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Abstract

We discuss joint temporal and contemporaneous aggregation of N independent copies of random-

coefficient AR(1) process driven by i.i.d. innovations in the domain of normal attraction of an α-stable

distribution, 0 < α ≤ 2, as both N and the time scale n tend to infinity, possibly at a different rate.

Assuming that the tail distribution function of the random autoregressive coefficient regularly varies at the

unit root with exponent β > 0, we show that, for β < max(α, 1), the joint aggregate displays a variety of

stable and non-stable limit behaviors with stability index depending on α, β and the mutual increase rate

of N and n. The paper extends the results of Pilipauskaitė and Surgailis (2014) from α = 2 to 0 < α < 2.
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1 Introduction

Contemporaneous aggregation of random-coefficient AR(1) (RCAR(1)) processes is an important model for

long-range dependence (LRD, also often referred to as long memory) in econometrics, see Granger [12],

Robinson [33], Zaffaroni [36], Beran et al. [3]. It explains how LRD can arise in a time series of macroeconomic

variable, which is aggregate such as average or sum over a very large number of different micro-variables, each

evolving by AR(1) with a random coefficient. The concentration of the distribution of a random autoregressive

coefficient a at the unit root a = 1, governed by the parameter β > 0 in

P(a > 1− x) ∼ const xβ, x ↓ 0, (1.1)

determines various properties of both the RCAR(1) process and the (limit) aggregate. Particularly, for

1 < β < 2, the RCAR(1) process exhibits LRD in the sense that its autocovariance function is absolutely non-

summable since it decays slowly like t1−β as the time lag t between two observations increases. Furthermore,

the limit of the normalized aggregate of independent RCAR(1) processes is a Gaussian process, which has

the same autocovariance function and can obey a particular case of ARFIMA model, see Granger [12] and

the review paper Leipus et al. [19].
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Statistical inference for RCAR(1) model, especially estimation of the distribution of a random coefficient,

has been extensively studied, see Robinson [33], Beran et al. [2], Celov et al. [4, 5], Jirak [14], Leipus et al. [18,

20, 21]. Most of these papers deal with a panel {Xi(t), i = 1, . . . , N, t = 1, . . . , n} of N independent RCAR(1)

processes observed over the time-period of length n. As N and n increase, possibly at different rate, statistical

(dependence) properties of such a panel are determined by the parameter β in (1.1). Particularly, Pilipauskaitė

and Surgailis [27] proved that, for 1 < β < 2, the distribution of the sample mean (Nn)−1
∑N

i=1

∑n
t=1Xi(t)

is asymptotically normal if N1/β/n → ∞, and it is symmetric β-stable if N1/β/n → 0. In the ‘intermediate’

case N1/β/n → µ ∈ (0,∞), this limit distribution is more complicated and has an integral representation

with respect to (w.r.t.) a certain Poisson random measure. Leipus et al. [22] studied the limit distribution of

sample variance and sample covariances for such an RCAR(1) panel.

All the above works refer to the case of finite-variance innovations, however, the RCAR(1) model with

infinite variance also presents considerable interest since heavy tails are important in financial modeling

(see, e.g. Mikosch [24] and the references therein). Puplinskaitė and Surgailis [31] studied contemporaneous

aggregation of independent copies {Xi(t), t ∈ Z}, i = 1, 2, . . . , of an RCAR(1) process

X(t) = aX(t− 1) + ε(t), t ∈ Z, (1.2)

where {ε(t), t ∈ Z} is a sequence of i.i.d. random variables (r.v.s) belonging to the domain of normal attraction

of an α-stable distribution, 0 < α ≤ 2, and the autoregressive coefficient a ∈ [0, 1) is an r.v. independent of

{ε(t), t ∈ Z} and having a density φ(x), x ∈ [0, 1), such that

φ(x) ∼ ψ1(1− x)β−1, x ↑ 1, (1.3)

for some β > 0 and ψ1 > 0. In [31] it was proved that, for β > 1, the normalized aggregate {N−1/α
∑N

i=1Xi(t),

t ∈ Z} tends (in the sense of weak convergence of finite-dimensional distributions) to the α-stable mixed

moving average process X̄ given by

X̄(t) :=
∑

s≤t

∫

[0,1)
xt−sMs(dx), t ∈ Z, (1.4)

where {Ms(dx), s ∈ Z} are independent copies of an α-stable random measure M(dx) on [0, 1) with control

measure P(a ∈ dx). For 1 < β < α, the limit aggregate X̄ has distributional LRD in the sense that its partial

sums normalized by nH , H := 1− (β − 1)/α ∈ (1/α, 1), tend to an α-stable, H-self-similar process Λα,β with

stationary dependent increments. See Section 2 for its definition.

In this paper we study joint temporal and contemporaneous aggregation of independent copies of RCAR(1)

process in (1.2), driven by i.i.d. α-stable or related infinite variance innovations with a random autoregressive

coefficient as in (1.3). We assume that both the number N of individual processes and the time scale n

tend to infinity, possibly at a different rate and extend the results of Pilipauskaitė and Surgailis [27], who

considered the finite variance case α = 2. It turns out that, similarly to [27], the limit behavior of the joint

aggregate

SN,n(τ) :=

N
∑

i=1

[nτ ]
∑

t=1

Xi(t), τ ≥ 0, (1.5)

depends on β and the mutual increase rate of N,n; moreover, it also depends on α leading to a complex

panorama of the limit distributions. Theorem 2.2 below provides a nearly complete description of these limit

distributions of suitably normalized SN,n = {SN,n(τ), τ ≥ 0} in terms of parameters 0 < α ≤ 2, β > 0 (with
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Parameter region Mutual increase rate of N,n Limit distribution

1 ≤ β < α N1/β/n → ∞ α-stable

0 < β < min(α, 1) N1/β/n → ∞ (αβ)-stable

0 < β < α N1/β/n → 0 β-stable

0 < β < α N1/β/n → µ ∈ (0,∞) ‘intermediate Poisson’

α < β < 1 N1/γβ/n → ∞ (αβ)-stable

α < β < 1 N1/γβ/n → 0 α-stable

α < β < 1 N1/γβ/n → µ ∈ (0,∞) (αβ)-stable + α-stable

β > max(α, 1) arbitrary α-stable

Table 1: Limit distribution of the sample mean or SN,n(1) in (1.5), for 0 < α ≤ 2, β > 0 with γ := 1−α
1−β .

exception of α = β and α < β = 1), as N,n → ∞. In Table 1 we summarize the results of Theorem 2.2 for

the sample mean (Nn)−1SN,n(1), including the cases when the mean of X(t) and SN,n(1) does not exist.

The description in Table 1 is not very precise and needs some comments. Let us first note that the

stable distributions in Table 1 are generally not symmetric and in some cases they are supported on R+ :=

(0,∞). The terminology ‘intermediate Poisson’ (borrowed from [28, 22]) refers to a certain infinitely divisible

distribution written as an integral w.r.t. a Poisson random measure. The sum ‘(αβ)-stable + α-stable’ in

Table 1 indicates the convolution of two distributions with different stability indices (a rather unusual result

in limit theorems of the probability theory).

Intuitively, the results in Table 1 can be explained by discussing the results of Theorem 2.1 which deals with

the iterated limits of suitably normalized SN,n in (1.5) when first N → ∞ and then n→ ∞, or vice versa. The

iterated limits are generally simpler to derive, and the joint limits in Theorem 2.2 can be regarded as some

kind of ‘interpolation’ between the former limits. These limits are generally different in different parameter

regions leading to three parameter regions: (i) 0 < β < α, (ii) 0 < α < β < 1, and (iii) β > max(α, 1) in

Theorem 2.2.

First, let us note that, for β > max(α, 1), our all limits are relatively simple and coincide since SN,n(1)

behaves as a sum κ
1/α
α

∑N
i=1

∑n
t=1 εi(t) of i.i.d. r.v.s in the domain of attraction of an α-stable distribution

with κα := E(1 − a)−α < ∞; see the proof of Theorem 2.2(iii). Hence, we can turn our attention to the

parameter region 0 < β < max(α, 1), where the iterated limits depend on the order and so the joint limits

depend on the mutual rate of N,n→ ∞. Let us note that in the region (i) 0 < β < α the results of Theorems

2.1 and 2.2 naturally extend those of [27] from α = 2 to 0 < α < 2, whereas in the parameter region (ii)

0 < α < β < 1 (which does not occur in [27]) they are less predictable and somewhat surprising.

The iterated limits limn→∞ limN→∞ (relations (2.15), (2.16) of Theorem 2.1) essentially follow from [31]

since they reduce to the α-stable partial sums limit Λα,β of X̄ in (1.4) for 1 < β < α, while for β < 1, the

limit aggregate X̄ is a random (αβ)-stable constant Vα,β, see [31, Proposition 2.3] and the proof of (2.16) of

Theorem 2.1. (However, the case 1 = β < α is more delicate and requires a separate treatment, see the proof

of (2.17).) These observations may explain the two first lines in Table 1. The third line in Table 1 may be

explained by the iterated limit limN→∞ limn→∞ in (2.18), which in turn relies on the (conditional) α-stable

partial sums limit as n→ ∞ in (4.10) of the AR(1) process (1.2) for fixed a ∈ [0, 1). Unconditionally, the last

limits have β-tails and then (2.18) turns out to be a sub-α-stable process with β-stable finite-dimensional

3



distributions in agreement with the third line of Table 1.

