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Abstract— This paper presents a completely autonomous
solution to participate in the 2013 International Micro Air
Vehicle Indoor Flight Competition (IMAV2013). Our proposal
is a modular multi-robot swarm architecture, based on the
Robot Operating System (ROS) software framework, where
the only information shared among swarm agents is each
robot’s position. Each swarm agent consists of an AR Drone
2.0 quadrotor connected to a laptop which runs the software
architecture. In order to present a completely visual-based
solution the localization problem is simplified by the usage of
ArUco visual markers. These visual markers are used to sense
and map obstacles and to improve the pose estimation based on
the IMU and optical data flow by means of an Extended Kalman
Filter localization and mapping method. Taking into account
the other swarm agents’ positions a free-collision trajectory for
each drone is generated by using a combination of state of the
art trajectory planning algorithms: probabilistic road maps, a
potential field map algorithm and an A-Star algorithm. The
last element of our autonomous agent is a robust mid-level
controller which executes the generated trajectory commands.
This paper also presents a discussion of the performance of our
architecture on various simulated and experimental flights on a
replica of the IMAV2013 environment. The presented solution
and the performance of the CVG UPM team were awarded
with the First Prize in the Indoors Autonomy Challenge of the
IMAV2013 competition.

I. INTRODUCTION

The motivation of this work is the design of a solution to
participate in the 2013 edition of the International Micro Air
Vehicle Flight Competition (IMAV2013). The IMAV Flight
Competition is the most relevant European competition in the
fields of Autonomous Aerial Robotics and Small Remotely
Piloted Air Systems (sRPAS). Our research group, the Com-
puter Vision Group (CVG), was awarded3 for its performance
in the 2012 edition of the IMAV competition[21] showing
the potential of our group in the development of autonomous
Unmanned Aerial Systems (UAS). The learning experience
obtained from the indoor dynamics competition encouraged
us to keep working in the same direction and also to try a
swarming approach in the 2013 edition. Our motivation for
participating in such competitions is to develop autonomous
systems which can be later modified to perform civilian
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Fig. 1. The presented solution has been designed using AR Drone
2.0 quadrotors, see (a), in a replica of the IMAV2013 indoors challenge
environment where the map and the obstacles were marked using ArUco
markers [2], see (b). This environment, used during experimental flights,
consists of a small window, a big window and 8 poles. The position of the
wall is previously known except for the positions of the windows along it
are unknown. The positions of the 4 corner poles are previously known,
however, the positions of the 4 poles in the middle are unknown. The
windows and poles represent obstacles that must be avoided during flight.
The subfigure (c) shows a experimental flight where one of the drones is
crossing the unknown poles area. The unknown poles are robustly located
on previous laps, where the drone performs laps around the known poles,
ensuring a good estimation of their positions. Our framework also allows
to test partner collision avoidance during experimental flights, as shown in
(d), where a drone is waiting until the path to cross the big window is clear.
The flights shown in (c) and (d) are both explained in detail on Sec. V.
Videos and more information about our experimental flights can be found
in the website http://www.vision4uav.com/?q=node/386 .

applications. The 2013 edition’s rules are significantly dif-
ferent with respect to former edition’s. In IMAV2013 there
was only one indoor competition (see [3]) which requires
a high level of autonomy. The scenario has some fixed and
previously known obstacles (a wall and four fixed poles) and
several obstacles located at unknown positions (two windows
and four pole obstacles). The indoor competition includes
various challenges, including flying through a window, flying
through an obstacle zone, target detection and recognition,
path following and precision landing, among others.

The second motivation for this paper is that there is a
large variety of applications which require a robotic system
to densely navigate within a wide area. Such applications
can benefit from a swarming approach for the required data
gathering of the problem at task, taking benefit from a
multi-robot system. For instance, such an approach could
be applied to security and surveillance tasks of middle sized
areas.

