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Abstract—With the ever increasing requirement of transferring
data from/to smart users within a wide area, satellite internet of
things (S-IoT) networks has emerged as a promising paradigm
to provide cost-effective solution for remote and disaster areas.
Taking into account the diverse link qualities and delay quality-
of-service (QoS) requirements of S-IoT devices, we introduce a
power domain non-orthogonal multiple access (NOMA) scheme
in the downlink S-IoT networks to enhance resource utiliza-
tion efficiency and employ the concept of effective capacity
to show delay-QoS requirements of S-IoT traffics. Firstly, re-
source allocation among NOMA users is formulated with the
aim of maximizing sum effective capacity of the S-IoT while
meeting the minimum capacity constraint of each user. Due to
the intractability and non-convexity of the initial optimization
problem, especially in the case of large-scale user-pair in NOMA
enabled S-IoT. This paper employs a deep reinforcement learning
(DRL) algorithm for dynamic resource allocation. Specifically,
channel conditions and/or delay-QoS requirements of NOMA
users are carefully selected as state according to exact closed-form
expressions as well as low-SNR and high-SNR approximations,
a deep Q network is first adopted to yet reward and output
the optimum power allocation coefficients for all users, and then
learn to adjust the allocation policy by updating the weights
of neural networks using gained experiences. Simulation results
are provided to demonstrate that with a proper discount factor,
reward design, and training mechanism, the proposed DRL
based power allocation scheme can output optimal/near-optimal
action in each time slot, and thus, provide superior performance
than that achieved with a fixed power allocation strategy and
orthogonal multiple access (OMA) scheme.

Index Terms—Power-domain non-orthogonal multiple access
(NOMA), satellite internet of things (S-IoT), resource allocation,
deep reinforcement learning (DRL).
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I. INTRODUCTION

SATELLITE internet of things (S-IoT), in which the spe-
cial characteristics of satellite networks are utilized to

achieve the ubiquitous coverage, is capable of providing
remote detection and swift reaction with destructive disasters
as well as environmental monitor and communicate other
[1], [2]. Although S-IoT can realize anything and anyone
communications in anytime and anywhere, the increasingly
growing number of IoT devices will reach 24.1 billion by
2030 as predicted [3], the ever continuously emerging of new
applications and evolving of former applications to scenarios
with more stringent reliability/latency/data rate requirements,
all directly lead to a vital design constraint in S-IoT because
of limited spectrum resource.

Non-orthogonal multiple access (NOMA) scheme, which
can be perfectly integrated with the existing orthogonal mul-
tiple access (OMA) scheme by exploiting the power domain
for multiple access within each resource block, has been con-
sidered as a promising approach in S-IoT to increase spectrum
and energy resource utilization [4]. In recent years, many
efforts have investigated the performance of NOMA based S-
IoT networks from various performance metrics. Particularly,
the network utility maximization were investigated in [5]
and [6] with joint optimization and deep learning methods,
respectively. Considering the channel phase uncertainty, the
authors in [7] proposed two robust beamforming algorithms to
minimize the total power consumption in NOMA-based multi-
beam S-IoT networks, and proved that the power consumed
with NOMA scheme was far less than that with OMA scheme.
In addition, the authors in [8] conducted outage performance
investigation of NOMA users with fixed power allocation
strategy in millimeter-wave band S-IoT networks, where the
direct access were unavailable and multiple antennas were
deployed at the relay node.

While these aforementioned works have investigated various
S-IoT scenarios assisted with the NOMA scheme is superior to
that with OMA scheme, the main limitation of those works is
that only the fixed power allocation is assumed. Since the inter-
ference caused by superposition coding at the transmit side is
cancelled by using successive interference cancellation (SIC)
at the receiver side [9]–[14], the power allocated to one NOMA
user crucially affect its ability to remove inter-interference and
observe its own signal. Therefore, power allocation strategy
has a significant impact on NOMA users’ performance and
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the superiority of the NOMA scheme. Fixed power allocation
policy, as a result, can not well suit users’ channel diversities
and effectively provide an improved spectral efficiency, even
at the cost of increased complexity [15].

Moreover, in most existing studies on NOMA based S-IoT
networks, the delay quality-of-service (QoS) requirements of
users were not taken into consideration. Although the S-IoT
receivers may located in the same beam spot coverage area,
receivers still have various delay-QoS requirements [16], [17]
and channel qualities due to their application scenarios and
location environments, i.e., smart grid in remote locations
is an identical delay-critical scenario, while environmental
monitoring is a typical delay-tolerant scenario. In this regard,
the authors in [5] and [6] conducted a jointly network sta-
bility and power allocation optimization problem for long-
term network utility, which failed to take into consideration
the specific delay-QoS requirement of each S-IoT user. By
using a one-dimensional numerical search (NS) strategy, the
achievable system performance for a two user NOMA system
under delay-limited QoS constraint was studied in [18] and
[19] over κ-µ shadowed fading and in single-input multiple-
output scenarios, respectively. However, the difficulty of this
NS strategy to precisely design the search ranges of power
factors’ increases with the number of NOMA users. Under
this condition, optimum power allocation for NOMA based
S-IoT with various delay-QoS requirements are required to
meet the urgent requirement of improving the resource utiliza-
tion efficiency and application scenarios with more stringent
reliability/latency/data rate requirements.

