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Abstract— In this paper a scalable and flexible Mission Plan-
ning Architecture for real-time mission planning and dynamic
agent-to-task assignment for a swarm of Unmanned Aerial
Vehicles (UAV) is presented. The proposed mission planning
architecture consists of a Global Mission Planner (GMP) which
is responsible of assigning and monitoring different high level
missions through an Agent Mission Planner (AMP), which
is in charge of providing and monitoring each task of the
mission to each UAV in the swarm. The objective of the
proposed architecture is to carry out high level missions such as
autonomous multi-agent exploration, automatic target detection
and recognition, search and rescue, and other different missions
with the ability to dynamically re-adapt the mission in real-time.
The proposed architecture has been evaluated in simulation and
real indoors flights demonstrating its robustness in different
scenarios and its flexibility for real-time mission re-planning
and dynamic agent-to-task assignment.

I. INTRODUCTION

Advances in sensor, computation and communication tech-
nologies have made the Unmanned Aerial Vehicles (UAVs)
indispensable in areas where manned vehicles are too risky
or in hazardous environments where the presence of human
operators is limited, such as exploring areas with radioac-
tivity risks [1], inspecting the interior of an entire building
hit by an earthquake [2], image data acquisition in disaster
areas [3], etc.

In the recent years, and due to its low cost and flexibility,
swarm of UAVs have been increasingly investigated [4],
[5], [6], [7], [8], [9], [10], [11], and utilized for different
type of missions like search and rescue [12], automatic
target detection and recognition [6], [13], [14], hunting a
target employing multiple UAVs [15], and other high level
missions that require the coordination between several UAVs
to perform the tasks in a faster and efficient way. Several
biologically-inspired approaches and strategies have been
proposed for controlling the swarm behavior, such as strate-
gies based on pheromones [6], [4], or using evolutionary
algorithms [5], [7], [4].

The interaction between a swarm of UAVs can be seen as
a multiagent system where several UAVs perform the tasks
with communication and coordination amongst themselves.
Thus, research efforts must aim towards the development of
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versatile and flexible architectures for optimal coordination
of a swarm of robotic agents. Boskovic et al. [7] proposed
a six-layered hierarchical architecture, where the problems
of real-time mission re-planning, and dynamic agent-to-task
assignment were addressed by combining mission planning
using evolutionary algorithms, hybrid automata-based task
execution and biologically-inspired emergent swarm behav-
iors.

Gaudiano et al. [4] proposed a strategy using a Genetic
Algorithm to evolve swarm control parameters, such as the
transition probabilities of a UAV across different modes,
the pheromone decay rate, and the pheromone attraction
parameters of a UAV for search and supression of enemy air
defense missions. Similarly, In Dasgupta [6] the swarming
mechanism for automatic target recognition was based on the
communication mechanism of insects using pheromones as
a positive reinforcement for finding the trail to the target. the
results presented were validated only in simulation scenarios
(AEDGE simulation platform).

In the same line of scope, [5] Lamont et al. proposed a
mission planning system for swarm of UAVs. This system
consisted of a combination of several modules for mission
planning, path planning using multi-objective evolutionary
algorithms for terrain following missions, a genetic vehicle
routing algorithm for vehicle-to-target assignment, and a
swarm behavior module that tries to maintain some tenden-
cies for the agents of the swarm such as remain together,
maintain safe distance from one another, etc. Again, the
proposed approach was tested only in a simulation environ-
ment (SPEEDES simulation framework), showing a limited
dynamic re-planning and scalability.

These biologically-inspired strategies, such as genetic al-
gorithms, present a feasible solution for autonomous mission
planning due to their capacity of avoiding computational
complexity obtaining a solution very close to the optimal
one. However, convergence of this kind of algorithms can
be very slow due to its unguided mutation, making them
less suitable for real-time purposes.