After a deep analysis of the contest characteristics, a
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Fig. 2. Robotic swarm agent software architecture. The architecture is implemented using the Robot Operating System (ROS) framework. The architecture
is modular, where the modules or ROS nodes of each agent are executed on a ground station which commands its corresponding AR Drone via WiFi. Each
white box represents a module, its configuration parameters are written in green. The localization module is implemented using an EKF which fuses the
odometry based estimation with the visual markers feedback. This module broadcasts the estimated pose to the mission and trajectory planning modules,
to the controller module and to the other robotic agents. The hypothalamus module receives the estimated position of the other robots and communicates
it to the trajectory planner.
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Fig. 3. The swarm is composed by identical robotic agents, which consist
of an AR Drone 2.0 and an instance of the software architecture. The
drone is commanded via WiFi from a ground station. The ground stations
can communicate with each other through a Local Area Network (LAN).
The communications between modules and swarm agents is implemented
creating a single ROS network.

vision-based Quadrotor Swarm was selected as the best
option to join the IMAV2013 indoor flight competition.
A swarm composed by a significant number, 3 or more
drones, of relatively simple quadrotors is used to achieve
all navigation missions. Additionally, as we decided to work
with a vision-based swarm, external visual markers are used
to simplify the localization problem. Our swarm is fully
autonomous, and thus, the level of autonomy is categorized
as “Autonomous Mission Control”, requiring a small number
of operators to start and monitor the whole system. In case
something goes wrong, an operator can stop independent
agents of the swarm to prevent further malfunctioning.

The layout of the paper is the following. First, the modules
of our architecture are described in sections II & III. Second,
a discussion about the optimum number of drones that can
be flown simultaneously in the IMAV2013 competition envi-

ronment is presented in section IV. Third, two experimental
flights in a replica of the competition map are presented in
section V. And lastly, the future work and the conclusions
are discussed respectively in the sections VI & VII.

II. SYSTEM DESCRIPTION

The system is composed by a swarm of autonomous
Unmanned Aerial Vehicles (UAVs), which in the case of our
proposal for IMAV2013 are AR Drone 2.0s, see Fig. 1(a).
Each drone is autonomous and can complete a previously
defined navigation mission avoiding obstacles and collisions
with the other drones of the swarm. There is no high-
level intelligence that controls or synchronizes the drones.
Therefore, the system has a “swarming” or cooperative
behavior. All the drones in the swarm share their pose with
the rest, so that the partner detection problem is simplified
and solved.

Each robotic agent is composed of the quadrotor platform
and a ground station, see Fig. 3. The agent runs several soft-
ware modules, depicted in Fig. 2, which communicate using
the Robot Operating System (ROS) software framework, see
[13]. The characteristics of the AR Drone 2.0 are thoroughly
explained in [5]. The ground computer communicates with
the drone via Wi-Fi using the ardrone autonomy ROS pack-
age [1]. On the other side, all drones’ ground computers
are connected through a Local Area Network (LAN) and
communicate using ROS.

III. ARCHITECTURE SOFTWARE MODULES

In this section the main modules of each robotic agent in
the swarm are described. The modules are depicted in fig-
ure 2. The “Pose Estimator” and the “Trajectory Controller”
modules are explained in the following article and Master’s
Thesis [21], [20]. The controller is able to follow yaw com-
mands while executing a trajectory. The “yaw commander”



module, see Fig. 2, calculates de yaw reference depending
on the current swarm agent’s mission. This module could
potentially decide in which direction to look in order to
explore or to get the most localization information from the
environment. These possibilities will be explored in future
work. Previous works of the authors in this architecture are
described in [23].

A. Drone’s ArUco Eye

The localization of the drone in the map is firstly estimated
using the Pose Estimator module. Since this measure has drift
it has to be corrected with absolute measurements. For this
purpose, we use external ArUco visual markers, which are
shown in subfigures 1b & 1c. These visual markers are open-
source and the software library can be downloaded from [2].
This library computes the current 3D pose of the camera with
respect to the ArUco markers that are visible in the current
frame. The visual markers help us solve two problems at the
same time in quite a straight forward manner: the problem
of sensing the various obstacles, which is a very hard task
using only computer vision techniques, and we also avoid the
visual localization problem in a general environment, which
has not been entirely solved yet. A remarkable work where
visual localization is achieved using AR Drones is described
in [11].