Obviously, the iterated limits are not useful to explain the fourth line in Table 1 which is part of Theo-

rem 2.2(i) and one of the main results of this paper. The intermediate (Poisson) process Zα,β = {Zα,β(τ), τ ≥

0} is defined in (2.14) and discussed in Section 3. There, we give its integral representation w.r.t. a Poisson

random measure on the product space R+ × D(R), where D(R) is the Skorohod space of cadlag functions

on R, and study its properties. We show that Zα,β plays a role of a bridge between the limiting processes

in the extreme cases µ = ∞ and µ = 0 of Theorem 2.2(i), because it is asymptotically locally and globally

self-similar with these processes being its tangent processes; see Proposition 3.1(v).

Finally, let us turn our attention to lines 5-7 of Table 1 (parameter region 0 < α < β < 1), which may

be described as the very strong dependence (β < 1) and even stronger variability (α < β) in the RCAR(1)

model (1.2). This ‘regime’ is a new one since it could not happen in [27] where α = 2. The results are part

of Theorem 2.2(ii). We see from the iterated limits in (2.16) and (2.19) that the joint limit ‘chooses’ between

two extreme behaviors: the (αβ)-stable random line {Vαβ τ, τ ≥ 0} with ‘infinite memory of increments’,

and the α-stable Lévy process {κ
1/α
α ζα(τ), τ ≥ 0} with ‘zero memory of increments’. The ‘winner’ of this

‘competition of limit behaviors’ is determined by equating respective normalizations: nN1/(αβ) = (Nn)1/α

leads to N = nγβ with γ as in Table 1, which agrees with Table 1 and Theorem 2.2(ii). Needless to say, the

above argument is heuristic, the proof of Theorem 2.2 is more involved and does not follow from Theorem 2.1.

The proofs in the present paper (as well as [27, 22] and some other related work) clearly profit from the

detailed structure of the pre-limit AR(1) process, raising the question of their robustness in a more general

context. Remark 2.2 discusses possible extensions to higher order RCAR models which seem feasible but

technically not easy. We also note that our results can be put in a general framework of limit theorems for

spatio-temporal models with LRD. See the doctoral dissertation [26]. In particular, they are related to the

studies of the accumulated workload in network traffic under LRD, as the time scale n and the number N of

independent sources simultaneously increase, possibly at a different rate. See [35, 23, 10, 9, 16, 6]. See also [27]

for a comparison between the joint temporal and contemporaneous aggregation of RCAR(1) processes and

that of network traffic models with finite variance and the corresponding limit processes. Interestingly, the

intermediate limit of the accumulated workload process has also an integral though different representation

w.r.t. a certain Poisson random measure and can be regarded as a ‘bridge’ between limit processes arising in

the other two scaling regimes. We note that joint aggregation of some network traffic models with infinite

variance and LRD was studied in Levy and Taqqu [17], Pipiras et al. [29], Kaj and Taqqu [16].

Notation. In what follows, C stands for a positive constant whose precise value is unimportant and may

change from line to line. We denote by =d, →d the equality in distribution and convergence in distribution,

respectively. We also write →fdd and (fdd) lim for the weak convergence and limit of finite-dimensional

distributions.

2 Main results

2.1 Assumptions

Definition 2.1. Let 0 < α ≤ 2. Write ε ∈ D(α) if the distribution of an r.v. ε satisfies the following

conditions:

• for α = 2, Eε2 <∞;
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• for 0 < α < 2, there exist some finite constants c1, c2 ≥ 0 such that

lim
x→∞

xαP(ε > x) = c1, lim
x→−∞

|x|αP(ε ≤ x) = c2, c1 + c2 > 0;

• in addition to the above, Eε = 0 for 1 < α ≤ 2, and, for α = 1, the distribution of ε is symmetric.

Remark 2.1. Assumption ε ∈ D(α) implies that ε belongs to the domain of normal attraction of an α-stable

distribution. That is, for a sequence {ε(t), t = 1, 2, . . . } of independent copies of ε,

n−1/α

[nτ ]
∑

t=1

ε(t) →fdd ζα(τ), (2.1)

where ζα = {ζα(τ), τ ≥ 0} is an α-stable Lévy process having characteristic function (see [8, pages 574–581])

Eeiθζα(τ) = e−τ |θ|
αω(θ), θ ∈ R, with (2.2)

ω(θ) :=



















Γ(2−α)
1−α ((c1 + c2) cos(

απ
2 )− i(c1 − c2) sign(θ) sin(

απ
2 )), α 6= 1, 2,

(c1 + c2)
π
2 , α = 1,

1
2Eε

2, α = 2.

(2.3)

Furthermore, assumption ε ∈ D(α) implies E|ε|p <∞ for any 0 < p < α.

In what follows, we assume that {ε(t), t ∈ Z} in (1.2) are independent copies of ε ∈ D(α) for some

0 < α ≤ 2. Moreover, we assume that a is an absolutely continuous r.v. having density φ which is supported

on [0, 1) and admits the representation

φ(u) = ψ(u)(1 − u)β−1, u ∈ [0, 1), (2.4)

for some β > 0 and some integrable function ψ(u), u ∈ [0, 1), having finite limit lim
u↑1

ψ(u) =: ψ1 > 0. The

same assumption is made in [27, 31] and other related works. Then there exists a unique stationary solution

of (1.2) given by

X(t) =
∑

s≤t

at−sε(s), t ∈ Z, (2.5)

where the series on the r.h.s. of (2.5) converges in Lp for 0 < p < αmin(β, 1) if 0 < α < 2; and for 0 < p ≤ 2

such that p < 2β if α = 2. For almost every a ∈ [0, 1), the series on the r.h.s. of (2.5) converges conditionally

a.s. and conditionally in Lp for 0 < p < α if 0 < α < 2; and for 0 < p ≤ 2 if α = 2. See [30] for details.

2.2 Limiting processes

For 1 < β < α ≤ 2, we define a stochastic process Λα,β = {Λα,β(τ), τ ≥ 0} by

Λα,β(τ) :=

∫

R+×R

fτ (x, s)M(dx,ds), where (2.6)

fτ (x, s) :=

∫ τ

0
e−x(t−s)1(s ≤ t)dt, τ ≥ 0, x > 0, s ∈ R,

and M(dx,ds) is an α-stable random measure on R+ × R with a control measure m(dx,ds) := ψ1x
β−1dxds

such that EeiθM(B) = e−|θ|αω(θ)m(B), θ ∈ R, for every Borel set B ⊂ R+ × R with m(B) < ∞ and ω,
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ψ1 given in (2.3), (2.4). The process Λα,β was introduced in [31]. It is α-stable, H-self-similar with H =

1− (β − 1)/α ∈ (1/α, 1), has stationary dependent increments, and is related to the integrated superposition

of Ornstein-Uhlenbeck processes discussed in Barndorff-Nielsen [1]. See also [11]. The joint characteristic

function of Λα,β is given by

E exp
{

i
d

∑

j=1

θjΛα,β(τj)
}

= exp
{

−

∫

R+×R

∣

∣

d
∑

j=1

θjfτj(x, s)
∣

∣

α
ω
(

d
∑

j=1

θjfτj (x, s)
)

m(dx,ds)
}

, (2.7)

for θj ∈ R, τj ≥ 0, j = 1, . . . , d, d ∈ N. For α = 2, Λ2,β is a Gaussian process with mean zero and the

autocovariance function

EΛ2,β(τ1)Λ2,β(τ2) = Eε2
∫

R+×R

fτ1(x, s)fτ2(x, s)m(dx,ds) =
σ2β
2
(τ2H1 + τ2H2 − |τ1− τ2|

2H), τ1, τ2 ≥ 0. (2.8)

It follows that Λ2,β is a fractional Brownian motion with Hurst index H = (3−β)/2 and variance EΛ2
2,β(1) =:

σ2β = ψ1Γ(β − 1)Eε2/(2− β)(3− β).

Next, for 0 < λ < 1, 0 < α ≤ 2, β > 0, let Wλ,α,β > 0 be a λ-stable r.v. with Laplace transform

Ee−θWλ,α,β = e−κλ,α,βθ
λ
, θ ≥ 0, where (2.9)

κλ,α,β := ψ1

∫ ∞

0
(1− exp{−(λα/β)−1x−β/λ})xβ−1dx =

ψ1Γ(1− λ)

(λα/β)λβ
> 0.

It is well-known (see, e.g., [37, Theorem 2.6.1]) that the Laplace transform in (2.9) extends to all complex

numbers θ ∈ C with Re(θ) ≥ 0. Assume that Wλ,α,β is independent of the Lévy process ζα in (2.1). Define

Vα,β :=W
1/α
β,α,β ζα(1), 0 < β < 1, (2.10)

Wα,β(τ) :=W
1/α
β/α,α,β ζα(τ), τ ≥ 0, 0 < β < α.

Then, using (2.9), we obtain for any θ ∈ R,

EeiθVα,β = Ee−|θ|αω(θ)Wβ,α,β = exp{−κβ,α,β|θ|
αβ(ω(θ))β}, 0 < β < 1, (2.11)

EeiθWα,β(τ) = Ee−τ |θ|
αω(θ)Wβ/α,α,β = exp{−κβ/α,α,βτ

β/α|θ|β(ω(θ))β/α}, 0 < β < α,

where

κβ,α,β =
ψ1

αββ
Γ(1− β), κβ/α,α,β =

ψ1

β
Γ(1−

β

α
). (2.12)

From (2.11), it follows that r.v.s Vα,β and Wα,β(τ) are stable with respective stability indices αβ < α and

β < α. In a similar way, it follows thatWα,β = {Wα,β(τ), τ ≥ 0} has β-stable finite dimensional distributions.