Due to the combinatorial feature of delay-QoS requirement
and the non-convex property of power allocation in NOMA
systems, it is nontrivial to find a global optimum solution, es-
pecially in S-IoT with complex compelling application in mili-
tary and civilian fields. To tackle this issue, several prior works
turned to machine learning (ML) tools to achieve an effective
solution for resource allocation, where efficient solutions can
be obtained without model oriented analysis and design. In
recent years, two main branches of ML, namely, supervised
learning, such as neural network and support vector machine,
and reinforcement learning (RL), i.e., Q-learning and SARSA,
have been incorporated in various wireless networks with
different objectives, i.e., the authors in [20] proposed a genetic
algorithm (GA) improved support vector machine scheme to
effectively pair users for NOMA based satellite networks.
In multibeam satellite systems, the work in [21] proposed
a fully connected deep neural network assisted approach to
facilitate efficient beam hopping. A neural network improved
GA was proposed in [22] to study the issue of satellite data
downlink replanning problem for IoT internet connection. In
[23], the authors proposed a convolutional neural network
based approach to detect anomalous network activity and
improve the traffic control performance for space-air-ground
integrated networks. It is noted that supervised learning, such
as algorithm used in [20]-[23], need a certain amount of la-
beled data to infer a function. Since RL is model free and data
driven by learning from interaction with the environment, it
has been extensively adopted in wireless networks for dynamic
and low-latency design without the knowledge of accurate

mathematical models. For example, based on Q-learning, a
long-term optimal capacity allocation algorithm was proposed
in [24] to optimize the long term utility of a multi-layer
satellite network. Considering an energy constrained S-IoT, the
work in [25] applied a RL based approach for optimal channel
allocation. The authors in [26] proposed a spatial anti-jamming
scheme using Stackelberg game and RL for heterogeneous
internet of satellites to minimize anti-jamming routing cost.
In [27], the authors adopted a deep reinforcement learning
(DRL) in heterogeneous satellite networks to allocate resource
more flexibly and efficiently among different satellite systems.
In [28] and [29], the authors conducted resource allocation
in multi-user cellular network with the help of DRL and
enhanced DRL algorithms, respectively. Simulations of these
prior works have shown that ML in wireless networks can help
to achieve optimal or near-optimal performance with reduced
computational complexity.

Motivated by these observations, here we resort to DRL
algorithms to effectively allocate resource, such as power
allocation among NOMA users, to provide services with
various delay-QoS requirements and high resource utilization
efficiency for future S-IoT systems. Then main contributions
of this work are follows:

• Both users’ delay-QoS requirements and minimum rate
limitations are taken into account in the proposed re-
source allocation scheme. Particularly, we employ the
concept of effective capacity, which is firstly introduced
in [30] as the maximum constant arrival rate that can be
supported under a given delay constraint, to investigate
the effect of each user’s delay-limited QoS constraint on
the performance of proposed system. Then, we formulate
an optimization problem to obtain an optimal power allo-
cation scheme to maximize sum effective capacity while
satisfying minimum rate limitations for each NOMA user.

• By deriving exact closed-form expressions and approx-
imated low-SNR as well as high-SNR expressions for
effective capacity of each NOMA user, we study in detail
that how key parameters, such as power allocation factor
and delay-QoS requirement, impact the performance of
each user. On this basis, the state space of the DRL
algorithm is carefully designed according to transmission
condition. Moreover, to ensure the superiority of the
NOMA scheme, the reward is set as zero if any user’s
performance is smaller than that achieved with a time-
division multiple access (TDMA).

• The proposed DRL based power allocation approach
is compared to the TDMA scheme, NOMA with fixed
power allocation strategy [31], and NOMA with numer-
ical search strategy [18], which reveal the superiority of
introducing the NOMA scheme and DRL algorithm in the
S-IoT from the perspective of performance enhancement
and reduced compute complexity. Specifically, the pro-
posed approach is proved to be superior to the TDMA and
NOMA with fixed power allocation strategy, by selecting
an optimum/near optimum action in each time slot.

The rest of this paper is outlined as follows. The system
model including related channel model and signal model is
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Fig. 1. Architecture of NOMA based S-IoT networks

presented in Section II. Section III introduces the concept
of effective capacity, derives the exact capacity expressions
as well as approximated low-SNR and high-SNR capacity
expressions for each NOMA user, and formulates the resource
allocation problem for the delay-constrained NOMA based
downlink S-IoT networks under minimum rate constraints. In
Section IV, DRL algorithm is introduced in detail and tested
in the proposed system. Simulation results and discussions are
provided and conclusions are made in Sections V and VI,
respectively.

II. SYSTEM MODEL

As shown in Fig. 1, using Software Defined Network (SDN)
technology, a Date Center (DC) transfers signal to a Gateway
(GW) who has a good link quality [32]. Then, with the help
of the NOMA scheme, signals from DCs are superposed at
the GW by allocating different power to each user, the linear
superposition of these signals is subsequently broadcasted via
a satellite to its corresponding smart users. Here, we assume
the number of users is M(M ≥ 2) and these users are uniform
deployed in the same spot beam but with different locations
and channel statistical prosperities. Moreover, all nodes in the
proposed model are assumed to be equipped with a single
antenna for simplicity. Before introducing the proposed QoS-
delay guaranteed resource allocation strategy, the link model
and the signal model with NOMA scheme are introduced as
follows:

A. Link model

From satellite to users, the entire link budget of User j
(j = 1, 2, · · · ,M) can be modeled as

Qj = GjLjGs (φj) |gj |2Lpj , (1)

where
• Gj and Lj are the antenna gain and free space propa-

gation loss at User j, respectively. Due to the fact that
NOMA S-IoT users are served within the same frequency
and spot beam coverage area, we assume that Gj = G
and Lj = L in this paper for simplicity.
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Fig. 2. b (dj)Lpj versus dj and θej with fj = 4 GHz for various D: (a)
D = 1 m and (b) D = 0.5 m.