Waharte and Trigoni [12] proposed three strategies for
search and rescue operations, which were studied and eval-
uated based on the time to find the target. In the greedy
heuristics approach, each UAV moves to the neighboring cell
based on the highest belief confidence. In the potential-based
approach attractive and repulsive potentials were created
for navigating through the obstacles present in the scenario
searching for the target. The Partially Observable Markov
Decision Process was studied for creating different observa-



tion models and a set of actions for each set of UAVs. The
results obtained were presented only in simulation cases of
study.

In Wei et al. [9] the problem of dynamic mission planning
was investigated. A centralized-distributed framework based
on a central controller was proposed, being responsible for
the mission assignment to each UAV in the swarm. In order
to monitor the mission, the central controller periodically
sends status inquiries to all UAVs. Unlike the previous frame-
work, we propose a centralized, dynamically distributed and
flexible mission planning architecture based on a Global Mis-
sion Planer (GMP) and an Agent Mission Planner (AMP). In
the proposed architecture, the AMP inquires the GMP only
when needed, e.g the searched target in the mission is found
and a new mission has to be assigned.

In the related works, most of the approaches presented
were only tested in simulation environments with several
assumptions made for particular cases of study. In this paper
a dynamic and flexible architecture is proposed with the aim
of being fully-operative and adaptable to real time constrains.
The proposed architecture has been tested and evaluated
in both simulation as well as in real indoors flights with
different swarm configurations, addressing the problems of
scalability. In addition, several high level missions, such as
Target Detection and Exploration, have been planned for
testing the response of the proposed mission planning archi-
tecture to heterogeneous and dynamic high level missions.

The rest of the paper is structured as follows: Section 2
presents the problem statement and the motivation. In Section
3 the proposed architecture is described. Section 4 reports the
experiments performed in simulated and real scenarios, with
their respective results. And section 5 concludes the paper,
as well as points towards future research directions.

II. PROBLEM STATEMENT AND MOTIVATION

High level missions, such as automatic target detection
and inspection, or autonomous exploration of an area using
a UAV can be very challenging. These challenges increase
significantly in indoor environments where there is no avail-
ability of GPS data for global localization. To efficiently
perform such high level missions with a high level of
autonomy, a robust and flexible architecture is needed. This
architecture has to be composed by several core modules like
a localization module for estimating the pose of the UAV
in the world, a mission planner to assign and monitor the
individual tasks of the mission, a trajectory planner to assign
trajectories with obstacle avoidance, a trajectory controller
to move the UAV along the desired trajectories given by the
trajectory planner, and several modules for error handling
and monitoring, communication and supervision.

The need of such kind of architectures is emphasized for
complex missions that have to be performed in the industry
environment. Missions, such as power line inspection, bridge
inspection, etc., require the use of a complex and coordinated
system for optimizing the resources while completing the
mission. Performing these tasks with only one UAV would
require in most of the cases several attempts of inspection

due to the autonomy of the actual batteries. In these kind of
scenarios the advantages of using a swarm of UAVs can lead
to an efficient management of the resources with the conse-
quent saving of money for the companies. In addition, in
several kind of missions, where the time of accomplishment
is a critical constrain (e.g. search and rescue), a swarm of
UAVs can be very suitable to efficiently perform the required
mission.

In contrast, a swarm of UAVs is a complex system where
the different agents need to be efficiently coordinated. For
this purpose, the effort has to be focused on designing a
scalable and flexible architecture, capable of managing all the
modules of such a complex system. Our previous framework
[11] has all the capabilities for this management, but does not
have a global coordinator capable of managing a multi-robot
swarm of UAVs through the execution of a global mission,
that can be dynamically re-adapted at any moment if some
event occurs (e.g. the searched target has been found).

This paper is an effort in this direction. Thus, based on
all the functionalities of our current architecture, two new
modules have been designed for having a global coordinator
called Global Mission Planner (GMP), which is in charge of
dynamically and efficiently distributing the missions through
all the agents in the swarm, while monitoring the swarm
behavior, and a local coordinator called Agent Mission
Planner (AMP), which is in charge of executing these tasks
with an asynchronous communication with the GMP.