Following [34, Section 3.8], we call the stochastic processes in (2.10) sub-stable. We note that Wα,β enjoys the

stationary increment and H-self-similarity with H = 1/α properties which it inherits from the Lévy process

ζα. For β = 1 < α ≤ 2, introduce also an α-stable r.v. Vα,1 with a characteristic function

EeiθVα,1 = e−(ψ1/α)|θ|αω(θ), θ ∈ R. (2.13)

Since limβ↑1(1− β)Γ(1 − β) = 1, it follows that (1 − β)1/(αβ)Vα,β →d Vα,1 as β ↑ 1. The above discontinuity

of the distribution of Vα,β at β = 1 can be explained by the additional logarithmic normalization in (2.17)

and (2.23).

6



Finally, for 0 < β < α ≤ 2, we define a random process Zα,β = {Zα,β(τ), τ ≥ 0} through its joint

characteristic function:

E exp
{

i

d
∑

j=1

θjZα,β(τj)
}

= exp
{

ψ1

∫

R+

(

exp
{

−

∫

R

∣

∣

d
∑

j=1

θjfτj(x, s)
∣

∣

α
ω
(

d
∑

j=1

θjfτj (x, s)
)

ds
}

− 1
)

xβ−1dx
}

,

(2.14)

where θj ∈ R, τj ≥ 0, j = 1, . . . , d, d ∈ N and fτ (x, s) is given in (2.6). A stochastic integral representation

and various properties of Zα,β are discussed in Section 3.

2.3 Limit theorems

In Theorems 2.1 and 2.2, the process SN,n = {SN,n(τ), τ ≥ 0} is the joint aggregate in (1.5) of independent

copies of the RCAR(1) process X = {X(t), t ∈ Z} in (2.5) satisfying the above-stated assumptions for some

0 < α ≤ 2, some β > 0 and some ψ1 > 0. Theorem 2.1 discusses iterated limits when N → ∞ followed

by n → ∞ (limits (2.15), (2.16)), or vice versa (limits (2.18), (2.19)). Let κα := E(1 − a)−α when the last

expectation exists.

Theorem 2.1. Let 0 < β < max(α, 1). Then

(fdd) lim
n→∞

lim
N→∞

n−1+(β−1)/αN−1/αSN,n(τ) = Λα,β(τ), 1 < β < α, (2.15)

(fdd) lim
n→∞

lim
N→∞

n−1N−1/(αβ)SN,n(τ) = Vα,β τ, 0 < β < 1, (2.16)

(fdd) lim
n→∞

lim
N→∞

n−1(N logN)−1/αSN,n(τ) = Vα,1τ, 1 = β < α, (2.17)

and

(fdd) lim
N→∞

lim
n→∞

N−1/βn−1/αSN,n(τ) = Wα,β(τ), 0 < β < α, (2.18)

(fdd) lim
N→∞

lim
n→∞

N−1/αn−1/αSN,n(τ) = κ1/αα ζα(τ), 0 < α < β < 1. (2.19)

The following Theorem 2.2 discusses joint limits of appropriately normalized SN,n under simultaneous

increase of N,n. As noted in the Introduction, these limits depend on the mutual increase rate of N,n and

the parameters α, β. In (2.29) below, Vα,β and ζα are mutually independent.

Theorem 2.2. (i) Let 0 < β < α. Let N,n → ∞ so that

N1/β

n
→ µ ∈ [0,∞]. (2.20)

Then:

N−1/αn−1+(β−1)/αSN,n(τ) →fdd Λα,β(τ), µ = ∞, 1 < β < α, (2.21)

N−1/(αβ)n−1SN,n(τ) →fdd Vα,β τ µ = ∞, 0 < β < min(α, 1), (2.22)

(N log(N/n))−1/αn−1SN,n(τ) →fdd Vα,1τ, µ = ∞, 1 = β < α, (2.23)

N−1/βn−1/αSN,n(τ) →fdd Wα,β(τ), µ = 0, 0 < β < α, (2.24)

N−1/βn−1/αSN,n(τ) →fdd µ1/αZα,β(τ/µ), µ ∈ (0,∞), 0 < β < α. (2.25)
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(ii) Let 0 < α < β < 1. Let N,n→ ∞ so that

N1/(γβ)

n
→ µ ∈ [0,∞], where γ :=

1− α

1− β
> 1. (2.26)

Then:

N−1/(αβ)n−1SN,n(τ) →fdd Vα,β τ, µ = ∞, (2.27)

(Nn)−1/αSN,n(τ) →fdd κ1/αα ζα(τ), µ = 0, (2.28)

(Nn)−1/αSN,n(τ) →fdd µ(1/α)−1Vα,β τ + κ1/αα ζα(τ), µ ∈ (0,∞). (2.29)

(iii) Let β > max(α, 1). Then, as N,n→ ∞ in arbitrary way,

(Nn)−1/αSN,n(τ) →fdd κ1/αα ζα(τ). (2.30)

Remark 2.2. We expect that results in Theorems 2.1 and 2.2, as well as in [27], can be extended to higher

order RCAR models, making suitable assumptions about the mixing distribution. Particularly, Oppenheim

and Viano [25] discussed long memory properties of RCAR(2p), p ≥ 1, model with autoregressive polynomial

having one positive, one negative and p − 1 pairs of nonreal (complex conjugate) roots whose moduli are

assumed to be independent r.v.s whose densities have power-law behavior at 1, similar to (1.3), for possibly

different exponents βi. As shown in [25], these assumptions lead to oscillating asymptotics thus seasonal

behavior of the autocovariance function of the RCAR process. A more forthright higher-order version of the

RCAR(1) equation in (1.2) is the RCAR(p) model with real positive roots, viz.,

(1− a1B) · · · (1− apB)X(t) = ε(t), t ∈ Z, (2.31)

where ai ∈ [0, 1), i = 1, . . . , p, are independent r.v.s and BX(t) = X(t − 1) is the backward shift. The

stationary solution of (2.31) is written as a MA process X(t) =
∑

s≤t b(t − s)ε(s), t ∈ Z, where b(t) :=
∑

0≤s1≤···≤sp−1≤t
as11 a

s2−s1
2 · · · a

t−sp−1
p satisfy

∞
∑

t=0

b(t) =

p
∏

i=1

(1− ai)
−1 =: A. (2.32)

Particularly, it follows that given a1, . . . , ap, conditionally

n−1/2

[nt]
∑

t=1

X(t) →fdd AB(τ) (2.33)

which agrees with (4.10) below for p = 1, α = 2. In the case when each ai has a density satisfying a similar

relation as in (1.3) for some βi > 0, ψ1i > 0, i = 1, . . . , p, the (random) factor A in (2.33) has a heavy-

tailed distribution with tail parameter βmin := min1≤i≤p βi, see [7, Corollary p. 245], and we can expect that,

for βmin < α = 2, the suitably normalized iterated limit (fdd) limN→∞ limn→∞ SN,n(τ) is the sub-Gaussian

process W2,βmin
(τ), following the proofs of Theorem 2.1 (2.18) or [27, Theorem 2.1 (2.10)]. We also then

expect that the suitably normalized iterated limit (fdd) limn→∞ limN→∞ SN,n(τ) is a fractional Brownian

motion with Hurst parameter H = (3 − βmin)/2 (or a stable self-similar process in the case when X(t) has

infinite variance). A challenging open problem is to make the above argument rigorous and to extend it to

joint limits of SN,n as in Theorem 2.2.
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3 The intermediate process

This section discusses properties of the intermediate process Zα,β introduced in (2.14) via its finite-dimensional

characteristic function. We study Poisson stochastic integral representation, local and global self-similarity,

a.s. continuity and other properties of Zα,β. The results extend [27, Proposition 3.1] from α = 2 to 0 < α < 2.

Roughly speaking, the Poisson integral representation of Zα,β is obtained by replacing the Brownian motion

in [27] by Lévy process ζα. However, some properties of Zα,β are not ‘continuous’ at α = 2, particularly,

the second moment of Zα,β does not exist for α < 2 while Z2,β may have higher moments than 2, see [27].

Clearly, these moment differences between the cases α < 2 and α = 2 are related to the differences between

the α-stable Lévy process ζα, α < 2, and the Brownian motion ζ2 = B.

Assume that the homogeneous Lévy process ζα in (2.1) is extended to the whole real line R and induces a

probability measure Pα on the Borel sets of the Skorohod space D(R) of cadlag functions from R to R. We

start with a family

z(τ ;x) :=

∫

R

fτ (x, s)dζα(s), τ ≥ 0, x > 0, (3.1)

of integrated Ornstein-Uhlenbeck processes driven by ζα, where fτ (x, s) is defined in (2.6). The process Zα,β

can be defined by ‘mixing’ the above elementary processes of (3.1) on the path space D(R) of the Lévy

process as follows.