• Gs(φj): The beam gain of User j, here φj denotes the
angle between User j and beam center with respect to
the satellite, which is closely related to the location of
User j and approximated as [9]

Gs (φj) ≈ Gmax

(
J1 (adj)

2adj
+36

J3 (adj)

a3d3j

)2

=Gs (dj), (2)

where Gmax is the maximum antenna gain, Jn(·) is the
Bessel function of first kind and n-th order [33], dj
denotes the distance from the beam center to User j,
and a = 2.07123/R with R being the radius of the beam
spot, whose coverage area is approximated as a circle.

• |gj |2: The channel power gain of satellite link is assumed
to follow a Shadowed-Rician fading model, which is
mathematically tractable and widely applied in various
fixed and mobile satellite services for a variety of fre-
quency bands, such as the UHF-band, L-band, S-band,
and Ka-band [34]–[36]. In this case, the probability
density function (PDF) of |gj |2 is given by [37]

f|gj |2 (x) = αje
−βjx

1F1 (mj ; 1; δjx) , (3)

where αj=
(2bjmj)

mj

2bj(2bjmj+Ωj)
mj , δj=

Ωj

2bj(2bjmj+Ωj)
, βI=

1
2bj

with 2bj and Ωj being the average power of the multipath
and the LoS components, respectively, mj (mj > 0)
being the Nakagami-m fading parameter, and 1F1 (a; b; c)
being the confluent hypergeometric function [33, Eq.
(9.100)]. Moreover, the authors in [37] have also asso-
ciated parameters bj , mj , and Ωj to elevation angles θj
when 200 ≤ θj ≤ 800, as

bj (θj) = −4.7943× 10−8θ3j + 5.5784× 10−6θ2j

−2.1344× 10−4θj + 3.271× 10−2,

mj (θj) = 6.3739× 10−5θ3j + 5.8533× 10−4θ2j

−1.5973× 10−1θj + 3.5156,

Ωj (θj) = 1.4428× 10−5θ3j − 2.3798× 10−3θ2j

+1.2702× 10−1θj − 1.4864. (4)

• Lpj : Note that elevation angle θj given in (4) is an ideal
angle without any antenna-pointing error taken into ac-
count, which is unavailable in practice due to the mobility
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of satellite terminal and/or satellite perturbation caused by
Moon, Sun, and atmospheric drag. Thus, depointing loss
Lpj is inevitable, according to [38], Lpj in dB can be
written as Lpj = 27.23 × 10−3f2

j D
2θ2ej with θej being

the pointing error angle at User j and D the diameter of
antenna aperture.

Fig. 2 illustrates the effects of parameters dj , D, and
θej on the link budget of User j, here θj = 50◦ and
b (dj) = Gs(dj)/Gmax. As shown in this figure, links with
good levels when User j in perfect condition, i.e., dj and/or
θej is small, and bad level with severe losses due to the dj ,
the D, or the θej increases are visible. Thus, we can make
a conclusion that significant differences in S-IoT users’ link
budgets can be clearly observed even if they are assumed to
experience the same antenna gain and free space loss. To
facilitate performance evaluation in following sections, we
assume the channel qualities of these M S-IoT users are in an
ascending order, i.e., Gs(di) |gi|

2
Lpi < Gs(dj) |gj |

2
Lpj for

i < j if without other description.

B. Signal model

After modeling the link budget, this subsection gives the
signal models of the downlink S-IoT system with the OMA
and NOMA schemes in the following:

1) OMA: For the OMA scheme, such as the TDMA com-
monly applied in S-IoT, a specified time slot is allocated to
User j, within which its unit energy signal, xj , is transmitted
from satellite with transmission power Ps. The received signal
at User j is yj =

√
PsQjxj+w where w denotes the noise at

the User j with zero mean and δ2 variance. Thus, the signal-
to-interference-plus-noise ratio (SINR) of User j is

γT
j =

PsQj

δ2
= Θj γ̄|gj |2, (5)

where Θj = LjGjGs (dj)Lpj and γ̄ = Ps/δ
2 is the trans-

mission average SNR.
2) NOMA: Based on the NOMA scheme, the satellite can

broadcast a superposed signal x (x =
∑M

j=1

√
αp
jPsxj) to

multiple users over the same time/frequency block, where αp
j

is a fraction of the transmission power Ps allocated to User j
and xj (E

[
|xj |2

]
= 1) is the signal for User j. The received

signal at User j is yj =
√
Qjx+w. According to the principle

of the NOMA scheme, user with the worst link condition
decodes its own information directly, thus, the instantaneous
SINR of User 1 is

γN
1 =

αp
1γ̄Θ1|g1|2

(1− αp
1) γ̄Θ1|g1|2 + 1

. (6)

For User k (1 < k < M ), SIC strategy will be used to
decode and remove the interference from users with worse
link conditions. Since the ascending order of the link budgets,
the use of SIC can be always guaranteed at the User k [31].
Then, the achieved SINR at User k can be given by

γN
k =

αp
kγ̄Θk|gk|2∑M

i=k+1 α
p
i γ̄Θk|gj |2 + 1

. (7)

While for user with the best channel gains, by conducting the
SIC, its own information can be observed and written as

γN
M = αp

M γ̄ΘM |gM |2 . (8)

The link budget and signal model will be subsequently used in
the effective capacity evaluation and associated optimization.

