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ABSTRACT In this work, we introduce a machine-learning (ML) based detection attack, where an
eavesdropper (Eve) is able to learn the symbol detection function based on precoded pilots. With this
ability, an Eve can correctly detect symbols with a high probability. To counteract this attack, we propose a
novel symbol-level precoding (SLP) scheme that enhances physical-layer security (PLS) while guaranteeing
a constructive interference effect at the intended users. Contrary to conventional SLP schemes, the proposed
scheme is robust to the ML-based attack. In particular, the proposed scheme enhances security by designing
Eve’s received signal to lie at the boundaries of the detection regions. This distinct design causes Eve’s
detection decisions to be based almost purely on noise. The proposed countermeasure is then extended
to account for multi-antennas at the Eve and also for multi-level modulation schemes. In the numerical
results, we validate both the detection attack and the countermeasures and show that this gain in security
can be achieved at the expense of only a small additional power consumption at the transmitter, and more
importantly, these benefits are obtained without affecting the performance at the intended user.

INDEX TERMS Multi-user interference, constructive interference, symbol-level precoding, physical-layer
security, machine learning, convex optimization, MISO, and bit-error rate.

I. INTRODUCTION

THEFIFTH generation (5G) of cellular networks aims at
satisfying the wireless broadband demands of 2020 [1].

By 2022, there will be 28.5 billion connected devices [2]. In
such a congested environment, unintended receivers (e.g., an
eavesdropper (Eve)) may detect some sensitive information.
Thus, security is of paramount importance to next generation
networks. In particular, physical-layer security (PLS) has
attracted much interest recently as a complement to security
in higher layers of the network [3].
The essence of PLS is to use the randomness of the prop-

agation channel to provide security at the physical layer, i.e.,
by minimizing the information leakage to the Eve. Namely,

PLS is envisioned to be used as an additional layer of
protection on top of the existing security methods based on
cryptography. As the rise of quantum computing is threat-
ening both symmetric and asymmetric cryptography [4],
non-cryptographic methods are needed. Most literature on
PLS utilize information theoretic metrics, such as secrecy
rate [5], for performance analysis [6]–[11]. However, we
find only few work in the literature [12]–[14] that tackles
the problem from a signal processing point of view.
Meanwhile, in a downlink multiuser communication

systems, where multiple users are simultaneously served
with independent information over the same channel
resource, interference among users can greatly limit the
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system throughput. Multi-user interference (MUI) leads to a
deviation of the received symbols outside of their detection
region, thus altering the correct detection of the transmitted
symbols. A popular technique to tackle MUI is multiuser
precoding. Block level precoding considers the MUI as harm-
ful and should be mitigated [15]–[18]. In this situation, the
precoding is limited to alleviate the interference along the
whole frame as it uses only the knowledge of channel-
state information (CSI). This results in reducing the average
amount of interference in the frame. Contrary to block-level
precoding, in symbol-level precoding (SLP), the interference
can be controlled on a symbol-by-symbol basis. This way
permits to rotate each interfering signal to be in the correct
detection region, thus eliminating the inter-user interference
at each symbol slot. Therefore, SLP techniques [19] ensures
interference-free communication at the price of a higher
switching rate at the precoder [20]–[26].
In the context of security, SLP has been proposed as a

new way for physical-layer security [27]. Namely, this tech-
nique is inherently secure as the transmitted signal is strictly
designed for an intended receiver based on both his CSI and
DI, thus naturally making Eve’s received signal quite dif-
ferent as the designed signal is a function of the intended
user’s channel and not Eve’s channel. Likewise, in [14], the
authors used the idea of a smart Eve that exploits the statisti-
cal characteristics of the received signal at the latter in order
to improve its detection performance. To tackle this vulner-
ability, they presented a new design principle for secure
SLP precoding and proposed two algorithms to generate the
precoder. While their approach requires more transmit power,
it can achieve an improved security. Similarly, we note that
the concept of exploiting MUI was also employed to design
artificial noise (AN) beamformers that is constructive to the
intended user and destructive to the Eve [28].
Even thought SLP techniques can be considered secure for