Let N(dx,dζ) denote a Poisson random measure on the product space R+×D(R) with a mean ν(dx,dζ) =

ψ1x
β−1dx × Pα(dζ), where ψ1 > 0, 0 < β < α ≤ 2. Then Zα,β = {Zα,β(τ), τ ≥ 0} can be defined as a

stochastic integral with respect to the above Poisson measure:

Zα,β(τ) :=

∫

(0,1)×D(R)
z(τ ;x)N(dx,dζ) +

∫

[1,∞)×D(R)
z(τ ;x)

(

N(dx,dζ)− ν(dx,dζ)1(α > 1)
)

. (3.2)

If 1 < α ≤ 2, 1/α < β < α, then the two integrals in (3.2) can be combined into a single one:

Zα,β(τ) =

∫

R+×D(R)
z(τ ;x)

(

N(dx,dζ)− ν(dx,dζ)
)

. (3.3)

These and other properties of Zα,β are stated in the following proposition (we refer to [27, 32] for general

properties of stochastic integrals w.r.t. Poisson random measure).

Proposition 3.1. (i) The process Zα,β in (3.2) is well-defined for any 0 < β < α ≤ 2. It has stationary

increments, infinitely divisible finite-dimensional distributions, and the joint characteristic function given by

(2.14).

(ii) If 0 < β < α < 2, then E|Zα,β(τ)|
p < ∞ for any 0 < p < αmin(β, 1). If 0 < β < α = 2, then

E|Zα,β(τ)|
p <∞ for any 0 < p < 2β.

(iii) For 1 < α ≤ 2, 1/α < β < α, Zα,β can be defined as in (3.3) and EZα,β(τ) = 0. Moreover, E|Zα,β(τ)|
2 <

∞ if and only if 1 < β < α = 2, in which case

E[Z2,β(τ1)Z2,β(τ2)] =
σ2β
2
(τ2H1 + τ2H2 − |τ1 − τ2|

2H), τ1, τ2 ≥ 0,

where H = (3− β)/2 and σ2β are the same as in (2.8).

(iv) For 1 < α ≤ 2, 1/α < β < α, Zα,β is a.s. continuous.

9



(v) (Asymptotic self-similarity.) As c→ 0,

c−1+(β−1)/αZα,β(cτ) →fdd Λα,β(τ), 1 < β < α,

c−1Zα,β(cτ) →fdd Vα,β τ, 0 < β < min(α, 1),

c−1(log(1/c))−1/αZα,β(cτ) →fdd Vα,1τ, 1 = β < α,

where Vα,1, Vα,β and Λα,β are defined in (2.13), (2.10) and (2.6), respectively. For 0 < β < α, as c→ ∞,

c−1/αZα,β(cτ) →fdd Wα,β(τ),

where Wα,β is defined in (2.10).

Remark 3.1. With Proposition 3.1(v) in mind, we may say Zα,β plays the role of a bridge between the limit

processes in Theorem 2.2(i). For α 6= 1, the limit processes Wα,β, Λα,β and r.v. Vα,β in Proposition 3.1(v) have

different stability indices β, α and αβ, respectively, so we conclude that one-dimensional distributions Zα,β(τ)

are not stable. For α 6= 1, the process Zα,β is also not self-similar, because Wα,β, Λα,β and {Vα,β τ, τ ≥ 0}

have different self-similarity indices.

Remark 3.2. If Z1,Z2, . . . ,ZN are independent copies of Z := Zα,β, then, for any N ∈ N,

Z(τ/N1/β) =fdd N
−1/(αβ)−1/β

N
∑

i=1

Zi(τ). (3.4)

Relation (3.4) follows from infinite divisibility of Poisson random measure N(dx,dζ) in the stochastic integral

representation (3.2) or the characteristic function (2.14). See also ([27], (3.30)) where the above property

is related to the aggregate-similarity property introduced in Kaj [15]. For 0 < β < min(α, 1), (3.4) and

Proposition 3.1(v) imply that N1/βZ(τ/N1/β) =d N−1/(αβ)
∑N

i=1 Zi(τ) →d Vα,βτ as N → ∞. It follows

that for a fixed τ > 0, the (marginal) distribution of Z(τ) ≡ Zα,β(τ) belongs to the domain of normal

attraction of an (αβ)-stable distribution, that is, Zα,β(τ) ∈ D(αβ) except possibly for the case αβ = 1, when

the distribution of Zα,β(τ) is not symmetric. Similarly, NH/βZ(τ/N1/β) =d N
−1/α

∑N
i=1 Zi(τ) →d Λα,β(τ),

where H = 1− (β − 1)/α, implying Zα,β(τ) ∈ D(α) for 1 < β < α. These facts entail the precise asymptotic

behavior of tail probabilities of Zα,β(τ) for α < 2 and τ > 0 fixed, particularly, they show that condition

p < αmin(β, 1) in Proposition 3.1 (ii) cannot be improved.

Remark 3.3. Let 0 < α < β < 1. The limit process {Z∗
α,β(τ) := Vα,β τ + κ

1/α
α ζα(τ), τ ≥ 0} in (2.29),

Theorem 2.2(ii) can be also regarded as a ‘bridge’ between the other two limit processes in (2.27) and (2.28)

since it is both locally and globally asymptotically self-similar:

c−1Z∗
α,β(cτ) →fdd Vα,β τ, as c→ 0,

c−1/αZ∗
α,β(cτ) →fdd κ1/αα ζα(τ), as c→ ∞.

4 Proofs

We first present some preliminary facts that will be used in the proofs.

Let 0 < α ≤ 2. The characteristic function of a r.v. ε ∈ D(α) has the following representation in a

neighborhood of the origin (see, e.g., [13, Theorem 2.6.5]): there exists an ǫ > 0 such that

Eeiθε = e−|θ|αω(θ)h(θ) for any θ ∈ R, |θ| < ǫ, (4.1)
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where h(θ) is a positive function tending to 1 as θ → 0 and ω(θ) = ω(sign(θ)) is the same as in (2.3).

For a ∈ [0, 1) and n ∈ N, let cn(a, s) :=
∑n

t=1 a
t−s1(s ≤ t) and note the following elementary inequalities:

∑

s≤0

|cn(a, s)|
α ≤

1

min(α, 1)(1 − a)
min

(

n,
1

1− a

)α
,

n
∑

s=1

|cn(a, s)|
α ≤ nmin

(

n,
1

1− a

)α
. (4.2)

For z ∈ C, Re(z) ≤ 0, we have

|ez − 1| ≤ min(2, |z|), |ez − 1− z| ≤ |z|2. (4.3)

Proof of Theorem 2.1. The iterated limits (2.15), (2.16) follow from [31, Theorems 2.1, 3.1, Proposition 2.3].

Proof of (2.17). It suffices to prove that

X̄N (t) := (N logN)−1/α
N
∑

i=1

Xi(t) →fdd Vα,1, (4.4)

or that, for any d ∈ N and θt ∈ R, t = 1, . . . , d,

Eei
∑d

t=1 θtX̄N (t) → Eei
∑d

t=1 θtVα,1 = eΘ with Θ := −
ψ1

α

∣

∣

d
∑

t=1

θt
∣

∣

α
ω
(

d
∑

t=1

θt
)

. (4.5)

Since X1, . . . ,XN are independent copies of X in (2.5), the l.h.s. of (4.5) can be rewritten as (1+ ΘN
N )N with

ΘN := NE
[

exp
{

i(N logN)−1/α
d

∑

t=1

θtX(t)
}

− 1
]

= N

∫

[0,1)

(

∏

s∈Z

Eexp
{

i(N logN)−1/αc(u, s)ε(s)
}

− 1
)

φ(u)du

= N

∫

[0,1)

(

exp
{

−
KN (u)

(1− u)N logN

}

− 1
)

φ(u)du (4.6)

where

c(u, s) :=

d
∑

t=1

θtu
t−s1(s ≤ t), KN (u) := (1− u)

∑

s∈Z

|c(u, s)|α ω
(

c(u, s)
)

h
(

(N logN)−1/αc(u, s)
)

,

(in (4.6) we used (4.1) and the fact that c(u, s) is bounded uniformly in u ∈ [0, 1), s ∈ Z). For δ ∈ (0, 1) split

ΘN = N
{

∫ 1−δ

0
+

∫ 1

1− δ
N

+

∫ 1− δ
N

1−δ

}(

exp
{

−
KN (u)

(1− u)N logN

}

− 1
)

φ(u)du =:

3
∑

i=1

Θi
N,δ.

Then (4.5) or limN→∞ΘN = Θ follows from

lim
δ→0

lim sup
N→∞

|Θi
N,δ| = 0, i = 1, 2, lim

δ→0
lim sup
N→∞

|Θ3
N,δ −Θ| = 0. (4.7)

Here, |Θ2
N,δ| ≤ 2N

∫ 1
1− δ

N
φ(u)du ≤ Cδ for all N large enough, implying (4.7) for i = 2. Next, using (4.2),

∑

s∈Z |c(u, s)|
α ≤ C(1 − u)−1. Therefore, |KN (u)| ≤ C, u ∈ [0, 1), and, by (4.3), we obtain |Θ1

N,δ| ≤

C(logN)−1
∫ 1−δ
0 (1− u)−1φ(u)du = C(δ logN)−1, proving (4.7) for i = 1.
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Consider the last relation in (4.7). In view of (2.4), we can replace Θ3
N,δ by Θ

4
N,δ := ψ1N

∫ 1− δ
N

1−δ (exp{− KN (u)
(1−u)N

1
logN } − 1)du = ψ1

∫ δN
δ (exp{−

KN (1− x
N
)

x logN } − 1)dx, which in turn can be replaced by

Θ5
N,δ := −ψ1

∫ δN

δ

KN (1−
x
N )

x logN
dx

since |Θ4
N,δ − Θ5

N,δ| ≤ C
∫ δN
δ

dx
(x logN)2

= o(1), N → ∞, follows from (4.3). We can rewrite Θ in (4.5) in a

similar way:

Θ = −ψ1K

∫ δN

δ

dx

x logN
with K :=

1

α

∣

∣

d
∑

t=1

θt
∣

∣

α
ω
(

d
∑

t=1

θt
)

.