B. Drone’s Localization and Mapping

Localization in indoor environments is a challenging task
for UAVs, especially if a low cost and very lightweight
solution is required [18], [22], [15], [12]. In the absence of
GPS and laser sensors, visual approaches are very popular
[22], [15], [12].

In the proposed system, the global localization of each
drone is based on IMU and optical flow data for the pose
estimation, calculated by the Pose Estimator module. How-
ever, this measure has some drift which may be significant,
so it should be corrected with more reliable information from
the environment when available. ArUco visual markers (see
section III-A) are used for this purpose. This library provides
the 3D pose of the camera with respect to each ArUco visual
marker in a simple and convenient manner. The input of
the localization node are hence the pose estimation result
(similar to odometry) and the relative observations of the
ArUco markers, received in terms of ROS messages.

Since the environment can be partially known in advance,
some fixed landmarks are employed. ArUco landmarks with
previously known global poses are attached to the known
poles. Other markers are placed on the wall and the unknown
obstacles. Simple and easy-to-use accessories for a fast
arrangement of the ArUco markers in this environment were
designed and built.

Localization with visual external aids for UAVs has been
recently proposed in other works [22], [15], [12]. The method
presented by Jayatilleke and Zhang [15] requires all the
landmark poses to be known a priori and only works in
limited areas, making use of quite a simple approach without
filtering of any kind. The work by Faig et al. presents an

interesting approach for local relative localization in swarms
of micro UAVs, that requires to keep external markers
always visible. Our method was mainly inspired by the work
by Rudol [22], but our models and formulation are quite
different from those proposed by Conte [6].

We designed and implemented an Extended Kalman Filter
(EKF) that allows the complete 6 DOF pose of the drone
to be corrected by integrating the odometry data and the
information from the visual external markers detection. The
localization method benefits from the existence of known
landmarks, but it also incorporates unknown detected fea-
tures, using a Maximum Incremental Probability approach
for building a map of 6 DOF poses corresponding to ArUco
markers positioned in the environment. Similar methods for
ground mobile robots were developed in previous work by
de la Puente et al., initially based on the observation of 2D
point features with a laser scanner [8] and later based on the
extraction of planar features from 3D point clouds generated
by a tilting laser scanner [10], [9].

In this work, the data association problem does not have
to be addressed, since the ArUco readings provide unique ids
for the observations and the landmarks. This way, loop clo-
sure is facilitated and enhanced robustness can be achieved
with a not very cumbersome algorithm which showed nice
empirical results in our initial tests.

Non linear state and observation models are used. At each
iteration k, the prediction of the pose state x (6 DOF) is
given by:

x̃k = f(x,u)x̂k−1,uk
= x̂k−1 ⊕ u, (1)

where the ⊕ operator corresponds to the composition of
relative transformations in the 6D space. The noise in the
odometry measurements is considered as Gaussian white
noise (as required to apply the EKF), and the odometry
increment u is represented as u ∼ N(û, Q).

The observation model is defined by the following inno-
vation vector for an association of observation oi and map
landmark lj:

hi,i+5 = x̃⊕ oi − lj (2)

The correction of the pose state is obtained by the update
equation:

x̂k = x̃k −Whk (3)

where W is the Kalman gain matrix of the system. The
covariance matrices are updated at each stage of the filter
as required [24].

The environment is assumed to be static except for the
presence of other drones. The accumulation of drift error if
the drone is not able to detect ArUco markers all the time
may require the incorporation of a forgetting mechanism so
that the drone can navigate safely with local maps. In our
tests thus far this has not been necessary due to the addition
of extra ArUco markers over the floor, but this should be
further investigated.

