition between cold and 

warm seasons (Inouye, Saavedra & Lee, 2003; Inouye, 2008), and even in summer (Taschler & 

Neuner, 2004; Sierra-Almeida & Cavieres, 2012). Maintaining stress tolerance or resistance is costly 

(Penning de Vries, 1974; Agrawal et al., 2004; Laureano et al., 2008), leading to reduced growth 
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(Loehle, 1998; Koehler, Center & Cavender-Barres, 2012; Wos & Willi, 2015; Sebastian-Azcona, 

Hamann, Hacke, & Rweyongeza, 2019). Frost resistance could also trade-off with reproduction in 

plants, suggested by the lower resistance of reproductive tissues in frost resistant taxa (Neuner, Erler, 

Ladinig, Hacker, & Wagner, 2013; Neuner, 2014). Adaptation to cold climates hence requires precise 

modulations of frost resistance (Sklenář, 2017) or tolerance, often initiated by cold acclimation 

(Browse & Xin, 2001; Knight & Knight, 2012). Plants surviving over winter with active vegetative 

tissue, such as short lived perennials or winter annuals, also show reduced developmental senescence 

in winter (Wingler, Juvany, Cuthbert, & Munné-Bosch, 2015), to maintain the protective role of 

sugars and to store nutrients. Under warmer temperature, higher recycling of nutrients through 

increased senescence allow greater investment in growth and reproduction (Davies & Gan, 2012), to 

exploit the warmer but short growing season. 

Despite the extensive literature on adaptive strategies to cold climate, few studies have 

assessed them in the context of post-glacial range expansion. Adaptive strategies have mostly been 

investigated in arctic and alpine taxa (e.g. Prevéy et al., 2017; Sklenář, 2017) which have closely 

tracked the retreating ice front, benefiting from pre-adaptation to cold climates (Billings & Mooney, 

1968; Birks, 2008). Empirical studies testing adaptive clines toward colder climates also focused 

either on single species (e.g. Colautti & Barrett, 2013; Wos & Willi, 2015), or on pairs of related 

lowland and alpine species (e.g. Kenta, Yamada & Onda, 2011; Ometto, Li, Bresadola, & Varotto, 

2012) with little information on the history of colonization. Comparing adaptation strategies between 

taxa sharing a common post-glacial origin, but with diverging current distributions could allow to 

characterize the evolutionary shift required for successful post-glacial colonization toward colder 

climates. 

Here we assess the differences in adaptation to cold climates in the North American 

Arabidopsis lyrata subsp. lyrata (L.; later referred as A. lyrata) and its northern selfing parapatric 

sister species A. arenicola (Fig 1). The contemporary distribution of A. lyrata results from post-glacial 

range expansion, originating from two distinct refugia (Griffin & Willi, 2014; Willi, Fracassetti, 
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Zoller, & Van Buskirk, 2018). Its northern range limits coincide with its niche limits, defined by 

minimum temperature in spring (Lee-Yaw, Fracassetti & Willi, 2018), excluding dispersal 

limitations. Previous studies suggest that northern populations rely on the snow cover to escape 

recurrent frost in winter, and have adapted to the shorter vegetation period and sharp frost events by 

evolving toward fast development, higher propensity to flower in the first year, and higher frost 

resistance (Paccard, Fruleux & Willi, 2014; Wos & Willi, 2015). Adaptation at the northern edge is 

also supported by genomic and phenotypic signatures of adaptation to temperature in early spring 

(Walden, Lucek & Willi, 2019; Sánchez-Castro, D., Perrier, A., & Willi, Y., in prep.). Arabidopsis 

arenicola occurs North of A. lyrata, and its range extends up to the subarctic regions of North America 

and Greenland (Hopkins, 1937; Mulligan, 1996; in Warwick, Al-Shehbaz & Sauder, 2006). Previous 

studies suggest A. arenicola diverged from A. lyrata during latter’s post-glacial range expansion, 

from range-edge selfing populations of the northern shores of Lake Superior (Schmickl et al., 2010; 

Hohmann et al., 2014; Novikova et al., 2016; Walden, N., & Willi, Y., in prep.). Arabidopsis 

arenicola then colonized northwards, while A. lyrata expanded eastwards along the Great Lakes 

(Willi et al., 2018). Which adaptive strategies allowed one species but not the other to colonize further 

north are unknown, but could involve higher adaptation to cold growth temperatures or frost events 

to extend the shorter growth season, or on the contrary stronger delay in phenology and fast 

development to only exploit the mild and frost free season. Here we tested the divergence in adaptive 

strategy between A. arenicola and A. lyrata in a climate chamber experiment following three main 

axes: do both species diverge (i) in their tolerance to cold growth temperatures, (ii) in their tolerance 

or resistance to frost events, or (iii) in their modulation of growth, phenology or senescence under 

cold growth temperatures and frost events? 
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Material and methods 

Plant material  

We selected four populations of A. lyrata from both post-glacial genetic lineages (Willi et al., 2018) 

and two populations of A. arenicola (Fig. 1, Table S1). Seeds were collected from unrelated 

individuals (seed families) in each population between 2007 and 2017, and stored in separate bags 

per maternal plant at 4 °C, under dark and dry conditions. To limit maternal effects and effect of 

storage time, the climate chamber experiment was performed on laboratory generated F1 offspring 

of the seeds collected in the natural populations. Between 2016 and 2017, we raised one individual 

of 26 field collected families per population in growth chambers, later transferred in a greenhouse for 

crossing (see Table S2 for raising conditions). Per population, 12 randomly chosen “mother” plants 

(pollen recipients) were randomly paired with a remaining “father” (pollen donor), forming a cross 

combination. Hand pollination was performed on emasculated buds to exclude cross- and 

spontaneous self-pollination. Each cross combination was repeated to obtain enough healthy seeds 

for the climate chamber experiment (at least five siliques). If cross combinations failed, the father 

was replaced by a backup plant. Mature siliques were collected and dried two weeks at ambient 

temperature in the dark. Seeds were stored at 4 °C under dry and dark conditions. In total, we obtained 

65 cross combinations (10 to 12 per population, Table S3) for the climate chamber experiment.  

 

Climate chamber experiment 

F1 individuals were raised in climate chambers (Climecab 1400, Kälte 3000 AG, Landquart, 

Switzerland) simulating to some extent the natural growth cycle of both species. To test adaptation 

to cold, two temperatures were setup for the growth phases: mild (20 °C) and cold (12 to 14 °C), 

simulating conditions close to the home climate of A. lyrata and A. arenicola, respectively. These 

temperatures were derived from extrapolations of the average temperatures in late summer (July and 

August) of the selected populations (WorldClim database version 2.0, Fick & Hijmans, 2017; Table 

S1, Fig. 1). To test for adaptation to frost (tolerance and resistance) as it may occur in fall and spring, 
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we simulated recurrent frost of low intensity. Each growth temperature setup was split in two 

treatments: frost or control (= no frost), resulting in a two-by-two factorial design, for a total of four 

growth temperature-treatment combinations (condition), each setup in one of four climate chambers. 

Three spatial blocks were assigned to each climate chamber resulting in 12 blocks, weekly re-

positioned within each climate chamber, or between climate chambers simulating the same growth 

temperature when frost was not applied. 

Per cross combination, two seeds (one if less than 24 seeds) were sown in twelve pots, filled 

with a standard substrate mixture of washed river sand and peat (1:1.5 sand:peat). Pots were randomly 

assigned to one of twelve replicate blocks across the four conditions, and randomly distributed across 

two 54-cell propagation trays within block (BK Qualipot, Otelfingen, Switzerland). In total, 1428 

seeds were sown over 864 pots (Table S3, 6 populations * 12 seed families * 4 conditions * 3 blocks). 

Pots were watered to saturation and placed in the climate chambers for 20 days at 4 °C in the dark to 

stratify seeds. Seedlings were randomly thinned to one individual 28 days after germination. 

 The experiment started with a fall phase simulating environmental conditions typical for fall 

during germination and initial vegetative growth, followed by a winter phase with the effect of a snow 

cover simulated by vernalization (constant 4 °C, low light). A third spring phase simulated spring and 

summer with further vegetative growth and reproduction. Duration, day length, light intensity and 

temperatures of each phases are detailed in Table S4. Frost was applied for two weeks before (frost 

I) and for six weeks after (frost II) the simulated winter. The temperature was decreased to 4 °C during 

the night for three consecutive nights to acclimate the plants, followed by four nights at -4 °C. One 

hour after the start of the night phase, the temperature declined gradually to reach the target 

temperature at the centre of the night phase. This temperature was kept for one hour, then gradually 

increased to reach the night temperature of each condition one hour before the end of the night phase. 

This cycle was repeated twice for frost I, for a total of 14 days, and six times for frost II for a total of 

42 days followed by an additional 9 nights at 4 °C. The experiment ended 213 days after initiation of 

germination. Trays were regularly watered ensuring constant substrate moisture. Fertilizer was added 
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every two weeks starting 87 days after initiation of germination (2% v/v Wuxal universal fertilizer, 

Hauert Manna Düngerwerke GmbH, Nürnberg, Germany). 

 

Individual performance estimates 

Individual plant performance was recorded at the level of the seedling until thinning, later at the level 

of the individual for the whole length of the experiment (recording rates detailed in Table S4). Day 

of germination, defined as when a seedling had two fully open cotyledons, and death of seedlings 

were checked five days a week until the peak of germination was over (four weeks after sowing), 

then one to three times a week. Rosette damage was recorded as visual estimation of the proportion 

of the rosette affected by discoloration, desiccation or necrosis, split into five classes (0 = 0 %, 1 = < 

25 %, 2 = < 50 %, 3 = < 75 %, 4 = > 75 %). Damage was recorded starting on the last day before 

initiation of the first frost treatment, five days a week in the first frost treatment, then only once a 

week for the rest of the experiment. After vernalization, we scored the day of first flower opening 

four days a week for six weeks, later one to three days a week. Day of germination, flowering or death 

were corrected by the mid-time between previous checking and actual observation. Female 

reproductive output was estimated for each individual four weeks after the first flower opening, by 

counting the number of fruits (populations MB1, ON11 and QC1 were autonomously selfing), 

pedicels (flowers that did not develop into a fruit), open flowers, and flower buds on all 

inflorescences. On the same day, the length of the two longest leafs of the rosette were measured as 

estimation of the rosette radius. 

 

Growth 

Growth in simulated fall was estimated from photographs of every propagation tray, with pictures 

being taken 14 days after germination until 53 days after germination (second week of vernalization) 

three times a week, and then once a week. For each photograph, we estimated the radius of each 

rosette by averaging the length of the two longest leaves measured with ImageJ v1.53c (Rasband, 
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W.S., ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA, 

https://imagej.nih.gov/ij/, 1997-2020). For each individual, we fitted a three-parameter logistic 

function modeling the relationship between rosette radius and date of measure since germination 

(supported by preliminary model selection fitting seven alternative models: linear, exponential, 

power, two-, three-parameter logistic, Gompertz and Bertalanaffy, data not shown) using the package 

drc (Ritz, Baty, Streibig, & Gerhard, 2015). The parameters generated by this function were the 

asymptotic size, the scale parameter (1/growth rate r), and Xmid as the time until 50% of the asymptotic 

size was reached. 

 

Electrolyte leakage assay 

Resistance of leaves to frost damage was assessed by inferring the temperature at which 50% of tissue 

death occurred (LT50) from measures of electrolyte leakage (EL) due to cell membrane damage by 

ice formation in tissues, adapting the protocol of Armstrong, Takebayashi, Sformo and Wolf (2015). 

Electrolyte leakage is quantified by measuring the conductivity of distilled water in which damaged 

tissues are incubated. We performed this assay on leaves from plants of the mild control condition 

without frost two weeks after vernalization. We collected six leaf discs per individual at the tip of 

fully expanded leaves of similar size, on the upper layer of the rosette. Each disc was placed in 

individual 15 mL centrifuge tubes and stabilized two hours at 5°C, dispatched in six programmable 

freezers. Each freezer was equipped with built-in temperature sensors, and two additional temperature 

loggers (iButton®, Maxim Integrated Products, Inc) setup to record temperature every 10 minutes. 

Tubes were then cooled at a rate of 4°/h to reach one of the six target temperature: 5 °C, -5 °C, -10 

°C, -15 °C, -20 °C and -25 °C, maintained for one hour. The temperature was then increased to 5° C 

at a rate of 4°/h and stabilized at 5° C for 10h to allow for complete thawing of the leaf discs. To 

measure the initial electrolyte leakage (ELI), we added 3ml of ddH2O to each tube and allowed 

electrolytes to diffuse for two hours before transferring leaf discs into new tubes containing 3ml of 

ddH2O. These were boiled in a water bath (Julabo TW20, HuberLab, Aesch, Switzerland) at 95°C for 
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30 minutes to allow for complete tissue destruction, then incubated at room temperature overnight to 

ensure maximal electrolyte diffusion for the measure of total electrolyte content (ELT). ELI and ELT 

were measured using a conductivity meter (Fe30/EL30, Mettler Toledo, Columbus, USA). Each 

measure was corrected by the conductivity measured in control tubes without leaf discs, subjected to 

the same treatments as detailed above. The relative electrolyte leakage (ELR) was calculated for each 

individual as ELI /(ELT + ELI). LT50 of each individual was then estimated as the temperatures at 

which 50% of ELR is reached, by fitting a four-parameter logistic function modeling the relationship 

between ELR and the measured temperature within each freezer.  

 

Statistical analyses  

The main dependent variable was multiplicative performance, calculated in each condition at the pot 

level, as the product between the germination rate within a pot, and the reproductive output (set to 0 

if individuals died or did not flower). To assess the specific effect of cold and frost on the life cycle 

of both species we tested the variation in 13 additional traits, summarized in Table 1: We tested the 

individual components of multiplicative performance germination, as the binary success to germinate 

over the whole length of the experiment, and reproductive output assessed on plants that produced 

inflorescences. We assessed the effect of the two successive frost treatments on three variables, 

duplicated for both frost I and II: Survival under frost I and II were assessed as binary success of 

plants alive at the beginning of the respective frost treatment until 14 days after the end of each 

treatment, to allow for individuals that were completely damaged to recover and be recorded as alive. 

Frost damage I and II were assessed as binary increase in damage (0 = no variation, 1 = increase in 

damage), recorded during each frost treatment. In addition, the frost resistance of leaves in mild 

growth temperatures was inferred from the LT50 estimated by the electrolyte leakage assay. We 

assessed variation in phenology based on time to germination as the number of days from the end of 

stratification to germination, and on time to flowering as the number of days from the end of 

vernalization to first flower opening. We assessed growth in simulated fall based on the growth rate 
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parameter described above. Growth rate was only considered for the mild growth temperature, as 

individuals in cold germinated too late to fit growth curves. We additionally assessed growth in all 

conditions based on size at flowering, the average rosette radius measured while recording 

reproductive output. Finally, we assessed senescence I during the simulated winter phase and 

senescence II during the simulated spring phase as the binary increase in damage recorded 14 days 

after the end of each treatment, until the start of frost II for senescence I, and until the end of the 

experiment for senescence II. Germination, survival to frost I and II, frost damage I and II and 

senescence I and II were assumed to follow binomial distributions, LT50 a normal distribution, and 

reproductive output, time to germination, time to flowering, growth rate and size at flowering were 

assumed to follow log-normal distributions. 

 

Adaptation to non-lethal cold growth temperatures  

We considered two aspects of adaptation to cold growth temperatures: tolerance, i.e. the capacity to 

maintain performance (similarly to frost tolerance, Agrawal et al., 2004), and the modulation of 

growth, phenology and senescence. This analysis considered only individuals from the control 

treatment of both mild and cold growth temperatures. In our main analysis, we assessed variation in 

tolerance to cold growth temperatures by testing the variation in multiplicative performance estimated 

on the level of the pot in hierarchical mixed-effects models. Fixed effects were the categorical 

variables species, estimated on three levels: A. arenicola (populations QC1, MB1), northern A. lyrata 

(Lyr N: ON11, NY5) and central A. lyrata (Lyr C: WI1, MD2), as well as growth temperature (mild 

= 0, cold = 1) and their interactions. Random effects were maternal family nested within population, 

and maternal population, crossed with the effect of block. Multiplicative performance was 0 inflated, 

suggesting the modelling of a Gaussian process (log10-transformed for values > 0), and a logistic 

process (modelling the probability of 1, assigned to values > 0). Analyses were performed in a 

Bayesian framework, with the package MCMCglmm (Hadfield, 2010, 2019) in R (R Core Team 2019) 

on 10 parallel chains (model and prior parametrization detailed in Appendix S5). The contribution of 
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each fixed effect was assessed by comparing DIC values of the full model with three alternative 

models: one excluding species, one excluding growth temperature, and one with both fixed effect 

without interaction. For the fixed effects which removal led to a lower model fit, Tukey’s tests were 

performed using the package emmeans (Lenth, 2019) to test the significant difference between each 

level of the fixed effect. Comparisons among species included the difference between A. arenicola 

and Lyr N as well as between Lyr N and Lyr C, within the mild or the cold growth environment. 

Comparisons between growth temperature included the difference between cold and mild growth 

temperatures within each species level. For the interaction between species and growth temperature, 

the contrast targeted the comparison of slopes on growth temperature between A. arenicola and Lyr 

N to test for differences in adaptation between species, as well as between Lyr N and Lyr C to test for 

differences in adaptation within A. lyrata. Differences between Are and Lyr C were out of the scope 

of this study, and are therefore not reported.  

 In secondary analysis, we assessed differences in tolerance to cold growth temperatures by 

testing the variation in the individual components of multiplicative performance: germination 

assessed on the level of the seed, and reproductive output, on the level of the pot, with the same 

hierarchical mixed-effects models structure as above, using restricted maximum likelihood with the 

packages lme4 (Bates, Mächler, Bolker, & Walker, 2015) and LmerTest (Kuznetsova, Brockhoff & 

Christensen, 2017; model parametrization in Appendix S6). An ANOVA was performed on each 

model to test for the significance of each fixed effect. Tukey’s tests were applied only on fixed effects 

significant in the ANOVA. We further assessed the effect of species and growth temperatures on the 

capacity to modulate growth, phenology and senescence by testing size at flowering, time to 

germination, time to flowering and senescence I and II following the exact same model structure and 

analysis based on maximum likelihood detailed above. 
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Adaptation to frost  

We considered three aspects of adaptation to frost: tolerance, i.e. the capacity to maintain performance 

under frost (Agrawal et al., 2004); resistance, i.e. the capacity to limit frost damage or survive to frost, 

as well as the modulation of growth, phenology and senescence. This analysis was performed in 

parallel on two subsets, considering only individuals from both control and frost treatment of the mild 

growth temperatures in the first subset, and of cold temperatures in the second subset. In our main 

analysis, frost tolerance was assessed by testing the variation in multiplicative performance in similar 

hierarchical mixed-effects models performed in a Bayesian framework as used to test adaptation to 

cold temperatures, with the effect of treatment (control = 0, frost = 1) replacing growth temperature.  

