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Current correlations of Cooper-pair tunneling into a quantum Hall system
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We study Cooper-pair transport through a quantum point contact between a superconductor and a quantum
Hall edge state at integer and fractional filling factors. We calculate the tunneling current and its finite-frequency
noise to the leading order in the tunneling amplitude for dc and ac bias voltage in the limit of low temperatures.
At zero temperature and in the case of tunneling into a single edge channel both the conductance and differential
shot noise vanish as a result of the Pauli exclusion principle. In contrast, in the presence of two edge channels,
this Pauli blockade is softened and a nonzero conductance and shot noise are revealed.
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I. INTRODUCTION

The quantum Hall (QH) effect [1,2] is one of the most
important effects of modern mesoscopic physics. Its main
observable feature is the precise quantization of the Hall con-
ductance to the value GH = νe2/h, where ν is the so-called
filling factor. In a two-dimensional electron gas (2DEG) at
integer (ν ∈ N) or certain fractional [ν = 1/(2n + 1) where
n ∈ N] filling factors, electron transport occurs through one-
dimensional (1D) channels located close at the edges of the
sample [3]. The electron motion in these 1D channels is chiral,
i.e., the electrons propagate in one direction with a speed of
the order of 104 to 106 m/s [4–6]. Electrons in such edge
channels propagate ballistically without backscattering, in a
way similar to photons in wave guides. This analogy has
led to the emergence of the field of electron quantum optics
which aims to realize quantum-optics-type experiments with
electrons [7].

Recent progress in experimental techniques at the
nanoscale has allowed experimentalists to create hybrid meso-
scopic systems where QH edge states are coupled to other
edge states [7–9], to quantum dots [6,10–13], to Ohmic
contacts [14–17], or to superconductors [18–22]. This devel-
opment has provided a successful platform to study some
of the fundamental questions of mesoscopic physics, such
as phase coherence [23–29], charge [14,30–32] and heat
quantization [16,33], equilibration [34–39], and entanglement
[9,40]. A particularly important setup for studying the trans-
port properties of hybrid mesoscopic systems is based on
QH edge states coupled to a metal via a quantum point
contact (QPC), a narrow region between two electrically
conducting systems. Such QPCs allow for tunneling exper-
iments in the presence of an applied dc or ac bias voltage.
In particular, the current and shot noise through a QPC con-
necting a QH edge state have been investigated in many
experiments [7]. These experiments have made it possible to
study the crossover from Fermi liquid to non-Fermi liquid
phases in the I-V (current-voltage) characteristics and in the
corresponding noise measurements.

To study the transport in mesoscopic devices based on QH
edge states, the low-energy effective theory developed by Wen
is commonly used [41]. This bosonization approach shows
that fractional edge states of the Laughlin series [ν = 1/(2n +
1)] can be modeled as Luttinger liquids with Luttinger param-
eter K = ν. This theory has allowed the interpretation of the
experimental data [7,9] obtained for transport properties of 1D
chiral edge states. Moreover, the tunneling current and con-
ductance, as well as the zero-frequency and finite-frequency
nonequilibrium noise between edge states, were studied theo-
retically [42–60].

In these works, it was already shown that the typical be-
havior of the tunneling conductance of Laughlin fractional
QH chiral edge states at low temperatures follows a power
law, i.e., G(T ) ∝ T 2g−2, where T is the temperature and the
parameter g is equal to ν or 1/ν depending on the geometry
of the QPC. Additionally it was shown that the behavior
of the dc I-V characteristic at zero temperature, low bias,
and g �= 1 is non-Ohmic, Idc(V ) ∝ V 2g−1, which is associated
with the non-Fermi (Luttinger) liquid phase. In the case of
a time-dependent bias voltage, Ṽ (t ) = V0 + V1 cos(�t ) with
frequency � and amplitude V1 in the periodic ac part, the
dc component of the current was found to have the form
Idc = ∑

n J2
n (e∗V1/h̄�)|e∗V0 + nh̄�|2g−1, where e∗ is the ef-

fective charge of the tunneling particle, Jn(e∗V1/h̄�) gives
the Bessel function of the first kind, and n is an integer
number. Apart from the I-V characteristic, the study of the
zero- and finite-frequency noise in these references revealed
a power-law dependence of the noise on the frequency at low
temperatures. For instance, to the lowest order in the tunnel
coupling, the finite-frequency symmetric noise at frequency ω

is proportional to the sum of two terms |ω ± ω0|2g−1, which
exhibit singularities at frequencies ω0 = e∗V/h̄ and g < 1/2.
In the case of a time-dependent bias voltage, the result gets
modified similarly to the current to |ω ± (ω0 + n�)|2g−1, and
again exhibits singularities at certain frequencies. The noise
thus provides one of the most straightforward methods to
measure the effective charge e∗ of tunneling Laughlin quasi-
particles [7].
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In the recent past, it has become possible to investigate
such transport problems not only between identical ballistic
chiral QH states but also between distinct systems, such as QH
edge states and superconductors, both theoretically [61–70]
and experimentally [19,20,22,71–74]. This line of research is
particularly relevant for the creation of parafermion bound
states, non-Abelian quasiparticles with potential application
in topological quantum computation [75–84]. Motivated by
this progress, we investigate the noise properties of the tun-
neling current between a superconductor and QH edge states
at integer and Laughlin filling factors. We show that the pre-
viously demonstrated Pauli blockade [61] in the tunneling
current at filling factor ν = 1 also manifests itself in shot-
noise experiments. We expect that one can investigate shot
noise and finite-frequency noise experimentally, as was done
in Refs. [7] and [85] where the authors measured the depen-
dence of noise on temperature and applied bias.

We note that due to the magnetic field the QH edge state is
spinless (spin polarized), which suppresses any induced corre-
lations from an s-wave superconductor (SC). This suppression
can be lifted by spin-orbit coupling, such as the Rashba spin-
orbit coupling inherent to the geometry of a 2DEG [70]. This
is relevant when the QH material is, e.g., InAs, but for the
popular choice of graphene this is relatively weak. It has
been suggested [22] that the QH edge state can be considered
to have effective spin-orbit coupling inherited through prox-
imity with a superconductor with bulk [86] or surface [87]
spin-orbit coupling.