Thus, the last relation in (4.7) follows from limδ→0 lim supN→∞

∫ δN
δ |KN (1−

x
N )−K| dx

x logN = 0 or

lim sup
N→∞

sup
δ<x<δN

∣

∣KN

(

1−
x

N

)

−K
∣

∣ ≤ ǫ(δ), (4.8)

where limδ→0 ǫ(δ) = 0. To prove (4.8), denote |z|αω := |z|αω(z), z ∈ R, and note that sup0<x<δN |KN (1 −
x
N )− K̃(Nx )| = o(1), N → ∞, where

K̃(y) :=
1

y

∑

s∈Z

∣

∣

d
∑

t=1

θt
(

1−
1

y

)t−s
1(s ≤ t)

∣

∣

α

ω

=

∫

R

∣

∣

d
∑

t=1

θt
(

1−
1

y

)t−[sy]
1([sy] ≤ t)

∣

∣

α

ω
ds

→

∫ 0

−∞

∣

∣

d
∑

t=1

θte
s
∣

∣

α

ω
ds = K, y → ∞, (4.9)

by the dominated convergence theorem (DCT) using 1 − z ≤ e−z, z ≥ 0. Hence, sup0<x<δN |K̃(Nx ) −K| ≤

ǫ(δ) = o(1), δ → 0, implying (4.8) and (4.7). This completes the proof of (2.17).

Proof of (2.18). Let us first prove that

n−1/αSn(τ) := n−1/α

[nτ ]
∑

t=1

X(t) →fdd (1− a)−1ζα(τ), (4.10)

where ζα, X are the same as in (2.1), (2.5), and a ∈ [0, 1) is fixed. It suffices to show that, for any d ∈ N and

τj > 0, θj ∈ R, j = 1, . . . , d,

Ea exp
{

in−1/α
d

∑

j=1

θjSn(τj)
}

→ Ea exp
{

i(1− a)−1
d

∑

j=1

θjζα(τj)
}

, (4.11)

where Ea[·] = E[·|a] stands for conditional expectation. For brevity of notation, we restrict the proof of (4.11)

(as well as all the rest in this theorem) to d = 1 and τ1 = τ > 0, θ1 = θ ∈ R. Split Ea[e
iθn−1/αSn(τ)(1(a ∈

In) + 1(a ∈ Icn))] =: Φ′
n(θ, a) + Φ′′

n(θ, a), where In := [0, 1 − logn
n1/α ), I

c
n := [0, 1) \ In. For cn(a, s) in (4.2),

supa∈In,s∈Z |n
−1/αc[nτ ](a, s)| = O((log n)−1) = o(1). Hence for all n large enough, we can use (4.1) to rewrite

Φ′
n(θ, a) as Φ

′
n(θ, a) = e−|θ|αω(θ)Kn(a)1(a ∈ In), where

Kn(a) := n−1
∑

s∈Z

|c[nτ ](a, s)|
αh(θn−1/αc[nτ ](a, s))
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and supa∈In,s∈Z |h(θn
−1/αc[nτ ](a, s)) − 1| = o(1). Relation (4.11) follows from limn→∞Kn(a) = τ(1 − a)−α

for every a ∈ [0, 1) and limn→∞Φ′′
n(θ, a) = 0. Both these facts are completely elementary, and we omit the

details. This proves (4.10) for d = 1. The proof for d > 1 follows similarly.

Let {(1− ai)
−1ζα,i(τ), τ ≥ 0}, i = 1, 2, . . . , be independent copies of {(1− a)−1ζα(τ), τ ≥ 0}. With (4.10)

in mind, (2.18) follows from

N−1/β
N
∑

i=1

(1− ai)
−1ζα,i(τ) →fdd Wα,β(τ). (4.12)

Consider the one-dimensional convergence in (4.12) at τ = 1. For θ ∈ R, we have E exp{iθN−1/β
∑N

i=1(1 −

ai)
−1ζα,i(1)} = (E exp{iθN−1/β(1− a)−1ζα(1)})

N = (1 + ΘN
N )N , where

ΘN := NE[e−N
−α/β(1−a)−α |θ|αω(θ) − 1].

We also have EeiθWα,β(1) = e−κβ/α,α,β|θ|
β(ω(θ))β/α

, see (2.11). The desired convergence in (4.12) at τ = 1 follows

from

ΘN → −κβ/α,α,β|θ|
β(ω(θ))β/α, ∀θ ∈ R. (4.13)

By assumption (1.3), there exists an ǫ > 0 and a constant C > 0 such that φ(u) ≤ C(1 − u)β−1 for all

u ∈ [1− ǫ, 1). Split

ΘN = Θ0
N +Θ1

N := NE
[

(e−N
−α/β(1−a)−α|θ|αω(θ) − 1)

(

1(0 ≤ a < 1− ǫ) + 1(1− ǫ ≤ a < 1)
)]

,

where |Θ0
N | ≤ N1−α/βCǫ−α|θ|αP(0 ≤ a < 1− ǫ) = o(1) since β < α. Hence, it suffices to prove (4.13) for Θ1

N

instead of ΘN . By change of a variable,

Θ1
N = N

∫ 1

1−ǫ
(e−N

−α/β(1−u)−α|θ|αω(θ) − 1)φ(u)du =

∫ ǫN1/β

0
(e−x

−α|θ|αω(θ) − 1)N1−1/βφ
(

1−
x

N1/β

)

dx,

where N1−1/βφ(1− x
N1/β ) → ψ1x

β−1 for x ∈ R+ by assumption (1.3). Moreover, N1−1/βφ(1− x
N1/β ) ≤ Cxβ−1

for x ∈ (0, ǫN1/β ]. Therefore, the DCT implies that

Θ1
N → ψ1

∫ ∞

0
(e−x

−α|θ|αω(θ) − 1)xβ−1dx = −κβ/α,α,β |θ|
β(ω(θ))β/α,

see (2.12), (2.9). This proves (4.13) and (4.12).

Proof of (2.19). Note that (4.10) also holds for β > α. Let {(1 − ai)
−1ζα,i(τ), τ ≥ 0}, i = 1, 2, . . . , be as in

(4.12). It suffices to prove that

N−1/α
N
∑

i=1

(1− ai)
−1ζα,i(τ) →fdd κ

1/α
α ζα(τ). (4.14)

Consider the one-dimensional convergence in (4.14) at τ = 1. For any θ ∈ R, we have E exp{iθN−1/α
∑N

i=1(1−

ai)
−1ζα,i(1)} = (1+ ΘN

N )N , where ΘN := NE[e−N
−1(1−a)−α |θ|αω(θ)−1] → −κα|θ|

αω(θ) = log Eeiθκ
1/α
α ζα(1) with

κα = E(1− a)−α <∞ by the DCT. The general finite-dimensional convergence in (4.14) follows in a similar

way. This proves (2.19) and completes the proof of Theorem 2.1.

Proof of Theorem 2.2. In each case of Theorem 2.2, we will prove that, for any d ∈ N, 0 < τ1 < · · · < τd <∞,

and θj ∈ R, j = 1, . . . , d, as N,n→ ∞,

EeiA
−1
N,n

∑d
j=1 θjSN,n(τj) → Eei

∑d
j=1 θjS(τj), (4.15)
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where AN,n → ∞ denotes a sequence of normalizing constants and {S(τ), τ ≥ 0} denotes the limit process.

Since X1,X2, . . . are independent processes, we can rewrite the l.h.s. of (4.15) as (1+
ΘN,n

N )N and reduce the

proof to showing that

ΘN,n := NE
[

exp
{

iA−1
N,n

d
∑

j=1

θjS1,n(τj)
}

− 1
]

→ log Eei
∑d

j=1 θjS(τj) =: Θ (4.16)

as N,n→ ∞, in each case of Theorem 2.2. Conditioning on a, we have

ΘN,n = N

∫

[0,1)

[

∏

s∈Z

ϕε
(

A−1
N,nϑn(u, s)

)

− 1
]

φ(u)du with ϑn(u, s) :=

d
∑

j=1

θj

[nτj ]
∑

t=1

ut−s1(s ≤ t), (4.17)

where ϕε(θ) := Eeiθε, θ ∈ R, is the characteristic function of ε ∈ D(α). Next, we need to split the interval

[0, 1) = IN,n ∪ IcN,n with IN,n := [0, 1 − uN,n), where uN,n → 0 is chosen so that supu∈IN,n,s∈Z |ϑn(u, s)| =

O(u−1
N,n) = o(AN,n) and |NE[(exp{iA−1

N,n

∑d
j=1 θjS1,n(τj)}−1)1(a1 ∈ IcN,n)]| ≤ CNP(a1 ∈ IcN,n) ≤ CN

∫

IcN,n
(1−

u)β−1du = O(NuβN,n) = o(1) is negligible. By doing so, we obtain that h(A−1
N,nϑn(u, s)) → 1 uniformly in

u ∈ IN,n, s ∈ Z, and, taking into account (4.1), (4.16)–(4.17),

ΘN,n ∼ N

∫

IN,n

(

exp
{

−A−α
N,n

∑

s∈Z

|ϑn(u, s)|
αω(ϑn(u, s))

}

− 1
)

φ(u)du.