III. EFFECTIVE CAPACITY AND PROBLEM FORMULATION

In this section, we present the optimal problem formulation
for the considered delay-QoS constrained downlink S-IoT
systems. Firstly, the concept of effective capacity is presented.
Then, the analytical expressions for the effective capacity
of the considered system with both OMA (for comparison)
and NOMA scheme are, respectively, derived. Finally, the
resource optimum allocation problem for the delay-constrained
NOMA based downlink S-IoT networks under minimum rate
constraints is formulated.

A. Effective capacity

S-IoT system aims at providing a wide range of services
with various QoS-delay requirements. For this reason, we
adopt the concept of effective capacity, which provides a mea-
sure for the maximum constant supportable source rate for a
given delay exponent requirement characterized by θ (θ ≥ 0).
Different from Shannon capacity without any requirements on
QoS-delay, effective capacity guarantees a latency violation
probability for the incoming user’s data traffic in the wireless
network. Specifically, for delay-critical application such as
smart grid, a stringent latency should be ensured and the effec-
tive capacity turns to be the outage capacity. While for delay-
tolerant application such as environmental monitoring which
concerns more on data throughput, a loosen latency is needed
and the effective capacity tends to be the ergodic capacity
[39]. Given a QoS-delay exponent θ, the normalized effective
capacity for an independent and identically distributed (i.i.d.)
block fading channel can be given by

C (θ)=
−1

θTfB
ln
(
E
{
e−θTfBR

})
, (9)

where Tf denotes the length of each fading block, B is the
system bandwidth, R = log

(
1 + γT/N

)
is the transmission

rate, and E [·] denotes the expectation operator. It is worth
noting that a larger QoS-delay exponent θ is needed for a
more critical latency requirement application.

B. Effective capacities with OMA and NOMA schemes

After introducing the fundamental concept, the effective
capacities for both OMA based and NOMA based downlink
S-IoT networks are discussed as follows:

1) OMA: By substituting (5) into (9), the effective capacity
of User j with the TDMA scheme can be given by

CT
j (θj)=

− ln
(
E
{
e−θjTfB log(1+Θj γ̄|gj |2 )/M

})
θjTfB

, (10)

where the factor M appears because of the time resources
needed with the TDMA scheme are M times of that with the
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CT
j (θj) =

−1

aj ln 2
lnαj

∞∑
k=0

Γ
(

−aj

M + k
)

k!Γ (−aj/M ) Γ(mj)
Θk

j γ̄
kβ−k−1

j G1,2
2,2

(
−δj
βj

∣∣∣∣−k, 1−mj

0, 0

)
. (14)

CN
1 (θ1) =

−1

a1 ln 2
ln

(
α1

∞∑
k=0

∞∑
n=0

(1− αp
1)

k

Θ−k
1 γ̄−k

Θn
1 γ̄

nΓ (n− a1) Γ (k + a1)

k!n!Γ (m1) Γ (−a1) Γ (a1)
β−k−n−1
1 G1,2

2,2

[
− δ1
β1

∣∣∣∣−k − n, 1−m1

0, 0

])
. (18)

CN
k (θk)=

−1

ak ln 2
ln

αk

∞∑
l=0

∞∑
n=0

Γ (n−ak) Γ (l+ak)

n!l!Γ(ak) Γ(−ak) Γ(mk)

(
M∑

i=k+1

αp
iΘk

γ̄−1

)l(M∑
i=k

αp
iΘk

γ̄−1

)n

β−l−n−1
k G1,2

2,2

[
−δk
βk

∣∣∣∣−l−n, 1−mj

0, 0

] . (19)

CN
M (θM ) =

−1

aM ln 2
ln

(
αM

∞∑
k=0

Γ (−aM + k)

k!Γ (−aM ) Γ (mM )
(αp

M )kΘk
M γ̄kβ−k−1

M G1,2
2,2

(
−δM
βM

∣∣∣∣−k, 1−mM

0, 0

))
. (20)

NOMA scheme [18], [19]. By defining aj = θjTfB/ ln 2, we
get

CT
j (θj) =

−1

aj ln 2
ln

(
E

((
1 + Θj γ̄|gj |2

)− aj
M

))

=
−1

aj ln 2
ln

(∫ ∞

0

(1 + Θj γ̄x )
−

aj
M f|gj |2 (x) dx

)
.

(11)

To evaluate (11), we respectively express (1 + Θj γ̄x)
−aj
M and

1F1 (mj ; 1; δjx) in (3) into Binominals representations with
[33, Eq. (1.11)] and Meijer-G functions with [33, Eq. (9.14.1)]
as

(1 + Θj γ̄x)
−aj
M =

∞∑
k=0

Γ
(

−aj

M + k
)

k!Γ (−aj/M )
Θk

j γ̄
kx

k
, (12)

and

1F1 (mj ; 1; δjx) =
1

Γ (mj)
G1,1

1,2

[
−δjx

∣∣∣∣1−mj

0, 0

]
, (13)

where G1,1
1,2 [·|·] [33, (9.301)] is the Meijer-G function and Γ (·)

[33, (8.310.1)] is the Gamma function. Inserting (3), (12), and
(13) into (11) along with [33, (7.813.1)], the desired result
for the effective capacity of User j with the TDMA scheme
can be derived as (14). Then, we can get the sum effective
capacity of the considered system with the TDMA scheme as
CT =

∑M
j=1 C

T
j (θj).