The rest of this article is structured as follows. In Sec. II,
we introduce the model of a QPC in the spirit of Ref.
[61]. In Sec. III, we calculate the tunneling current and the
conductance perturbatively for a finite dc bias, which we
will need in the following section. In Sec. IV, we calculate
the finite-frequency noise in the dc regime. Section V is
devoted to the derivation of the tunneling current and the
finite-frequency noise for a periodic ac bias voltage. Finally,
we present our conclusions and some future perspectives in
Sec. VI. Details of the calculations and additional information
are presented in the Appendixes. Throughout the paper, we set
|e| = h̄ = kB = 1.

II. THEORETICAL MODEL OF A QUANTUM
POINT CONTACT

We start by introducing the Hamiltonian of a QPC between
a QH edge state at filling factor ν and an s-wave supercon-
ductor (see Fig. 1). To describe this system theoretically, we
use the phenomenological model presented in Ref. [61]. We
consider a total Hamiltonian of the system consisting of a
term describing the QH edge, a term describing the SC, and a
tunneling term:

Ĥ = ĤQH + ĤSC + ĤT . (1)

The exact form of the term ĤQH depends on the filling factor
and the cases of integer and fractional states as well as of a pair
of co-propagating states are presented in the next sections.

Tunneling between the superconductor and the edge state is
a two-step process. A Cooper pair from the superconducting
condensate first splits into two electrons with opposite spins
in a singlet state, both of which tunnel into the QH system.

SC QH

B

V

τ

ξ

SC QH

B

V

ν=2

τ

ξ

ν=1

FIG. 1. Schematic representation of the system: a QPC with tun-
neling amplitude τ connects a superconductor (SC) to the chiral edge
states of an integer quantum Hall (QH) phase at filling factor ν. At
ν = 1 both electrons of the Cooper pair would have to occupy the
same state, leading to a Pauli blockade, while at ν = 2 the electrons
can enter different states. The bias is applied between the chiral edge
channel and the superconductor.

However, since the edge state is spin polarized, a further
spin-flip process, which can be brought about by spin-orbit
coupling, is necessary to reach the final state which contains
two electrons with the same spin propagating in the edge state.
At temperatures much smaller than the superconducting gap,
the Cooper pairs can be described as the mean value of the
bosonic field ĉ describing the superconducting condensate,
� = 〈ĉ〉. We assume that the Cooper pair tunneling happens
at the point x = 0, and we use this to build the tunneling
Hamiltonian

ĤT =
∫

dx dx′ t1(x, x′)(ψ̂†
↑(x)ψ̂†

↓(x′)ĉ(x = 0) + H.c.)

+
∫

dx t2(x)(ψ̂†
↑(x)ψ̂↓(x) + H.c.), (2)

where t1 and t2 are tunneling and spin-flip amplitudes, respec-
tively, and ψ̂↑(x) is the annihilation operator for a spin-up
electron in the edge state at position x. If we consider the
Hamiltonian perturbatively in t1 and t2, at second order we
find the term∫

dx dx′ τ (x, x′)[ψ̂†
↑(x)ψ̂†

↑(x′)ĉ(x = 0) + H.c.], (3)

where we have the effective tunneling parameter τ (x, x′) =
t1(x, x′)[t2(x) − t2(x′)]. This term is the lowest-order term
which includes both spin-flip and Cooper-pair tunneling in
such a way as to remove the Cooper pair from the SC and
create two spin-up electrons in the QH edge. Thus, at low
energies this term will dominate the transport process across
the interface, and we neglect all other terms. The term repre-
sents an effective p-wave pairing which is suppressed at short
distances by the Pauli principle and vanishes exponentially
at distances larger than the superconducting coherence length
ξ ∝ vF /� [88], where vF is the Fermi velocity of the SC. This
allows us to effectively approximate the term using a fixed
distance ξ between the electrons in the final state,

Ĥ ′
T = τ ψ̂

†
↑(x = ξ )ψ̂†

↑(x = 0)ĉ(x = 0) + H.c., (4)

without loss of qualitative generality [61]. From here on we
suppress the spin index.

125402-2



CURRENT CORRELATIONS OF COOPER-PAIR TUNNELING … PHYSICAL REVIEW B 102, 125402 (2020)

In the following, we consider the effective Hamiltonian
given by taking Hamiltonian (1) and replacing ĤT with Ĥ ′

T ,
which gives a complete description of the system under con-
sideration. In the following, the relevant energy scales are
assumed to be small compared to the Fermi energy, allowing
us to use the effective low-energy theory to take into account
the strong electron-electron interaction in edge states for the
cases of filling factor ν = 2 and ν = 1/(2n + 1) (n ∈ N)
[41,42]. The tunneling term (4) is considered perturbatively.

III. TUNNELING CURRENT IN THE DC REGIME

The operator for the tunneling current is given by Ĵ =
dN̂QH/dt = i[Ĥ, N̂QH], where N̂QH = ∫

dxψ̂†(x)ψ̂ (x) is the
electron number operator in the QH channel. It can be
expressed as

Ĵ = 2iτ�(Â† − Â), (5)

where the operator Â = ψ̂ (0)ψ̂ (ξ ) consists of two fermionic
fields. According to the real-time Keldysh approach the aver-
age tunneling current in the interaction picture is given by the
expression

I (t ) = 〈Û †(t,−∞)Ĵ (t )Û (t,−∞)〉, (6)

where the average is taken with respect to the dc biased ground
state of QH edges and superconductor. The current becomes
time independent once the system has reached a steady state.
At the lowest order of tunneling coupling, the time-evolution
operator is given by

Û (t1, t2) ≈ 1 − i
∫ t1

t2

dtĤT (t ). (7)

One then finds that the average tunneling current can be writ-
ten in terms of a commutator of A operators [89–91],

Idc(V ) = 2(τ�)2
∫ ∞

−∞
dt e2iV t 〈[Â†(t ), Â(0)]〉0, (8)

where V is the applied dc bias voltage. The average is taken
with respect to the ground state of the uncoupled system,
i.e., with respect to the equilibrium density matrix ρ̂0 ∝
exp[−(ĤQH + ĤSC)/T ], where T is the temperature. The in-
tegrand of Eq. (8) only depends on one time variable due
to time translation invariance in presence of dc bias. The
prefactor 2 reflects the charge 2e of the Cooper pairs. The
perturbative result is valid as long as the tunneling current
is small compared to the Hall current. Restoring the natural
units, the Hall current is given by the relation IH = νe2V/2π h̄.