In secondary analysis, we assessed frost tolerance by testing the variation in reproductive 

output with the same hierarchical mixed-effects models structure as detailed above, using restricted 

maximum likelihood. Germination was not considered as most seedlings germinated before frost 

events. Further analyses tested three components of frost resistance: survival and rosette damage to 

assess resistance to recurrent frost events at the level of the individual, and LT50 to assess the frost 

resistance of leaf tissue to single frost events. We tested for variation in survival to frost I and II and 

frost damage I and II with the exact same hierarchical mixed-effects models structure as detailed 

above. LT50 was only assessed on individuals of the mild growth temperatures with no frost, and was 

therefore tested in hierarchical mixed-effects models with as fixed effects species, and as random 

effects maternal family nested within population, and maternal population, crossed with the effect of 

block. Similarly as for the adaptation to cold, we assessed the effects of species and treatment on the 

modulation of growth, phenology and senescence by testing size at flowering, time to germination, 

time to flowering and senescence I and II following the same analysis as detailed above. 

Finally, we tested whether requirement of cold acclimation to increase frost resistance varied 

between species, considering only individuals from the frost treatments of both growth temperatures. 

We tested survival to frost I and II and frost damage I and II using the same hierarchical mixed-effects 

models structure as above, with as fixed effect species, growth temperatures and their interaction.  
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Results 

Adaptation to non-lethal cold growth temperatures  

In our main analysis assessing variation in tolerance to cold growth temperatures, the model 

comparison on the hierarchical mixed-effects model analyses testing the effects of species, growth 

temperatures (cold vs mild [0]) and their interactions on multiplicative performance revealed that 

only the interaction between fixed effects contributed to the fit of the full model (Table S7, mean 

values in Table S8), suggesting that the effect of growth temperature differed between species. The 

interaction between species and growth temperature was significantly positive comparing A. 

arenicola to northern A. lyrata in both log-normal and logistic processes (Table 2A, Fig. 2), indicating 

a more positive effect of growth temperatures on A. arenicola. On the contrary, northern A. lyrata 

were significantly more negatively affected by growth temperatures in both log-normal and logistic 

process than central A. lyrata.  

 In secondary analyses testing the effects of species, growth temperatures and their interactions 

on individual performance estimates, the effect of species was significant only for senescence I, 

significantly higher in A. arenicola compared to northern and A. lyrata populations, under mild and 

cold growth temperatures (Table 2B, Fig. 3, ANOVA reported in Table S9), and significantly higher 

in northern compared to central A. lyrata populations under mild growth temperatures. For all species, 

the effect of growth temperatures significantly reduced germination. The effect of growth 

temperatures significantly increased reproductive output in A. arenicola, but significantly decreased 

reproductive output in both northern and central A. lyrata. The effect of growth temperatures further 

significantly increased time to germination and time to flowering in all species. When comparing A. 

arenicola to northern A. lyrata, the interaction comparing the effect of growth temperatures between 

species was significantly positive for germination, reproductive output, size at flowering and 

senescence II, suggesting a stronger positive effect of growth temperatures on A. arenicola. This 

interaction was negative for time to flowering. When comparing northern to central A. lyrata 
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populations, this interaction was significantly negative for germination and significantly positive for 

time to germination. 

 

Adaptation to frost events 

In our main analysis assessing the variation in tolerance to frost, the model comparison testing the 

effects of species, treatment (frost vs control [0]) and their interactions on multiplicative performance 

revealed that only the interaction between fixed effects contributed to the fit of the full model in both 

mild and cold growth temperatures subsets (Table S10, Table S11A), suggesting that the effect of 

treatment differed between species. Under mild growth temperatures, A. arenicola was significantly 

more positively affected by the effect of treatment than northern A. lyrata populations in the log-

normal process (Table 3A, Fig. 2, marginally significant in the logistic process), while northern A. 

lyrata were more negatively affected than central A. lyrata. Under cold growth temperatures, A. 

arenicola was more negatively affected than northern A. lyrata in the log-normal process (Table 

S11B, Fig. 2), and no differences were observed between northern and central A. lyrata populations. 

Under mild growth temperatures, secondary analyses testing the effects of species, treatment 

and their interactions on individual performance estimates revealed that the effect of species was 

significant for frost damage II, significantly lower in northern compared to central A. lyrata in the 

control treatment (Table 3B, Fig. 3, ANOVA reported in Table S12). Furthermore, senescence I was 

significantly higher in A. arenicola compared to northern A. lyrata populations in both frost 

treatments, and significantly higher in northern compared to central A. lyrata in the control treatment. 

The effect of treatment significantly increased reproductive output in A. arenicola, frost damage II 

for A. arenicola and northern A. lyrata, and time to flowering in all species, but significantly reduced 

all species’ size at flowering and senescence II (except central A. lyrata). The interaction comparing 

the effect of treatment between species was significantly positive for reproductive output when 

comparing A. arenicola to northern A. lyrata, and significantly negative for senescence I when 

comparing northern to central A. lyrata.  
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Under cold growth temperatures, secondary analyses testing the effects of species, treatment 

and their interactions on individual performance estimates revealed that the effect of species was 

significant for frost damage II, significantly lower in in A. arenicola compared to northern A. lyrata 

populations in the control treatment, and significant for senescence I, significantly higher in A. 

arenicola compared to northern A. lyrata populations in the control treatment (Table S13A, Fig. 3, 

ANOVA reported in Table S13B). The effect of treatment significantly reduced reproductive output 

and senescence I but increased frost damage II in A. arenicola, and increased time to flowering in all 

species. The interaction comparing the effect of treatment between species was significantly negative 

for senescence I but significantly positive for frost damage II when comparing A. arenicola to 

northern A. lyrata.  

Finally, the hierarchical mixed-effects model analysis testing the effect of species, growth 

temperatures (cold vs mild [0]) and their interaction on dependent variables linked to frost resistance 

revealed no significant differences between species in both mild and cold growth temperatures (Table 

S14A, ANOVA reported in Table S14B). The effect of growth temperatures was significantly 

negative for frost damage I and II in all species. Interaction were generally not significant. 

 

 

Discussion  

We found clear differences in thermal tolerance in two North-American Arabidopsis species which 

can explain well their divergent post-glacial colonization patterns of northern areas. Arabidopsis 

lyrata originally expanded its range from two glacial refugia, but remained constrained to the northern 

shores of the Great Lakes (Willi et al., 2018). In contrast, A. arenicola split from A. lyrata at the 

northern shores of Lake Superior and expanded in the subarctic regions of North America and 

Greenland (Hopkins, 1937; Mulligan 1996; in Warwick et al., 2006). The species differed mainly in 

their tolerance to cold growing temperature, and their frost tolerance and resistance. Arabidopsis 

arenicola shows higher tolerance to cold growing temperatures, to compensate the shorter growing 
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season, and increased frost tolerance under mild growth temperatures, to compensate the occasional 

frost events occurring during mid-growing season. In contrast, A. lyrata shows lower tolerance to 

cold growing temperature, escaping the coldest month to exploit the warmer conditions in summer, 

and higher frost resistance and tolerance to frost events occurring in early spring, but reduced 

tolerance in summer.  

 

Similarities in adaptive strategies to cold climates across species.  

Our results outline similarities in the response of all populations from both species to environmental 

constraint linked to cold climate. Cold growth temperatures generally delayed time to germination 

and time to flowering, latter further delayed by frost under mild and cold growth temperatures. Frost 

also generally decreased size at flowering under mild growing temperatures, potentially due to 

reduced metabolism and cell division under the recurrent lower night temperatures (Ap Rees et al., 

1988; Francis & Barlow, 1988). Both species were generally frost resistant, with high survival under 

frost (on average between 84 % and 96 %), and low average LT50 across populations (ca. -11 °C), 

with no differences between populations in these traits. Both species showed only variation in 

resistance to frost based on rosette damage. Latter was generally reduced by cold growth 

temperatures, indicating that both species rely on cold acclimation to increase frost resistance 

(Browse & Xin, 2001; Knight & Knight, 2012), in line with previous observation in A. lyrata (Wos 

& Willi, 2015). Overall, these results suggest both species have generally evolved toward escaping 

cold growth temperatures and frost events and exploiting the warmest frost-free season, while 

maintaining a general resistance to frost. 

 

Differences in adaptation between A. arenicola and northern A. lyrata 

Both species however also show clear differences in their response to cold growing temperatures or 

frost events. Arabidopsis arenicola showed higher tolerance to cold growth temperatures compared 

to northern A. lyrata, suggested by a better capacity to maintain multiplicative performance, both in 
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the zero and normal part of distribution. This difference was also reflected by the analysis of life-

stage components: germination rates were reduced in both species under cold compared to mild 

growth temperatures, but significantly less in A. arenicola. Reduced seed dormancy is generally 

observed at higher latitudes (Wagmann et al., 2012; Debieu et al., 2013). In A. thaliana, higher 

dormancy at lower latitudes has been linked to dryer summers requiring to delay germination to fall 

(Kronholm, Pico, Alonso-Blanco, Goudet, & de Meaux, 2012; Postma & Ågren, 2015). Lower 

dormancy in A. arenicola could results from adaptation to generally lower temperatures during the 

vegetation period. The difference in tolerance to cold growth temperature was also reflected by the 

significant contrast in slope of effect of growth temperatures on reproductive output, increasing in A. 

arenicola but decreasing in northern A. lyrata. The significant increase in reproductive output 

suggests that A. arenicola is able to invest more resources in reproduction in response to cold growth 

temperatures.  

Both species also showed differences in their modulation of phenology, growth and 

senescence when exposed to cold compared to mild growth temperatures: while flowering was 

delayed in all species, A. arenicola was less affected than northern A. lyrata, in opposition with the 

previous pattern of delayed flowering toward higher latitudes and altitudes reported in several related 

Arabidopsis taxa (Riihimaki & Savolainen, 2004; Stinchcombe et al., 2004; Kuittinen, Niittyvuopio, 

Rinne, & Savolainen, 2008; Montesinos-Navarro, Wig, Pico & Tonsor, 2010; Kenta et al., 2011). The 

lower effect of cold growth temperatures on flowering time in A. arenicola could allow this species 

to extend the short growth season at high latitudes. Arabidopsis arenicola seemed also better at 

maintaining size at flowering than northern A. lyrata, despite earlier flowering, suggesting higher 

investment in growth. Senescence in simulated winter was higher in A. arenicola compared to 

northern A. lyrata, but not affected by the growth temperatures. Senescence in simulated spring was 

generally high in both species (observed in ca. 92% of the individuals), but was less reduced by cold 

growth temperatures in A. arenicola than northern A. lyrata. Reduced senescence in simulated winter 

of high elevation populations of Arabis alpina has been linked to a strategy of maintaining of high 
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concentration of metabolites such as sugars to protect against frost damage and store resources in 

leaves (Wingler et al., 2015), followed by rapid recycling of these sugars through increased 

senescence, to invest in reproduction (Davies & Gan, 2012; Wingler et al., 2015). Here, the difference 

in senescence rates between both species suggest A. arenicola could have adapted to a shorter growth 

period than in northern A. lyrata by maintaining higher metabolic rates and resource recycling in 

winter, therefore benefiting from a head start in fast vegetative and reproductive development in 

spring. Furthermore, the higher maintenance of senescence rate in simulated spring in A. arenicola 

suggest that its higher tolerance to cold growth temperatures could result from a better capacity to 

maintain developmental senescence, maximally reinvesting resources in reproduction. 

Under mild growth temperatures, A. arenicola also showed higher frost tolerance than 

northern A. lyrata, suggested by a better capacity at maintaining multiplicative performance in the 

log-normal process, and an increase in reproductive output compared to A. lyrata. This pattern is in 

opposition with previous observations of lower frost tolerance in northern compared to central and 

southern populations of A. lyrata (Wos & Willi, 2015). In latter study, lower tolerance was linked to 

the cost of the general adaptation toward fast growth and reproduction to exploit the warmer and frost 

free growing season. Higher frost tolerance in A. arenicola could be required to cope with the 

occasional frost events which can occur in the warmest months at high latitudes (Billings, 1974). 

Senescence in simulated winter was again higher in A. arenicola than northern A. lyrata, which could 

indicate that A. arenicola recycles faster resources dedicated to frost resistance into reproduction 

(Wingler et al., 2015), allowing for higher frost tolerance. 

The opposite pattern was observed under cold growth temperatures: A. arenicola was less 

frost tolerant than northern A. lyrata, suggested by reduced capacity to maintain multiplicative 

performance under frost. This result is partially supported by a reduction in reproductive output in A. 

arenicola when exposed to frost, however not differing from northern A. lyrata. Arabidopsis 

arenicola also showed reduced frost resistance in simulated spring under cold growth temperatures 

compared to northern A. lyrata, as suggested by the increase in frost damage in A. arenicola, 
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significantly different from northern A. lyrata. Reduced frost resistance in high- compared to mid-

latitude populations contradict the general patterns of increasing frost resistance toward higher 

latitudes in plants (Hurme, Repo, Savolainen, & Paakkonen, 1997; Pagter, Kristoffersen, Bronnum, 

& Jensen, 2010), also in Arabidopsis and related taxa (Hannah et al., 2006; Zhen & Ungerer, 2008; 

Ometto et al., 2012; Zuther, Schulz, Childs, & Hincha, 2012; Horton, Willems, Sasaki, Koornneef, 

& Nordborg, 2016; reviewed in Zuther, Lee, Erban, Kopka, & Hincha, 2018). Similar pattern as in 

our study was only reported in the closely related A. kamchatica (Armstrong et al., 2015), linked to 

the longer snow cover at high latitudes protecting against frost in the coldest months, requiring less 

frost resistance than populations at mid-latitudes exposed to frost in the cold season due to earlier 

snow melt. Arabidopsis arenicola showed again higher senescence in simulated winter than northern 

A. lyrata in the control treatment, but not under frost treatment. frost reduced senescence in simulated 

winter in A. arenicola, with a significant contrast in slope of effect compared to A. lyrata. These 

results suggest that A. arenicola modulates senescence in winter after frost exposure down to rates 

similar than A. lyrata, potentially to maintain resistance against frost in the coldest months (Wingler 

et al., 2015), however not sufficient to prevent frost damage in simulated spring. Seasonal change in 

frost defense mechanisms are common in taxa growing at high latitude and altitude (Inouye, 2008; 

Sierra-Almeida, Cavieres & Bravo, 2009; Preston & Sandve, 2013; Sklenář, 2017), but resistance 

generally increases at the transition phases between the cold and mild season. The downregulation of 

senescence in A. arenicola could also be linked to the reduced tolerance to frost in cold growth 

temperatures as outlined above, due to lower investment in reproduction to maintain higher resistance.  

 

Differences in adaptation between northern and central A. lyrata 

 Populations of A. lyrata also showed differences in their response to cold growth temperatures 

and frost events: Northern A. lyrata populations showed reduced tolerance to cold growth 

temperatures compared to central A. lyrata, suggested by a lower capacity at maintaining 

multiplicative performance, both in the zero and normal part of the distribution. This difference was 
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also reflected by the analysis of individual life stage components: germination rates were significantly 

declined in both northern and central A. lyrata populations under cold compared to mild growth 

temperatures, but significantly more in northern populations. Reproductive output significantly 

declined in both northern and central populations, however with no significant difference between 

populations. Northern and central populations also showed differences in their modulation of 

germination and flowering phenology: northern populations showed a higher delay in germination 

and initiation of flowering than central populations when exposed to cold compared to mild growth 

temperatures, in lines with patterns of delayed flowering toward higher latitudes observed in related 

Arabidopsis taxa (Riihimaki & Savolainen, 2004; Stinchcombe et al., 2004; Kuittinen et al., 2008). 

Senescence in simulated winter was also higher in northern populations compared to central 

populations under mild growth temperatures, suggesting higher resource recycling (Davies & Gan, 

2012; Wingler et al., 2015). Higher metabolic rates in northern population are in line with the finding 

of faster vegetative and reproductive development in northern populations to cope with the shorter 

growing season (Paccard et al., 2014; Wos & Willi, 2015). 

 Northern A. lyrata showed reduced frost tolerance under mild growth temperatures than 

central populations, suggested by a lower capacity at maintaining multiplicative performance in the 

logistic part, in line with patterns of reduced frost tolerance previously reported in this species (Wos 

& Willi, 2015). Other traits showed no variation between northern and central populations except 

senescence in simulated winter, which was again higher under control treatment, but significantly 

reduced under frost, indicating a modulation from high recycling of metabolites in the control 

treatment to reduced recycling under frost, potentially to maintain higher frost resistance (Davies & 

Gan, 2012; Wingler et al., 2015), while central populations could maintain a baseline of frost 

resistance. Northern populations showed also less damage in the control treatment during the frost 

period in simulated spring, which could result from a reduction in senescence rates after vernalization, 

necessary to maintaining frost resistance in early spring.  
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Divergence in adaptive strategies between both species  

Both species have evolved divergent adaptive strategies to cold climate, allowing A. arenicola to 

successfully colonize high latitudes but constraining A. lyrata to mid-latitudes. Arabidopsis arenicola 

is able to exploit the generally colder temperatures at high latitudes, allowing it to extend the shorter 

growth season to complete its reproductive cycle, as suggested by its higher tolerance to cold growth 

temperatures, and lower reduction in time to flowering. Arabidopsis arenicola most likely remains 

completely protected by snow during the cold period, explaining its low frost resistance and tolerance 

under cold growth temperatures. Under the milder growth temperatures, A. arenicola then increases 

reproduction to tolerate the negative effects of frost, which can occur also in the warmest months at 

high latitudes (Billings, 1974). In contrast, northern A. lyrata seem to have evolved a strategy oriented 

toward escaping cold temperature and exploiting mostly the milder months in summer, as suggested 

by the lower tolerance to cold growth temperatures, and stronger increase in time to germination and 

flowering. This strategy reduces its growing season, requiring faster growth and reproduction 

compared to more southern populations (Wos & Willi., 2015), but potentially to the cost of reduced 

frost tolerance in summer. Northern populations of A. lyrata seem to have also evolved toward higher 

frost tolerance and resistance under cold growth temperatures compared to A. arenicola potentially 

linked to higher frost exposure due to earlier snow melt in winter at mid-latitudes, similar to patterns 

observed in A. kamchatica (Armstrong et al., 2015). While this adaptive strategy might have allowed 

A. lyrata to colonize mid-latitudes, persistence at higher latitudes could be constrained by its lower 

tolerance to frost under milder temperatures, and its delayed phenology could affect its capacity to 

complete its reproductive cycle.  