2) Exact capacity expressions for NOMA users: By sub-
stituting (6)–(8) into (9) and following similar steps as that
in the derivation of (11), the individual effective capacity for
Users 1, k (1 < k < M), and M in a NOMA pair can be
given by

CN
1 (θ1)=

−1

a1 ln 2
ln

E( Θ1γ̄|g1|2 + 1

(1− αp
1)Θ1γ̄|g1|2 + 1

)−a1
, (15)

CN
k (θk)=

−1

ak ln 2
ln

E(1+ αp
kΘkγ̄|gk|2∑M

i=k+1 α
p
iΘkγ̄|gk|2+1

)−ak
, (16)

CN
M (θM )=

−1

aM ln 2
ln

(
E
(
1 + αp

M γ̄ΘM |gM |2
)−aM

)
. (17)

Similarly, with the help of Binominals and Meijer-G func-
tions, the accurate closed-form of effective capacity of S-IoT
users with the NOMA scheme can be derived as (18)–(20).
Note that these expressions are computationally expensive to
evaluate and difficult to directly obtain the impacts of power
allocation factor and delay-QoS requirement on the effective
capacity of each NOMA user. In the following subsections,
the approximated capacity expressions for NOMA users when
γ̄ → 0 and γ̄ ≫ 1 are derived.

3) Low SNR Approximated capacity expressions for NOMA
users (γ̄ → 0): When γ̄ → 0, by using a first order Taylor se-
ries expansion, i.e., CT

j (θj) ≈ CT
j (θj) |γ̄→0 + γ̄ĊT

j (θj) |γ̄→0

with ĊT
j (θj) being the first-order of CT

j (θj) respect to γ̄,
along with some simple manipulations, approximated capacity
expression for User j (j = 1, 2, · · · ,M) can be expressed as

CN
j (θj) ≈

1

ln 2

∫ ∞

0
αp
jΘj γ̄xf|gj |2 (x) dx. (21)

Combining (3), (13), and (21) in conjunction with [33,
(7.813.1)], we have

CN
j (θj) ≈

γ̄

ln 2
αp
jΘjβ

−2
j G1,2

2,2

(
−δj
βj

∣∣∣∣−1, 1−mj

0, 0

)
. (22)

Based on the above derived results, result for the approxi-
mate expression of the sum effective capacity when γ̄ → 0
can be straightforwardly evaluated as

∑M
j=1 C

N
j (θj). It is

interesting to find from (21) and (22) that when γ̄ → 0,
effective capacity of each NOMA user only depends on the
power allocation coefficients and fading severity, and has
nothing to do with delay-QoS requirement.
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4) High SNR Approximated capacity expressions for NOMA
users (γ̄ ≫ 1): For the case when γ̄ ≫ 1, the approximated
effective capacities of Users 1, k, and M can be respectively
given by

CN
1 (θ1) ≈

−1

ln 2
ln (1− αp

1) , (23)

CN
k (θk) ≈

1

ln 2
ln

(
1 +

αp
k∑M

i=k+1 α
p
i

)
, (24)

CN
M(θM)≈ 1

ln 2

[
ln(αp

M γ̄ΘM )− a−1
M ln

(∫ ∞

0
x−aM f(x)dx

)]
. (25)

After inserting (3) and (13) into (25) and using [33, (7.813.1)],
the closed-form expression for User M can be derived as

CN
M (θM ) ≈ 1

ln 2
ln (αp

M γ̄ΘM )+

−1

aM ln 2
lnαMβaM−1

M G1,2
2,2

(
δM
βM

∣∣∣∣−aM , 1−mM

0, 0

)
. (26)

Finally, by adding each NOMA user’s effective capacity, the
approximated sum effective capacity of the considered system
for γ̄ ≫ 1 can be obtained. Specially, from (23)–(26), we find
that except user with the best link condition, i.e., User M ,
capacities of other users mainly depend on power allocation
strategy and become independent of fading severity as well as
delay-QoS requirement.

In light of these above discussions, we find that power
allocation strategy has a significant impact on the performance
of each NOMA user, while the delay-QoS requirement can
greatly affect sum capacity performance of the proposed sys-
tem. Moreover, these closed-form expressions show that it is
difficult to directly find the optimum power allocation factors
to maximize the sum effective capacity for the considered
system due to high computational complexity.

C. Problem formulation

Our design objective is to maximize the sum effective
capacity of users in a NOMA pair while guaranteeing that
each user’s performance of NOMA scheme is superior of
that of the OMA scheme. To this end, the satellite needs
to optimally design the power allocation factor according
to user’s link quality and delay-QoS requirement, as well
as the transmission average SNR of the considered system.
Therefore, the optimization problem for the proposed NOMA
based S-IoT system, denoted by P1, can be formulated as

P1 : max
M∑
j=1

CN
j (θj) (27a)

s.t.