A. Filling factor ν = 1

As an illustration of our approach based on Eq. (8), we
first start by considering a system at filling factor ν = 1 and
described by

ĤQH = −ivF

∫
dxψ̂†(x)∂xψ̂ (x). (9)

Without loss of generality we consider right-moving fermions
and focus on a positive applied dc bias voltage V > 0. In the
case of finite temperature T , an analytical continuation in the

0 2 4 6 8
0

2

4

6

FIG. 2. The normalized tunneling current Idc(V )/I0 for filling
factor ν = 1 oscillates with the dimensionless bias 2V ξ/vF around
an Ohmic behavior, with nonzero temperature damping the oscilla-
tion [see Eqs. (10) and (13)].

complex plane is applied to Eq. (8). One finds the following
result for the tunneling current:

Idc(V )/I0 = ξT

vF
sinh

(
V

T

)

×
[
F

(
0,

V

πT

)
− F

(
2πξT

vF
,

V

πT

)]
, (10)

where I0 = (τ�)2/πvF ξ is a normalization factor and the
terms in square brackets are given by the integral

F (a, b) =
∫ +∞

−∞

cos(bz)dz

cosh(a) + cosh(z)
. (11)

Here one can check that the tunneling current vanishes at
V → 0 or ξ → 0. In the general case, the result of Eq. (10) can
be expressed in terms of hypergeometric functions. However,
we are mainly interested in the regime of low temperature
compared to the superconducting gap, ξT/vF � 1. More-
over, as we are mainly interested in the linear conductance,
we also assume low voltages compared to the temperature
scale, V/T � 1. In this case the result simplifies to Idc(V ) �
(4/3π )(τ�/vF )2V (πξT/vF )2.

A direct calculation of the conductance G = ∂Idc(V )/∂V
at V → 0 from Eq. (10) gives

G(T )/G0 = 1 − 2πξT/vF

sinh(2πξT/vF )
, (12)

where the normalization is equal to G0 = 2(τ�)2/πv2
F . In the

low-temperature limit ξT/vF � 1 we find that G(T )/G0 �
(2/3)(πξT/vF )2.

Next, we discuss the results at zero temperature. Using
Eq. (10), we obtain the expression for the tunneling current
at T = 0,

Idc(V )/I0 = 2V ξ

vF

[
1 − sin(2V ξ/vF )

2V ξ/vF

]
. (13)

In the limit of small bias voltage V ξ/vF � 1, we find non-
Ohmic behavior Idc(V ) ∝ (τ�)2V 3ξ 2/v4

F , as shown in Fig. 2.
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The oscillatory term is associated with the fact that the tun-
neling occurs at two points, separated by the superconducting
coherence length, ξ . The linear QPC conductance associated
with tunneling current is given by G = ∂Idc(V )/∂V at V →
0. The direct calculation gives G = 0 at zero temperature.
According to Ref. [61], the vanishing conductance and the
non-Ohmic behavior of the tunneling current is related to the
Pauli exclusion principle. At low energy scales, Pauli exclu-
sion diminishes the effective density of states for electron-pair
tunneling, namely, ρDOS ∝ (V ξ/vF )2 at zero temperature and
ρDOS ∝ (T ξ/vF )2 at finite temperature. Physically this means
that after the first electron has tunneled, the tunneling of a
second electron is strongly suppressed up to times t ∼ ξ/vF .

B. Filling factor ν = 2

In this section, we consider the QH edge at filling factor
ν = 2. First, we describe the noninteracting case. A pair of
electrons from the superconductor can now tunnel simulta-
neously into two different edge channels [61], denoted by 1
and 2. To model this process, the electron operator in
Eq. (5) can be represented as a superposition of indepen-
dent fermionic fields ψ̂1,2(x) as ψ̂ = √

pψ̂1 + √
1 − pψ̂2,

where p is the probability of an electron tunneling into
edge state 1, and 1 − p is the probability of tunneling
into edge state 2. To calculate the tunneling current (8)
we need the two-point correlation functions Gj (x1 − x2; t1 −
t2) = 〈ψ̂†

j (x1, t1)ψ̂ j (x2, t2)〉0, where j = 1, 2 denotes the edge
channel and for simplicity we assume both edge states to have
the same Fermi velocity vF . A difference in Fermi velocities
could be absorbed into a redefinition of p.

At finite temperatures, similar steps as for filling factor ν =
1 lead to the following expression for the tunneling current:

Idc(V )/I0 = ξT

vF
sinh

(
V

T

)

×
[
F

(
0,

V

πT

)
− N (p, kξ )F

(
2πξT

vF
,

V

πT

)]
,

(14)

with F (a, b) defined as in Eq. (11). We have introduced the
interference factor

N (p, kξ ) = 1 − 2p(1 − p)[1 − cos(kξ )], (15)

where k = Bl is the momentum difference between the two
edge channels when separated by a length l in a magnetic field
of strength B. This reflects the inherent relationship between
momentum and position of QH edge states [92], where taking
the difference avoids all dependence on the choice of gauge.
The result for the zero-bias conductance at finite temperature
reads

G(T )

G0
= 1 − 2πξTN (p, kξ )

vF sinh(2πξT/vF )
. (16)

For ξT/vF � 1 we have G(T )/G0 � 1 − N (p, kξ ) +
(2N (p, kξ )/3)(πξT/vF )2. The leading order generally does
not vanish and does not depend on temperature. Physically
this is due to a circumvention of the Pauli blockade by
allowing the electrons to tunnel simultaneously into different
channels.

FIG. 3. At filling factor ν = 2, the normalized tunneling current
oscillates both with the dimensionless bias 2V ξ/vF and the inter-
ference factor argument kξ . These oscillations are shown at finite
temperature, 2ξT/vF = 0.5, and tunneling probability p = 0.5 [see
Eq. (14)]. Black lines indicate integer values of the current.