The input parameters of the algorithm (initial pose, covari-
ance values, global poses and ids of the known landmarks)
are read from an XML file, by means of the pugixml library



[16]. The corrected absolute pose of the drone and the list
of global poses of the landmarks belonging to the map are
obtained as output of this module. Other nodes subscribe to
these topics, as shown in Fig. 2.

C. Drone’s obstacle generator

Once the position of the unknown ArUco landmarks is
obtained, they are processed in order to obtain higher level
geometrical features in 2D to be used as obstacles by the
trajectory planner. The map of obstacles is rebuilt at every
iteration.

To do so, some prior information is required. Each of the
obstacles is given a unique id and the ids of the ArUco
markers belonging to it are provided. The default radius
of the poles is known. The poles are modeled with circles
given by the coordinates of their center and their radius
c(xc, yc, r), while the walls are modeled with rectangles
given by the coordinates of the center, the width and the
length R(xc, yc, w, l).

Given the observation of a landmark lj belonging to pole
i, an initial estimate of the circle i is very easily obtained:

(xci , yci) = lj + rdir (4)

with dir = (cos(yaw), sin(yaw)). This initial estimate is
further refined by the mean value of incorporating subsequent
landmarks belonging to the same pole.

The distribution of the ArUcos of the windows has to be
known more precisely. Currently, two different options are
supported: the first solution is to place the ArUco markers
at the corners of each window (with a predefined order) and
the second solution is to place one ArUco marker at each
side of each window and two ArUco markers below each
window (also with a predefined order). The second option
seems to work best due to the fact that the AR Drone presents
a horizontal field of view wider than the vertical field of view.
Basic geometry is applied in order to obtain the rectangle
models of the wall.

D. Drone’s Trajectory Planner and Collision Avoidance

This module computes a free collision 2D trajectory
(horizontal coordinates x and y) to reach the current mission
point.

The module works as follows: a free of obstacles Proba-
bilistic Road Map (PRM) [7] of the 2D map is generated off-
line. The advantage of using a PRM instead of a fixed-cell
decomposition is that you can select the number of nodes
in the graph and their neighborhood. Also, if the robot is
moving through a zone with a lot of obstacles, new nodes
can be added.

Once the free of obstacles graph is created, an A-Star
algorithm [19] searches the path using a potential field
map function as cost function. This potential field map is
computed as a sum of one component that attracts the drone
to the end of the obstacle zone and another component that
repels the drone from any obstacle. The usage of a search
algorithm (A-Star) instead of the potential field map alone
[17], avoids the problem of the local minimum.

Three kinds of obstacles are considered. The first type
of obstacles are the fixed and previously known obstacles
which are set during the module startup and are obstacles and
never change their previously known position. The second
type are the fixed and unknown obstacles that are received
from the obstacle generator whose position could change
over time, depending on how precisely the ArUcos’ pose
is determined by the localization module. The last type are
the unknown and moving obstacles that are other drones and
are only considered in the path planning if they are close to
the drone. Other drones’ positions are received through the
hypothalamus module.

Once the path is calculated using the A-Star algorithm, it
is post-processed in order to obtain a shorter and more direct
path, avoiding the noise produced by moving the robot from
node to node of the PRM. The post-processing is done using
the value of the potential field map. Fig. 4 shows a sample
trajectory obtained by employing the exposed algorithm.
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Fig. 4. Planned trajectory. In black, obstacles; in blue, the PRM; in
magenta, the solution of the A-Star; in red, the post-processed trajectory

When new drones’ poses or new obstacles’ positions are
received, the planner checks if the new obstacles are outside
the planned trajectory and if the drone is following the path.
Otherwise, the trajectory is re-planned.

With this algorithm we solve the problem of the path
planning and the collision avoidance, being able to navigate
safely in the map using the Trajectory Controller module.
An important work in this field is described in [14].