In order to avoid this rather tedious step, from now on, we will assume that h(θ) ≡ 1. That is, ε =d ζα(1) has

a stable distribution and we can take uN,n ≡ 0. Moreover, for simplicity of exposition, in cases (i) and (ii)

of Theorem 2.2, we also assume that φ(u) ≡ ψ1(1− u)β−1 in (4.17). Similar simplifications are also imposed

in the proof of [27, Theorem 2.2]. Finally, since ω(θ) depends on the sign of θ alone, we shall assume that

ω(θ) ≡ 1. After all, ΘN,n of (4.17) reduces to

ΘN,n = ψ1N

∫

[0,1)

(

exp
{

−A−α
N,n

∑

s∈Z

|ϑn(u, s)|
α
}

− 1
)

(1− u)β−1du. (4.18)

The only exception is the ‘short memory’ case (iii) of Theorem 2.2 where we use (4.18) with φ(u) instead of

ψ1(1− u)β−1, u ∈ [0, 1).

We consider each case of Theorem 2.2 separately.

Proof of Theorem 2.2(i). Let N,n→ ∞ so that µN,n := N1/β/n→ µ ∈ [0,∞] and set

BN,n :=































n,

N,

N1/β ,

N1/β ,

AN,n := n1+1/α































µ
β/α
N,n, if µ = ∞, 1 < β < α,

(µN,n log µN,n)
1/α, if µ = ∞, 1 = β < α,

µ
1/α
N,n, if µ = ∞, 0 < β < min(α, 1),

µN,n, if µ ∈ [0,∞), 0 < β < α.

(4.19)

(BN,n and AN,n are simultaneously defined in the above four cases of µ, α, β.) Note that AN,n agree with

respective normalizations in Theorem 2.2(i). After the change of variable BN,n(1 − u) = x, (4.18) can be

rewritten as ΘN,n = (ψ1N/B
β
N,n)

∫ BN,n

0 (e−KN,n(x) − 1)xβ−1dx, where

KN,n(x) = K−
N,n(x) +K+

N,n(x) := A−α
N,n

∑

s≤0

∣

∣ϑn
(

1−
x

BN,n
, s
)
∣

∣

α
+A−α

N,n

∑

s>0

∣

∣ϑn
(

1−
x

BN,n
, s
)
∣

∣

α
. (4.20)
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Proof of (2.25) (case µ ∈ (0,∞), 0 < β < α). The r.h.s. of (4.16) can be written as the integral Θ =

ψ1

∫∞
0 (e−Kµ(x) − 1)xβ−1dx, see (2.14), where

Kµ(x) := µ

∫

R

∣

∣

d
∑

j=1

θjfτj/µ(x, s)
∣

∣

α
ds (4.21)

and fτ (x, s) as in (2.6). Using BN,n = N1/β and writing the sums over integers s, t in (4.20), (4.17)

as integrals, after the change of variables s → N1/βs, t → N1/βt, the l.h.s. of (4.16) becomes ΘN,n =

ψ1

∫ N1/β

0 (e−KN,n(x) − 1)xβ−1dx with KN,n(x) = µN,n
∫

R
|ϑ̃N,n(x, s)|

αds, where

ϑ̃N,n(x, s) :=
1

N1/β
ϑn

(

1−
x

N1/β
, [N1/βs]

)

=

d
∑

j=1

θj

∫

R

(

1−
x

N1/β

)[N1/βt]−[N1/βs]
1(max([N1/βs], 1) ≤ [N1/βt] ≤ [nτj])dt

→

d
∑

j=1

θjfτj/µ(x, s) (4.22)

for any x ∈ R+, s ∈ R. Using 1−z ≤ e−z, z ∈ [0, 1], we get the dominating bound |ϑ̃N,n(x, s)| ≤ Cf2τd/µ(x, s),

x ∈ (0, N1/β ], s ∈ R, implying KN,n(x) → Kµ(x), x ∈ R+, by the DCT. Using (4.3), we can extend the last

dominating bound to |KN,n(x)| ≤ C
∫

R
|f2τd/µ(x, s)|

αds, x ∈ (0, N1/β ], where the last integral is estimated in

(4.34). Then, another application of the DCT yields the convergence in (4.16), proving (2.25).

Proof of (2.21) (case µ = ∞, 1 < β < α). By (2.7), the r.h.s. of (4.16) equals to −ψ1

∫∞
0 K1(x)x

β−1dx,

where K1(x) is as in (4.21) (with µ = 1). After a change of variable, the l.h.s. of (4.16) can be written as

ΘN,n = ψ1

∫ n
0 µ

β
N,n(e

−µ−β
N,nKN,n(x) − 1)xβ−1dx, with KN,n(x) :=

∫

R
|ϑ̃N,n(x, s)|

αds and ϑ̃N,n(x, s) :=
1
nϑn(1 −

x
n , [ns]) →

∑d
j=1 θjfτj (x, s) for any x ∈ R+, s ∈ R (to justify the last relationship, use (4.22) with N1/β

replaced by n). Therefore, KN,n(x) → K1(x), µ
β
N,n(e

−µ−β
N,nKN,n(x) − 1) → −K1(x), x ∈ R+ and, finally, the

convergence in (4.16) follows using the DCT similarly to the proof before. This proves (2.21).

Proof of (2.22) (case µ = ∞, 0 < β < min(α, 1)). The r.h.s. of (4.16) can be written as

Θ = −κβ,α,β
∣

∣

∑d
j=1 θjτj

∣

∣

αβ
= ψ1

∫∞
0

(

exp
{

− 1
αx

∣

∣

∑d
j=1 θjτj

∣

∣

α}
− 1

)

xβ−1dx, (4.23)

see (2.9)–(2.12). On the other hand, for the l.h.s. of (4.16), after a change of variable, we get ΘN,n =

ψ1

∫ N1/β

0 (e−KN,n(x) − 1)xβ−1dx, where KN,n(x) = K−
N,n(x) +K+

N,n(x) is given in (4.20) with BN,n = N1/β .

Rewrite K−
N,n(x) =

∫

R
|ϑ̃N,n(x, s)|

αds, where

ϑ̃N,n(x, s) :=
∑d

j=1 θj
∫

R

(

1− x
N1/β

)[nt]−[N1/βs]
1(1 ≤ [nt] ≤ [nτj], [N

1/βs] ≤ 0)dt→
∑d

j=1 θjτje
xs1(s ≤ 0)

in view of n/N1/β → 0, for any x > 0, s ∈ R, s 6= 0. We have the dominating bound |ϑ̃N,n(x, s)| ≤ Cexs1(s ≤

C), x ∈ (0, N1/β ], s ∈ R. Whence,

K−
N,n(x) →

1

αx

∣

∣

d
∑

j=1

θjτj
∣

∣

α
and |K−

N,n(x)| ≤
C

x
(4.24)

for x ∈ (0, N1/β ]. Relation (4.2) implies

|K+
N,n(x)| ≤

Cn

AαN,n
min

(

n,
N1/β

x

)α
≤

C

µN,n
min

(

1,
µN,n
x

)min(α,1)
= o(1)
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uniformly in x > 0 as N,n → ∞. Moreover, we conclude that |KN,n(x)| ≤ Cx−min(α,1) for x ∈ (1, N1/β ].

Since 0 < β < min(α, 1), in view of (4.3), the DCT implies (4.16), proving (2.22).

Proof of (2.23) (case µ = ∞, 1 = β < α). Write the r.h.s. and l.h.s. of (4.16) respectively as Θ =

−ψ1

α |
∑d

j=1 θjτj |
α and

ΘN,n = Nψ1

∫

[0,1)

(

exp
{

−
KN,n(u)

(1− u)N log N
n

}

− 1
)

du with KN,n(u) := n−α(1− u)
∑

s∈Z

|ϑn(u, s)|
α.

For given δ ∈ (0, 1) split

ΘN,n = Nψ1

{

∫ 1− δ
n

0
+

∫ 1

1− δ
N

+

∫ 1− δ
N

1− δ
n

}(

exp
{

−
KN,n(u)

(1− u)N log N
n

}

− 1
)

du =:
3

∑

i=1

Θi
N,n,δ.

By (4.2) and (4.3), for every δ > 0,

|Θ1
N,n,δ| ≤

C

nα log N
n

∫ 1− δ
n

0

( 1

1− u
min

(

n,
1

1− u

)α
+ nmin

(

n,
1

1− u

)α
)

du

≤
C

nα log N
n

∫ n

δ

(1

x
min

(

n,
n

x

)α
+min

(

n,
n

x

)α
)

dx = o(1)

as N/n → ∞. Also, |Θ2
N,n,δ| ≤ Cδ can be made arbitrary small by a suitable choice of δ > 0. Consider

Θ3
N,n,δ = ψ1

∫ δN
n

δ

(

exp
{

−
KN,n(1−

x
N )

x log N
n

}

− 1
)

dx ∼ −ψ1

∫ δN
n

δ

KN,n(1−
x
N )

x log N
n

dx =: Θ4
N,n,δ

since |Θ3
N,n,δ − Θ4

N,n,δ| ≤ C
∫ δ(N/n)
δ

dx
(x log(N/n))2

= o(1), as N/n → ∞, follows from (4.3) and the bound

sup0<x<δN/n |KN,n(1−
x
N )| ≤ C, which is a consequence of (4.2). Rewrite Θ similarly to Θ4

N,n,δ, viz.,

Θ = −ψ1K

∫ δN
n

δ

dx

x log N
n

with K :=
1

α

∣

∣

d
∑

j=1

θjτj
∣

∣

α
.