Employing Eq. (14), we get the result for the tunneling
current at zero temperature,

Idc(V )/I0 = 2V ξ

vF

[
1 − N (p, kξ )

sin(2V ξ/vF )

2V ξ/vF

]
. (17)

As before, the current vanishes if either V → 0 or ξ → 0. For
tunneling into a single edge state (p = 1 or p = 0) one has
N = 1 and thus recovers the result from Eq. (13). It is inter-
esting to note that for arbitrary p, one can still have N = 1 if
cos(kξ ) = 1, which is likely due to destructive interference of
the two tunneling events. While most of the parameters in the
cosine argument are material specific, and thus hard to vary
experimentally, it should be possible to observe this recovery
of the Pauli blockade by varying the B field within an interval
maintaining the ν = 2 filling factor.

In the limit V ξ/vF � 1, we find that having two edge
channels available and thus the possibility to avoid the Pauli
blockade restores Ohmic behavior: Idc(V ) ∝ (τ�/vF )2(1 −
N )V , whereas the subleading term is proportional to
(τ�)2NV 3ξ 2/v4

F . Equation (14) is shown in Fig. 3 for fixed
finite temperature and tunneling probability. The oscillations
with respect to the voltage are similar to those in Fig. 2, while
the oscillations with respect to the interference factor argu-
ment kξ are related to the Pauli blockade. For a fixed applied
bias, these Pauli blockade oscillations are peaked at kξ =
2πn, with n ∈ N. At zero temperature these peaks become
sharper, demonstrating a stronger blockade regime. Further,
a straightforward calculation leads to the zero-temperature
conductance G(T = 0)/G0 = 1 − N (p, kξ ).

We now introduce electron-electron interactions both
within a given edge state as well as between the two edge
states. To study the effects of these interactions on the
Pauli blockade, we start in the blockaded regime and thus
assume that electrons only tunnel into one edge channel,
corresponding to p = 1 or p = 0. To describe the edge
states in the presence of interactions we use an effective
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field theory [41,42]. The edge-state excitations are then de-
scribed as collective fluctuations of the charge density ρ̂ j (x) =
(1/2π )∂xφ̂ j (x), where the index j = 1, 2 labels the edge state
and φ̂ j (x) is a bosonic field operator which satisfies the stan-
dard commutation relations [φ̂i(x), φ̂ j (y)] = iπδi jsgn(x − y).
The Hamiltonian of the QH edge states is then given by

ĤQH = 1

2

∑
i j=1,2

∫
dx

∫
dyρ̂i(x)Vi j (x, y)ρ̂ j (y), (18)

where the interaction kernel is given by Vi j (x, y) =
(U + 2πvF δi j )δ(x − y) with U > 0 describing the screened
Coulomb interaction. The Hamiltonian ĤQH can be diagonal-
ized by the unitary transformation [89]

φ̂1 = 1√
2

(χ̂1 + χ̂2), φ̂2 = 1√
2

(χ̂1 − χ̂2), (19)

which conserves the bosonic commutation relations
[χ̂i(x), χ̂ j (y)] = iπδi jsgn(x − y). Substituting these fields
into the Hamiltonian (18) we obtain

ĤQH = 1

4π

∑
j=1,2

v j

∫
dx(∂xχ̂ j )

2, (20)

which now contains a fast charge mode ( j = 1) and a
slow dipole mode ( j = 2), with velocities v1 = U/π + vF

and v2 = vF , respectively. This bosonization procedure al-
lows us to take into account electron-electron interactions
with arbitrary strength explicitly and shows that the spec-
trum is split into two modes. Now, it is straightforward to
calculate the four-point correlation functions using this di-
agonal Hamiltonian and the unitary transformation (19) (see
Appendix B). Substituting the correlation functions from
Eq. (B3) into Eq. (8), we get the following expression for the
tunneling current at finite temperatures:

Idc(V )/I0 = v2

v1

2ξT

v2
sinh

(
V

T

) ∏
j=1,2

sinh

(
πT ξ

v j

)

×J
(

2πT ξ

v1
,

2πT ξ

v2
,

2V

πT

)
, (21)

where the last factor has the integral form

J (a1, a2, b) =
∫ ∞

−∞
dy

cosh−2(y) cos(by)∏
i=1,2

√
cosh(2y) + cosh(ai )

. (22)

At low temperatures T ξ/v2 � 1, the asymptotic form of
the conductance is G(T )/G0 � (2/3)(πξT/

√
v1v2)2, where

G0 = 2(τ�)2/πv1v2 is a normalization coefficient. At zero
temperature and V ξ/v2 � 1 with v1 > v2 we get Idc(V ) ∝
(2/3π )(V 3ξ 2)/(v1v2)2, resulting in vanishing zero-bias con-
ductance. Thus we get the same result as in the case of filling
factor ν = 1 in Eq. (13) at V ξ/vF � 1. The Pauli blockade
persists even with cross-channel interaction. As one can see,
the interaction renormalizes the Fermi velocity, so to obtain
the current at T → 0 one has to change vF to

√
v1v2 in

asymptotics of Eq. (13). The dependence of the tunneling
current on the applied bias at different interaction parame-
ters, v2/v1, is shown in Fig. 4. Here v2/v1 = 1 corresponds
to the noninteracting case. One can see that the interaction
parameter slightly decreases the magnitude of the tunneling

0 2 4 6 8
0
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FIG. 4. When the electrons tunnel into two interacting QH edge
states, we see a decrease in the magnitude of the normalized tunnel-
ing current, as well as longer oscillation periods with applied bias,
for stronger interactions. The figure shows the case for finite temper-
ature 2ξT/vF = 0.5 with an interaction parameter v2/v1 which has
v2 = vF [see Eq. (21)], and where v2/v1 = 1.0 is the noninteracting
case.

current in comparison with the noninteracting regime, while
the oscillation period is increased.