III. SYSTEM ARCHITECTURE

In this section, the proposed architecture is described in
detail. In section III-A, a general overview of the global
architecture is presented. Sections III-B and III-C explain
the functionality of the Mission Planning architecture of the
proposed approach.

A. GENERAL ARCHITECTURE

With the objective of having a fully autonomous flight-
proven swarm of multi-UAV agents, Aerostack1 has been
employed. Aerostack has a fully distributed swarm design
with no-coordination between robotic agents. A full descrip-
tion of Aerostack architecture and its components is out of
the scope of this paper and can be reviewed in [16] and [11].
Using Aerostack, every robotic agent is able to perform a
fully autonomous mission thanks to a set of interrelated and
robust components. Aerostack has a set of available actions
(like take-off, land, hover, move to point, and turn in yaw)
and behaviors (like recognize visual markers) together with
its performance and state, that can be directly used ensuring
a fully autonomous operation.

To robustly implement the proposed GMP, a new meta-
component has been included in Aerostack, called Society
Coordinator, that fully communicates with the rest of the
Robotic Agents and Human Operators (see Figure 1).

1Aerostack webpage: http://www.aerostack.org/ and
Aerostack Github repository: https://github.com/Vision4UAV/
Aerostack

http://www.aerostack.org/
https://github.com/Vision4UAV/Aerostack
https://github.com/Vision4UAV/Aerostack
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Fig. 1: Aerostack architecture diagram with Swarm Mission Coordinator. The Society Coordinator includes the GMP
(surrounded with a red circle) that plans high-level missions and coordinates all the robotic agents. Every Robotic Agent is
able to develop a fully autonomous mission through its AMP (surrounded with a blue circle) and using all its components
(described in [16]). The Human is able to request high-level mission to the system and to monitor its progress.

The Society Coordinator follows Aerostack architecture
design and it has three main components: The Communica-
tion System allows and ensures the communication between
this module and the rest of the robotic agents in the swarm
as well as the human operator. The Supervision System has
the cognitive and self-awareness of the whole Society Coor-
dinator ensuring its correct operation. The GMP, described in
section III-B, is in charge of planning the high-level missions
requested by the user, and the coordination of the whole
society.

In order to ensure the compatibility with the GMP, a new
AMP has been also developed and added to Aerostack that
plans and monitors, task by task, the missions assigned to
every specific agent in the swarm (see section III-C).

B. GLOBAL MISSION PLANNER

In this section the general intelligence of the GMP is
presented. This module of the architecture has been designed
for being able to dynamically manage high level missions,
such as Search and Rescue, Target Detection, Surveillance,
etc, providing a higher level of intelligence in architecture
terms, while being much more easy-to-use for a human
operator. Thus, it receives as input a high level mission
command (e.g. Find Target, Explore, etc) from the human
operator, and the dimensions of the area in which the mission
has to be performed (referred to us as Mission Zone). The
Communication System provides the number of agents in the
swarm, which report their available state to the GMP. Once
the global mission has been established (e.g. Find a Target),
the GMP proceeds according to the following criteria:
• Sample the Mission Zone. The objective of this step is

divide the area in which the mission has to be performed
in several regions. For this purpose a sampling algo-
rithm based on k-means clustering has been utilized.

The procedure consists of randomly distributing points
through the Mission Zone and perform k-means clus-
tering until convergence with the K clusters specified in
the mission.
This is done in two steps, the assignment step in which
each sample in the Mission Zone is assigned to the
closest cluster (Eq. 1), and an update step (Eq. 2), in
which each centroid of each cluster is recalculated based
on the actual members of the cluster. The algorithm
converges when the assignments no longer change,
satisfying (Eq. 3).
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Where C
(t)
i denotes the ith centroid of the cluster at

iteration t, xp is a point belonging to the Mission Zone,
µ
(t)
i is the mean of ith cluster at iteration t, and K is

the total number of clusters to be computed.
As a result of this step, a Voronoi diagram is obtained
(see Fig. 4), in which the centroids of each cluster will
be used by the GMP to build the mission points.