Thus, (2.23) follows (c.f. (4.8)) from

lim sup
N,n,N/n→∞

sup
δ<x<δ(N/n)

∣

∣KN,n

(

1−
x

N

)

−K
∣

∣ ≤ ǫ(δ) (4.25)

where limδ→0 ǫ(δ) = 0. Towards this end, write KN,n(1−
x
N ) = K̃(Nx , n) similarly as in (4.8) above, where

K̃(y, z) :=

∫

R

∣

∣

∣

d
∑

j=1

θj

∫

R

(

1−
1

y

)[zt]−[ys]
1(1 ∨ [ys] ≤ [zt] ≤ [zτj ])dt

∣

∣

∣

α
ds, y, z > 0. (4.26)

Then using the DCT similarly as in (4.9) above, it follows that limy,z,y/z→∞ K̃(y, z) = K, implying that

lim supy,z,y/z→∞ supy/z>1/δ |K̃(y, z) − K| ≤ ǫ(δ) with ǫ(δ) as in (4.25), hence (4.25), thus completing the

proof of (2.23).

Proof of (2.24) (case µ = 0, 0 < β < α). The r.h.s. of (4.16) can be written as

Θ = log Ee
iW

1/α
β/α,α,β

∑d
i=1(

∑d
j=i θj)(ζα(τi)−ζα(τi−1))

= log Ee−Wβ/α,α,β

∑d
i=1(τi−τi−1)|

∑d
j=i θj |

α

= −κβ/α,α,β
(

d
∑

i=1

(τi − τi−1)
∣

∣

d
∑

j=i

θj
∣

∣

α)β/α

= ψ1

∫ ∞

0

(

exp
{

−
1

xα

d
∑

i=1

(τi − τi−1)
∣

∣

d
∑

j=i

θj
∣

∣

α}
− 1

)

xβ−1dx (4.27)
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with τ0 := 0 and κβ/α,α,β as in (2.12). After a change of variable, we get ΘN,n = ψ1

∫ N1/β

0 (e−KN,n(x) −

1)xβ−1dx, where KN,n(x) = K−
N,n(x) +K+

N,n(x) is given as in (4.20) with BN,n = N1/β. Rewrite K+
N,n(x) =

∫

R
|ϑ̃N,n(x, s)|

αds, where

ϑ̃N,n(x, s) :=
1
x

∑d
j=1 θj

(

1−
(

1− x
N1/β

)[nτj ]−[ns]+1)
1(0 < [ns] ≤ [nτj]) →

1
x

∑d
j=1 θj1(0 < s ≤ τj)

for x ∈ R+, s ∈ R, since n/N1/β → ∞. Therefore, K+
N,n(x) → 1

xα
∑d

i=1(τi − τi−1)|
∑d

j=i θj|
α for x ∈ R+.

From (4.2), it follows that |K−
N,n(x)| ≤ CA−α

N,n(
x

N1/β )
−(1+α) = CµN,nx

−(1+α) = o(1) for x ∈ R+. Moreover,

|KN,n(x)| ≤ Cx−α, x ∈ (1, N1/β ]. Since 0 < β < α, the DCT and (4.3) imply ΘN,n → Θ, proving (2.24),

thereby completing the proof of Theorem 2.2(i).

Proof of Theorem 2.2(iii). We use the representation in (4.18) with AN,n = (Nn)1/α and φ(u) instead of

ψ1(1 − u)β−1, u ∈ [0, 1). We have that ΘN,n =
∫ 1
0 N(e−N

−1Kn(u) − 1)φ(u)du, where Kn(u) = K−
n (u) +

K+
n (u) := n−1

∑

s≤0 |ϑn(u, s)|
α + n−1

∑

s>0 |ϑn(u, s)|
α with ϑn(u, s) defined in (4.17). Rewrite K+

n (u) =
∫

R
|ϑn(u, [ns])|

αds, where ϑn(u, [ns]) = (1 − u)−1
∑d

j=1 θj(1 − u[nτj ]−[ns]+1)1(0 < [ns] ≤ [nτj]) → (1 −

u)−1
∑d

j=1 θj1(0 < s ≤ τj) for u ∈ [0, 1), s ∈ R. Hence,

K+
n (u) → (1− u)−α

∑d
i=1(τi − τi−1)

∣

∣

∑d
j=i θj

∣

∣

α
(4.28)

for u ∈ [0, 1), where τ0 := 0. From (4.2), for u ∈ [0, 1), we further obtain that K−
n (u) → 0 and that

|K−
n (u)| ≤

C
n(1−u) min

(

n, 1
1−u

)α
≤ C







(1− u)−α, α ≥ 1,

(1− u)−1, α < 1.
(4.29)

Since |K+
n (u)| ≤ C(1 − u)−α, |Kn(u)| ≤ C(1 − u)−max(α,1) =: K̄(u), where

∫ 1
0 K̄(u)φ(u)du < ∞ due to the

fact that β > max(α, 1). Then, by the DCT, we conclude that

ΘN,n → −κα

d
∑

i=1

(τi − τi−1)|
d

∑

j=i

θj |
α = log Eeiκ

1/α
α

∑d
j=1 θjζα(τj ),

where (recall) κα = E(1− a)−α <∞. Theorem 2.2(iii) is proved.

Proof of Theorem 2.2(ii). Recall that 0 < α < β < 1. Set µN,n := N1/(γβ)/n→ µ ∈ [0,∞], AN,n := N1/(αβ)n

if µ = ∞; and AN,n := (Nn)1/α if µ ∈ [0,∞). Consider separately terms S±
N,n(τ) in the decomposition

SN,n(τ) = S−
N,n(τ) + S+

N,n(τ), where

S−
N,n(τ) :=

N
∑

i=1

(

[nτ ]
∑

t=1

ati
)

Xi(0), S+
N,n(τ) :=

N
∑

i=1

∑

s>0

(

[nτ ]
∑

t=1

at−si 1(s ≤ t)
)

εi(s).

From the proofs of (2.22), (2.30) (in particular, (4.24), (4.28), (4.29)) we see that

N−1/(αβ)n−1S−
N,n(τ) →fdd Vα,β τ as N,n,N1/β/n → ∞, for 0 < β < 1, (4.30)

(Nn)−1/αS+
N,n(τ) →fdd κ

1/α
α ζα(τ) as N,n→ ∞ in arbitrary way, for β > α. (4.31)

Proof of (2.27) (case µ = ∞) follows from (4.30) and (4.31) since µN,n → ∞ implies (Nn)1/α = o(AN,n).

Proof of (2.28) (case µ = 0) follows in view of (4.31), if we prove that

S−
N,n(τ) = op(AN,n). (4.32)
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For any θ ∈ R, consider

ΘN,n := NE
[

exp
{

iθA−1
N,nS

−
1,n(τ)

}

− 1
]

= ψ1N

∫ 1

0

(

exp
{

−A−α
N,n

∑

s≤0

|c[nτ ](u, s)|
α|θ|α

}

− 1
)

(1− u)β−1du,

where c[nτ ](u, s) is given in (4.2). Using (4.2)–(4.3) and changing a variable, we obtain

|ΘN,n| ≤ CN

∫ 1

0
min

(

1,
nα−1

N(1− u)

)

(1− u)β−1du ≤ C

∫ N1/β

0
min

(

1,
µ1−αN,n

x

)

xβ−1dx = o(1).

This proves (4.32), hence, (2.28).

Proof of (2.29) (case µ ∈ (0,∞)). For N,n large enough, decompose ΘN,n = Θ−
N,n + Θ+

N,n in (4.18), with

ψ1(1− u)β−1 replaced by φ(u), as

Θ−
N,n := N

∫ 1

0
(e−K

−

N,n(u) − 1)φ(u)du, Θ+
N,n := N

∫ 1

0
e−K

−

N,n(u)(e−K
+
N,n(u) − 1)φ(u)du,

where

K−
N,n(u) := A−α

N,n

∑

s≤0

|ϑn(u, s)|
α, K+

N,n(u) := A−α
N,n

∑

s>0

|ϑn(u, s)|
α.

Since µN,n → µ ∈ (0,∞) implies N1/β/n → ∞, by (4.30) we have that Θ−
N,n → log Eeiµ

(1/α)−1(
∑d

j=1 θjτj)Vα,β .

Next, using K−
N,n(u) → 0, |e−K

−

N,n(u)| ≤ C, u ∈ [0, 1), similarly to the proof of (4.31), we obtain Θ+
N,n →

log Eeiκ
1/α
α

∑d
j=1 θjζα(τj ). Hence, (2.29) follows, including the independence of Vα,β and {ζα(τ), τ ≥ 0}. Theo-

rem 2.2 is proved.

Proof of Proposition 3.1. As noted in Section 3, for α = 2, the proposition is proved in [27, Propositions 3.1,

3.2]. The subsequent proof for 0 < α < 2 uses similar argument.