 

Maximal post-glacial expansion of subarctic species 

These divergent adaptive strategies despite a recent common ancestor (Novikova et al., 2016; 

Walden, N. & Willi, Y., in prep) raises the question whether maximal post-glacial range expansion 

is most successful under niche conservationism or niche expansion. Most subarctic and arctic plant 
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species are thought to have migrated northwards after LGM benefiting from the release of new 

habitats (Brochmann et al., 2003; Schmitt, 2007; Birks, 2008). Higher adaptation to climate at high 

latitudes but lower adaptation to climate at mid-latitudes indicate that A. arenicola may have followed 

a similar scenario: this species could have benefited from initial pre-adaptation to cold climates and 

tracked the shift in its ecological niches rather than experiencing new evolutionary shifts. The lower 

frost resistance and tolerance of A. arenicola to frost in cold growth temperatures could then have led 

to local extinctions at lower latitudes during the warming period after LGM, due to earlier snowmelt 

and increased frost exposure during the colder season, explaining the gap in distribution between both 

species. Phylogenetic studies of the Arabidopsis genus support a subarctic origin of the North 

American A. lyrata subsp. lyrata which likely split from the European lineage A. lyrata subsp. petrea 

and colonized North America over Beringia (Shmickl et al., 2010). The North American A. lyrata 

lineage is also connected to the European lineage by two arctic taxa: A. petraea subsp. umbrosa and 

A. petraea subsp. septentrionalis (Hohmann et al., 2014; Novikova et al., 2016). On the contrary, 

divergence in adaptation in northern A. lyrata could result from niche-expansion, allowing persistence 

at mid-latitude. However, the evolution of a strategy of fast vegetative and reproductive development 

to exploit only the mildest conditions could trade-off with adaptation to frost in the mid-growing 

season (Wos & Willi, 2015), necessary to colonize higher latitudes. In addition, a strategy oriented to 

exploit only the mildest conditions could reduce its capacity to complete its life cycle in the generally 

colder environments at higher latitudes. The evolution to persist at mid-latitudes could therefore 

represent an evolutionary dead-end constraining future northward colonization, suggesting post-

glacial range expansion toward cold climates is more successful under niche conservationism. 

The successful colonization of higher latitudes by A. arenicola could also have been favoured 

by its entirely selfing mating system: Reduced recombination rates in selfing populations have been 

predicted to increase the response to selection on polygenic traits by converting dominance and 

epistasis in additive variance (Lande & Porcher, 2015), and allowing better storage of cryptic genetic 

variation, which can be released after an environmental shift (Clo, Ronfort &  Abu Awad, 2020), 
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leading to successful expansion over wide geographic ranges (Eriksson & Rafajlovi, 2020). A recent 

niche modeling study also found that selfing species generally show larger niche breadth toward more 

stressful environments compared to their outcrossing sister species (Grant & Kalitz, 2020). In 

contrast, the divergence in adaptation in northern A. lyrata could also result from increased genetic 

drift, recently identified as a main factor constraining adaptation along environmental gradients 

(Polechová & Barton, 2015; Polechová, 2018), as it opposes selection and erodes genetic variation 

(Wright, 1931). In line, northern range limits of A. lyrata are characterized by steep environmental 

gradients (Lee-Yaw et al., 2018), and range-edge populations suffer of increased genetic drift (Willi 

et al., 2018; Perrier, Sánchez-Castro & Willi, 2020), linked to reduced signatures of adaptation 

(Sánchez-Castro, D. et al., in prep.). The ecological niche and the levels of genetic drift in A. arenicola 

are however yet to be tested. 

 

 

Conclusions 

Our study is one of the first to empirically highlight how differences in adaptation could explain the 

difference is success of post-glacial colonization toward subarctic climate between two recently 

diverged sister species. The increased tolerance to cold growing temperatures and to frost in summer 

allowed A. arenicola to colonize subarctic climate, while the opposite adaptive strategy constrained 

A. lyrata to more temperate climates. In the wake of global warming, and the higher risk of exposure 

to early frost at higher latitudes (Inouye, 2008; Lancaster & Humpfreys, 2020), both species could be 

suitable model organisms to study the impacts of climate change on recently evolved subarctic and 

arctic plants.   
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Tables 

 

Table 1: Description of performance estimates 

 

Performance estimate Level Description   

Tolerance to cold growth temperatures and frost 

Multiplicative performance Pot Germination * reproductive output  

Germination Seed Binary success of germination, from day 0 to the end of the experiment 

Reproductive output Pot Sum of all flower organs counted four weeks after the first flower opening 

   

Resistance to frost 

Survival to frost I *  Seed Binary success of survival from the beginning of frost I to 14 days after the end of frost I 

Survival to frost II * Seed Binary success of survival from the beginning of frost II to 14 days after the end of frost II 

Frost damage I *  Pot Binary success of increase in damage during frost I 

Frost damage II * Pot Binary success of increase in damage during frost II 

LT50 Pot Temperature at which 50 % of electrolyte leakage occurs 

   

Phenology and growth   

Time to germination Seed Time [days] from day 0 until germination  

Time to flowering Pot Time [days] from the end of vernalization to the first flower opening 

Growth rate Pot Initial growth rate from a 3-parameter logistic growth model 

Size at flowering Pot Average size [mm] of the two longest leaves four weeks after the first flower opening 

   

Senescence   

Senescence I * Pot Binary success of increase in damage from 14 days after frost I to the beginning frost II 

Senescence II * Pot Binary success of increase in damage from 14 days after frost II to the end of the experiment 

 

* Frost was applied for two weeks before (I) and for six weeks after (II) the simulated winter phase 
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Table 2A: Summary of multiple comparisons testing for the effect of species (A. arenicola [A] compared to northern [Lyr N] populations, and 

northern compared to central [Lyr C] A. lyrata populations), growth temperature (cold compared to mild [0]) and their interaction on 

multiplicative performance 

 

    Species                      Species *  

growth temperature 

 

  Mild  Cold  Growth temperature (cold vs mild)   

  A vs Lyr N  Lyr N vs C  A vs Lyr N  Lyr N vs C  A  Lyr N  Lyr C  A vs Lyr N  Lyr N vs C  

Process N Mean   Mean   Mean   Mean   Mean   Mean   Mean   Mean   Mean   

Log-normal 372 -0.67     -0.39     0.05     -0.59      0.17     -0.55       -0.35     0.72 ***  -0.20 *** † 

Logistic 372 -4.78     2.62     3.17     -2.94     -1.31     -9.26      -3.70     7.84 **   -5.46 *  

 

Multiplicative performance estimates (log10-transformed if >0) were assumed to follow Gaussian distributions with 0-inflation. Therefore, models 

assessed all fixed and random effects for their importance in both the Gaussian process (total reproductive output) and the logistic process (binary 

variable depicting germination combined with survival and the capacity to initiate flowering). The logistic part of the model predicts non-zeros in the 

distribution on the logit scale. Coefficients (mean) depict estimated pairwise difference in performance between species within growth temperature, 

growth temperature within species, and estimated linear contrast in magnitude of effect of growth temperature between species. Estimates of 

coefficients are modes of an MCMC sample from the posterior distribution of parameters obtained from a Tukey’s test. Model fits with significant 

(positive) intercept are indicated by †. Estimates with P-values < 0.05 are written in bold; significance is indicated: (*) P<0.1, * P<0.05, ** P<0.01, 

*** P<0.001. Results for random effects are not shown. 
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Table 2B: Summary of multiple comparisons testing for the effect of species (A. arenicola [A] compared to northern [Lyr N] populations, and 

northern compared to central [Lyr C] A. lyrata populations), growth temperature (cold compared to mild [0]) and their interaction on 

individual performance estimates and phenology estimates 

 

    Species                     Species*  

growth temperature  

 

  Mild  Cold  Growth temperature (cold vs mild)   

  A vs Lyr N  Lyr N vs C  A vs Lyr N  Lyr N vs C  A  Lyr N  Lyr C  A vs Lyr N  Lyr N vs C  

Dependent variable N β     β     β     β     β     β     β     β     β    

Cold tolerance                                                      

Germination  714 0.34   0.77   2.70   -0.72     -0.87 *  -3.24 ***  -1.74 ***  2.36 ***  -1.49 ** †, ‡ 

Reproductive output 215 -0.63   -0.48   -0.06   -0.61   0.19 *  -0.38 **  -0.26 *  0.57 ***  -0.13  † 

                             

Phenology, growth  

and senescence 
 

  
 

  
 

  
 

  
 

  
 

  
 

  
 

  
 

  
 

Time to germination 418 -0.16   -0.03   -0.05   0.17   0.70 ***  0.59 ***  0.39 ***  0.11   0.20 * † 

Time to flowering 215 0.27     0.01    0.06     0.16    0.23 ***  0.44 ***  0.28 ***   -0.21 ***   0.16 *** † 

Size at flowering 215 0.00   -0.06   0.14   -0.00   0.01   -0.13   -0.19   0.14 ***  0.06  † 

Senescence I 252 3.27 **  3.13 ***  3.37 ***  2.27   -2.16   -2.26   -1.41   0.10   -0.85  †, ‡ 

Senescence II 243 -1.32   -0.52   2.33   -19.36   1.25   -2.40   16.45   3.65 *  -18.85  †, ‡ 

 

Binary variables (‡) were analyzed by models predicting non-zeros on the logit scale. All other performance estimates were log10-transformed and 

assumed to follow Gaussian distributions. Each model was optimized with the bobyqa optimizer to improve convergence. Coefficients (β) depict 

estimated pairwise difference in performance between species within growth temperature, growth temperature within species, and estimated linear 

contrast in magnitude of effect of growth temperature between species, obtained from a Tukey’s test. Model fits with significant (positive) intercept 

are indicated by †. Estimates with P-values < 0.05 are written in bold; significance is indicated: (*) P<0.1, * P<0.05, ** P<0.01, *** P<0.001. Results 

for random effects are not shown.  
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Table 3A: Summary of multiple comparisons testing for the effect of species (A. arenicola [A] compared to northern [Lyr N] populations, 

and northern compared to central [Lyr C] A. lyrata populations]), treatment (frost compared to control [0]) and their interaction on 

multiplicative performance, in the mild growth temperature 

 

    Species                     Species*  

treatment   Control  Frost  Treatment (frost vs control)  

  A vs Lyr N  Lyr N vs C  A vs Lyr N  Lyr N vs C  A  Lyr N  Lyr C  A vs Lyr N  Lyr N vs C 

Process N Mean     Mean   Mean   Mean   Mean   Mean   Mean   Mean     Mean 

Log-normal 372 -0.72     -0.41     -0.46     -0.38     0.24     -0.02   -0.05     0.25 **  0.03  

Logistic 372 -2.91     1.44     -1.18     -0.89     -0.57      -2.31      -0.03     1.73 (*)   -2.35 * 

 

Multiplicative performance estimates (log10-transformed if >0) were assumed to follow Gaussian distributions with 0-inflation. Therefore, models 

assessed all fixed and random effects for their importance in both the Gaussian process (total reproductive output) and the logistic process (binary 

variable depicting germination combined with survival and the capacity to initiate flowering). The logistic part of the model predicts non-zeros in the 

distribution on the logit scale. Coefficients (mean) depict estimated pairwise difference in performance between species within treatment, treatment 

within species, and estimated linear contrast in magnitude of effect of treatment between species. Estimates of coefficients are modes of an MCMC 

sample from the posterior distribution of parameters obtained from a Tukey’s test. Model fits with significant (positive) intercept are indicated by †. 

Estimates with P-values < 0.05 are written in bold; significance is indicated: (*) P<0.1, * P<0.05, ** P<0.01, *** P<0.001. Results for random effects 

are not shown. 
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Table 3B: Summary of multiple comparisons testing for the effect of species (A. arenicola [A] compared to northern [Lyr N] populations, 

and northern compared to central [Lyr C] A. lyrata populations]), treatment (frost compared to control [0]) and their interaction on 

individual performance estimates and phenology estimates, in the mild growth temperature 
 

     Species                                

   Control  Frost  Treatment (frost vs control)  Species* treatment   

   A vs Lyr N  Lyr N vs C  A vs Lyr N  Lyr N vs C  A  Lyr N  Lyr C  A vs Lyr N  Lyr N vs C  

Dependent variable  N β     β     β     β     β     β     β     β     β    

Frost tolerance                                       

Reproductive output  264 -0.69   -0.48   -0.45   -0.44   0.20 **  -0.04   -0.08   0.24 **  0.04  † 

                              

Frost resistance                              

Survival to frost I  348 17.13   0.20   0.63   -0.44   -19.40   -2.90   -2.26   -16.50   0.64  ‡ 

Survival to frost II  315 -0.00   -0.08   -0.75   -20.40   -21.16   -20.46   -0.10   -0.74   -20.31  †, ‡ 

Frost damage I  346 0.10   -0.04   -0.64   0.84   -21.20   -21.90   -21.00   -0.75   0.88  ‡ 

Frost damage II  315 -0.18   -2.07 **  0.10   -1.41   1.35 **  1.07 *  0.43   0.28   0.66  ‡ 

LT50  128 0.06     -0.15    -   -   -   -   -   -   -  † 

                              

Phenology, growth  

and senescence 
 
                      

 
  

 
  

Time to flowering  264 0.28     0.00    0.31     0.04     0.17 ***     0.14 ***     0.10 **    0.03     0.04  † 

Growth rate  285 -0.04   -0.00   -0.07   0.05   0.05   0.09   0.04   -0.03   0.05  † 

Size at flowering  264 0.01   -0.06   0.01   -0.01   -0.05 *  -0.06 **  -0.11 ***  0.00   0.05  † 

Senescence I  346 3.14 *  3.06 ***  1.17 ***  0.92   -3.23 **  -1.26 **  0.89   -1.97   -2.14 ** †, ‡ 

Senescence II  307 -1.37   -0.49   0.64   -0.70   -0.11   -2.12   -1.91   2.01   -0.21  †, ‡ 
 

Binary variables (‡) were analyzed by models predicting non-zeros on the logit scale. All other performance estimates were log10-transformed (except 

LT50) and assumed to follow Gaussian distributions. Each model was optimized with the bobyqa optimizer to improve convergence. Coefficients (β) 

depict estimated pairwise difference in performance between species within treatment, treatment within species, and estimated linear contrast of effect 

of treatment between species, obtained from a Tukey’s test. Model fits with significant (positive) intercept are indicated by †. Estimates with P-values 

< 0.05 are written in bold; significance is indicated: (*) P<0.1, * P<0.05, ** P<0.01, *** P<0.001. Results for random effects are not shown.
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Figures 

 

 

 

Figure 1: Distribution map of Arabidopsis arenicola and A. lyrata with the 6 populations studied. 

The blue shaded area represents the current range of A. arenicola, and the grey shaded area represents 

the North-American range of A. lyrata. Circles filled in blue, green and orange represent respectively 

populations of A. arenicola and northern and central populations of A. lyrata. Population labels 

consist of the abbreviation for state (USA) or province (Canada) and a number. Grey dashed lines 

represent isoclines of mean summer temperature (July and August, WorldClim database version 2.0, 

Fick & Hijmans, 2017). 
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Figure 2: Variation in multiplicative performance of A. arenicola and A. lyrata under different 

temperature and frost regimes. Individuals of both species were grown under two growth 

temperatures: mild (20 °C) and cold (12 °C – 14 °C), both subdivided into two treatments: no frost 

(control) and frost. Symbols depict multiplicative performance estimates averaged for each species 

level: A. arenicola populations (blue squares), northern A. lyrata populations (green circles) and 

central A. lyrata populations (orange triangles). Multiplicative performance was analyzed on the level 

of the individual modeling two processes: a Gaussian process (values > 0, left) and a logistic process 

(modelling the probability of values > 0, right). Tukey’s tests were performed to test for differences 

between species (not reported here), growth temperature or treatment, and the interaction between 

species and growth temperature or treatment. Horizontal bars represent the 95% confidence interval 

of the mean of species within each growth temperature and treatments. The significance of the effect 

of growth temperature or treatment within species is represented by full (P < 0.05) or dashed (P > 

0.05) colored lines connecting each species. Significant differences between slopes of effect of 

growth temperature or treatments between A. arenicola and both northern populations of A. lyrata, 

and between northern and central populations of A. lyrata, are indicated by vertical grey lines, with 

significance indicated as: ∗ P < 0.05, ∗∗ P < 0.01, ∗∗∗ P < 0.001 Test statistics are reported in Table 

2A, Table 3A and Table S11B.  
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Figure 3: Variation in individual performance estimates and phenology of A. arenicola and A. 

lyrata under different temperature and frost regimes. Individuals of both species were grown 

under two growth temperatures: mild (20 °C) and cold (12 °C – 14 °C), both subdivided into two 

treatments: no frost (control) and frost. Symbols depict individual performance or phenology 

estimates averaged for each species level: A. arenicola populations (blue squares), northern A. lyrata 

populations (green circles) and central A. lyrata populations (orange triangles). For each of the 

estimates of probability of germination (A), time to germination (B), reproductive output (C), time to 

flowering (D), size at flowering (E), frost damage II recorded in the simulated spring phase (F) and 

senescence I recorded during the simulated winter phase (G), Tukey’s tests were performed to test 

for differences between species (not reported here), growth temperature or treatment, and the 

interaction between species and growth temperature or treatment. Horizontal bars represent the 95% 

confidence interval of the mean of species within each growth temperature and treatments. The 

significance of the effect of growth temperature or treatment within species is represented by full (P 