C. Filling factor ν = 1/(2n + 1)

The fractional QH edge state with Laughlin filling factor
ν = 1/(2n + 1), n ∈ N, consists of a single channel with a
free bosonic field φ̂(x) propagating with velocity v. The elec-
tron operator is given by the vertex operator ψ̂ (x) ∝ eiφ̂(x)/

√
ν

[41,42]. We can then repeat the steps of the previous sections
to get the tunneling current at finite temperature,

Idc(V )/Ĩ0 = 21/ν ξT

v

(
rT

2v

)2/ν−2

sinh2/ν

(
πξT

v

)

× sinh

(
V

T

)
Q

(
2πξT

v
,

2V

πT

)
, (23)

where r is an ultraviolet cutoff, Ĩ0 = (τ�)2/πvξ is the nor-
malization coefficient, and we use the dimensionless integral

Q(a, b) =
∫ ∞

−∞
dy

cosh−2/ν (y) cos(by)

[cosh(2y) + cosh(a)]1/ν
. (24)

At T ξ/v � 1 we get the asymptotic behavior of the
conductance,

G(T )

G̃0
�

√
π

2

�(2/ν)

�(1/2 + 2/ν)

(
rT

2v

)2/ν−2(
πξT

v

)2/ν

, (25)

where �(x) denotes the gamma function and G̃0 =
2(τ�)2/πv2. Further, at zero temperature and low voltages
V ξ/v � 1, using Eq. (23), we find that the current has the
form

Idc(V )/Ĩ0 � 2π2vξ

r2

(
2rξ

πv2

)2/ν V 4/ν−2

�(4/ν)
. (26)

Consequently, the conductance vanishes as in the case of fill-
ing factor ν = 1, i.e., G = 0. This result can also be obtained
from Eq. (25) at T → 0. This is related to the power-law
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behavior of the tunneling current with respect to the applied
voltage due to the positive integer power in Eq. (26). Even
though we have tunneling between two effectively bosonic
systems, the Pauli blockade persists and makes the QPC an
insulator at zero bias. At filling factor ν = 1 the results of this
section coincide with the results of Sec. III A.

IV. FINITE-FREQUENCY NOISE IN THE DC REGIME

In this section, we consider the finite-frequency noise in the
case of an applied dc voltage. The exact experimentally mea-
surable current noise depends on the details of the setup, so
we calculate the nonsymmetrized current correlation function
from which other forms of noise, e.g., the symmetrized noise,
can be obtained [48,91,93,94]. It is defined as

Sdc(ω,V ) =
∫ +∞

−∞
dteiωt 〈δĴ (t )δĴ (0)〉, (27)

where δĴ (t ) = Ĵ (t ) − 〈Ĵ (t )〉 and the average is taken with
respect to the dc biased ground state of the QH system and
superconductor. Using the time translation invariance of the
vertex operators (see Appendix C), the noise can be written to
the lowest order of the tunneling coupling as

Sdc(ω,V ) = g(ω + 2V ) + g(ω − 2V ), (28)

where the correlation function on the right is given by

g(ω) = 4(τ�)2
∫ +∞

−∞
dteiωt 〈Â†(t )Â(0)〉0. (29)

It is worth pointing out that the shot noise at ω = 0 is
determined by the anticommutator of Â operators, in con-
trast to the tunneling current in Eq. (8), namely, Sdc(0,V ) =
4(τ�)2

∫ +∞
−∞ dte2iV t 〈{A†(t ), A(0)}〉0 [91]. The noise can be

symmetrized as the even combination of the two nonsym-
metrized terms, [S(ω) + S(−ω)]/2, and whether measuring
the nonsymmetrized or the symmetrized noise is possible
depends on the experimental detector [93].

A. Filling factor ν = 2

We start again by considering a system with positive bias
voltage V > 0, no interactions, and Cooper pairs tunneling
simultaneously into both edge channels (see Sec. III B). Us-
ing Eq. (27) and the two-point correlation functions from
Appendix A, the noise at finite temperature becomes

Sdc(ω,V )/I0 =
∑
σ=±

ξT

vF
exp

(
ω + 2σV

2T

)[
F

(
0,

ω + 2σV

2πT

)

−N (p, kξ )F
(

2πξT

vF
,
ω + 2σV

2πT

)]
, (30)

where F (a, b) is defined in Eq. (11) and the normalization
coefficient I0 is given after Eq. (10).

At zero temperature we can use Eq. (30) to obtain the
expression

Sdc(ω,V )/I0 =
∑
σ=±

2θ (ωξ/vF + 2σV ξ/vF )

{ |ω + 2σV |ξ
vF

−N (p, kξ ) sin

( |ω + 2σV |ξ
vF

)}
, (31)
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FIG. 5. The normalized finite-frequency nonsymmetrized noise
of the dc tunneling current Sdc(ω,V )/I0 at filling factor ν = 2 as a
function of the dimensionless frequency ωξ/vF at applied voltages
2V ξ/vF = 4 (blue lines) and 2V ξ/vF = 6 (red lines). Here, the solid
lines correspond to finite temperature 2T ξ/vF = 0.5 and the dashed
lines correspond to zero temperature. Notably, we find no resonances
(singularities). We have p = 0.5 and kξ = 2π/3. See Eqs. (30)
and (31).

where N (p, kξ ) is given in Eq. (17) and θ (x) is the Heaviside
step function. The dependence of noise on frequency at zero
and finite temperatures is shown in Fig. 5. The oscillations
are again related to the tunneling of electrons into two spa-
tially separated points, x = 0 and x = ξ . At small frequencies
0 < ω � 2V , the linear-frequency-dependent part appears
in a subleading term, namely, Sdc(ω,V )/I0 ≈ 2(2V ξ/vF −
N sin(2V ξ/vF )) + 2(1 − N cos(2V ξ/vF ))(ωξ/vF ). At large
frequencies ω � 2V > 0, the frequency-dependent part ap-
pears in the leading order, Sdc(ω,V )/I0 ≈ 4ωξ/vF . Further-
more, we calculate the derivative of the shot noise with respect
to the applied bias at V → 0 and get

G−1
0

∂Sdc(0,V )

∂V

∣∣∣∣
V →0

= 2[1 − N (p, kξ )], (32)

where the prefactor G0 on the left is given after Eq. (12). Here,
as with the corresponding conductance, we see that at filling
factor ν = 2 the Pauli blockade is lifted. At low temperatures
ξT/vF � 1, the subleading correction to Eq. (32) is given by
(4/3)N (p, kξ )(πξT/vF )2; i.e., the temperature independence
is only to leading order.

Furthermore, using Eqs. (14) and (30), and F (a,−b) =
F (a, b), one can see that the Fano factor has the well-known
form [7]

Sdc(0,V )/Idc(V ) = 2 coth

(
V

T

)
. (33)

Therefore, the current fluctuations satisfy a classical
Poissonian shot-noise form [7]. At zero temperature,
we have coth(V/T ) → 1, so the Fano factor becomes
Sdc(0,V )/Idc(V ) = 2, which can be taken as an indication that
the elementary charge carriers tunneling through the QPC are
indeed charge-2e Cooper pairs.