(i) Write Zα,β(τ) = Z−
α,β(τ) + Z+

α,β(τ), where Z+
α,β(τ) :=

∫

[1,∞)×D(R) z(τ ;x)(N(dx,dζ) − ν(dx,dζ)1(α >

1)), Z−
α,β(τ) :=

∫

(0,1)×D(R) z(τ ;x)N(dx,dζ). Next, let I(p, τ) := I−(p, τ) + I+(p, τ), where I+(p, τ) :=
∫∞
1 Eα|z(τ ;x)|

pxβ−1dx, I−(p, τ) :=
∫ 1
0 Eα|z(τ ;x)|

pxβ−1dx. Then Z±
α,β(τ) are well defined if I±(p, τ) <∞ for

some 0 < p < α in which case

E|Z±
α,β(τ)|

p ≤ CI±(p, τ) (4.33)

with C = C(p) depending on p alone; see [27, (3.3)]. By well-known property of an α-stable stochastic integral

in (3.1), Eα|z(τ ;x)|
p = C(

∫

R
|fτ (x, s)|

αds)p/α, ∀p ∈ (0, α); see [34, Property 1.2.17, Proposition 3.4.1]. Then,

using (4.3), we obtain

∫

R

|fτ (x, s)|
αds =

(1− e−xτ )α

αx1+α
+

1

xα

∫ τ

0
(1− e−xs)αds ≤

1

α
min

(τα

x
,

1

x1+α
)

+min
( τ

xα
, τ1+α

)

. (4.34)

Let first 1 < α < 2. Then (4.34) simplifies to
∫

R
|fτ (x, s)|

αds ≤ Cmin( τ
α

x ,
τ
xα ) implying

I(p, τ) ≤ C
(

τp
∫ 1/τ
0 xβ−1−p/αdx+ τp/α

∫∞
1/τ x

β−1−pdx
)

≤ Cτp+p/α−β (4.35)

for β < p < min(α,αβ) = αmin(1, β), with C > 0 independent of τ > 0. Obviously, for given 0 < β < α,

such p exists implying the existence of the Poisson stochastic integrals Z±
α,β(τ) and Zα,β(τ).
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Next, let 0 < α ≤ 1. Here, we need to discuss the existence of Z±
α,β(τ) separately. From (4.34), we have

I+(p+, 1) ≤ C
∫∞
1 xβ−1−p+dx ≤ ∞, β < p+ < α, (4.36)

I−(p−, 1) ≤ C
∫ 1
0 x

β−1−p−/αdx ≤ ∞, p− < αβ < α.

Clearly, for any 0 < β < α ≤ 1, such p± satisfying (4.36) exist, implying the existence of Z±
α,β(τ) and Zα,β(τ)

for τ = 1, and the last result extends to all τ > 0 in an obvious way. The stationarity of increments is

immediate from (2.14). Infinite divisibility and the form of the characteristic function in (2.14) follow from

general properties of Poisson stochastic integrals, see e.g. [27, (3.1)].

(ii) Follows from (4.35), (4.36) and (4.33).

(iii) Follows from (ii) and E|Zα,β(τ)| ≤ CI(1, τ) <∞ since 1 < αmin(β, 1) is equivalent to α > 1, αβ > 1.

(iv) Follows from Kolmogorov’s criterion, stationarity of increments of Zα,β, and (4.33), (4.35) since, for

1/α < β < α, we can find p sufficiently close to αmin(β, 1) such that the exponent of τ on the r.h.s. of (4.35)

is greater than 1: p+ p/α− β > 1.

(v) For brevity, we assume ω(θ) ≡ 1, ψ1 = 1 and restrict the proof to one-dimensional convergence at τ > 0.

Let 1 < β < α and H := 1− β−1
α > 0. For any θ ∈ R, we have

Eeiθc
−HZα,β(cτ) = exp

{

∫

R+

(

exp
{

− cβ|θ|α
∫

R

|fτ (cx, s)|
αds

}

− 1
)

xβ−1dx
}

since
∫

R
|fcτ (x, s)|

αds = c1+α
∫

R
|fτ (cx, s)|

αds. By change of variables, we further rewrite

Eeiθc
−HZα,β(cτ) = exp

{

∫

R+

c−β
(

exp
{

− cβ|θ|α
∫

R

|fτ (x, s)|
αds

}

− 1
)

xβ−1dx
}

→ exp
{

− |θ|α
∫

R+×R

|fτ (x, s)|
αxβ−1dxds

}

= EeiθΛα,β(τ), c→ 0,

where the convergence follows by the DCT (the domination can be verified using (4.3) and (4.34)).

Next, let 0 < β < min(α, 1). For any θ ∈ R, we have Eeiθc
−1Zα,β(cτ) = exp{

∫

R+
(e−|θ|αKc(x) − 1)xβ−1dx},

where

Kc(x) :=
1

cα

∫

R

|fcτ (x, s)|
αds =

1

αx

(1− e−cxτ

cx

)α
+

∫ cτ

0

(1− e−xs

cx

)α
ds→

τα

αx
, c→ 0.

For Kc(x), we can find a dominating function using (4.3) and (4.34), because the latter inequality gives

Kc(x) ≤ Cx−1 if α ≥ 1 and Kc(x) ≤ Cmax(x−1, c1−αx−α) ≤ Cx−α if α < 1 for x > 1. Then, by the DCT,

we obtain Eeic
−1Zα,β(cτ) → exp{

∫

R+
(e−(αx)−1τα|θ|α − 1)xβ−1dx} = EeiθτVα,β , c→ 0, see (2.9)–(2.11).

Let 1 = β < α. For any θ ∈ R, we consider Eeiθ(log(1/c))
−1/αc−1Zα,β(cτ) = e

∑3
i=1 I

i
c,δ , where

3
∑

i=1

Iic,δ :=
{

∫ δ

0
+

∫ ∞

δ
c

+

∫ δ
c

δ

}(

e−|θ|α(log 1
c
)−1Kc(x) − 1

)

dx with Kc(x) :=
1

cα

∫

R

|fcτ (x, s)|
αds,

the same as above, given a δ > 0. Then I1c,δ = o(1) and by (4.3), (4.34),

|I2c,δ| ≤
C

cα log 1
c

∫ ∞

δ
c

( 1

αx
min

(

cτ,
1

x

)α
+ cτ min

(1

x
, cτ

)α)
dx

≤
C

log 1
c

∫ ∞

δ

( 1

αx
min

(

τ,
1

x

)α
+ τ min

(1

x
, τ
)α)

dx = o(1), c→ 0.
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With the notation K̃(cx) := xKc(x), x ∈ R+, using (4.3) and K̃(cx) ≤ C, x > δ, we have that

I3c,δ ∼ −|θ|α
∫ δ

c

δ

K̃(cx)

x log 1
c

dx, c→ 0,

for every δ > 0. Furthermore, lim supc→0 supδ<x< δ
c
|K̃(cx)− τα

α | < ǫ(δ) with limδ→0 ǫ(δ) = 0, since

K̃(w) =
1

α

(1− e−wτ

w

)α
+ w

∫ τ

0

(1− e−ws

w

)α
ds→

τα

α
, w → 0.

Hence, limδ→0 lim supc→0 |I
3
c,δ+

τα|θ|α

α | = 0, finishing the proof of limc→0 Ee
iθ(log(1/c))−1/αc−1Zα,β(cτ) = EeiθτVα,1 .

Finally, consider the large scale limit of Zα,β as c → ∞ for 0 < β < α. Then Eeiθc
−1/αZα,β(cτ) =

exp{
∫

R+
(e−|θ|αKc(x) − 1)xβ−1dx}, where, using the scaling property,

Kc(x) :=
1

c

∫

R

|fcτ (x, s)|
αds = cα

∫

R

|fτ (cx, s)|
αds =

(1− e−cxτ )α

cαx1+α
+

1

xα

∫ τ

0
(1− e−cxs)αds→

τ

xα
, c→ ∞.

It is obvious that, for x > 1, Kc(x) ≤ x−α((cτ)−1 + τ) = O(x−α). Therefore, by the DCT, Eeiθc
−1/αZ(cτ) →

exp{
∫

R+
(e−|θ|αx−ατ − 1)xβ−1dx} = EeiθWα,β(τ), c → ∞, see (2.9)–(2.11). This proves part (v) and completes

the proof of Proposition 3.1.
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(2006), 447–462.

20



[10] R. Gaigalas and I. Kaj. Convergence of scaled renewal processes and a packet arrival model. Bernoulli 9 (2003), 671–703.

[11] D. Grahovac, N.N. Leonenko and M.S. Taqqu. The multifaceted behavior of integrated supOU processes: The infinite

variance case. Preprint (2018+). arXiv:1711.09623v1 [math.PR]

[12] C.W.J. Granger. Long memory relationship and the aggregation of dynamic models. J. Econometrics 14 (1980), 227–238.

[13] I. Ibragimov and Y. Linnik. Independent and Stationary Sequences of Random Variables. Wolters-Noordhoff, Groningen,

1971.

[14] M. Jirak. Limit theorems for aggregated linear processes. Adv. Appl. Probab. 45 (2013), 520–544.

[15] I. Kaj. Limiting fractal random processes in heavy-tailed systems. In J. Lévy-Véhel and E. Lutton, editors, Fractals in
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