< 0.05) or dashed (P > 0.05) colored lines connecting each species. Significant differences between 

slopes of effect of growth temperature or treatments between A. arenicola and both northern 

populations of A. lyrata, and between northern and central populations of A. lyrata, are indicated by 

vertical grey lines, with significance indicated as: ∗ P < 0.05, ∗∗ P < 0.01, ∗∗∗ P < 0.001 Test statistics 

are reported in Table 2B, Table 3B and Table S13A.  
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Supplementary information 

 

Table S1: Population estimates  

 

Population  

code Species 

Species  

label 

Latitude  

[° N] 

Longitude  

[° W] 

Mean temperature  

late summer  

[° C] † Cluster 

Mating  

system 

QC1 A. arenicola Are 51.43 -57.16 13.45 - selfing 

MB1 A. arenicola Are 58.78 -94.20 12.00 - selfing 

NY5 A. lyrata  Lyr N 42.66 -74.02 20.20 E outcrossing 

ON11 A. lyrata  Lyr N 48.77 -87.13 14.65 W selfing 

MD2 A. lyrata  Lyr C 38.99 -77.25 24.55 E outcrossing 

WI1 A. lyrata  Lyr C 43.83 -89.72 20.75 W outcrossing 

 

† July and August, WorldClim database version 2.0, Fick & Hijmans, 2017 
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Table S2: Growth conditions of the crossing experiment 

 

Growth Phase Duration [days] 

Temperature  

daytime [°C] 

Temperature  

nighttime [°C] 

Day length  

[h] 

Light intensity  

[µmol m-2 s-1] 

Stratification  12 4 4 0 0 

Germination 22 20 20 8 100 

Growth † 21 22 20 10 140 

Flowering initiation 10 22 20 16 240 

Flowering and crossing 205 22 20 16 240 

 

† Day length and light intensity were gradually increased every three days by 1h and 20 µmol m-2 

s-1, respectively. 
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Table S3: Cross combinations generated in the crossing experiment and used in the climate 

chambers 

 

Population 

code 

No. of cross  

families 

No. of seeds sown  

Mild   Cold  

Control Frost   Control Frost 

QC1 11 63 63  63 63 

MB1 12 72 72  72 72 

NY5 12 64 64  64 64 

ON11 10 51 51  51 51 

MD2 10 52 52  52 52 

WI1 10 55 55  55 55 
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Table S4: Growth conditions and performance tracking of the climate chamber experiment 

 

Simulated 

season 

 

Duration 

[days] 

Day 

length  

[h] * 

Light  

intensity  

[µmol m-2 s-1] * 

Mild  

temperatures  

[°C]   

Cold 

temperatures  

 [°C]   Weekly record rate 

Growth  

phase day night    day night   

Germination 

and survival Damage 

Bolting and  

Flowering 

Fall Stratification  20 0 0 4 4  4 4  - - - 

 Germination 14 8 120 20 18  12 10  5 - - 

 Growth † 26 10 140 20 18  12 10  5 5 - 

Winter Acclimation ‡ 7 10 180 20 18  12 10  3 5 - 

 Vernalization 46 8 140 4 4  4 4  1 1 - 

 Acclimation ‡ 4 8 140 4 4  4 4  1 1 - 

Spring & Growth I § 18 10 160 20 18  14 12  2 1 4 

Summer Growth II § 58 16 220 20 18  14 12  1 1 3 

 Flowering ƾ 46 16 220 20 18  16 14  1 1 1 

 

* Values at the beginning of each phase         

† Light intensity was gradually increased every six days by 20 µmol m-2 s-1      

‡ Gradual decrease / increase of day length, light intensity, and temperatures      

§ Light intensity was gradually increased every three days by 20 µmol m-2 s-1      

ƾ The whole experiment was first performed in climate chambers (Climecab 1400, Kälte 3000 AG, Landquart, Switzerland), and was transferd for 

the last 46 days into growth chambers (MobyLux GroBanks, CLF Plant Climatics, plantclimatics.de, Wertingen, Deutschland) for logistical reasons. 

Temperatures of the Cold growth temperature were increased due to technical limitations of this growth system 
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Appendix S5: Parametrization of priors and hierarchical mixed-effects model analyzis in a 

Bayesian (MCMC) framework, with individual multiplicative performance as dependent 

variable 

 

Priors 

Priors were set to be weak, convergence was improved using parameter expansion. R is the priors for 

the fixed effects, G is the priors for the random effects. 

 

priors.model=list( 

 R=list(V=diag(2), n=1, fix = 2), 

 G=list(G1=list(V=diag(2), n=2, alpha.mu = rep(0,2),alpha.V = diag(2)*25^2), 

     G2=list(V=diag(2), n=4, alpha.mu = rep(0,4),alpha.V = diag(2)*25^2), 

     G3=list(V=diag(2), n=2, alpha.mu = rep(0,2),alpha.V = diag(2)*25^2))) 

 

 

Hierarchical mixed-effects models analyzed in a Bayesian (MCMC) framework 

Multiplicative performance was split into two datasets: the zero_part, a binary transformation of 

performance estimates with zero_part = 1 if performance > 0, else zero_part = 0; and the norm_part 

containing only the log10 transformed performance measures if zero_part = 1. 

 

model = MCMCglmm(cbind(norm_part, zero_part) ~ trait -1 + trait:species * trait: growth 

temperature, 

         random = ~ us(trait):maternal population  

         + us(trait): maternal population: maternal family  

         + us(trait):block, 

         prior = priors.model, 

         rcov = ~idh(trait):units, 

         family=c('gaussian', 'categorical'), 

         burnin = 5000, thin = 100, nitt = 50000, 

         data=data)  
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Appendix S6: Parametrization of restricted maximum likelihood based hierarchical mixed-

effect models 

 

Binary dependent variable  

Model = glmer(performance ~ species * growth temperature 

+ (1 | maternal population / maternal family)  

+ (1 | block),  

family = “binomial”, 

control = glmerControl(optimizer = "bobyqa"), 

 data = data) 

 

Dependent variable with log-normal distribution 

Model = lmer(log10(performance) ~ species * growth temperature 

+ (1 | maternal population / maternal family)  

+ (1 | block),  

control = lmerControl(optimizer = "bobyqa"),  

 data = data) 
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Table S7: Summary of model comparison on models testing for the effect of species (A. arenicola 

[A] compared to northern [Lyr N] populations, and northern compared to central [Lyr C] A. 

lyrata populations), growth temperature (cold compared to mild [0]) and their interaction on 

multiplicative performance 

 

Model Tested fixed effect DIC ∆i 

Species + temperature + (species* temperature) - 342.46 - 

Temperature + (species* temperature) Species 342.23 0.23 

Species + (species* temperature) Temperature 343.07 -0.67 

Species + temperature Species * temperature 413.25 -70.79 

 

The dependent variable was multiplicative performance. To test the contribution of each fixed effect 

to the fit of the full model, alternative models excluding each fixed effects were compared to the full 

model, with lower DIC values indicating a better fit. The difference between the full model and the 

others is indicated as Δi. 
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Table S8: Summary of performance in each treatment of each growth temperature 

 

  Mild   Cold 

 Control   Frost  Control   Frost 

Dependent variable N Mean  N Mean  N Mean  N Mean 

Tolerance to cold growth temperatures and frost events 

Multiplicative performance 186 71.94  186 60.65  186 23.46  186 25.56 

Germination †, ‡ 357 74.06  357 80.79  357 42.41  357 40.34 

Reproductive output 141 102.72  123 90.02  74 58.83  67 79.38 

            

Resistance to frost 

Survival to frost I †, ‡ 170 97.31  178 84.22  148 95.43  142 87.39 

Survival to frost II ‡ 168 100.00  147 96.15  102 95.81  89 87.95 

Frost damage I ‡ 169 0.00  177 71.77  83 0.00  77 31.29 

Frost damage II ‡ 168 73.88  147 89.18  81 28.88  69 44.80 

LT50 [°C] 128 -10.84  - -  - -  - - 

            

Phenology, growth  

and senescence            

Time to germination † 270 11.05  286 11.39  148 48.45  142 45.69 

Time to flowering 141 26.5   123 37.91   74 55.80   67 67.40 

growth rate 143 0.04  142 0.06  18 0.02  15 0.10 

Size at flowering [mm] 141 43.48  123 37.79  74 37.29  67 37.31 

Senescence I ‡ 169 62.49  177 48.88  83 34.18  77 41.49 

Senescence II ‡ 167 92.70  140 84.51  76 91.77  63 89.07 

 

† Assessed at the seedling level 

‡ Binary variable, expressed in % 
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Table S9: Summary of ANOVA on models testing for the effect of species (A. arenicola [A] 

compared to northern [Lyr N] populations, and northern compared to central [Lyr C] A. lyrata 

populations), growth temperature (cold compared to mild [0]) and their interaction on 

individual performance estimates and phenology estimates 

 

    Species   

Growth 

temperature    

Species *  

growth 

temperature 

   

 

Dependent variable N χ²      χ²      χ²     R2m R2c  

Cold tolerance              

Germination 714 1.45   6.25 *  23.90 ***  0.28 0.46 †, ‡ 

Reproductive output 215 14.19 ***  5.21 *  40.26 ***  0.51 0.80 † 

              

Phenology, growth  

and senescence          

 
  

 

Time to germination 418 1.98   401.05 ***  24.51 ***  0.49 0.64 † 

Time to flowering 215 9.39  **   98.39 ***   34.89 ***  0.67 0.87 † 

Size at flowering 215 0.35   0.24   38.70 ***  0.15 0.64 † 

Senescence I 252 33.22 ***  3.70 (*)  0.41   0.66 0.70 †, ‡ 

Senescence II 243 2.25   2.17   7.10 *  0.88 0.90 †, ‡ 

 

Binary variables (‡) were analyzed by models predicting non-zeros on the logit scale. All other 

performance estimates were log10-transformed and assumed to follow Gaussian distributions. Each 

model was optimized with the bobyqa optimizer to improve convergence. Test statistics include the 

χ²-value, and the marginal and conditional R2 of the model. Model fits with significant (positive) 

intercept are indicated by †. χ²-value with P-values < 0.05 are written in bold; significance is 

indicated: (*) P<0.1, * P<0.05, ** P<0.01, *** P<0.001. Results for random effects are not shown. 
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Table S10: Summary of model comparison on models testing for the effect of species (A. 

arenicola [A] compared to northern [Lyr N] populations, and northern compared to central 

[Lyr C] A. lyrata populations), treatment (frost compared to control [0]) and their interaction 

on multiplicative performance, in the mild growth temperature 

 

Model Tested fixed effect DIC ∆i 

Species + treatment + (species*treatment) - 417.16 - 

Treatment + (species*treatment) Species 417.32 -0.16 

Species + (species*treatment) Treatment 417.16 0.00 

Species + treatment  Species * treatment 428.32 -11.16 

 

The dependent variable was multiplicative performance. To test the contribution of each fixed effect 

to the fit of the full model, alternative models excluding each fixed effects were compared to the full 

model, with lower DIC values indicating a better fit. The difference between the full model and the 

others is indicated as Δi. 
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Table S11A: Summary of model comparison on models testing for the effect of species (A. 

arenicola [A] compared to northern [Lyr N] populations, and northern compared to central 

[Lyr C] A. lyrata populations), treatment (frost compared to control [0]) and their interaction 

on multiplicative performance, in the cold growth temperature 

 

Model Tested fixed effect DIC ∆i 

Species + treatment + (species*treatment) - 408.93 - 

Treatment + (species*treatment) Species 408.61 0.32 

Species + (species*treatment) Treatment 409.41 -0.48 

Species + treatment  Species * treatment 418.31 -9.38 

 

The dependent variable was multiplicative performance. To test the contribution of each fixed effect 

to the fit of the full model, alternative models excluding each fixed effects were compared to the full 

model, with lower DIC values indicating a better fit. The difference between the full model and the 

others is indicated as Δi.  
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Table S11B: Summary of multiple comparisons testing for the effect of species (A. arenicola [A] compared to northern [Lyr N] populations, 

and northern compared to central [Lyr C] A. lyrata populations), treatment (frost compared to control [0]) and their interaction on 

multiplicative performance, in the cold growth temperature 

 

    Species                                

  Control  Frost  Treatment (frost vs control)  Species* treatment   

  A vs Lyr N  Lyr N vs C  A vs Lyr N  Lyr N vs C  A  Lyr N  Lyr C  A vs Lyr N  Lyr N vs C  

Process N Mean     Mean     Mean     Mean     Mean   Mean   Mean   Mean     Mean    

Log-normal 372 -0.01     -0.51     0.34     -0.93       0.01    -0.25      0.17     -0.35 *   -0.07  † 

Logistic 372 -1.77     0.01     -0.79     -0.21       0.17    -0.81     -0.58     -0.98     0.75    

 

Multiplicative performance estimates (log10-transformed if >0) were assumed to follow Gaussian distributions with 0-inflation. Therefore, models 

assessed all fixed and random effects for their importance in both the Gaussian process (total reproductive output) and the logistic process (binary 

variable depicting germination combined with survival and the capacity to initiate flowering). The logistic part of the model predicts non-zeros in the 

distribution on the logit scale. Coefficients (means) depict estimated pairwise difference in performance between species within treatment, treatment 

within species, and estimated linear contrast in magnitude of effect of treatment between species. Estimates of coefficients are modes of an MCMC 

sample from the posterior distribution of parameters obtained from a Tukey’s test. Model fits with significant (positive) intercept are indicated by †. 

Estimates with P-values < 0.05 are written in bold; significance is indicated: (*) P<0.1, * P<0.05, ** P<0.01, *** P<0.001. Results for random effects 

are not shown.  
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Table S12: Summary of ANOVA on models testing for the effect of species (A. arenicola [A] 

compared to northern [Lyr N] populations, and northern compared to central [Lyr C] A. lyrata 

populations), treatment (frost compared to control [0]) and their interaction on individual 

performance estimates and phenology estimates, in the mild growth temperature 

 

    

 

Species   Treatment   

Species *  

treatment 

   

 

Dependent variable N  χ²      χ²      χ²     R2m R2c  

Frost tolerance               

Reproductive output 264  12.19 **  8.42 **  14.37 ***  0.50 0.82 † 

               

Frost resistance               

Survival to frost I 348  0.01   0.00   0.14   0.93 0.94 ‡ 

Survival to frost II 315  0.00   0.00   0.00   0.97 0.97 †, ‡ 

Frost damage I 346  0.00   0.00   0.00   0.97 0.97 ‡ 

Frost damage II 315  11.50 **  7.35 **  0.83   0.22 0.24 ‡ 

LT50 128  0.05     -     -     0.00 0.53 † 

               

Phenology, growth  

and senescence  

 

        

 
  

 

Time to flowering 264  8.91  *   52.46 ***    9.47 **  0.67 0.87 † 

Growth rate 285  0.64   0.97   0.52   0.03 0.09 † 

Size at flowering 264  0.40   5.63 *  4.20   0.08 0.57 † 

Senescence I 346  37.74 ***  9.21 **  16.03 ***  0.53 0.56 †, ‡ 

Senescence II 307  4.99 (*)  0.04   5.17 (*)  0.19 0.19 †, ‡ 

 

Binary variables (‡) were analyzed by models predicting non-zeros on the logit scale. All other 

performance estimates were log10-transformed (except LT50) and assumed to follow Gaussian 

distributions. Each model was optimized with the bobyqa optimizer to improve convergence. Test 

statistics include the χ²-value, and the marginal and conditional R2 of the model. Model fits with 

significant (positive) intercept are indicated by †. χ²-value with P-values < 0.05 are written in bold; 

significance is indicated: (*) P<0.1, * P<0.05, ** P<0.01, *** P<0.001. Results for random effects 

are not shown. 
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Table S13A: Summary of multiple comparisons testing for the effect of species (A. arenicola [A] compared to northern [Lyr N] populations, 

and northern compared to central [Lyr C] A. lyrata populations), treatment within species (frost compared to control [0]) and their interaction 

on individual performance estimates and phenology estimates, in the cold growth temperature 

 

     Species                                

   Control  Frost  Treatment (frost vs control)  Species* treatment  

   A vs Lyr N  Lyr N vs C  A vs Lyr N  Lyr N vs C  A  Lyr N  Lyr C  A vs Lyr N  Lyr N vs C  

Dependent variable N  β     β     β     β     β     β     β     β     β    

Frost tolerance                                       

Reproductive output 141  -0.10   -0.51   -0.33   -0.63   -0.21 *  0.01   0.13   -0.22   -0.12  † 

                              

Frost resistance                              

Survival to frost I 290  -0.14   -0.53   -0.40   -1.67   -1.26 *  -1.00   0.14   -0.26   -1.14  †, ‡ 

Survival to frost II 191  1.78   -19.30   0.74   -1.34   -1.01   0.03   -17.64   -1.04   17.67  †, ‡ 

Frost damage I 160  -0.04   0.13   0.08   0.11   20.00   19.90   19.90   0.12   -0.02  ‡ 

Frost damage II 150  -2.70 **  0.53   0.56   -1.64 (*)  2.60 ***  -0.63   1.54   3.23 **  -2.17 (*) †, ‡ 

                              

Phenology, growth  

and senescence  

 

                     
 

  
 

  

Time to flowering 141  0.03     0.11    -0.03     0.15     0.08 **    0.14 ***     0.11 ***    -0.07     0.03  † 

Size at flowering 141  0.12   0.05   0.17   -0.05   -0.03   -0.08   0.02   0.05   -0.10  † 

Senescence I 160  3.31 ***  1.96   0.75   1.38   -1.38 *  1.18   1.76   -2.56 *  -0.58  †, ‡ 

Senescence II 139  1.66   -19.34   -0.52   -0.79   -1.18   1.00   -17.54   -2.18   18.54  †, ‡ 

 

Binary variables (‡) were analyzed by models predicting non-zeros on the logit scale. All other performance estimates were log10-transformed and 

assumed to follow Gaussian distributions. Each model was optimized with the bobyqa optimizer to improve convergence. Coefficients (β) depict 

estimated pairwise difference in performance between species within treatment, treatment within species, and estimated linear contrast in magnitude 

of effect of treatment between species, obtained from a Tukey’s test. Model fits with significant (positive) intercept are indicated by †. Estimates with 

P-values < 0.05 are written in bold; significance is indicated: (*) P<0.1, * P<0.05, ** P<0.01, *** P<0.001. Results for random effects are not shown.  
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Table S13B: Summary of ANOVA on models testing for the effect of species (A. arenicola [A] 

compared to northern [Lyr N] populations, and northern compared to central [Lyr C] A. lyrata 

populations), treatment within species (frost compared to control [0]) and their interaction on 

individual performance estimates and phenology estimates, in the cold growth temperature 