• Generate the mission points. In this step the GMP
calculates the points in the euclidean space that are
going to be visited or explored by the agents in the
swarm. The mission points correspond to the centroids
of each cluster that have been calculated in the previous
step.



• Distribute mission points to the swarm. In this module
resides most of the computation of the GMP. This
module takes as inputs the mission points calculated
in the previous step as well as the takeoff point of each
UAV in the swarm, and generates a list of mission points
per UAV. The calculation criteria for this purpose is
divided into 2 steps:

1) Distribution of the points. Each mission point is
assigned to the closest UAV in the Mission Zone,
according to Eq. 4.

Ui = {Cp : ‖Cp − Ui‖2 ≤ ‖Cp − Uj‖2

∀j, 1 ≤ j ≤ N}
(4)

Where Ui denotes a set of mission points assigned
to the ith agent of the swarm, Cp is the centroid
of cluster p, and N is the total number of UAV
agents in the swarm.

2) Arrangement of mission points based on the pro-
gressive euclidean distances along the path. The
output points from previous step (step 1) are
then sorted for obtaining a feasible path. For this
purpose the following criteria is applied:

1: for i ∈ {1, . . . , N} do
2: for j ∈ {1, . . . , U} do
3: for z = j ∈ {1, . . . , U} do
4: dz = ‖Uij − Uiz‖2
5: end for
6: m = min{d}
7: swap{Uij , Uim}
8: end for
9: end for

Where d is a vector of distances between mission
points. m denotes the index of the minimum ele-
ment in vector d.

• Generate task for each UAV in the swarm. Taking into
account all the mission points assigned to each UAV
in the swarm, the GMP generates different type of
tasks depending on the global high-level mission to be
accomplished, such as:

– Takeoff. This task consists of performing the transi-
tion from Landed state to Taking-off state, in which
the UAV increments its z coordinate.

– Hover. The task of Hover maintains the UAV at the
current pose.

– Move To Point. This kind of task implies the
displacement of the UAV in any of the (x,y,z)
coordinates.

– Turn In Yaw. When this task is scheduled, the UAV
turns only in the yaw angle without changing its (x,
y, z) position.

– Land. The accomplishment of this task implies that
the UAV lands at the current position.

• Generate the Mission to be performed by each UAV
in the swarm. Once the tasks have been generated, the
GMP is in charge of the arrangement of the tasks in

Fig. 2: Mission Planning communication architecture.

the correct order for building a complete mission. As
an illustrative example, giving 2 tasks of MoveToPoint,
a complete mission for a UAV agent in the swarm
could be: {Takoff, Hover, MoveToPoint1, MoveTo-
Point2, Land}.

• Send each Mission generated for each UAV in the
swarm through the Agent Mission Planner.

• Mission re-planning. If some event occurs during the
mission, the GMP has the ability of dynamically change
the global mission in real-time and re-assign it to each
UAV in the swarm. As an example, if the high level



mission of Find Target has to be performed, and if one
agent in the swarm finds the target, a signal of mission
accomplished is sent from the AMP to the GMP, which
breaks the current mission and assigns a new one to each
UAV in the swarm. In the experiments carried out in this
work, and for the Find Target mission, the re-planning
of the mission consists of commanding the UAV that
has found the object to inspect it and send the rest of
UAVs in the swarm to the initial takeoff point.

C. AGENT MISSION PLANNER

The objective of the AMP is to plan and execute the
mission given by the GMP in each UAV agent of the swarm.
The functionality of the AMP proposed in this architecture
is similar to the mission planner present in our previous
architecture [11], the difference being that the AMP gets the
mission dynamically from the GMP whereas in the previous
architecture the user has to manually assign the mission for
each UAV agent using an xml based language.

The AMP is a module with partial knowledge as compared
to the GMP. It does not have any knowledge of what type of
mission it is executing, like whether it is performing a find
target mission or an exploration mission. The AMP acts as
a bridge between a high level mission and execution of the
actions required for the accomplishment of the mission.