M∑
j=1

αp
j = 1, 0 < αp

j < 1, (27b)

CN
j (θj) ≥ CT

j (θj) , θj ≥ 0, (27c)

the constraint (27b) means limited total resource budget,
the constraint (27c) represents the delay-QoS and minimum
capacity requirements for each NOMA user, which further

limits the power allocation factor in a certain range and ensures
the superiority of the NOMA scheme in S-IoT networks.
Note that, problem P1 is NP hard and the sum capacity of
the proposed system tightly depends on the power allocation
strategy. Under this consideration, the aim of this paper is
to incorporate the DRL algorithm to allocate power resource
and realize two goals simultaneously. One goal is to meet the
delay-QoS requirement on each user and the other is to further
improve the resource utilization efficiency of the satellite with
the NOMA scheme.

IV. DEEP REINFORCEMENT LEARNING

Deep Q-network (DQN) is the most representative value-
based method. Through combining the advantages of Q-
learning and deep neural network, DQN with a single or
multiple agents can learn to predict the expect returns of all
actions for a given environment observation. A frameworks
of applying DQN in resource allocation for the considered
S-IoT is provided as shown in Fig. 1. The satellite acts
as an agent and interacts with the unknown environment to
gain experiences, learning from which, policy π and decision
making are then conceived. This agent is trained by exploring
and exploiting the environment and refining power resource
allocation strategy based on its own observations of the
environment state.

As shown in Fig. 3, the DQN based algorithm can be
divided into two phases, i.e., the data generating and the
neural network training phases. In the data generating phase,
the agent selects an action at, according to policy π based
on the observed state st. The system then moves into a
new state st+1 with a certain probability influenced by the
system’s inherent transitions. Meanwhile, the agent receives
a reward Rt from the system. In the network training phase,
data stored in the experience pool is randomly chosen to train
two neural networks to approximate the Q-value, and thus,
replace the need for a table to store the expect returns (Q
value). Key elements of the considered DRL based power
resource allocation among NOMA users are described in detail
as follows.

A. State and observation space S

In the considered DQN framework, we assume that the
satellite can sense the environment sate based on its own
observation. Moreover, we assume that there is T states need
to be taken into account. As analyzed in Section III.B, key
parameters, i.e., link qualities and delay-QoS requirements
of NOMA users, which influence users’ performance by
a multiplicity of different system’s transmission conditions.
Thus, we set state st ∈ S according to system condition
at time slot t. For example, when γ̄(t) → 0, the st is
defined as st = {Q1 (t) , Q2 (t) , · · · , QM (t)}, while when
γ̄(t) ≫ 1, state st is st = {Q1 (t) , Q2 (t) , · · · , QM (t) , θM}.
Otherwise, state st is

st = {Q1 (t) , Q2 (t) , · · · , QM (t) ,

θ1 (t) , θ2 (t) , · · · , θM (t)} . (28)
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Fig. 3. DQN based power allocation model.

States in different time slots are determined by variations in
average SNR, link budget, and delay-QoS requirements, which
need agent to adjust its action in each slot accordingly.

B. Action space A

Power allocation is an important research topic for NOMA
based communications, as discussed in prior Sections, power
allocation scheme not only affects the performance of each
NOMA user and the proposed system, but also impacts the
resource utilization efficiency. Thus, power allocated among
NOMA users should be designed carefully to contain all the
possible power allocation decision. In this paper, considering
that power resource at the satellite is continuous and limited
by the maximum transmission power Ps, we quantized 1 to
Na numbers and thus form the action space as A = αp

1, α
p
2, · ·

·, αp
Na

. Then, at time slot t, the action at (at ∈ A) is at =

αp
1(t), α

p
2(t), · · ·, α

p
M (t),

∑M
j=1 α

p
j (t) ≤ 1, where αp

j (t) is the
corresponding power allocation coefficient for User j.

C. Reward design

What makes deep learning algorithm particularly attractive
for obtaining solutions in the NP hard and/or hard-to-optimize
problems is the flexibility in reward design. If the reward
signal at each time slot is designed to have a close association
with the desired objective, the system performance can be
significantly improved. In the investigated NOMA based S-
IoT power allocation problem described in Section III, our
objectives are twofold: 1) ensure each user’s performance with
the NOMA scheme is not less than that achieved with the

TDMA scheme and 2) maximize the sum effective capacity
of the considered system.

For the first objective, after the agent performs an action,
we set User j’s achieved effective capacity at each time slot
t equals to zero until the constraint in (27c) is satisfied, with
which the delay-QoS requirement of User j and the superiority
of introducing the NOMA scheme in the S-IoT networks are
both ensured. Thus, the effective capacity of User j at time
slot t can be rewritten as

CN
j (θj , t) =

{
CN

j (θj) , if CN
j (θj) ≥ CT

j (θj)
0, otherwise

. (29)

Moreover, the sum capacity of all NOMA users will be set to
zero if any user’s achievable rate with the NOMA scheme is
smaller than that achieved with the TDMA scheme.

For the second objective, RL is adopted here to obtain
flexible and dynamic power allocation strategy to maximize
the achievable system performance and resource utilization
efficiency. Since the goal of RL algorithm is to find a policy
π (a mapping from states to actions), to guide agent choose
a specific action in a certain state to maximize the achievable
return Rπ(t), where Rπ (t) is defined as the corresponding
cumulative discounted rewards, given by

Rπ(t) =

∞∑
k=0

γk
M∑
j=1

CN
j (θj , t+k), (30)

where γ (0 ≤ γ ≤ 1) is a discount factor used here to trade
off between immediate and future rewards. Since that users in
S-IoT scenario are assumed to be randomly located, there we
suppose little relation between link qualities of these users in
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different time slots. In this case, we prefer immediate rewards
over future rewards and a low discount factor γ value.