 

    Species   Treatment   

Species * 

treatment 

   

 

Dependent variable N χ²      χ²      χ²      R2m R2c  

Frost tolerance              

Reproductive output 141 9.02 *  6.23 *  11.06 **  0.51 0.72 † 

              

Frost resistance              

Survival to frost I 290 0.36   5.24 *  0.83   0.15 0.15 †, ‡ 

Survival to frost II 191 2.48   1.21   0.58   0.90 0.93 †, ‡ 

Frost damage I 160 0.00   0.00   0.00   0.97 0.97 ‡ 

Frost damage II 150 12.43 **  13.93 ***  9.41 **  0.33 0.33 †, ‡ 

              

Phenology, growth  

and senescence           
  

 

Time to flowering 141 12.0 **    9.43 *    2.78    0.32 0.67 † 

Size at flowering 141 6.39 *  0.69   4.39   0.30 0.54 † 

Senescence I 160 30.59 ***  5.53 *  9.57 **  0.51 0.51 †, ‡ 

Senescence II 139 2.81   1.79   1.97   0.94 0.94 †, ‡ 

 

Binary variables (‡) were analyzed by models predicting non-zeros on the logit scale. All other 

performance estimates were log10-transformed and assumed to follow Gaussian distributions. Each 

model was optimized with the bobyqa optimizer to improve convergence. Test statistics include the 

χ²-value, and the marginal and conditional R2 of the model. Model fits with significant (positive) 

intercept are indicated by †. χ²-value with P-values < 0.05 are written in bold; significance is 

indicated: (*) P<0.1, * P<0.05, ** P<0.01, *** P<0.001. Results for random effects are not shown. 
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Table S14A: Summary of multiple comparisons testing for the effect of species (A. arenicola [A] compared to northern [Lyr N] populations, 

and northern compared to central [Lyr C] A. lyrata populations), growth temperature within species (cold compared to mild [0]) and their 

interaction on individual performance estimates under frost treatment 

 

    Species                     Species *  

Growth temperature 

 

  Mild  Cold  Growth temperature (cold vs mild)   

  A vs Lyr N  Lyr N vs C  A vs Lyr N  Lyr N vs C  A  Lyr N  Lyr C  A vs Lyr N  Lyr N vs C  

Dependent variable N β     β     β     β     β     β     β     β     β    

Survival to frost I 320 0.58     -0.40     -0.48     -1.63     -0.26     0.80     2.03     -1.06     -1.23   † 

Survival to frost II 236 -0.75   -18.38   0.69   -1.65   -0.02   -1.46   -18.20   1.44   16.74  † 

Frost damage I 254 -0.64   0.84   0.03   0.16   -1.20 **  -1.86 **  -1.18 *  0.66   -0.68  † 

Frost damage II 216 0.10   -1.40   0.55   -1.65   -1.74 **  -2.18 **  -1.94 *  0.44   -0.25  † 

 

All performance estimates were binary variables, and were analyzed by models predicting non-zeros on the logit scale. Each model was optimized 

with the bobyqa optimizer to improve convergence. Coefficients (β) depict estimated pairwise difference in performance between species within 

growth temperature, growth temperature within species, and estimated linear contrast in magnitude of effect of growth temperature between species, 

obtained from a Tukey’s test. Model fits with significant (positive) intercept are indicated by †. Estimates with P-values < 0.05 are written in bold; 

significance is indicated: (*) P<0.1, * P<0.05, ** P<0.01, *** P<0.001. Results for random effects are not shown. 
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Table S14B: Summary of ANOVA on model testing for the effect of species (A. arenicola [A] 

compared to northern [Lyr N] populations, and northern compared to central [Lyr C] A. lyrata 

populations), growth temperature within species (cold compared to mild [0]) and their 

interaction on individual performance estimates under frost treatment 

 

    

 

Species   

Growth  

temperature   

Species *  

growth  

temperature 

   

 

Dependent variable N  χ²      χ²      χ²      R2m R2c  

Survival to frost I 320  1.49   0.18   4.49   0.13 0.19 † 

Survival to frost II 236  0.75   0.00   1.46   0.94 0.94 † 

Frost damage I 254  3.62   7.45 **  0.89   0.13 0.14 † 

Frost damage II 216  3.03   10.33 **  0.25   0.26 0.26 † 

 

All performance estimates were binary variables, and were analyzed by models predicting non-zeros 

on the logit scale. Each model was optimized with the bobyqa optimizer to improve convergence. 

Test statistics include the χ²-value, and the marginal and conditional R2 of the model. Model fits with 

significant (positive) intercept are indicated by †. χ²-value with P-values < 0.05 are written in bold; 

significance is indicated: (*) P<0.1, * P<0.05, ** P<0.01, *** P<0.001. Results for random effects 

are not shown. 
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Abstract:  

Recent speciation events in temperate and arctic species have mostly been linked to isolation in 

separate glacial refugia during Quaternary glaciation cycles. Rapid speciation during post-glacial 

range expansion has however received less attention. Here, we assessed whether postmating barriers 

contribute to reproductive isolation between the North American Arabidopsis and its northern selfing 

sister species A. arenicola. Despite sharing a common post-glacial origin, both species show different 

adaptive strategies to cold climates in line with their parapatric distribution, resulting in premating 

isolation due to ecological specialization and geographic distance. We assessed the strength of 

successive intrinsic reproductive barriers by performing within- and between-species crosses on 

populations of both species, and tracking the performance of their offspring raised in climate 

chambers. We also tested for selection against hybrids by tracking offspring performance under 

experimentally manipulated temperature in the climate chambers. All population pairs showed strong 

intrinsic reproductive isolation, with partial support for higher isolation between the most genetically 

distinct populations. Only early acting barriers were stronger between the most related populations, 

hinting toward reinforcing selection. Hybrids also showed lower adaptation on key traits necessary 

to survive in both parental ranges, suggesting selection against hybrids. We conclude that despite 

their recent divergence, both species have rapidly accumulated genetic incompatibilities potentially 

linked to the selfing mating system of A. arenicola and the strong drift in A. lyrata. Furthermore, 

strong reproductive isolation in early stages of divergence could have limited maladaptive geneflow 

from A. lyrta to A. arenicola, allowing it to colonize higher latitudes.  

 

Keywords: Adaptation, Arabidopsis arenicola, Arabidopsis lyrata, extrinsic postmating barriers, 

intrinsic postmating barriers, reproductive isolation, speciation.  
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Introduction 

Contemporary distribution and differentiation patterns of temperate and arctic species’ have 

been strongly impacted by Pleistocene glacial fluctuations (Schluter, 2001; Hewitt, 2000, 2004), 

especially the last glacial cycle (c. 115 000–11 700 years ago) and last glacial maximum (LGM, c. 

23 000–19 000 years ago; Hughes et al., 2013). After LGM, most northern hemisphere plant species 

migrated northwards following the retreat of the ice sheets (Brochmann et al., 2003; Schmitt, 2007), 

benefiting from pre-adaptation (Birks, 2008). Several taxa have also been able to expand their range 

from now temperate climates close to former glacial refugia, up to arctic climates (e.g. Skrede et al., 

2006; Koch et al., 2006; Smickl et al., 2010). Recent divergence between post-glacial lineages has 

mostly been linked to the isolation in distinct glacial refugia (Hewitt, 2000, 2004; e.g. Escudero et 

al., 2010; Smickl et al., 2010; Jia et al., 2011; Chen et al., 2012). However, speciation events also 

occurred in the short evolutionary time since LGM within post-glacial lineages, during their migration 

or range expansion (e.g. Nies and Reusch, 2005; Escudero et al., 2019). Identifying the different 

reproductive barriers reducing gene flow between populations, ultimately leading to speciation 

(Dobzhansky 1937; Mayr 1942; Coyne and Orr 2004), is crucial to gain insight in the role of 

reproductive isolation (RI) in long-range post-glacial expansion.   

Intrinsic reproductive isolation builds up between populations in long term geographical 

isolation or isolation‐by‐distance, due to genetic differences accumulated by drift (Wright, 1943, 

1946). This mechanism is particularly strong in small populations exposed to high drift (e.g., Carson, 

1975; Templeton, 1981; Uyeda, 2009), and could be strengthened by the repeated founder events 

during range expansion (Barton, 1984; Gottlieb, 2004). Along ecological gradient, speciation could 

also result from ecological specialization, where RI emerges due to adaptation to different habitats 

(Schluter, 2000; Doebeli and Dieckmann, 2003; Coyne and Orr, 2004; Rundle and Nosil 2005; Lowry 

et al. 2008a; Nosil, 2012), even under moderate gene flow (Egan et al., 2015). Isolation due to 

divergence in adaptation can in turn lead to intrinsic barriers to gene flow, by differentiation through 
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drift or further divergent adaptation (Funk et al., 2011; Shafer and Wolf, 2013; Wang and Bradburd, 

2014).  

Along environmental gradients, the evolution of strong reproductive barriers could also favor 

adaptation necessary for successful range expansion: gene flow from more central populations, less 

adapted to the environmental conditions experienced by range-edge populations, could be 

maladaptive and constrain range expansion (Haldane 1956; García-Ramos and Kirkpatrick, 1997; 

Kirkpatrick and Barton 1997, reviewed in Lenormand, 2002; Bridle and Vines, 2007; recent theory 

in Polechová and Barton 2015; Polechová 2018). Fitness loss due to maladaptive hybridization can 

act as selection to locally drive the evolution of strong premating barriers, in a process called 

reinforcement (Dobzhansky 1940; Servedio and Noor 2003; Garner et al., 2018), typically observed 

in secondary contact.  

To understand which isolation process acted between two recently diverged species, it is 

crucial to identifying the timing and strength of each reproductive barrier. These are usually classified 

in three categories, depending if they act before or after mating, and if they rely on extrinsic or 

intrinsic factors (Nosil et al., 2005). In plants, premating barriers can include spatial, temporal or 

ecological isolation (reviewed in Lowry et al. 2008a), pollinator or pollen discrimination (Moore and 

Pannell 2011; e.g. Hopkins and Rausher, 2011), or mating system incompatibilities such as selfing 

(Wright, 2013; Hu, 2015). Post mating, intrinsic prezygotic barriers prevent successful fertilization 

through pollen-pistil interactions such as divergences in pollen attraction (Swanson et al., 2004), or 

through gametophytic incompatibilities (Rieseberg and Willis, 2007), while intrinsic postzygotic 

barriers prevent the development or fertility of hybrids (Rice and Hostert, 1933), linked to genetic 

incompatibilities or the breackdown of favorable genetic interactions in both parents (Orr and Turelli, 

2001). Extrinsic postmating barriers prevent the survival or reproduction of hybrids maladapted to 

the different parental environments (Rundle and Nosil, 2005) 

 Here, we investigate the timing and type of reproductive isolation between two recently 

diverged North American plant species: Arabidopsis lyrata subsp. lyrata (L.) and its northern selfing 
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parapatric sister species A. arenicola (Fig 1). Arabidopsis lyrata occurs in the eastern USA and 

southeastern Canada, with a well-defined northern distribution limit in North America, represented 

by the northern shores of the Great Lakes. The contemporary distribution of this species is 

characterized by a fast post-glacial range expansion, originating from two distinct refugia (Griffin 

and Willi, 2014; Willi et al., 2018). Arabidopsis arenicola occurs at higher latitudes, up to the 

subarctic regions of North America and Greenland (Hopkins, 1937; Mulligan, 1996; in Warwick et 

al., 2006). Previous phylogeographic studies suggest A. arenicola diverged during the post-glacial 

range expansion of A. lyrata, from range-edge selfing populations of the northern shores of Lake 

Superior (Schmickl et al., 2010; Hohmann et al., 2014; Novikova et al., 2016; Walden, N., and Willi, 

Y., in prep.). Arabidopsis arenicola then migrated toward higher latitudes, while A. lyrata remained 

constrained around the Great Lakes, expanding eastwards along its northern ecological niche limits 

(Lee-Yaw et al. 2018; Willi et al., 2018). A recent climate chamber study concluded that differences 

in adaptation strategies to cold climates between both species potentially allowed A. arenicola to 

colonize higher latitudes while A. lyrata remained constrained at lower latitudes (Perrier and Willi, 

in prep). This study also suggested that these difference in adaptation could prevent each species from 

colonizing its sister’s current range, hinting toward reproductive isolation by selection against 

immigrants. In addition, both species are likely isolated by premating reproductive barrier due to their 

low geographical overlap and the selfing mating system of A. arenicola.  Here we tested if additional 

reproductive barriers evolved between both species, contributing to their adaptive divergence. We 

addressed the following two questions: (i) Are both species separated by intrinsic reproductive 

barriers limiting hybrid formation, survival or fertility? (ii) Is hybridization maladaptive compared to 

one or both species?  
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Material and methods 

Plant material and crossing experiment 

We selected two populations of A. arenicola: MB1 and QC1, and four populations of both genetic 

lineages of A. lyrata (Table S1, Fig. 1; Willi et al. 2018): From the western genetic lineage that 

presumably gave rise to A. arenicola, we chose the selfing population ON11, also presumed the most 

related population to A. arenicola in our sampling (Walden, N., and Willi, Y., in prep.), and WI1. 

From the eastern genetic lineage, we chose NY5 and MD2, latter presumed to be the most genetically 

distinct from A. arenicola in our sampling due to its position at the leading edge of this lineage (Willi 

et al., 2018). Seeds were collected on supposedly unrelated individuals (seed families) in each 

population between 2007 and 2017, and stored in separate bags for each sampled maternal plant, at 4 

°C under dark and dry conditions.  

To assess the strength of reproductive isolation between the two species, we generated F1 

offspring of each population (within-species crosses, WSC) as well as interspecific F1 hybrids 

(between-species crosses, BSC). In 2016 and 2017, we raised 26 individuals of each seed family per 

population in growth chambers, later transferred in a greenhouse for crossing (see Table S2 for raising 

conditions). We performed non-reciprocal WSC by crossing 12 randomly chosen “mother” plants 

(pollen recipients) with 12 “father” plants (pollen donor) randomly chosen within the remaining 

individuals of the same population, forming 12 cross combinations per population. To generate F1 

hybrids between species, we paired each A. arenicola population with two of the A. lyrata populations 

(detailed in Table S3, Fig. 1). Within population pairs involving QC1, reciprocal BSC were performed 

between randomly chosen pairs of WSC “mother” individuals of both populations. Both individuals 

were used as pollen recipient and pollen donor. MB1 was collected in late summer 2017, after most 

individuals raised for the crossing experiment stopped flowering. Therefore, for population pairs 

involving MB1, reciprocal BSC were performed similarly as for QC1 by using the 12 WSC “mother” 

individuals of MB1, but using 12 F1 WSC offspring of each A. lyrata partner population considered 

as equivalent to F0 individuals, raised in similar conditions as in Table S2. In total we performed 
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crosses on 24 cross combinations per population pair, 12 for each cross direction. Hand pollination 

was performed on emasculated buds to prevent cross- and spontaneous self-pollination, with 

particular attention to not select buds with early opening anthers for individuals of selfing populations. 

Each cross combination was attempted at least 3 times. If WSC cross combinations failed, the father 

was replaced by one of the backup plants (to discard incompatible cross combinations due to this 

species’ self-incompatibility system), while unsuccessful BPC cross combinations were not replaced. 

Each successful WSC and BSC cross combination was repeated to obtain at least five siliques with 

enough healthy seeds for the climate chamber experiment. Siliques were collected when ripe and 

dried two weeks at ambient temperature in the dark. Seeds were then stored at 4 °C under dry and 

dark conditions. 

 

Climate chamber experiment 

To assess selection against hybrids, we raised BSC and WSC offspring in a climate chamber 

experiment originally designed to study the difference in adaptation to cold climates between both 

species (Perrier and Willi, in prep). The climate chamber experiment followed a two-by-two factorial 

design over four climate chambers: we setup each climate chambers to one of the two different growth 

temperatures: mild (20 °C) and cold (12 to 14 °C), simulating conditions close to those experienced 

in nature by A. lyrata and A. arenicola, respectively. These temperatures were derived from 

extrapolations of the average temperatures in late summer (July and August) of the selected 

populations in each species (WorldClim database version 2.0, Fick and Hijmans, 2017; Table S1). 

and one the two frost treatments: frost, simulating recurrent frost events of low intensity or control 

(= no frost), resulting in four distinct temperature-treatment combinations (condition). Three spatial 

blocks were assigned to each condition, and were weekly re-positioned within each climate chamber, 

and between climate chambers simulating the same growth temperature when frost was not applied.  

In total, we obtained 65 WSC cross combinations (10 to 12 per population, Table S3) usable 

for the climate chamber experiment. We only included 36 BSC combinations (6 per reciprocal 
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population pair, randomly chosen within the available combinations) in the climate chamber 

experiment due to high cross and seed failure. Two BSC cross directions of the population pairs were 

not included in the climate chamber experiment as they systematically failed to produce fruits or 

healthy seeds: QC1(mother)xWI1 and ON11(mother)xQC1. Two seeds per cross combination (one 

if less than 24 seeds) were sown in 12 individual pots randomly assigned to one of the twelve replicate 

blocks across conditions, filled with a standard substrate mixture of washed river sand and peat (1:1.5 

sand:peat). Within blocks pots were randomly positionned across two 54-cell propagation trays (BK 

Qualipot, Otelfingen, Switzerland). Across the twelve blocks, a total number of 2088 seeds were 

sown in 1296 pots (Table S3, ((6 WSC populations * 12 seed families) + (6 BSC population pairs * 

6 seed families)) * 4 conditions * 3 blocks). Pots were saturated with water, then placed for 20 days 

at 4 °C in the dark in the four climate chambers for seed stratification. Seedlings were randomly 

thinned to one individual 28 days after germination.  

The climate chamber experiment first started with a phase simulating environmental 

conditions representative of fall, allowing germination and vegetative growth. Seedlings were then 

vernalized (constant 4 °C, low light) to simulate the presence of a snow cover in a second winter 

phase. A third spring phase simulated conditions representative of spring and summer for a second 

period of vegetative growth and reproduction. Nightly frost was simulated during two weeks before 

winter and during six weeks after winter. The length of each phase, the duration, temperatures and 

light conditions of day and night cycles, as well as the setup of frost cycles are summarized in Table 

S4. The experiment lasted for a total of 213 days. Trays were regularly watered for optimal substrate 

moisture. Fertilizer was added starting 87 days after initiation of germination, once every two weeks 

(2% v/v Wuxal universal fertilizer, Hauert Manna Düngerwerke GmbH, Nürnberg, Germany). 