After receiving the complete mission from the GMP, the
AMP starts scheduling the tasks of the received mission.
After scheduling the tasks, the AMP starts performing the
given tasks of the mission sequentially. During the execution
of a task the AMP translates the task into an action (e.g.,
takeoff, move to a point, etc.), and requests for this specific
action to the module in the Aerostack called Manager of
Actions. The Manager of Actions in return translates the
requested actions into specific commands for the motion
controllers and activates the processes that are needed for
the performance of the specific task (See Figures 1 and 2 for
more details). The AMP then monitors the task completion
before starting the subsequent task.

The AMP has the ability to simultaneously monitor an
event while performing the mission (e.g. find target). When
an event occurs out of the scope of the task-by-task mission
execution (e.g. target has been found) the AMP instantly
breaks the current mission, requesting the GMP for a new
one, and dynamically re-adapts itself from the current mis-
sion being performed to the new received one.

IV. EXPERIMENTS AND RESULTS

This section begins describing the experimental set-up
that has been conducted in order to evaluate and test the
behavior of the proposed Mission Planning architecture in
concordance with the general architecture of our framework
presented in Section III-A. Subsequently, the experimental
methodology is presented, in which we explain the experi-
ments that have been carried out in order to test the different
high level missions commanded from the GMP, both in
simulation as well as in real indoors flights (see Table I).

TABLE I: Experiment Set performed for real and simulated
flights.

Mission Map Size (m2) Type of flight # UAVs # Obs.
Find Target 9x10 Real & Sim. 2 6
Find Target 20x20 Simulated 4 11

Explore 20x30 Simulated 6 12

(a) Picture of the real flight scenario.
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(b) Trajectories performed by the 2 UAV agents.

Fig. 3: Real flight experiment performed in 9× 10m2 map.

A. Experimental Set-up

In this section, the experimental set-up that has been
utilized for real and simulated flights is described in detail. In
both cases, several computers have been used for processing
all the software architecture running during flights. The
software used in the proposed architecture is built in C++,
under the standard C++11, using ROS (Robot Operating
System) [17] as the communication framework between the
different components in the architecture.

1) Real Flights: A real flight has been conducted in
order to test and evaluate the proposed architecture. For this
purpose, a flying area of 9 × 10 m2 inside a building has
been prepared (Fig. 3).

Using the Mission Zone presented in Figure 3, several
flights have been conducted using two UAVs. The UAV
platform selected for real flight experiments is the ArDrone



(a) Voronoi sampling regions in 9× 10m2 map (b) Voronoi sampling regions in 20× 20m2 map (c) Voronoi sampling regions in
20× 30m2 map
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(d) Trajectories performed by the 2 UAV agents in
the 9× 10m2 map
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(e) Trajectories performed by the 4 UAV agents in the
20× 20m2 map
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(f) Trajectories performed by the 6 UAV
agents in the 20× 30m2 map

Fig. 4: Simulation results obtained in the different experiments conducted. (a), (b), (c), Voronoi regions generated from
sampling the Mission Zone. “X” white marks correspond to the centroids of the clusters that will be used as mission points.
Figures (d), (e), (f), correspond to the trajectories generated for the different agents in the swarm while completing their
respective missions. Green triangles depict the takeoff point of the different UAVs in the swarm. Red squares represent the
obstacles.

2.0, which provides a low-cost and robust platform for testing
purposes.

For localization and pose estimation purposes, square
fiducial markers (also known as Augmented Reality Markers)
named as ArUco [18] have been utilized. This markers
provide a robust and real-time pose estimation, that is used in
the proposed experiments for navigation inside the Mission
Zone and obstacle avoidance.

Inside the Mission Zone two kind of objects are presented:
• Landmarks. These objects are arranged around the

perimeter of the Mission Zone, and are composed by
2 visual markers. The purpose of the landmarks is to
help the UAV in the localization inside the map (Fig 3a
grey objects).

• Obstacles. These objects correspond to cylindrical ob-
jects of size 20cm of radius, and can be arranged at

any position in the map (Fig 3a. brown objects). These
obstacles are labeled by 4 visual markers.