D. Learning algorithm

1) Data generation phase: We leverage Q-learning with
experience pool of capacity D to generate data for next net-
work training phase. During this process, to tradeoff between
exploration and exploitation, some ways, such as ε-greedy
exploration, is always used to choose an action at random
with probability ϵ (0 < ϵ < 1) or the best action as deemed
by current policy with probability (1− ϵ). With this ε-greedy
strategy, following policy π, action at will be selected in state
st and Q value function, which describes the expected Rπ (t),
is given by

Qπ (st, at) = E (Rπ(t)|S = st, A = at ) . (31)

Updating this action-value function with

Qπ(st, at)=Qπ(st, at)(1−α)+α

(
Rπ(t)+γmax

at+1

Qπ(st+1, at+1)

)
,

(32)
where α denotes the learning rate. The optimal policy π⋆ can
be easily obtained by selecting the highest valued action in
each state, i.e., Qπ⋆(st, at) = maxπQπ(st, at). Following the
environment transition caused by variations in users’ channel
qualities and/or delay-QoS requirements, the satellite agent
collects and stores the tuple (st, at, Rt, st+1) at time slot in
the experience pool. Since the size of pool is limited to D,
old tuple will be removed to give space for the newest tuple
if the pool is full.

2) Neural network training phases: For power allocation
task proposed in this paper is a sequential decision problem,
and the size of Q values of (31) for all possible actions
may be large. In this case, it is challenging to model the
Q-learning process efficiently. Thus, deep neural networks
parameterized by θ

′
and θ, called target DQN and training

DQN, respectively, are used to estimate Q value by function
approximations. As shown in Fig. 3, with random batches of
experiences selected from experienced pool, the target DQN is
trained to generate the maximum Q value for next state, i.e.,
maxa′

t+1
Q
(
st+1, a

′

t+1; θ
′
)

. While the training DQN network
is for estimating Q values for current state action pairs and
making a action decision for state st. With parameter θ, the
loss function of the DQN network is

L(θ)=
(
Rπ(t)+maxa′

t+1
Q
(
st+1, a

′

t+1; θ
′
)
−Q(st, at; θ)

)2
.

(33)
By using stochastic gradient descent to minimize the loss
function given in (33), the training DQN can learn the correct
weights of θ . The weights θ

′
of target DQN are frozen for

several time slots and then updated by copying the weights
from the training DQN network, for the goal of stabilizes
the training. The main steps of training procedure is given
in Algorithm 1.

V. NUMERICAL RESULTS

In this section, simulations are provided to evaluate the
performance of the proposed resource allocation scheme and

Algorithm 1 Resource Allocation in NOMA based S-IoT with
DQN Algorithm.

1: Initialize experience pool to capacity D, initialize DQN
with weight θ and target DQN with weight θ

′
= θ , the

link qualities and delay-QoS requirements of all NOMA
users at the first time slot are initialized as state s1.

2: for time t in 1 to T do
3: Observe state information st;
4: Choose an action at by using ϵ-greedy policy;
5: After performing action at, agent gets reward R(t),

and moves to the next state st+1 as users moving and/or
delay-QoS requirement changing;

6: Stack experience tuple (st, at, Rt, st+1) into D;
7: if size of tuples in pool is larger than Np then
8: Sample a mini-batch of m tuples from D;
9: DQN network updates θ by minimizing the loss

function given in (33) with stochastic gradient descent.
10: Update target DQN network by setting θ

′
= θ in

every C steps.
11: end if
12: end for

show the superiority of the NOMA based strategy in the
S-IoT networks, compared to the TDMA scheme, NOMA
with fixed power allocation strategy [31], and NOMA with
numerical search strategy [18]. Specially, the number of users
in a NOMA pair is set as 3 and they are in an ascending order
and assumed to experience corresponding elevation angles,
such as 20◦, 50◦, 70◦ for Users 1, 2, and 3. Moreover, we
consider BTf = 1 [16]–[19], the carrier frequency as 4 GHz,
R = 125 Km, D = 1 m, G= 3.5 dBi, and Gmax = 52.1
dBi [40]. Simulations all runs under the particular software
and hardware environments of i9 CPU, 512G RAM, Win10
operating system, Spyder, and TensorFlow 2.0. The power al-
location among NOMA users in the DQN algorithm simulation
is trained with a set of training-target neural networks, within
which 150 neurons is assumed for each hidden layer.

We first conduct numerical simulations to show the low
and high SNR approximated effective capacities for each
user in the NOMA based downlink S-IoT in Figs 4 and 5,
respectively. Here, we adopt the fixed power allocation strategy
proposed in [31] to allocate part of transmission power to
user with best channel quality, i.e., User 3, and the remaining
is equally divided between the first and second user. From
these two figures. we can clearly see that approximated results
computed by (21) and (23)–(26) all match well with the exact
results, confirming the validation of the derived closed-form
expressions. Meanwhile, as shown in Fig. 4, user’s perfor-
mance can be enhanced if more power resource is allocated
and/or a loosen latency is needed. This observation clearly
indicates the impact of delay-QoS requirement on each user’s
performance, and the urgent need of taking users’ delay-QoS
requirement into consideration to develop a comprehensive
resource allocation strategy.