 

Individual performance estimates 

During the crossing experiment, the success of each cross combination was recorded at the level of 

the bud. For at least two fruits per cross combination, the number of healthy looking seeds and the 
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total number of embryos were manually assessed under a binocular. During the climate chamber 

experiment, individual plant performance was tracked at the level of the seedling until thinning, then 

at the level of the individual for the whole length of the experiment (recording rates detailed in Table 

S4). We recorded the day of germination, defined as when a seedling had two fully open cotyledons, 

as well as the day of death over the whole length of the experiment. Variation in rosette damage was 

recorded starting at the first day of the first frost treatment, as visual estimation of the proportion of 

the rosette affected by discoloration, desiccation or necrosis, split into five classes (0 = 0 %, 1 = < 25 

%, 2 = < 50 %, 3 = < 75 %, 4 = > 75 %). After vernalization we estimated reproductive output four 

weeks after the first flower opening of each individual, by counting for each individual the number 

of fruits (populations MB1, ON11 and QC1 were autonomously selfing), pedicels (flowers that did 

not develop into a fruit), open flowers, and flower buds on all inflorescences.  

 

Statistical analyses  

Intrinsic reproductive isolation: To estimate intrinsic postmating reproductive isolation (RI) between 

species (research question i), the main dependent variable was RI based on total multiplicative 

performance (MPtotal), integrating performance from the crossing experiment and from the individuals 

of the climate chamber experiment raised under mild growth temperatures in the control treatment, 

to express total RI. This variable was calculated for each cross combination as the product between 

the ratio of crossing success of each cross combination, the average number of healthy seeds produced 

per fruit, as well as the average F1 germination rate and reproductive output, both averaged at the 

level of the pot, then at the level of the cross combination. Crossing success represents an intrinsic 

prezygotic but postmating barrier, while the other three traits represent successive intrinsic 

postzygotic barriers. All traits are summarized in Table S5. For BSC cross-combinations that 

successfully produced healthy seeds but were not included in the climate chamber experiment, MP 

was calculated using the germination and reproductive output averaged on the level of the population 

pair, with respect to the crossing direction. For each BSC cross combination, RI was calculated using 
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the formula derived from Sobel and Chen (2014): RI = 1 – 2 (H / (H + C)), where RI varies between 

1 (complete isolation), 0 (no RI) and -1 (facilitation of heteorspecific mating). Heterospecific mating 

(H) was based on BSC performance estimates, and conspecific mating (C) on the average 

performance of both parental WSC. To estimate at which life stage the reproductive barriers were 

acting, RI was further calculated on each of the four individual components of MP, averaged at the 

level of the cross combination. All RI estimates were analyzed assuming a normal distribution. In our 

main analysis, the strength of RI was first assessed by testing for each BSC population pair if the 

average RI based on multiplicative performance (RIMPtotal) was significantly different from 0 by 

performing a simple one-sample t-test. We further tested differences in RIMPtotal between each BSC 

population pair by performing a one-way ANOVA, with population pair as fixed effect, followed by 

a Tukey’s multiple comparison test. In this analysis, the direction of crossing was not taken into 

account: reciprocal cross combinations were considered as distinct combinations within a population 

pair. In secondary analyses, similar analytic steps were performed on RI estimations based on each 

individual component of MP. For RI based on reproductive output, the crossing pair MB1xMD2 

(both cross directions) was removed from the analysis due to too low replication number, as few 

hybrids reached this life stage.  

Extrinsic reproductive isolation: To estimate if hybridization was maladaptive (research 

question ii), we focused on the two most defining variables of the different adaptive strategies of both 

species. A previous study analyzing only WSC performance of the same climate chamber experiment 

(Perrier and Willi, in prep) revealed that A. arenicola was more tolerant to cold growing temperatures, 

potentially to extend the growing season in the coldest months, and also more frost tolerant after 

winter under warm growth temperatures, to compensate for the occasional frost events occurring in 

the warm season at high latitudes (Billings, 1974). Arabidopsis arenicola was however less frost 

resistant and tolerant after winter under cold growth temperatures, potentially constraining its survival 

at mid latitudes as early snow melt in the cold season would expose it to frost (Inouye et al., 2003; 

Inouye, 2008). On the contrary, northern populations of A. lyrata were more frost tolerant and 
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resistant to frost after winter under cold growth temperatures, but were less frost tolerant after winter 

under mild growth temperatures, and less tolerant to cold growing temperatures, constraining further 

northwards colonization. Similar to Perrier and Willi (in prep), we assessed tolerance to cold growing 

temperatures and to frost as the capacity to mitigate the negative fitness impact of both stresses 

(Agrawal et al., 2014), and resistance to frost as the capacity to reduce the damage and lethality of 

frost itself (Agrawal et al., 2014). Tolerance was based on multiplicative performance calculated at 

the level of the pot only on the climate chamber experiment (MPCC), as the product between the F1 

germination rate within a pot, and the F1 reproductive output (set to 0 if individuals died or did not 

flower). Frost resistance was based on frost damage, as the binary increase in damage (0 = no 

variation, 1 = increase in damage) recorded during the second frost treatment (all traits are 

summarized in Table S5).  

We assessed variation in tolerance to cold growth temperatures by testing the variation in 

MPCC estimated on the level of the pot in hierarchical mixed-effects models. This analysis considered 

only WSC individuals of A. arenicola and northern A. lyrata, as well as their hybrids. Fixed effects 

were the categorical variables cross type, estimated on three levels: WSC of A. arenicola (A, 

populations MB1 and QC1), or northern A. lyrata populations (L, populations ON11, NY5) and their 

hybrids (H, reciprocal cross-combinations considered as distinct combinations within a population 

pair), as well as growth temperature estimated on two levels:  mild [0] and cold, and their interactions. 

Random effects were the effect of block, crossed with the combination of both parental families 

nested within the combination of both parental populations, and the combination of both parental 

populations. MPCC was 0 inflated, which suggested the modelling of two processes, a Gaussian 

process (for performance values > 0, log10-transformed), and a logistic process (modelling the 

probability of 1, assigned to performance values > 0). We performed these analyses in a Bayesian 

framework, with the package MCMCglmm (Hadfield, 2010, 2019) in R (R Core Team 2019) on 10 

parallel chains (model and prior parametrization detailed in Appendix S6A). The respective 

contribution of each fixed effect was tested by comparing DIC values of the full model against three 
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alternative models, one excluding cross type, one excluding growth temperature, and one with the 

two fixed effect but excluding the interaction. For the fixed effects which removal led to a lower 

model fit, Tukey’s tests were performed using the package emmeans (Lenth, 2019) to test the 

significant difference between each level of the fixed effect. Comparisons among cross-type included 

the difference between each level of cross type within each level of growth temperature. Comparisons 

of growth temperature included the difference between frost and control within each cross-type level. 

For the interaction between cross-type and growth temperature, the contrast targeted the comparison 

of slopes of growth temperature between each level of cross type. 

To assess variation in tolerance to frost, we tested MPCC estimated on the level of the pot in 

similar hierarchical mixed-effects models, with the effect of treatment (control [0] and frost) 

replacing growth conditions. This analysis was performed in parallel in two subsets considering 

individuals grown in mild or cold growth temperatures. Similarly, to assess variation in resistance to 

frost, we tested frost damage in hierarchical mixed-effects models with the same structure as for frost 

tolerance, using restricted maximum likelihood with the packages lme4 (Bates et al., 2015) and 

LmerTest (Kuznetsova et al., 2017; model parametrization in Appendix S6B). Frost damage was 

analyzed on the level of the pot assuming binomial distribution. 

 

 

Results 

Our main analysis testing for the strength of intrinsic reproductive barriers between population pairs 

(not distinguishing cross direction) revealed that all interspecific population pairs displayed 

significantly positive RI based on total multiplicative performance estimates (Table 1), ranging from 

0.51 to 0.88 (0: random mating, 1: total isolation). RIMPtotal showed few significant differences 

between population pairs (results of the ANOVA in Table S7, multiple comparison in Table S8): RI 

of the population pair MB1xMD2 was significantly higher than for the two pairs QC1xON11 and 

MB1xNY5. The secondary analysis testing the strength of RI on each component of MP revealed 
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significant differences between population pairs (Table 1, Fig. 2, Table S8): RI based on crossing 

success was significant in all pairs except MB1xNY5, with the highest RI observed for QC1xON11, 

and RI based on the number of healthy seeds was significant in all pairs except QC1xON11, with the 

highest RI observed for QC1xWI1. Only MB1xMD2 showed significant positive RI based on 

germination rates, with however no significant differences with other population pairs. 

QC1xON11showed significant negative RI on reproductive output, indicating facilitation of hybrids, 

but only significantly lower than QC1xWI1. 

 In our analysis assessing variation in tolerance to cold growth temperatures between both 

species and their hybrids, the model comparison on the hierarchical mixed-effects model analyses 

testing the variation in multiplicative performance based on the climate chamber experiment (MPCC) 

between cross type, growth temperatures (cold vs mild [0]) and their interactions, revealed that only 

the interaction between fixed effects contributed to the fit of the full model (Table S9A), suggesting 

that the effect of growth temperature differed between cross types. The interaction between cross 

type and growth temperature was significantly positive when comparing A. arenicola to northern A. 

lyrata populations in both log-normal and logistic process, and significantly negative when 

comparing hybrids to A. arenicola in the log-normal process, indicating as a generally more positive 

effect of growth temperatures on A. arenicola (Table 2, Fig. 3). This interaction was also significantly 

positive when comparing hybrids to northern A. lyrata population in the logistic process.  

 In our analysis assessing variation in frost tolerance under mild and cold growth temperatures 

between both species and their hybrids, the model comparison on hierarchical mixed-effects model 

analyses testing the variation in MPCC between cross type, treatment (frost vs control [0]) and their 

interactions, revealed that under both growing temperatures, only the interaction between fixed 

effects contributed to the fit of the full model (Table S9B and C). Under mild growth temperatures, 

the interaction between cross type and treatment was significantly positive when comparing A. 

arenicola to northern A. lyrata populations in the log-normal process, and significantly negative when 

comparing hybrids to A. arenicola in the log-normal process, indicating as a generally more positive 
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effect of treatment on A. arenicola under mild growth temperatures (Table 3A, Fig. 3). The opposite 

pattern was observed under cold growing temperatures, indicating as a generally more negative effect 

of treatment on A. arenicola under cold growth temperatures. This interaction was also significantly 

negative when comparing hybrids to northern A. lyrata population in the logistic process. 

 In our analysis assessing variation in frost resistance based on frost damage between both 

species and their hybrids under mild growth temperatures, cross types did not differ within treatments 

(Table 3B, results of the ANOVA in Table S9D). However, the effect of treatment significantly 

increased frost damage for all cross types (Table 3B, Fig. 3). Interactions between fixed effect were 

not significant. Under cold growth temperatures, A. arenicola had lower damage than northern A. 

lyrata in the control treatment (Table 3B) The effect of treatment significantly increased frost damage 

in A. arenicola and in the hybrids (Table 3B, Fig. 3). The interaction between fixed effects revealed 

a significant positive difference when comparing frost damage of A. arenicola and WSC of norther 

A. lyrata, and when comparing hybrids to A. lyrata, suggesting that A. arenicola and the hybrids were 

more positively affected by the effect of treatment under cold growth temperatures than A. lyrata 

(Table 3B, Fig. 3).  

 

 

Discussion 

We found clear patterns of reproductive isolation between the two North American plant species 

Arabidopsis arenicola and A. lyrata subsp. lyrata, in line with their divergent colonization patterns 

and divergent adaptation strategies despite a recent post-glacial common ancestor. In our study, both 

species are mainly separated by reproductive barriers acting early after pollination, reducing the rate 

of successful crosses and the production of healthy seeds. Past these two stages, reproductive isolation 

mainly acted by selection against hybrids, maladapted to both parental habitats. 

Total intrinsic reproductive isolation (RI) between A. arenicola and A. lyrata, estimated on 

multiplicative performance, was significant for all four population pairs, with high levels of RI 
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varying between 0.51 and 0.88. These values are higher than average RI between closely related 

species pairs found in other studies (Lowry et al., 2008a; Baak et al., 2015), but reached similar levels 

than RI between lineages within Campanula americana (Barnard-Kubow et al., 2016; Barnard-

Kubow and Galloway, 2017), a North American species with similar post-glacial range expansion 

history as A. lyrata. In A. lyrata, a previous study involving crosses between natural populations 

within each post-glacial genetic lineage further revealed outbreeding depression in a fourth of the 

tested cross combination (Perrier et al., 2020), linked to genetic incompatibilities such as the 

Dobzhansky–Muller type (Lynch, 1991; Oakley et al., 2015). The occurrence of reproductive barriers 

already within post-glacial lineages imply that RI could rapidly accumulate in our system, supporting 

the strong RI observed between both species in our study.  

 Intrinsic reproductive isolation between both species was also significant for the first three 

successive life stages composing multiplicative performance, but not for reproductive output. RI was 

especially strong for crossing success (on average ca. 0.28, maximum = 0.71) and number of healthy 

seeds (on average ca. 0.64, maximum = 0.75), significant for three out of four population pairs at 

each life stage. Failure at crossing success could result from differentially exclusion of pollen 

phenotypes (Moore and Pannell, 2011), or from gametophytic incompatibilities (Rieseberg and 

Willis, 2007). These incompatibilities are complex and affect the multiple stages between the moment 

pollen attaches to the stigma and the fusion of both gametes, but rely mostly on divergence in 

reproductive signaling such as the guiding of pollen tubes to the ovules (Swanson et al., 2004; Müller, 

2014). In crosses between A. thaliana and the European A. lyrata subsp. petrea, 50% of crosses 

resulted in pollen tube overgrowth, linked to divergence in pollen tube attractants (Escobar-Restrepo 

et al., 2007). Furthermore, large degree of variation in pollen tube reception was found between 

crosses between both species (Müller, 2014), linked to the evolution of species-specific glycosylation 

patterns. Reduction in seed set was also observed in crosses between the closely related Arabidopsis 

species A. lyrata subsp. petrea and A. arenosa, with however higher levels of RI than observed in our 

study: crosses between parents of equal ploidy resulted in only 2% to 10% live seed (Josefsson et al., 
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2006), and crosses between diploid individuals of both species only produced between 0 – 30% of 

normal seeds compared to parents (Burkart-Waco et al., 2012). Lower RI is to be expected in our 

system, as A. thaliana and A. arenosa diverged much earlier (3.8–5.8 million years ago), and 

additionally differ in their chromosome numbers (A. thaliana = 5, A. arenosa = 8). Finally, the levels 

of RI based on germination (ca. 0.14, maximum = 0.35) were on average higher in our study than in 

crosses between the North American and European A. lyrata (Hämälä et al., 2017; recalculated RI = 

ca. 0.02). Crosses between A. lyrata subsp. petrea and A. arenosa also showed reduced germination 

(Muir et al., 2015). The levels of RI based on germination in our study were however lower than 

observed between between post-glacial clades of C. americana (87% reduction in germination, 

Barnard-Kubow et al., 2016). Overall, intrinsic RI was expressed at several life stages, and varied 

strongly between population pairs, suggesting that recent speciation can result from multiple genes 

and incompatibilities (e.g., Levy 1991; Skrede et al. 2008; Barnard-Kubow and Galloway, 2017). 

 The comparison of RI based on multiplicative performance partially suggest that RI was 

stronger in crosses between A. arenicola and the south-eastern population of A. lyrata MD2. This 

pattern is less clear when analyzing individual life stage: Despite showing only significant expression 

in crosses involving MD2, RI based on germination showed no significant differences between 

population pairs. However, crosses involving MD2 consistently showed RI in the first three 

successive barriers, effectively reducing the production of viable hybrids, with only two seed families 

reaching the flowering stage. MD2 could be the most genetically distinct A. lyrata population from 

A. arenicola within our sampling, due to its position at the leading edge of the eastern cluster (Willi 

et al., 2018), separated before LGM from the western cluster which gave rise to A. arenicola. Stronger 

RI based on multiplicative performance in crosses involving MD2, and the expression of RI at three 

out of 4 life stages hints toward a clocklike evolution of multiple genetic incompatibilities in our 

study system, gradually increasing with divergence time (Moyle et al., 2004; Scopece et al., 2007; 

Barnard-Kubow et al., 2016; Barnard-Kubow and Galloway, 2017).  
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On the contrary, crosses involving ON11, the presumed closest relative to A. arenicola in our 

sampling (Walden, N., and Willi, Y., in prep.), showed the strongest RI based on crossing success, 

but showed no RI in subsequent life stages, and even heterosis for reproductive isolation. Stronger RI 

based on pollen-stigma incompatibilities in sympatric populations compared to allopatric populations 

of recently diverged tropical plants was previously interpreted as reinforcement (Kay and Schemske, 

2008). Strong RI acting early after pollination with a population located close to the ancestral 

divergence zone could indicate an initial step of reinforcing selection to prevent maladaptive 

hybridization, while reduced RI in subsequent life stages are concordant with the recent divergence 

time between both populations. While the northward migration of A. arenicola resulted in a parapatric 

distribution with A. lyrata, the patterns of reinforcing selection could have been partially maintained 

due to the selfing mating system of ON11 and A. arenicola, allowing for better storage of kryptic 

genetic variation (Clo et al., 2020). Alternatively, selfing in ON11 could lead to stronger RI by 

facilitating the accumulation of hybrid incompatibilities by genetic drift (Wright et al., 2013). 

Previous results have indeed shown that selfing populations of A. lyrata, ON11 included, are 

subjected to strong genetic drift (Willi et al., 2018). The expression of heterosis in this population 

pair could potentially result from the accumulation of recessive deleterious mutations during range 

expansion (Willi et al., 2018; Perrier et al., 2020), which have been recently shown to result in 

heterosis in secondary contact hybrid zones despite RI (MacPherson et al., 2020).  