E. Drone’s Mission Planner
The mission planner allows the operator to define a

mission as a set of separate tasks; which are, in turn, fully
described by a set of numeric parameters. The mission
definition requires a xml file where the mission is defined.
It has different available tasks such as: take off, land, hover,
sleep or move.

This module interacts with the trajectory planner module,
the localization module when moving and with the hypotha-
lamus module.



F. Drone’s Hypothalamus

This module implements low-level intelligence such as:
monitoring the state of the other modules of the swarm
agent and presenting a simple interface between the mission
planner and other modules. Some of the commands that
the mission planner can achieve through the hypothalamus
module are: setting up the whole system to an active flying
behavior (including the start-up of all other modules and the
trajectory controller); and also simpler commands such as
take-off, land or hover.

This module also implements the communication between
its swarm agent and the rest of the swarm. Currently the
communication is limited to sharing each drone’s current
pose.

IV. SIMULATION RESULTS

This section shows the final result of a series of simu-
lations that were run to determine the maximum number of
drones that could be flown simultaneously on the IMAV2013
competition environment. Taking advantage of the modular-
ity of our architecture, which was eased by the usage of ROS
during design, the simulations were run on most of the actual
software architecture.

In order to run such simulations, we developed an “AR
Drone 2.0 simulator module” and a “Drone’s Aruco Eye
simulator module”:

• The drone simulator is achieved by means of a state
machine that mimics the flying modes of the AR
Drone which include: landed, taking-off, hovering, fly-
ing, landing and emergency. Most of the modes are
substituted by simple behaviors, except for the flying
mode where a dynamic model explained in [20] is used.

• The “Aruco Eye simulator” implementation mimics the
Aruco Eye module’s interface. It implements a simple
set of visibility rules, such as the requirement that
the Aruco has to be in front of the simulated drone
and a range of distances were the visual marker is
considered to be detectable by the software. A part from
these, the “Aruco Eye simulator” just outputs a noisy
measurement of the drone’s pose with respect to the
known visual markers, which position is specified in
the map configuration files.

The simulator modules allow the execution of simulations
with all the rest of the architecture. An image of the
visualization software used to inspect the simulations, or
to interpret he behavior of drones in real flights is shown
in Fig. 5. Then, the rest of the modules are the same
as during flights, and thus can be tested and debugged
without preparing experimental flights. Two examples of this
simulations, where 5 drones fly in a simulated replica of
the IMAV2013 environment are shown in Figs. 6 & 7. In
both simulations all the drones were able to accomplish the
mission successfully, the small number of conflicts during
execution was achieved by timing the launch of the drones
to one launch about every 15 seconds. The conflicts during
navigation where a drone had to avoid another one are easily

Fig. 5. Visualization in Rviz of a simulated flight of 5 drone in a replica of
the IMAV2013 environment. Drone axes: red x axis, green y axis and blue
z axis. The blue cylinders represent the map columns, the blue rectangles
represent the wall and its windows, and the green grid represents the floor.
The red line shows the current planned trajectory for the selected drone and
the red dot is the current mission point.

perceived, because they stand out from the normal execution
of the mission

A second capability of these simulations is that they
allow to estimate the limits of our swarm solution, except
for actual flight dynamics, measurement noise and other
problems related to real flights. In order to determine the
maximum number of drones that could simultaneously fly
in the Indoors Autonomy Challenge, a set of simulations
on a replica of the IMAV2013 environment was realized.
Two of such simulations with a swarm of five drone are
shown in Figs. 6 & 7. In order to interpret these figures, the
modules specifications have to be taken into account, which
are described in the Arhictecture Software Modules section
(Sec. II). From them, the overall expected behavior of the
drones is:

• Each drone follows a sequence of waypoints given by
its mission specification. The mission planner executes
it sequentially.

• During execution, the planner will attempt to find tra-
jectories that are collision-free. If it fails, the drone will
be controlled to stay in the current position.

• If other swarm agents enter the current trajectory, the
planner will detect it and will stop the drone and attempt
to find a collision-free trajectory.