The result for filling factor ν = 1 can be obtained setting
N (p, kξ ) = 1 at p = 1 or p = 0. In particular, at low temper-
atures and bias voltage, ξT/vF � 1 and V/T � 1, we get

Sdc(0,V )/I0 � 8V ξ

3vF

(
πξT

vF

)2

. (34)
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Thus, the right-hand side of Eq. (34) becomes propor-
tional to the differential conductance (12) at V → 0; i.e.,
∂Sdc(0,V )/∂V ∝ (ξT/vF )2.

Taking into account electron-electron interactions, assum-
ing tunneling into only one channel, and repeating the steps
leading to Eqs. (21) and (30) for finite temperatures yields the
following result:

Sdc(ω,V )/I0 =
∑
σ=±

v2

v1

2ξT

v2
exp

(
ω + 2σV

2T

)

×
∏

i=1,2

sinh

(
πT ξ

vi

)

×J
(

2πT ξ

v1
,

2πT ξ

v2
,
ω + 2σV

πT

)
, (35)

where I0 is given in Eq. (21), and J is given in Eq. (22). Calcu-
lating the zero-frequency noise, one finds that the Fano factor
is given by Eq. (33), as it is expected. It is worth mentioning
here that at V → 0, the differential shot noise vanishes.

At zero temperature, using Eq. (35), for the shot noise at
ω = 0 and V ξ/v1,V ξ/v2 � 1 we get

Sdc(0,V )/I0 � 8v2
2

3v2
1

V 3ξ 3

v3
2

. (36)

Direct calculations using the asymptotic result in Eq. (36)
or the exact expression at ω = 0 in Eq. (35) give that
∂Sdc(0,V )/∂V = 0 at V → 0, which is caused by the Pauli
blockade.

B. Filling factor ν = 1/(2n + 1)

Repeating the steps of the previous sections, in the case
of finite temperature we get the following result for noise at
fractional filling factors:

Sdc(ω,V )/Ĩ0 =
∑
σ=±

21/ν ξT

v

(
rT

2v

)2/ν−2

sinh2/ν

(
πξT

v

)

× exp

(
ω + 2σV

2T

)

×Q
(

2πξT

v
,
ω + 2σV

πT

)
, (37)

where Q(a, b) is given in Eq. (24) and the normalization
factor is given in Eq. (23). Taking this equation at T ξ/v � 1
one can show that the differential shot noise at zero bias is
proportional to the conductance, namely, ∂Sdc(0,V )/∂V ∝
(rT/2v)2/ν−2(πξT/v)2/ν . This expression vanishes at T →
0. In particular we find that at zero temperature, zero fre-
quency, ω = 0, and V ξ/v � 1 we obtain the asymptotic
expression for shot noise:

Sdc(0,V )/Ĩ0 � 4π2

�[4/ν]

vξ

r2V

(
2rξV 2

πv2

)2/ν

. (38)

This expression results in vanishing differential shot noise,
namely, ∂Sdc(0,V )/∂V = 0 at V → 0. It is worth mentioning

that at ν = 1 the result of this section agrees with the expres-
sions of the previous section and Eq. (33) for Fano factor at
finite temperatures is satisfied. We note that no resonances
(singularities) appear in Eqs. (31), (35), or (37). For instance,
at zero temperature, this can be seen from the fact that the
power-law correlation functions result in the linear frequency
behavior of noise S(ω,V ) ∝ ω at small, ω � 2V , and large,
ω � 2V , frequencies.

V. TUNNELING CURRENT AND FINITE-FREQUENCY
NOISE IN THE AC REGIME

To study the case of time-dependent voltage, we assume a
periodic bias of the form Ṽ (t ) = V + V1 cos(�t ), where � is
the driving frequency. The time-dependent part of such bias
averages to zero over one period T = 2π/�, and the dc part
of the time-averaged tunneling current in the case of ac bias is
given by

I = 2

T

∫ T

0
dt

∫ t

−∞
dt ′Re

{
ei

∫ t
t ′ Ṽ (t ′ )〈[Â†(t ), Â(t ′)]〉0

}
. (39)

With the exact form of the vertex operators from
Appendixes B and C, and using an expansion in terms of
Bessel functions, exp[iλ sin ϕ] = ∑∞

n=−∞ Jn(λ) exp[inϕ], we
find

I =
+∞∑

n=−∞
J2

n (2V1/�) Idc(V + n�/2), (40)

where Idc(V + n�/2) has been calculated in Eqs. (10), (14),
(21), and (23). At � → 0 and V1 → 0, the sum of Floquet
factors goes to one, i.e.,

∑∞
n=−∞ J2

n (2V1/�) → 1, and thus we
recover the result of Eq. (8) in the case of dc bias for all filling
factors.

We proceed by calculating the noise in the presence of such
an ac bias voltage. Again, we consider the finite-frequency
noise averaged over a drive period T . Due to the drive,
this can be regarded as noise due to photon-assisted electron
transport across the QPC. The time-averaged photon-assisted
finite-frequency noise is given by the following Wigner
transformation:

S(ω) = 1

T

∫ T

0
dτ

∫ +∞

−∞
dτ ′S(τ + τ ′/2, τ − τ ′/2)eiωτ ′

,

(41)

where we have introduced the “center of mass” and “relative”
time variables, τ = (t + t ′)/2 and τ ′ = t − t ′, respectively.
The integrand includes the current-current correlation func-
tion S(t, t ′) = 〈δĴ (t )δĴ (t ′)〉 with δĴ (t ) = Ĵ (t ) − 〈Ĵ (t )〉 and
the average is performed with respect to the biased ground
state of the system. Using again an expansion of the exponent
in terms of Bessel functions, the time invariance of the vertex
correlation functions (see Appendix C) and J2

−n(x) = J2
n (x)

we get the final result for finite-frequency noise,

S(ω) =
∞∑

n=−∞
J2

n (2V1/�) Sdc(ω,V + n�/2), (42)

where Sdc(ω,V + n�/2) has been calculated in Eqs. (30),
(31), (35), and (37). Here again, as � → 0 and
V1 → 0, the sum of Floquet factors goes to one, i.e.,
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FIG. 6. The normalized finite-frequency nonsymmetrized noise
of the tunneling current in the presence of periodic time-dependent
(ac) bias, Ṽ (t ) = V + V1 cos(�t ) at zero temperature for different
2V ξ/vF [see Eq. (42)]. Again we find no resonances. In this figure
we show the case of filling factor ν = 1 and choose Sdc(ω,V ) from
Eq. (31). We set p = 0 or 1, 2V1ξ/vF = 2, and �ξ/vF = 1.