Then, we study the convergence of the DQN algorithm with
different discount factor γ in Fig. 6. Specially, the number
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of training episode is set as 3000, time slots T = 5, and
transmission power Ps = 5 dB. It can be observed that
capacity curves first huge fluctuate and then become converse
gradually as the training episode increases. A low discount
factor, i.e., γ = 0.1, make the DQN network converse quickly,
since the states are assumed to be randomly configured in each
time slot and little impacts of future rewards on the cumulative
discounted rewards. Thus, γ = 0.1 is considered in following
simulations if without other descriptions.

The achievable sum effective capacity of the considered
NOMA enabled S-IoT with DQN algorithm at different γ̄ is
shown in Fig. 7. As the average SNR γ̄ increases, the capacity
bars achieved with the NOMA and TDMA schemes increase.
Moreover, the performance with the NOMA scheme under
most γ̄ is far larger than that achieved with the TDMA scheme.
However, we find that for case θ1 = θ2 = θ3 = 5 when
γ̄ = 15 and γ̄ = 25, the achievable performances with the
NOMA scheme become 0. This is due to the fact that when γ̄
increases, performance of each user with the TDMA scheme
increases correspondingly. While the increasing of θ means
more power resource is needed for each NOMA user to meet
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−15 −5 5 15 25
0

10

20

30

40

50

60

70

γ̄ (dB)

S
u

m
 e

ff
e
c
ti

v
e
 c

a
p

a
c
it

y
 (

b
p

s
/H

z
)

 

 

NOMA, θ
1
=θ

2
=θ

3
=0.2

TDMA, θ
1
=θ

2
=θ

3
=0.2

NOMA, θ
1
=θ

2
=θ

3
=1

TDMA, θ
1
=θ

2
=θ

3
=1

NOMA, θ
1
=θ

2
=θ

3
=5

TDMA, θ
1
=θ

2
=θ

3
=5

Fig. 7. Sum effective capacity of the DQN based downlink S-IoT vs γ̄.

limitation set in (29), for example, sum capacity is 0 means
that there has at least one user whose rate limitation is not
met. Thus, under the joint impact of γ̄ and θ, the number of
users in a NOMA pair needs to be further studied to maximize
the resource utilization efficiency.

Finally, Fig. 8 compares the sum effective capacities of users
achieved with NOMA and TDMA schemes with different
delay-QoS exponents. We can clearly see from this figure that
curves with the NOMA scheme are superior to those with the
TDMA scheme in all cases, showing the advantage of intro-
ducing the NOMA scheme in the downlink S-IoT. Besides, we
find that performance degrades for both schemes as the QoS
exponent increases, implying that besides channel qualities,
various delay-QoS requirements of users must also be taken
into account to meet the more stringent reliability/latency/data
demand for future S-IoT networks.

Fig. 9 compares the achievable sum effective capacity of the
considered system with different power allocation strategies.
As seen in this figure, the sum capacity of the considered
system is degraded when any latency requirement of these
users becomes more stringent. The reason behind this phe-
nomena is that a tighter QoS-delay constraint means a shorter
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Fig. 9. Sum effective capacity comparison between NOMA with the DRL
and NS power allocation strategies for Ps = 5 dB.

transmission delay and a lower supported constant arrival rate.
Moreover, we can clearly find that capacity curves achieved
with the proposed DRL based power allocation scheme closely
follow with that achieved with the NS strategy [18], [19] in all
time slots, which means the optimal/near-optimal action can
be selected with the trained DRL algorithm. This observation
indicates that the NOMA based S-IoT employing the DRL
algorithm can achieve a high resource utilization efficiency
but with reduced computational complexity.

Fig. 10 conducts simulations to compare the achievable
effective capacity of each user with power allocation strategies
proposed in this paper and ref.[31], and the TDMA scheme.
Here, we set θ1 = θ2 = θ3 = 5 and Ps = 5 dB. It can be
observed that with the strategy proposed in [31], better capac-
ity performance can be achieved when larger power allocated
to Users 1 and 2, while at the same time, capacity curve of
User 3 degrades. For example, compare to αp

1 = αp
2 = 0.37,

performances with the NOMA scheme of Users 1 and 2 are
improved when αp

1 = αp
2 = 0.41 and better than that achieved

with the TDMA scheme, while the performance of User 3 is
decreased and inferior to that achieved with the TDMA. This
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phenomenon reveals the important effects of power allocation
strategy on the NOMA based systems’ performance and a
flexible and optimal power allocation strategy on ensuring
the rate limitation of each user. Meanwhile, the curves with
the DQN based power allocation schemes are superior to
those with the TDMA scheme for all users, demonstrating the
advantages of employing the DRL algorithm in the NOMA
based S-IoT networks.

VI. CONCLUSIONS

In this paper, we have developed a dynamic power allo-
cation strategy for NOMA based S-IoT system with delay-
QoS constraints by DRL algorithm, with which optimum/near-
optimum power allocation factors are selected for NOMA
users to maximize the sum effective capacity of the proposed
system. Simulations have been provided to validate that, with
such a mechanism, NOMA scheme is effective in encouraging
spectrum sharing among multiple users to further improve
system level performance although decision making is near-
optimum in some conditions. This paper mainly focuses on the
resource dynamic allocation of a NOMA pair within a single
beam spot scenario. With the increasing S-IoT devices, we
will explore the optimum resource allocation with the DRL
algorithm for multiple NOMA pairs in multiple beam spots in
our future work.
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