• If another swarm agent is on the current goal waypoint,
the drone is commanded to stay in the current position.
A new trajectory is planned when the goal position is
again free.

This intelligence does not allow to solve every possible
navigation conflict between the swarm agents. However, if
the mission is specified correctly the conflicts will not occur
often. In Figs. 6 & 7, the simulated drones are ordered by
their launch times and their executed trajectories are shown
with lines plots. The mission specification used to run both
simulations is the same that was used during the IMAV2013
competition, which is the following sequence of tasks:
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Fig. 6. Simulated flight where five drones flew simultaneously to perform
navigation tasks in a replica of the IMAV2013 environment. The poles are
plotted as black circles, and the wall is plotted by three black rectangles, with
the two free collision passages represented as windows. The size of the AR
Drone 2.0 is too big for the small window, so all the drones have to cross the
big window. The trajectory executed by each drone is shown as a distinct
line plot, which color and line style are specified in the figure’s legend.
In this simulation, all the drones managed to accomplish their respective
missions. The conflicts during navigation were a drone had to avoid another
one are easily perceived, because they stand out from the normal execution
of the mission. Only two such conflicts occurred during this simulation: the
first one resulted on drone3 making a detour during laps execution when
another drone was traversing the window; and the second one occurred
while drone2 was finishing the crossing of the unknown poles area. A video
of the visualization of this simulated flight can be found in the website
http://www.vision4uav.com/?q=node/386 .

1) take-off and start the whole architecture,
2) move in front of the window and then move to one

corner of the poles area (thus, crossing the big win-
dow),

3) perform laps around the poles area for 5 minutes,
4) cross the poles area moving towards the upper right

corner of the map,
5) move to a final location and land.
6) the laps and the crossing through the unknown poles

area tasks are specified so that all the drones will
probably navigate in the same direction. This mission
specification requirement minimizes the occurrence of
navigation conflicts.
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Fig. 7. Simulated flight where five drones flew simultaneously to perform
navigation tasks in a replica of the IMAV2013 environment. The interpre-
tation of this is the same as for Fig. 6. Again, in this second simulation,
all the drones managed to accomplish their respective missions. The main
difference between both simulations is the number of navigation conflicts
that occurred that occurred during the mission execution.

The laps around the poles area are specified by checkpoints
in the corners and the middle points of the square lap. The
results of the simulations for 1 to 7 seven drones, with the
above described mission specification, are the following:

• 2-4 drones: the drones will usually synchronize during
mission execution solving the conflicts when they occur.

• 5-6 drones: the drones do sometimes enter a conflictive
situation, because of a lack of initial synchronization.
While the time advances, the drones become synchro-
nized and they are able to navigate the laps in a
continuous manner. Two of these simulations are shown
in Figs. 6 & 7. For six drones, the synchronization time
increases due to a higher number of navigation conflicts;
also the crossing through the middle area of the map
caused much more navigation conflicts than in the case
of a five drones simulation.

• 7 drones: once the swarm is synchronized to perform
the laps, the navigation is not continuous. During lap
execution there are only two drones navigating at any
given time, the other 5 drones are staying on their
current positions waiting for their checkpoint to be free.

http://www.vision4uav.com/?q=node/386
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Fig. 8. Experimental flight where three drones flew simultaneously to
perform navigation tasks in a replica of the IMAV2013 environment. The
same flight is shown in Figs. 8 & 9. The poles are plotted as black circles,
and the wall is plotted by three black rectangles, with the two free collision
passages represented as windows. The AR Drone 2.0 is too big for the small
window, so all the drones have to cross the big window. The trajectory
executed by each drone is shown as a distinct line plot, which color and
line style are specified in the figure’s legend. In this experimental flight, all
the drones managed to accomplish their respective missions. No navigation
conflicts occurred thanks to the 15 seconds timing between the launches
of each drone. A video of this flight can be found in the website http:
//www.vision4uav.com/?q=node/386 .