∑∞
n=−∞ J2

n (2V1/�) → 1, and thus we recover the result
of Eq. (27) in the case of dc bias. The dependence of noise
on frequency, Eq. (42) at filling factor ν = 1, is presented
in Fig. 6. As in the case of dc bias, there are no resonances
(singularities) in the frequency-dependent noise, which is
a consequence of the positive power-law behavior with
respect to frequency (see the discussion in the last paragraph
of Sec. IV). In Ref. [95], in the low-frequency regime, it
was experimentally demonstrated that a similar equation,
� = ∑n=∞

n=−∞ J2
n (V1/�)�dc(V + n�), holds for electron

current, heat current, and shot noise under ac bias over a
QPC contact between two edge states. According to Eq. (42),
this statement holds in one more general case, namely, for
finite-frequency noise. This result can be used to interpret the
experiments on dynamical response of Laughlin anyons in
the presence of time-dependent bias [95].

VI. CONCLUSION

In this paper we have studied tunneling between a super-
conductor and a QH edge state at different filling factors,
namely, ν = 1, ν = 2, and ν = 1/(2n + 1). To account for
electron-electron interaction in the QH edge state, we used
a low-energy effective theory based on bosonization. In the
bosonic picture of collective excitations, the spectrum splits
into two modes, namely, the fast charge mode and slow dipole
mode. Exact diagonalization allows us to calculate the two-
and four-point equilibrium correlation functions, which are
necessary to evaluate the transport properties of system, such
as current and noise. We investigated the tunneling between
the QH edge states and the superconductor to the lowest order
in the tunneling coupling under the dc and ac biases.

For filling factor ν = 1, at zero temperature and V ξ/vF �
1, we found that the tunneling current is proportional to
Idc(V ) ∝ (τ�)2ξ 2V 3/v4

F , which is a manifestation of non-
Ohmic behavior. This scaling of the tunneling current with
the applied dc bias results in a vanishing conductance. At
finite temperatures, at ξT/vF � 1 and V/T � 1, the cur-
rent is proportional to the applied bias, and the density of

states is renormalized by the dimensionless factor ξT/vF ,
namely, Idc(V ) ∝ (τ�/vF )2(ξT/vF )2V . In addition to the
tunneling current, we presented results for the finite-frequency
current noise. The ratio between shot noise and tunnel-
ing current, known as the Fano factor, was found to be
Sdc(0,V )/Idc(V ) = 2. Thus, the differential shot noise,
∂Sdc(0,V )/∂V at V → 0, vanishes as well. At finite tem-
peratures the Fano factor has the form Sdc(0,V )/Idc(V ) =
2 coth(V/T ). As a result, at ξT/vF � 1, the differential shot
noise at V → 0 is proportional to the conductance and van-
ishes as T → 0.

For filling factor ν = 2, in the case of simultaneous tunnel-
ing of a Cooper pair into different QH channels, the situation
changes drastically. At zero temperature and V ξ/vF � 1, the
current manifests Ohmic behavior to leading order, Idc(V ) ∝
(τ�/vF )2(1 − N )V , where 0 < N < 1 in the case of si-
multaneous tunneling into two edge states. The shot noise
is proportional to the current, Sdc(0,V )/Idc(V ) = 2, so the
differential shot noise at V → 0 is generally not equal to
zero. At low temperatures ξT/vF � 1 the leading behavior of
both the conductance and the differential shot noise does not
depend on temperature. The temperature dependence appears
only in a subleading correction proportional to N (ξT/vF )2.
In the presence of electron-electron interaction the results are
qualitatively similar, but one has to replace the Fermi velocity
by the geometric average of the velocities of the charged and
dipole modes,

√
v1v2.

For filling factor ν = 1/(2n + 1), the power-law behav-
ior of transport quantities depends on ν. At V ξ/v � 1, the
current is given by Idc(V ) ∝ V 4/ν−1 and the conductance van-
ishes. At low temperatures, ξT/v � 1, we have Idc(V ) ∝
T 4/ν−2V and the conductance depends on temperature. The
behavior of the differential shot noise at V → 0 with re-
spect to temperature is identical to that of the conductance,
namely, ∝ T 4/ν−2.

We also provided a general expression for the tunneling
current and the finite-frequency noise in the presence of a
periodic ac bias voltage. This result, valid for all filling factors
considered, demonstrates that the current and finite-frequency
noise can be expressed as the sum of dc currents and noise
terms with Floquet coefficients. Recently, it was experimen-
tally found that an expression similar to our result (42) holds
for shot noise [95]. We have found that this statement holds in
the more general case of finite-frequency noise.

At Laughlin filling factors, in addition to the Coulomb
blockade [96], it has been found that the vanishing conduc-
tance [61] and differential shot noise at low temperatures is a
consequence of an additional suppression mechanism called
the Pauli blockade: after the tunneling of the first electron of
a Cooper pair the tunneling of the second electron into the
QH edge state is suppressed up to times ξ/vF , where vF is
the velocity of the edge excitations, due to the Pauli exclusion
principle. At filling factor ν = 2, in the case of simultaneous
tunneling of a Cooper pair into both channels, the Pauli block-
ade is partially removed. Electron-electron interactions do not
change the physics qualitatively but result in a renormalization
of the Fermi velocity. Finally, as a future perspective, it would
be interesting to consider a similar problem in the context of
levitonic physics [9], where the injection of single particles
due to tailored voltage pulses is investigated.
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APPENDIX A: TWO-POINT CORRELATION FUNCTION

In this Appendix we calculate the two-point correlation
function of right-moving fermions, Gj (x, t ; x′, t ′), at filling
factor ν = 1 and at finite temperature T . We use the bosoniza-
tion technique, which is further necessary to take into account
the electron-electron interaction. Here the subscript j = 1, 2
denotes the QH channel. According to the bosonization tech-
nique, we can write