The analysis of extrinsic reproductive barriers revealed that hybrids were generally 

maladaptive compared to both adaptive strategies to cold climates of A. arenicola and northern A. 

lyrata populations. The adaptive strategy of A. arenicola has been recently linked to higher tolerance 

to cold growth temperature, and higher frost tolerance based in mild growth temperatures (Perrier and 

Willi, in prep), both based on multiplicative performance. Multiplicative performance was reduced 

by cold growth temperature in the hybrids compared to A. arenicola, but still higher than northern A. 

lyrata populations. Multiplicative performance was also reduced by frost under mild growth 

temperatures in the hybrids to similar levels than northern A. lyrata populations. This results indicate 
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that hybrids between both species could be constrained by the shorter reproductive season and the 

higher frequency of frost events happening in summer at high latitudes (Billings, 1974). The adaptive 

strategy of northern A. lyrata populations was linked to higher frost tolerance under cold growth 

temperatures based on multiplicative performance, and higher resistance under cold growth 

temperatures based on frost damage (Perrier and Willi., in prep). In our study, multiplicative 

performance was also reduced by frost under cold growth temperatures in the hybrids compared to 

northern A. lyrata, but still higher than A. arenicola, while hybrids showed increased frost damage 

under cold growth temperatures than northern A. lyrata populations, to similar levels than A. 

arenicola. These results suggest that hybrids could also be more sensitive to frost event occurring in 

cold conditions after winter, in early spring right after snow melt (Inouye et al., 2003; Inouye, 2008). 

Differences in adaptation has long been suggested as a major contribution to reproductive isolation 

between parapatric species (Rundle and Nosil 2005; Martin and Willis, 2006; Lowry et al. 2008a,b; 

Melo et al. 2014; Cahenzli et al., 2018). However, most studies tend to find that premating extrinsic 

barriers linked to adaptation i.e. selection against immigrants, could play a stronger role than 

postmating extrinsic barriers, i.e. selection against hybrids, latter showing mostly intermediate levels 

of adaptation compared to their parents (Nosil et al., 2005; Martin and Willis, 2006, Lowry et al., 

2008b). Previous results in Arabidopsis tend to show the same patterns: strong local adaptation was 

found between European and north American A. lyrata populations (Leinonen et al., 2011), but 

hybrids of both populations showed intermediate performance in the warmer north American 

transplant site, and even increased performance in the colder European transplant site, latter linked to 

heterosis. Similarly, interspecific hybrids between alpine and lowland European A. lyrata populations 

show mostly intermediate gene expression levels relative to both parents (Videvall et al 2015). Our 

results however suggest that some of the key adaptations in both species, i.e. tolerance to frost under 

mild growth temperatures in A. arenicola and frost resistance under cold growth temperatures in A. 

lyrata, are not additive but could be based on dominance. For these traits the complete breakdown of 

adaptation in hybrids to levels similar to the non-adapted parent could result in strong selection 
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against hybrids. Divergence in adaptation strategies between A. lyrata and A. arenicola could 

therefore contribute both to premating and postmating extrinsic barriers, similarly to results found in 

closely related Dianthus species (Cahenzli et al., 2018), reporting strong premating and postmating 

extrinsic RI linked to specialization to dry rocky habitats.  

Overall, both intrinsic and extrinsic postmating barriers were strong in our study system, in 

contrast with magnitudes of RI found between A. lyrata and other species (Leinonen, 2011; Muir et 

al., 2015; Hämälä et al., 2017), but magnitudes closer to RI between the selfing A. thaliana and A. 

arenosa (Josefsson et al., 2006; Burkart-Waco et al., 2012). The strong RI observed in our study 

despite recent divergence could be in part linked the fast range expansion reported in A. lyrata (Willi 

et al., 2018) and presumed in A. arenicola (Schmickl et al., 2010; Walden, N., and Willi, Y., in prep.), 

as the accumulation of genetic differences through drift is strengthened by the repeated founder events 

during range expansion (Barton, 1984; Gottlieb, 2004). Heightened drift with a longer history of range 

expansion has indeed been reported in A. lyrata (Willi et al., 2018), but the levels of drift in A. 

arenicola are yet unknown. Strong RI could also be linked to the selfing mating system of A. 

arenicola. A selfing mating system is indeed expected to lead to increased genetic drift (Pollak, 1987; 

Nordborg and Donelli, 1997) and mutation accumulation (Lynch et al., 1995; Schultz and Lynch, 

1997). Selfing further provides strong premating isolation (Hu et al., 2015), thereby facilitating the 

accumulation of hybrid incompatibilities by genetic drift, strengthening intrinsic reproductive barriers 

(Wright et al., 2013), as observed between selfing arctic Draba species (Grundt et al., 2006). The 

reduction of gene flow due to selfing has also been suggested to lead to increased local adaptation, 

contributing to budding speciation (Wright et al., 2013; Hodgins and Yeaman, 2019). Selfing could 

have therefore facilitated adaptive divergence in A. arenicola by increasing the strength of extrinsic 

reproductive barriers. 
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Conclusions 

Our study empirically highlights how reproductive isolation can rapidly accumulate during a 

post-glacial speciation event, and potentially contributing to successful post-glacial colonization 

toward subarctic climate. Substantial reproductive isolation was found both in intrinsic and extrinsic 

barriers, in addition of selfing, biogeographical separation and diverging adaptation. The levels of 

intrinsic RI were especially high despite the recent divergence of both species, acting mostly in early 

stages after pollination by reducing the rate of successful crosses and the production of healthy seeds. 

Hybrids generated despite these barriers were however maladapted to both parental habitats, 

suggesting postmating extrinsic RI. Rapidly accumulated RI early in the divergence process between 

both species, potentially facilitated by selfing in A. arenicola and strong drift could have prevented 

maladaptive gene flow, allowing A. arenicola to expand toward higher latitudes.  
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Tables 

 

Table 1: Summary of total and individual contributions to reproductive isolation (RI) per 

population pair 

 

    QC1xON11   QC1xWI1   MB1xNY5   MB1xMD2 

RI barriers   N Mean     N Mean     N Mean     N Mean   

Total RI                 

Multiplicative performance  22 0.52 **  18 0.79 ***  24 0.51 ***  24 0.88 *** 

                 

Individual RI barriers                 

Crossing success  23 0.71 ***  19 0.25 *  24 -0.02   24 0.18 ** 

Number of healthy seeds  10 -0.01   16 0.75 ***  24 0.28 ***  24 0.42 *** 

Germination  6 -0.05   6 -0.02   12 0.26 (*)  12 0.35 * 

Reproductive output   6 -0.45 **  5 0.10   4 -0.07   2 0.10 ‡ 

 

Mean RI was estimated for RI barrier within each population pair (not distinguishing cross direction), 

its significant difference from 0 was tested with a one-sample t-test. For RI based on reproductive 

output, the crossing pair MB1xMD2 (both directions) was not tested due to too low replication 

number, as few hybrids reached this life stage (‡).  RI varied from 1 (complete isolation), to 0 (random 

mating), to −1 (outcrossing is favored). Means with P-values < 0.05 are written in bold; significance 

is indicated: (*) P<0.1, * P<0.05, ** P<0.01, *** P<0.001.  
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Table 2: Summary of multiple comparisons testing for the effect of cross type (within –species crosses (WSC) of A. arenicola [A] compared 

to WSC of northern A. lyrata [L], and hybrids between species [H] compared A. arenicola WSC or northern A. lyrata WSC), growth 

temperature (cold compared to mild [0]) and their interaction on multiplicative performance of individuals raised in the climate chamber 

experiment 

 

      Cross type       

   Control   Frost   
Growth temperature 

(cold vs mild) 
  
Cross type *  

growth temperature  

   A vs L  H vs A  H vs L  A vs L  H vs A  H vs L  A  L  H   A vs L  H vs A  H vs L  

Dependent variable N   M     M     M     M     M     M     M     M     M       M     M     M    

Log-normal 204  -0.65   0.71   0.06   0.09   0.13   0.23   0.18   -0.56   -0.40    0.74 ***  -0.5 ***  0.16   

Logistic 368  -4.81   0.89   -3.93   3.07   -0.01   3.08   -1.34   -9.23   -2.24    7.81 ***  -0.90   7.00 **  

 

Multiplicative performance estimates (log10-transformed if >0) based on the climate chamber experiment were assumed to follow Gaussian 

distributions with 0-inflation. Therefore, models assessed all fixed and random effects for their importance in both the Gaussian process (total 

reproductive output) and the logistic process (binary variable depicting germination combined with survival and the capacity to initiate flowering). 

The logistic part of the model predicts non-zeros in the distribution on the logit scale. Coefficients (M = mean) depict estimated pairwise difference 

in performance between cross type within growth temperature, growth temperature within cross type, and estimated linear contrast in magnitude of 

effect of growth temperature between cross type. Estimates of coefficients are modes of an MCMC sample from the posterior distribution of parameters 

obtained from a Tukey’s test. Model fits with significant (positive) intercept are indicated by †. Estimates with P-values < 0.05 are written in bold; 

significance is indicated: (*) P<0.1, * P<0.05, ** P<0.01, *** P<0.001. Results for random effects are not shown.  
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Table 3A: Summary of multiple comparisons testing for the effect of cross type (within –species crosses (WSC) of A. arenicola [A] compared 

to WSC of northern A. lyrata [L], and hybrids between species [H] compared A. arenicola WSC or northern A. lyrata WSC), treatment (frost 

compared to control [0]) and their interaction on multiplicative performance of individuals raised in the climate chamber experiment under 

mild or cold growth temperatures 

 

      Cross type       

   Control   Frost   Treatment (frost vs control)   Cross type * treatment  

   A vs L  H vs A  H vs L  A vs L  H vs A  H vs L  A  L  H   A vs L  H vs A  H vs L  

Dependent variable N   M     M     M     M     M     M     M     M     M       M     M     M    

Mild growth temperatures                                        

Log-normal 237  -0.71   0.76   0.05   -0.45   0.42   -0.03   0.23   -0.02   -0.10    0.25 **  -0.34 ***  -0.08   

Logistic 368  -3.14   0.55   -2.58   -1.18   0.03   -1.15   -0.62   -2.58   -1.15    1.94 (*)  -0.53   1.43   
                                        

Cold growth temperatures                                        

Log-normal 134  0.04   0.11   0.15   -0.32   0.37   0.06   -0.25   0.10   0.00    -0.26 *  0.24 *  -0.10   

Logistic 368  1.78   -3.52   -0.74   0.79   -4.40   -3.60   -0.82   0.17   -1.70    0.89   -0.89   -1.90 *  
 

Multiplicative performance estimates (log10-transformed if >0) based on the climate chamber experiment were assumed to follow Gaussian 

distributions with 0-inflation. Therefore, models assessed all fixed and random effects for their importance in both the Gaussian process (total 

reproductive output) and the logistic process (binary variable depicting germination combined with survival and the capacity to initiate flowering). 

The logistic part of the model predicts non-zeros in the distribution on the logit scale. Models were performed on two subsets, considering individuals 

raised either under mild or cold growth temperatures. Coefficients (M = mean) depict estimated pairwise difference in performance between cross 

type within treatment, treatment within cross type, and estimated linear contrast in magnitude of effect of treatment between cross type. Estimates of 

coefficients are modes of an MCMC sample from the posterior distribution of parameters obtained from a Tukey’s test. Model fits with significant 

(positive) intercept are indicated by †. Estimates with P-values < 0.05 are written in bold; significance is indicated: (*) P<0.1, * P<0.05, ** P<0.01, 

*** P<0.001. Results for random effects are not shown.  
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Table 3B: Summary of multiple comparisons testing for the effect of cross type (within –species crosses (WSC) of A. arenicola [A] compared 

to WSC of northern A. lyrata [L], and hybrids between species [H] compared A. arenicola WSC or northern A. lyrata WSC), treatment (frost 

compared to control [0]) and their interaction on frost damage of individuals raised in the climate chamber experiment grown under mild or 

cold growth temperatures 

 

      Cross type       

   Control   Frost   Treatment (frost vs control)   Cross type * treatment  

   A vs L  H vs A  H vs L  A vs L  H vs A  H vs L  A  L  H   A vs L  H vs A  H vs L  

Dependent variable N   β     β     β     β     β     β     β     β     β       β     β     β    

Frost damage (mild) 291  -0.20   -0.40   -0.60   0.09   0.12   0.21   1.36 **  1.06 *  1.87 **   0.29   0.52   0.81   

Frost damage (cold) 155   -2.69 **   0.34     -2.35     0.53     0.21     0.73     2.60 ***    -0.62     2.46 ***      3.22 **    -0.14     3.08 *  † 

 

Frost damage was a binary variable, therefore analyzed by a model predicting non-zeros on the logit scale. Models were performed on two subsets, 

considering individuals raised either under mild or cold growth temperatures. Each model was optimized with the bobyqa optimizer to improve 

convergence. Coefficients (β) depict estimated pairwise difference in performance between cross types within each treatment, the effect treatment 

within cross type, and estimated linear contrast in magnitude of the effect of treatment between cross types, obtained from a Tukey’s test. Test statistics 

include the χ²-value, and the marginal and conditional R2 of the model. Model fits with significant (positive) intercept are indicated by †.  χ²-value 

with P-values < 0.05 are written in bold; significance is indicated: (*) P<0.1, * P<0.05, ** P<0.01, *** P<0.001. Results for random effects are not 

shown. 
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Figures 

 

 
 

 

Figure 1: Distribution map of Arabidopsis arenicola and A. lyrata with the 6 populations studied. 

The blue shaded area represents the current range of A. arenicola, and the green shaded area 

represents the North-American range of A. lyrata. Black dots represent the position of each species. 

Population labels consist of the abbreviation for state (USA) or province (Canada) and a number. Red 

arrows represent the crosses performed between species.  
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Figure 2: Cumulative reproductive isolation (RI) of each crossing pair between A. arenicola and 

A. lyrata. RI between pairs of populations (not distinguishing cross direction) of A. arenicola (QC1, 

MB1) and A. lyrata (ON11, WI1, NY5, MD2) was calculated based on four successive stages of 

within- and between-species crosses: crossing success (cyan) of each population pair, number of 

healthy seeds (yellow) produced by each successfully formed fruit, the germination (orange) rate of 

healthy seeds and the reproductive output (red) of successfully germinated individuals. The size of 

each bar represents the average RI of each stage, staked between positive RI (1 = complete isolation) 

and negative RI (-1 = outcrossing is favored). Numbers indicate average RI values significantly 

different from 0 (random mating, horizontal grey dashed line), tested in a one tailed Tuckey’s test. 

Significance is indicated as: (∗) P > 0.05, ∗ P < 0.05, ∗∗ P < 0.01, ∗∗∗ P < 0.001. Test statistics are 

reported in Table 1. 
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Figure 3: Variation in multiplicative performance and frost damage between A. arenicola, A. lyrata and their hybrids under different growth 

temperatures and frost treatments. Individuals of both species and their hybrids were raised in a climate chamber experiment under two growth 

temperatures: mild (20 °C) and cold (12 °C – 14 °C), and subjected to two treatments: no frost (control) and frost. Symbols depict multiplicative 

performance (left and center) or the probability of frost damage (right) averaged at the cross-type level, of within-species crosses of A. arenicola 

(blue squares) and A. lyrata (green circles), as well as their between-species hybrids (red triangle). Multiplicative performance was analyzed on the 

level of the individual modeling two processes: a Gaussian process (values > 0, left) and a logistic process (modelling the probability of values > 0, 

center). Tukey’s tests were performed to test for differences between cross-type (not reported here) growth temperature or treatment, and the 

interaction between cross type and growth temperature or treatment. Horizontal bars represent the 95% confidence interval of the mean of each cross-

type within each growth temperature and treatment combination. The significance of the effect of growth temperature or treatment within cross-type 

is represented by full (P < 0.05) or dashed (P > 0.05) colored lines connecting each species. Significant differences between slopes of effect of growth 

temperature or treatments between each cross-type are indicated by vertical grey lines, with significance indicated as: ∗ P < 0.05, ∗∗ P < 0.01, ∗∗∗ P 

< 0.001 Test statistics are reported in Table 2 and Table 3.  
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Supplementary information 

 

Table S1: Population estimates  

 

Population  

code Species 

Latitude  

[° N] 

Longitude  

[° W] 

Mean temperature  

late summer  

[° C] † Cluster 

Mating  

system 

QC1 A. arenicola 51.43 -57.16 13.45 - selfing 

MB1 A. arenicola 58.78 -94.20 12.00 - selfing 

NY5 A. lyrata  42.66 -74.02 20.20 East outcrossing 

ON11 A. lyrata  48.77 -87.13 14.65 West selfing 

MD2 A. lyrata  38.99 -77.25 24.55 East outcrossing 

WI1 A. lyrata  43.83 -89.72 20.75 West outcrossing 

 

† July and August, WorldClim database version 2.0, Fick and Hijmans, 2017 

 

 

  



 

258 
 

Table S2: Growth conditions of the crossing experiment 

 

Growth Phase Duration [days] 

Temperature  

daytime [°C] 

Temperature  

nighttime [°C] 

Day length  

[h] 

Light intensity  

[µmol m-2 s-1] 

Stratification  12 4 4 0 0 

Germination 22 20 20 8 100 

Growth † 21 22 20 10 140 

Flowering initiation 10 22 20 16 240 

Flowering and crossing 205 22 20 16 240 

 

† Day length and light intensity were gradually increased every three days by 1h and 20 µmol m-2 s-

1, respectively.  
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Table S3: Cross combinations used in the climate chambers 

 

Mother  

population 

Father  

population 

Cross 

Type 

No. of cross 

combinations  

 

No. of seeds sown  

Mild   Cold  

Control Frost   Control Frost 

QC1 QC1 WSC 11  63 63  63 63 

MB1 MB1 WSC 12  72 72  72 72 

NY5 NY5 WSC 12  64 64  64 64 

ON11 ON11 WSC 10  51 51  51 51 

MD2 MD2 WSC 10  52 52  52 52 

WI1 WI1 WSC 10  55 55  55 55 

QC1 ON11 BSC 6  33 33  33 33 

MB1 NY5 BSC 6  24 24  24 24 

MB1 MD2 BSC 6  24 24  24 24 

WI1 QC1 BSC 6  24 24  24 24 

NY5 MB1 BSC 6  30 30  30 30 

MD2 MB1 BSC 6  30 30  30 30 

 

QC1(mother)xWI1 and ON11(mother)xQC1 did not produce viable seeds and where therefore not used in the climate chamber experiment 
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Table S4: Growth conditions and performance tracking of the climate chamber experiment 

Simulated 

season 

 

Duration 

[days] 

Day 

length  

[h] * 

Light  

intensity  

[µmol m-2 s-1] * 

Mild  

temperatures  

[°C]   

Cold 

temperatures  

 [°C]   Weekly record rate 

Growth  

phase day night    day night   

Germination 

and survival Damage 

Bolting and  

Flowering 

Fall Stratification  20 0 0 4 4  4 4  - - - 

 Germination 14 8 120 20 18  12 10  5 - - 

 Growth † 26 10 140 20    18 #  12    10 #  5 5 - 

Winter Acclimation ‡ 7 10 180 20 18  12 10  3 3 - 

 Vernalization 46 8 140 4 4  4 4  1 1 - 

 Acclimation ‡ 4 8 140 4 4  4 4  1 1 - 

Spring and Growth I § 18 10 160 20    18 #  14    12 #  2 1 4 

Summer Growth II § 58 16 220 20 18  14 12  1 1 3 

 Flowering ƾ 46 16 220 20 18  16 14  1 1 1 

* Values at the beginning of each phase         

† Light intensity was gradually increased every six days by 20 µmol m-2 s-1      

‡ Gradual decrease / increase of day length, light intensity, and temperatures      

§ Light intensity was gradually increased every three days by 20 µmol m-2 s-1      

ƾ The whole experiment was first performed in climate chambers (Climecab 1400, Kälte 3000 AG, Landquart, Switzerland), and was transferd for the 

last 46 days into growth chambers (MobyLux GroBanks, CLF Plant Climatics, plantclimatics.de, Wertingen, Deutschland) for logistical reasons. 