Due to the limitation in space and number of UAVs, a swarm
of only 2 UAV agents has been utilized in the real flights for
a map of 9× 10 m2.

2) Simulated Flights: As mentioned above, due to the
limitation of resources in terms of number of UAVs avail-
able, only real flights using a swarm of 2 agents were
performed. Consequently, and with the purpose of evaluating
the capability and flexibility of the proposed architecture,
more experiments have been conducted varying the size
of the Mission Zone, number of obstacles present in the
Mission Zone, number of UAV agents that conform the
swarm (Table I), and the type of high level mission that has
to be conducted.

In this case, the simulator present in AeroStack archi-



tecture has been utilized for simulating the autopilot and
mid-level controller of the UAV, as well as the sensors and
environment, using the 3D visualization tool for ROS called
Rviz.

B. Experimental Methodology and Results

The experimental methodology proposed in this work has
been thought for increasing the difficulty in each consecutive
experiment, by means of modifying the size of the Mission
Zone, the number of UAVs that conform the swarm, and the
number of obstacles present in the Mission Zone (Table I).
Several specific high-level Missions, such as Find Target or
Explore, have been planned and simulated using the proposed
experimental set-up of subsection IV-A. These High Level
missions consists of:
• Find Target. In this type of mission the only input to

the GMP is the high level command of FIND TARGET,
given by the human operator. The objective of this
mission is to find a predefined object that can be present
in the Mission Zone. In the experiments conducted, an
ArUco visual marker has been used as the object to be
found. Thus, once one agent in the swarm detects the
target, the Agent Mission Planner sends the event of
OBJECT FOUND to the GMP, which re-plans the mis-
sion in real-time according to the following procedure:

– The agent that has found the object is commanded
to perform a maneuver for showing the human
operator that the target has been found (e.g. doing a
flip), and is then commanded to inspect the target.
Finally, once the inspection has been completed, the
agent is sent to its initial takeoff point, performing a
landing maneuver when the initial point is reached.

– The rest of agents in the swarm are commanded
to go to their respective initial takeoff points, per-
forming a landing maneuver when the initial point
is reached.

The normal behavior of the agents of the swarm during
the execution of the corresponding mission is as follows:

– Move to point. The agents will move in trajectory
control mode to the commanded 3D point that is
established in the corresponding task.

– Turn in yaw at different angular steps to complete a
360◦ turn, while maintaining the current position in
(x, y, z). This behavior is performed for exploring
the surroundings of the mission point reached by
the UAV.

The mission of Find Target will be finished if the target
is found and all the agents in the swarm have returned
to their respective initial takeoff points, or when the
object is not found and all the mission points have been
reached.
Results of the experiments conducted for the Find
Target mission are shown in Figures 3b 4d, where the
target is situated at point (2, 7, 1.3) and in Figure 4e,
where the target is located at point (3, 15, 1.3). As can
be noticed in the figures, the trajectories are planned for

visiting all the mission points avoiding the obstacles and
searching for the target. In both experiments the target
was found by the UAV agent with the blue trajectory,
and therefore trajectories of going back to the initial
takeoff point were commanded.
In Fig. 3b can be noticed that the 2 agents in the
swarm reached the final mission point almost at the
same time. Thus, the trajectories of going back to the
initial point depart almost from the same “y” coordinate
in the Mission Zone.
Results obtained in simulated flights are shown in
Figures 4a, 4d, for the 9× 10m2 map, and Figures 4b,
4e for the 20× 20m2 map. The trajectories performed
by the UAVs in the swarm during the mission are shown
in Figures 4d, 4e using different colors for each UAV.
In Fig. 4d can be very well noticed that the agent
performing the blue trajectory locates the target in first
place, sending the other agent in the swarm to the
initial point. This agent stopped the mission that it was
performing and went back to the initial point. Similar
behavior can be noticed in Fig. 4e.