Gj (x, x′; t, t ′) = 〈ψ̂†
j (x, t )ψ̂ j (x

′, t ′)〉0

= 1

r
〈e−iφ̂ j (x,t )eiφ̂ j (x′,t ′ )〉0 = 1

r
eM(x,t ;x′,t ′ ), (A1)

where r is an ultraviolet cutoff, and in Gaussian approxima-
tion under consideration the exponent is given by

M(x, t ; x′, t ′) = − 1
2

〈
φ̂2

j (x, t )
〉
0 − 1

2 〈φ̂2
j (x′, t ′)〉0

+〈φ̂ j (x, t )φ̂ j (x
′, t ′)〉0. (A2)

Using the expansion of bosonic field in terms of creation
and annihilation operators of bosons, we get the following
expression (zero modes are ignored):

M(x, t ; x′, t ′) =
∫ ∞

0

dk

k
e− rk

2π [(1 + fB(k))(eik[X (t )−X ′(t ′ )] − 1)

+ fB(k)(e−ik[X (t )−X ′ (t ′ )] − 1)], (A3)

where X = x − v jt , X ′ = x′ − v jt ′, and fB(k) = (ev j k/T −
1)−1 = ∑∞

n=1 e−v jβkn is an equilibrium bosonic distribution
function with inverse temperature β = 1/T . Further integra-
tion with respect to momentum variable k gives

M(x, t ; x′, t ′) = log

[
ir/2π

X (t ) − X ′(t ′) + ir/2π

]
−

∞∑
n=1

log

[
1 + [π (X (t ) − X ′(t ′) + ir/2π )/v jβ]2

π2n2

]
. (A4)

Next, exponentiating the above relation and using the defini-
tion of hyperbolic sine

sinh(z) = z
∞∏

n=1

(
1 + z2

π2n2

)
, (A5)

we finally get the result for the two-point correlation function
at finite temperature:

Gj (x, x′; t, t ′) = −iT

2v j

1

sinh[πT (t − t ′ − (x − x′)/v j − iγ )]
,

γ → + 0. (A6)

The correlation function at zero temperature is obtained, using
that sinh(x) ∼ x, namely,

Gj (x, x′; t, t ′) = −i

2πv j

1

t − t ′ − (x − x′)/v j − iγ
. (A7)

APPENDIX B: FOUR-POINT CORRELATION FUNCTION

In this Appendix we derive the expression for the four-
point correlation function [97]. We again use the Gaussian
character of theory to calculate it; namely, the average of four
vertex operators is written as the exponent of a combination
of averages of bosonic field. To demonstrate this, we use the
bosonization technique to rewrite the four-point correlation
function, namely,

L1 = 〈ψ̂†
1 (x1, t1)ψ̂†

1 (x2, t2)ψ̂1(x3, t3)ψ̂1(x4, t4)〉0

= 1

r2
〈e−iφ̂1(x1,t1 )e−iφ̂1(x2,t2 )eiφ̂1(x3,t3 )eiφ̂1(x4,t4 )〉0, (B1)

where we have omitted the arguments of L1 and the average
is taken with respect to the equilibrium zero density matrix,
ρ̂0. Next, using Eq. (19) from the main text, the above expres-
sion can be rewritten as a product of two four-point vertex

correlation functions corresponding to charged and dipole
modes in presence of interaction, namely, L1 = L1

1 × L2
2,

where χ̂ j (x, t ) = χ̂1(x − v jt ) and consequently

L j
1 = 1

r

〈
e

−i√
2
χ̂ j (x1−v j t1 )e

−i√
2
χ̂ j (x2−v j t2 )e

i√
2
χ̂ j (x3−v j t3 )e

i√
2
χ̂ j (x4−v j t4 )〉

0.

(B2)

Further in Gaussian approximation [97], in terms of new
bosonic fields, the above correlation function takes the form

L j
1 = 1

r
exp

[
−1

4

4∑
i=1

λ2
i

〈
χ̂2

j (xi − v jti )
〉
0

− 1

2

4∑
i<l

λiλl〈χ̂ j (xi − v jti )χ̂ j (xl − v jtl )〉0

]
,

λi = ±1. (B3)

Further calculations give the final result for correlation
function

L j
1 = 1

r

√
L13L14L23L24

L12L34
,

Li j = −irT

2v j

1

sinh[πT (ti − t j − (xi − x j )/v j − iγ )]
,

i, j = 1, 2, 3, 4. (B4)

All other four-point correlation functions can be calculated in
the same manner. The correlation function at zero tempera-
ture can be obtained using Eq. (A7). It is worth mentioning
that the higher-order correlation functions in the perturbative
expansion, which give the subleading corrections to current
and noise, may depend on the regularization of the pointlike
tunneling Hamiltonian [98].
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APPENDIX C: TIME INVARIANCE OF VERTEX CORRELATION FUNCTIONS

In this Appendix we show the time invariance of vertex correlation functions, namely that

〈Â†(t )Â(0)〉0 = 〈Â(t )Â†(0)〉0 = 〈Â†(0)Â(−t )〉0. (C1)

To do this, we represent these vertex correlation functions though the two-point correlation functions Gj (x − x′, t − t ′) defined
in Appendix B. For filling factor ν = 1 it is obvious because of Wick’s theorem. For filling factor ν = 2 but without interaction

〈Â†(t1)Â(t2)〉0 = 〈Â(t1)Â†(t2)〉0 = [p2 + (1 − p)2]
∑
j=1,2

[Gj (0, t1 − t2)Gj (0, t1 − t2) − Gj (ξ, t1 − t2)Gj (−ξ, t1 − t2)]

+ p(1 − p)[2G1(0, t1 − t2)G2(0, t1 − t2) − G1(ξ, t1 − t2)G2(−ξ, t1 − t2) − G2(ξ, t1 − t2)G1(−ξ, t1 − t2)],

(C2)

thus is it straightforward to confirm the time-invariance relations. At filling factor ν = 2 in the presence of interac-
tion using Eq. (B3) and the commutation relation [χ̂α (x1 − vαt1), χ̂β (x2 − vβt2)] = iπδαβsgn(x1 − x2 − vαt1 + vβt2) one can
justify Eq. (C1).
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