Temperatures of the Cold growth temperatures were increased due to technical limitations of this growth system 

# Nightly frost treatment was applied during two weeks before winter and during six weeks after winter. The temperature of night cycles was lowered 

to 4 °C for three nights to allow plant acclimation, then to -4°C for four nights to expose plants to frost. The cooling cycle started one hour after 

beginning of each night phase, and ended one hour before the beginning of the next day phase. Temperature declined gradually to reach the target 

temperature at the centre of the night phase. The target temperature was maintained for one hour, then temperature gradually increased back to the 

night temperature of each condition. This cycle was repeated two times for a total of 14 days before winter, and six times for a total of 42 days after 

winter, followed by an additional 9 nights at 4 °C.  
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Table S5: Description of performance estimates 

 

Performance estimate Level Description   

Multiplicative performance    

MPtotal Seed family Crossing success * number of healthy seeds * germination * reproductive output  

MPclimate chamber (CC) Pot Germination * reproductive output 

   

Crossing experiment   

Crossing success Seed family Rate of crossing success (fruit elongation) over total number of crossing attempts 

Number of healthy seed Fruit Number of healthy looking seeds per successful fruit 

   

Climate chamber experiment    

Germination Seed Binary success of germination, from day 0 to the end of the experiment 

Frost damage  Pot Binary success of increase in damage under frost applied six weeks after vernalization 

Reproductive output Pot Sum of all flower organs counted four weeks after the first flower opening 
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Appendix S6A: Parametrization of priors and hierarchical mixed-effects model analyzis in a 

Bayesian (MCMC) framework, with individual multiplicative performance as dependent 

variable 

 

Priors 

Priors were set to be weak, convergence was improved using parameter expansion. R is the priors for 

the fixed effects, G is the priors for the random effects. 

 

priors.model=list( 

 R=list(V=diag(2), n=1, fix = 2), 

 G=list(G1=list(V=diag(2), n=2, alpha.mu = rep(0,2),alpha.V = diag(2)*25^2), 

     G2=list(V=diag(2), n=4, alpha.mu = rep(0,4),alpha.V = diag(2)*25^2), 

     G3=list(V=diag(2), n=2, alpha.mu = rep(0,2),alpha.V = diag(2)*25^2))) 

 

 

Hierarchical mixed-effects models analyzed in a Bayesian (MCMC) framework 

Multiplicative performance was split into two datasets: the zero_part, a binary transformation of 

performance estimates with zero_part = 1 if performance > 0, else zero_part = 0; and the norm_part 

containing only the log10 transformed performance measures if zero_part = 1. 

 

model = MCMCglmm(cbind(norm_part, zero_part)  

~ trait -1 + trait:cross type * trait: growth temperature, 

          random = ~ us(trait):maternal population  

          + us(trait): maternal population: maternal family  

          + us(trait):block, 

          prior = priors.model, 

          rcov = ~idh(trait):units, 

          family=c('gaussian', 'categorical'), 

          burnin = 5000, thin = 100, nitt = 50000, 

          data=data) 
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Appendix S6B: Parametrization of restricted maximum likelihood based hierarchical mixed-

effect models 

 

Binary dependent variable  

Model = glmer(performance ~ cross type * treatment  

+ (1 | maternal population / maternal family)  

+ (1 | block),  

family = “binomial”, 

control = glmerControl(optimizer = "bobyqa"), 

 data = data) 

 

Dependent variable with log-normal distribution 

Model = lmer(log10(performance) ~ cross type * growth temperature 

+ (1 | maternal population / maternal family)  

+ (1 | block),  

control = lmerControl(optimizer = "bobyqa"),  

 data = data) 
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Table S7: Summary of ANOVA on model testing for variation in total and individual 

contributions to reproductive isolation (RI) between population pairs 

 

      

Population 

pair     

 

RI barriers N   F     R2  

Total RI        

Multiplicative performance 88  4.11 **  0.10 † 

        

Individual RI barriers        

Cross success 90  21.03 ***  0.40 † 

Healthy seeds 73  13.35 ***  0.34  

Germination 36  2.10   0.09  

Reproductive output 17  6.76 *  0.45 † 

 

All dependent variables were assumed to follow Gaussian distributions. Test statistics include the F-

value, and the adjusted R2 of the model. Model fits with significant (positive) intercept are indicated 

by †.  F-value with P-values < 0.05 are written in bold; significance is indicated: (*) P<0.1, * P<0.05, 

** P<0.01, *** P<0.001.  
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Table S8: Summary of multiple comparisons testing for variation in total and individual contributions to reproductive isolation (RI) between 

population pairs 

 

      

QC1xON11 vs 

QC1xWI1   

QC1xON11 vs 

MB1xNY5   

QC1xON11 vs 

MB1xMD2   

QC1xWI1 vs 

MB1xNY5   

QC1xWI1 vs 

MB1xMD2   

MB1xNY5 vs 

MB1xMD2 

 

RI barriers N   β     β     β     β     β     β    

Total RI                     

Multiplicative performance 88  -0.27   0.00   -0.36 *  0.28   -0.09   -0.36 * † 

                     

Individual RI barriers                     

Crossing success 90  0.46 ***  0.73 ***  0.53 ***  0.27 *  0.07   -0.20  † 

Number of healthy seeds 73  -0.76 ***  -0.29 (*)  -0.43 **  0.47 ***  0.33 *  -0.14   

Germination 36  -0.03   -0.31   -0.41   -0.28   -0.38   -0.10   

Reproductive output  17  -0.55 **  -0.38 (*)  ‡   0.17   ‡   ‡  † 

 

All dependent variables were assumed to follow Gaussian distributions. Coefficients (β) depict estimated pairwise difference in reproductive isolation 

between population pairs (not distinguishing cross direction), obtained from a Tukey’s test. For RI based on reproductive output, the crossing pair 

MB1xMD2 (both cross directions) was not included in the analysis due to too low replication number, as few hybrids reached this life stage (‡).  

Model fits with significant (positive) intercept are indicated by †.  Estimates with P-values < 0.05 are written in bold; significance is indicated: (*) 

P<0.1, * P<0.05, ** P<0.01, *** P<0.001.  
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Table S9A: Summary of model comparison on models testing for the effect of cross type (within 

–species crosses of A. arenicola populations [A] and northern A. lyrata populations [L], and their 

between-species hybrids [H]), growth temperature (cold compared to mild [0]) and their 

interaction on multiplicative performance of individuals raised in the climate chamber 

experiment 

 

Model Tested fixed effect DIC ∆i 

Cross type + temperature + (species* temperature) - 315.3 - 

Temperature + (cross type * temperature) Cross type 315.4 -0.1 

Cross type + (cross type * temperature) Temperature 315.7 -0.4 

Cross type + temperature Cross type * temperature 397.3 -82.0 

 

The dependent variable was multiplicative performance based on the climate chamber experiment. 

To test the contribution of each fixed effect to the fit of the full model, alternative models excluding 

each fixed effects were compared to the full model, with lower DIC values indicating a better fit. The 

difference between the full model and the others is indicated as Δi. 
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Table S9B: Summary of model comparison on models testing for the effect of cross type (within 

–species crosses of A. arenicola populations [A] and northern A. lyrata populations [L], and their 

between-species hybrids [H]), treatment (frost compared to control [0]) and their interaction 

on multiplicative performance of individuals raised in the climate chamber experiment, in the 

mild growth temperature 

 

Model Tested fixed effect DIC ∆i 

Cross type + treatment + (species* treatment) - 394.8 - 

Treatment + (cross type * treatment) Cross type 394.5 0.3 

Cross type + (cross type * treatment) Treatment 394.7 0.1 

Cross type + treatment Cross type * treatment 406.0 -11.2 

 

The dependent variable was multiplicative performance based on the climate chamber experiment. 

To test the contribution of each fixed effect to the fit of the full model, alternative models excluding 

each fixed effects were compared to the full model, with lower DIC values indicating a better fit. The 

difference between the full model and the others is indicated as Δi. 
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Table S9C: Summary of model comparison on models testing for the effect of cross type (within 

–species crosses of A. arenicola populations [A] and northern A. lyrata populations [L], and their 

between-species hybrids [H]), treatment (frost compared to control [0]) and their interaction 

on multiplicative performance of individuals raised in the climate chamber experiment, in the 

cold growth temperature 

 

Model Tested fixed effect DIC ∆i 

Cross type + treatment + (species* treatment) - 389.4 - 

Treatment + (cross type * treatment) Cross type 389.4 0.0 

Cross type + (cross type * treatment) Treatment 389.6 -0.2 

Cross type + treatment Cross type * treatment 395.3 -5.9 

 

The dependent variable was multiplicative performance based on the climate chamber experiment. 

To test the contribution of each fixed effect to the fit of the full model, alternative models excluding 

each fixed effects were compared to the full model, with lower DIC values indicating a better fit. The 

difference between the full model and the others is indicated as Δi. 
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Table S9D: Summary of ANOVA on models testing for the effect of cross type (within –species 

crosses of A. arenicola populations [A] and northern A. lyrata populations [L], and their 

between-species hybrids [H]), treatment (frost compared to control [0]) and their interaction on 

frost damage of individuals grown under mild or cold growth temperatures 

 

      

Cross  

type (CT)   

Treatment 

(T, frost vs control)   CT * T        

Dependent variable N   χ²   χ²   χ²     R2m R2c  

Frost damage (mild)  291  1.82   8.45 **  1.01   0.13 0.14  

Frost damage (cold) 155  13.12 **  14.22 ***  11.24 **  0.32 0.32 † 

 

Frost damage was a binary variable, therefore analyzed by a model predicting non-zeros on the logit 

scale. Models were performed on two subsets, considering individuals raised either under mild or 

cold growth temperatures. Each model was optimized with the bobyqa optimizer to improve 

convergence. Test statistics include the χ²-value, and the marginal and conditional R2 of the model. 

Model fits with significant (positive) intercept are indicated by †.  χ²-value with P-values < 0.05 are 

written in bold; significance is indicated: (*) P<0.1, * P<0.05, ** P<0.01, *** P<0.001. Results for 

random effects are not shown.  
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Conclusions 

In this thesis, I empirically assessed the role of demographic, evolutionary and ecological factors in 

shaping range limits of North American Arabidopsis lyrata subsp lyrata. By performing a crossing 

experiment followed by a transplant experiment across and beyond the distribution of this species, I 

tested the dynamics of the expression of mutational load and local adaptation in small populations at 

range limits. I further assessed the factors conditioning successful post-glacial range expansion by 

testing the differences in adaptive strategy to cold climates and the reproductive isolation between A. 

lyrata and its sister species A. arenicola, latter colonizing much higher latitudes despite both species 

sharing a common post-glacial origin.  

In the first subproject of this thesis, I showed that the expression of mutational load was higher 

in populations with increased genomic estimates of mutational load, with a longer history of range 

expansion or isolation, and a selfing mating system (Chapter 1). Overall, the accumulation of 

mutational load led to a decline of 80% in performance. These findings suggest that mutation 

accumulation as a result of post-glacial range expansion, long-term isolation and a switch to a selfing 

mating system affect performance to magnitudes sufficient to cause range limits, supporting 

prediction from previous simulation studies (Peischl et al., 2013; Peischl and Excoffier, 2015). These 

results are also in line with patterns of mutational load reported on genomic data (Willi et al., 2018), 

and similar phenotypic data from greenhouse or common garden studies (Willi et al., 2018; Koski et 

al., 2019). I further showed that the expression of mutational load increases under environmental 

stress (Chapter 2), as has been suggested for inbreeding depression (Reed et al., 2012). This effect 

was especially strong in populations exposed to warmer climates than at their site of origin. This 

effect was independent of populations’ genomic estimates of mutational load, indicating that small 

populations suffer from two genetic Allee effects: one directly linked to the increase in mutational 

load, and one linked to the increase in the expression of mutational load under adverse environmental 

conditions, independent of the magnitude of load. Climatic conditions immediately beyond this 

species range limits did not trigger this second genetic Allee effect, suggesting this effect was 
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dependent on high stress intensity and could be triggered by extreme climatic events, more frequent 

in unsuitable habitat beyond range limits. Finally, I showed that population performance declines in 

the common garden site beyond the southern range limits of this species, suggesting that its southern 

range limits reflect its ecological niche (Chapter 3). I found a general signature of local adaptation 

to the most niche defining variables in this species, however this signature was reduced in population 

of small size and reduced genomic diversity, suggesting drift contributes in shaping this species 

distribution limits by reducing adaptation in population of small size, mostly located at range limits. 

These findings are in line with previous simulation studies identifying drift as a main factor 

constraining adaptation along environmental gradients (Polechová and Barton, 2015; Polechová, 

2018) 

In the second subproject of this thesis I found that A. lyrata and its northern sister species A. 

arenicola diverged in their adaptive strategies to cold climates (Chapter 4): A. lyrata was more 

tolerant and resistant to frost events in early snow melt in late winter, but less tolerant to cold growth 

temperatures and less tolerant to late frost events in summer. On the contrary, A. arenicola showed 

increased tolerance to cold growth temperatures and higher tolerance to late frost events in summer, 

but reduced frost tolerance and resistance in winter, suggesting that the colonization of A. lyrata 

toward higher latitudes could have been constrained by reduced frost tolerance in summer. I also 

showed that both species were isolated by intrinsic reproductive barriers (Chapter 5), mainly 

preventing successful crossing and the production of viable seeds. In addition, hybridization disrupted 

the adaptation strategies of both species, indicating that intraspecific gene flow could be maladaptive 

in both species’ natural habitats. 

My thesis revealed three factors at play in shaping range limits of A. lyrata. First, the 

expression of mutational load increased toward range limits, leading to a strong decline in 

performance. This expression was also increased under strong environmental stress, which could be 

more frequent beyond range limits. The magnitude of both effects suggests that these might be strong 

enough to constrain further range expansion or isolation at both range edges, with a stronger effect in 
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unsuitable habitats. Second, adaptation to precipitation seemed impaired by drift, especially at the 

southern edge. At the northern edge, populations seemed less affected by conditions immediately 

outside of the niche limits, however further range expansion could have been halted due the adaptive 

strategy to cold climates evolved in northern populations: while this strategy is well suited for mid-

latitudes, it would expose these populations to high frost stress at higher latitudes. Overall, southern 

range limits could be shaped by the accumulation of mutational load, its increased expression under 

degrading (warming) climate, while northern range limits could have been shaped by the 

accumulation of mutational load and maladaptation to climates at higher latitudes. Besides evolving 

a suitable adaptation strategy to subarctic and arctic climate, it remains an open question how A. 

arenicola could escape the negative effects of drift during range expansion. Previous simulation 

studies have predicted that only locally adapted populations can persist under strong expansion load 

(Gilbert et al., 2017), opening new perspective to explore the factors allowing or constraining fast 

post-glacial range expansion toward high latitudes.  

In a broader context, my work reflects the complexity of factors which can play a role in 

shaping species distributions, and which could be acting simultaneously one species. The 

demographic and evolutionary factors shaping the range limits of A. lyrata could apply on many 

species with a history of post-glacial range expansion (Hewitt, 2000, 2004) and a history of small 

population size at range limits (Pironon et al., 2017). However, my results also show that the effect 

of these factors are not absolute, and that under certain conditions species having undergone post-

glacial range expansion can escape the constraints exerted by drift. The results of my thesis therefore 

point toward a greater need of considering the effects of mutational load and the environmental 

dependency of the expression of mutational load in in simulation studies of colonization in empty 

habitats (Polechová and Barton, 2015; Polechová, 2018), and a general integration of demographic 

history and the role of drift in empirical studies in the context of range limits (Willi and Van Buskirk, 

2019).  
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The findings of my thesis also support the call for greater implementation of demographic and 

evolutionary factors in biodiversity conservation and management (Hampe and Petit, 2005; 

Hoffmann et al., 2015): the negative effects of environmental stress generated by the rarefaction of 

suitable habitats through anthropogenic activities, and at large climate change, could be exacerbated 

by the increased expression of mutational load in small and isolated populations exposed to high drift. 

Furthermore, my results raise concern on the overall fate of species under climate change. On the 

short term, the already sensitive small populations at the warmer edge of a species’ distribution 

(Hampe and Petit, 2005) might face the strongest changes in environmental conditions (Lenoir and 

Svenning, 2013), and could go extinct much faster due to increased expression of mutational load and 

lower adaptation. In the long term, further isolation due to habitat degradation could lead to extinction 

at the rear edge, and further colonization could be impeded at the leading edge. If increased genetic 

drift is a common factor shaping range limits, many species could face strong range contractions 

rather than range shifts (Chen et al., 2011; Lenoir and Svenning, 2013) in the next decades. 

Evolutionary and demographic factors are increasingly incorporated in simulation studies predicting 

species distribution dynamics under climate change (Bush et al., 2016; Wang et al., 2018), but the 

environmental dependency of mutational load has yet to be integrated in such studies  
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