From the previous analysis of the simulations, it was con-
cluded that the optimum number of drones for this mission
is 5. With this swarm size, the drones tend to execute their
individual missions almost with no interruptions, leading to
a maximum score for our swarm solution in the IMAV2013
Indoors Challenge environment.

V. EXPERIMENTAL RESULTS

In this section we describe two experimental flights to
showcase the capabilities of our solution, which was demon-
strated in the IMAV2013 competition. The mission specifica-
tion for all the presented experimental flights is almost iden-
tical to the mission specification described in the Simulation
Results section (see the enumerated sequence of tasks written
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Fig. 9. Experimental flight where three drones flew simultaneously to
perform navigation tasks in a replica of the IMAV2013 environment. The
same flight is shown in Figs. 8 & 9. These subfigures, labeled a-f, are
ordered in time, and each drone’s plots have a different color and line style.
The drones ordered by their launch times are plotted with: (first drone)
green-solid lines, (second) blue-dash dotted lines and (third) red-dashed
lines. The planned trajectory is shown with a thicker width than the actual
executed trajectory. The dotted lines are the current trajectory references at
the end of the plotted time period. The arrows indicate the direction where
the drone is looking in the plotted position. As it is shown the drone is
usually commanded to look at one of the four known corner columns of the
map. (a), (b), (c) and (d) show how the first drone was able to cross the big
window, and then performed laps around the poles. The second and third
drones, initialized 15 and 30 seconds later in (a) and (b), performed the
same navigation missions. The three drones are not synchronized by a high
level intelligence/planner and a timed sequence of take-offs is beneficial
for the overall mission execution. The unknown poles localized by the first
drone are shown in these figures. (e) and (f) show the final stages of the
mission were the drones finish their last lap and, afterwards, they have to
cross the unknown obstacle area. They have to plan and execute an obstacle-
free trajectory through this area. A video of this flight can be found in the
website http://www.vision4uav.com/?q=node/386 .

in Sec. IV). The figures show the IMAV2013 environment in
black. The estimated poses or executed trajectories and the
current planned trajectories of each drone are shown with
line plots.

The image shown in Subfig. 1(c) corresponds to the first
experimental flight, which is shown in Figs. 8 & 9. More
specifically the photo corresponds to the part of the flight
shown between Subfigs. 9(e) & 9(f), when the drones are
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Fig. 10. Experimental flight where three drones flew simultaneously to
perform navigation tasks . These subfigures, labeled a-f, are ordered in time,
and each drone’s plots have a different color and line style. The drones
ordered by their launch times are plotted with: (first drone) red-solid lines
and (second) green-dash dotted lines. The planned trajectory is shown with
a thicker width than the actual executed trajectory. All subplots show how
the first drone is performing laps over time. The second drone is launched
on subfigure (b) has started the mission late. In Subfigs. (c) & (d) the first
drone is blocking the window passage to the second drone, so it has to wait
until the way is clear. The planner detects the first drone as an obstacle
and thus, does not command a trajectory until the first drone is out of the
way. As shown in Subfigs. (e) & (f), when the window passage is clear,
the second drone crosses the window and starts performing laps. A video
of this flight can be found in the website http://www.vision4uav.
com/?q=node/386 .

attempting to cross the unknown poles area. In the exper-
iment, three swarm agents fly simultaneously performing
various navigation tasks in a replica of the IMAV2013
environment. The launch of the drones was timed so that they
performed their respective mission without any navigation
conflicts. In this case all the drones were able to perform
the full mission successfully, including the localization of
the unknown elements of the environment and the obstacle
avoidance tasks. This experiment was designed to showcase
the capability of the swarm agents to fly relatively close
to each other and perform the navigation mission when
they are launched following the nominal schedule for the
realization of the IMAV2013 Indoors Autonomy Challenge.

More details of the execution of this mission can be read on
the caption of the experiment figures.