• Explore. In this type of mission the only input to the
GMP is the high level command of EXPLORE. The
aim of this mission is to explore all the regions in the
provided Mission Zone. For this purpose, the normal
behavior of the agents of the swarm will be similar as
explained in the Find Target mission, that is, move to
the assigned mission point, turn in yaw to complete a
360◦ turn in each mission point, and perform a landing
maneuver when the last mission point is reached.
The mission will be finished when all the agents in the
swarm have reached the corresponding mission points
assigned by the GMP in the respective missions.
Results of the experiments conducted for the Explore
mission are shown in Figures 4c, 4f. The trajectories
performed by the UAVs in the swarm during the mission
are shown in Figure 4f using different colors for each
UAV. As can be seen in Figure 4f, each UAV agent in the
swarm has been assigned to a certain number of mission
points, and performs the corresponding trajectories for
the accomplishment of the mission.

The simulation environment used for the experiments
presented in this section, is shown in Figure 5. In this Figure
the different trajectories planned by the agents in the swarm,
while performing an obstacle avoidance maneuver, are shown
as red lines. In Figure 5c, the area explored by swarm
is simulated (green color), taking into account the camera
parameters of the ArDrone 2.0 and the size of the ArUco
visual markers.

We refer the reader to a video2, in which the capability of
the proposed approach is demonstrated, showing the results
obtained in the environments explained in section IV-B.

2 A video demonstration of the reported results has been made available
at: https://youtu.be/2EHbb3y3UO8



(a) Simulation environment in 9× 10m2 map (b) Simulation Results in 20× 20m2 map (c) Simulation Results in 20× 30m2 map

Fig. 5: Pictures obtained from the experiments conducted in simulated flights using ROS Rviz. 5a, Simulation environment
for the Find Target mission in a 9× 10m2. 5b, Simulation environment for the Find Target mission in a 20× 20m2. 5c,
Simulation environment for the Explore mission in a 20× 30m2, in which green color represents the explored area that has
been covered by the swarm.

V. CONCLUSIONS AND FUTURE WORK

Collaborative Mission Planning using a swarm of UAVs is
a very challenging task. To achieve the objective of designing
an adaptable and dynamic mission planning architecture that
can operate in real time with the desired scalability, research
efforts must aim towards developing flexible and dynamic
architectures that can be easily adapted for performing
heterogeneous missions, and can be integrated with other
modules in the architecture.

The current paper is an effort in this direction, with em-
phasis on developing a mission planning system architecture
that can provide a robust and fully operative framework for
performing different high level missions, such as Find Target
or Explore.

A dynamic and scalable mission planning architecture for
real flights applications, based on Global Mission Planner
(GMP) and an Agent Mission Planner (AMP), has been
designed in this paper for addressing the problem of having a
global intelligence for UAV swarm coordination. The GMP is
able to translate a high level global mission (e.g. Find Target)
into several low level missions and tasks, and distribute
them into the different UAV agents that conform the swarm,
through the AMP, which is able to schedule and monitor in
real time the tasks that have to be performed by each agent
in the swarm.

In this work, several flights have been conducted in a
real indoors scenario of 9× 10m2, for performing a high
level mission of “Find a Target”, using a swarm of 2 UAVs.
With the aim of testing the scalability and flexibility of the
proposed architecture, simulated flights have been conducted
for performing the high level mission of Find a Target using
a swarm of 4 UAVs in an scenario of 20× 20m2, and a
mission of Exploration using a swarm of 6 UAVs in an
scenario of 20× 30m2. Results obtained during simulated
flights demonstrate the scalability and flexibility of the pro-
posed mission planning architecture for variable number of
UAVs and different kind of scenarios, with variable number
of obstacles.

Immediate future work is focused on the addition of

several functionalities related with the global management
of the behaviors of the swarm in case of failures, such as the
dis-connectivity of the agents of the swarm from the ground
station, failures in Motion Controllers, etc.

Another scope of research is lined towards exploring
several optimization methods considering different direc-
tions, such as optimizing the trajectories that the agents
in the swarm have to perform, optimizing the behavior of
the swarm by means of the time required for performing
the global mission, and optimization approaches based on
the level of autonomy of the agents in the swarm. The
development of the future work proposed above would lead
in a better optimized and more robust architecture.
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