The second experiment, shown in Fig.10, showcases the
capability of each swarm agent to avoid collisions with
other agents. Since there is no central intelligence in our
swarm architecture, this capability is what allows the swarm
agents to synchronize their navigation around the poles area
and successfully accomplish the mission. A photo of this
experiment is shown in Subfig. 1(d). As shown in Fig.10,
the second drone is launched too late and enters a navigation
conflict when it attempts to traverse the big window, because
at that the time the first drone is performing a lap just in front
of the window. Then, the trajectory planner of the second
drone determines that there is no free-collision path to cross
the window and commands the drone to stay in position.
Finally, when the first drone is no longer on the way, the
second drone can proceed with mission execution when its
planner determines a new collision-free trajectory to traverse
the window. This intelligence is not able to perform well
in every situation, however, the mission was specified so
that the swarm agents would be able to perform the mission
successfully most of the time. For example, as described
in the Simulation Results section (Sec. IV), all the drones
perform laps in the same direction.

Our experiments show that the swarm is able to navigate
in areas with known obstacles, cross windows and navigate
near obstacles. In addition, the swarm agents can cross parts
of the environment where unknown poles were located, more
specifically the middle area of the IMAV2013 environment,
see Figs. 1 & 9. Also, as showcased in the experiment
shown in Fig. 10, the drones know each other’s position,
and they are capable of mutual obstacle avoidance without
the requirement of a high-level synchronization.

VI. FUTURE WORK

Some ways to improve the presented architecture are the
following:

• Design interface modules for other multirotors, which
could carry more sensors other than a front-facing
camera. This modules would have to comply with part
of the interface offered by the AR Drone such as
its flying modes: take-off, taking-off, hovering, flying,
landing, landed and emergency.

• Solve the localization problem using other visual-based
techniques, such as stereo vision, mono-camera SLAM
or SLAM based on the utilization of laser rangefinders.

• Design, implement and test different swarming behav-
iors.

• Design, implement and test more complex mission plan-
ners, which could detect better solutions to navigation
conflicts during mission execution or that could handle
different missions other than pure navigation.

VII. CONCLUSIONS

This paper presented an overview of a whole swarm sys-
tem designed to autonomously complete the Indoors Auton-
omy Challenge of the IMAV2013 competition. The system is
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low-cost -employing Parrot ArDrone 2.0 quadrotors without
any extra sensors- and the deployment and setup are quite
easy and straightforward due to the fact that only a limited
number of known external ArUco visual markers has to be
put in place.

The ArUco markers are used for localization and mapping,
improving the pose estimation obtained from IMU data
and optical flow by means of an EKF based method. The
resulting map of ArUco markers is converted to higher
level 2D geometrical obstacles used by a trajectory planner
combining probabilistic roadmaps, the potential field map
algorithm and the A-Star algorithm. All the drones have
access to the global position of every other drone in the
team. The corresponding obstacles are incorporated to obtain
a safe trajectory. A robust mid-level controller employs the
target global position given by the trajectory planner and the
corrected pose of each drone in order to drive them to their
respective goals, defined by a mission planner module. The
system design and implementation is based on ROS, which
makes code sharing and module reuse easier.

This paper has two main contributions. The first con-
tribution is to present our vision-based quadrotor swarm
solution for the 2013 International Micro Air Vehicle Indoor
Flight Competition, which was awarded with the First Prize
in the Indoors Autonomy Challenge. Our solution allowed
to simplify the complexity of some modules such as the
localization and partner detection capabilities. It was ro-
bust enough to work properly during the competition, but
encountered problems due to its dependency on the WiFi
links of the AR Drones 2.0. The second contribution is that
the presented architecture has been made publicly available
in the website: http://www.vision4uav.com/?q=
quadrotor_stack. The modularity of the architecture
allows to focus on the development of specific functionalities
and test them along with the rest of the architecture. The
authors hope that the public stack will benefit other develop-
ers in their research on swarming behaviors for small UAS
among other topics.
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