a common Eve which employs a conventional detector, yet it
is not the case for the sophisticated ones. In other words, an
advanced Eve may use machine learning (ML) based tech-
niques to successfully detect the desired signal even in the case
when a conventional symbol-level precoder is used. Notably,
ML has drawn significant interest in the area of wireless
communication. That is, machine learning, a main subset of
artificial intelligence (AI), is the set of tools and algorithms
used tomake predictions or decisions through learning patterns
from data [29]. Namely, based on a sample data, known as
the training set, ML algorithms build a mathematical model in
order to make predictions or decisions. In the context of next-
generation wireless systems, ML can be used to model/solve
various problems in large-scale multiple-input multiple-output
(MIMO), device-to-device (D2D) networks, heterogeneous
networks (HetNets), . . . , etc [30] [31]. More particularly, at
the physical layer (PHY) of communication systems, deep
learning (DL), a subclass of ML, has shown a promising
potential. In [32], a new way of end-to-end system design was
proposed using DL, where the system can learn the whole
transmitter and receiver processes for a given channel model.

Nevertheless, in the context of PLS, only a few works that
involve ML has been proposed. In [33], the authors proposed
a ML-based scheme against an attacker that employs deep
neural networks (DNNs) to determine the modulation scheme
used. To reduce the accuracy of the intruder, a constella-
tion perturbation is introduced at the encoder by using the
same DNNs structure. This perturbation is designed in such
a way to not confuse the intended receiver. In [34] how-
ever, the authors proposed a flexible wiretap code design for
Gaussian channels under finite block length through autoen-
coders. To this end, Karl et al. formulated a multi-objective
problem that takes into account the performance of both
the intended receiver and the Eve. Thereafter, the authors
solve this optimization problem using neural networks based
autoencoders. This work falls in the same category as [35],
which also exploited the power of autoencoders for wiretap
code design.
In our work, on the other hand, ML is used in a different

way. Namely, Eve can utilize the power of ML in order
to improve its detection accuracy. Since most communica-
tions standards, such as 5G NR, WiFi, and DVBS, use both
un-precoded and precoded pilots for purposes of CSI and
signal-to-noise (SNR) estimation, as a result, an Eve can take
advantage of this extra information to improve its detection
accuracy.
Namely, we propose and validate the ML-based attack in

the context of multi-user multiple-input single-output (MU-
MISO) system by comparing different classifiers. We show
that even SLP-based secure schemes [27] are vulnerable to
such an attack. To counteract this attack, we propose a novel
secure SLP-based precoder design as a countermeasure to
this attack. The idea of the proposed scheme is to design the
transmitted signal to simultaneously perform both construc-
tive interference at the intended receivers and force Eve’s
received signal to lie at the boundary of its detection region.
This distinct design of Eve’s received signal makes its detec-
tion decision based mostly on the noise, which provides
maximum equivocation. At the same time, it makes it an
energy efficient scheme, as it employs only a small deviation
of the received constellation point. Thereafter, we compare
the different schemes using a new metric that combines
both required transmit power and achievable BER at the
Eve. Simulation results show the potency of the ML-based
attack and the effectiveness of the proposed countermea-
sure. We note that we tackle this problem from a signal
processing point of view rather than from an information the-
oretic one. The primary contributions of the paper are listed
below:

1) We introduce the machine-learning based detection
attack by considering both single and multi-antenna
Eve, when SLP signals are employed. We design the
ML framework of the attack to support both single-
level and multi-level modulations. For this attack, we
study several ML classifiers for symbol detection and
compare their prediction accuracy.
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FIGURE 1. Downlink MU-MISO system with K single-antenna users and one
multi-antenna eavesdropper.

2) As a countermeasure to this detection attack, we pro-
pose a novel precoding design principle that increases
the achievable BER at Eve. We then formulate an
optimization problem based on this design principle,
that we call PLS scheme. We note that the proposed
scheme assumes perfect knowledge of Eve’s channel
at the BS [28], which is the case when Eve is part of
the system trying to Eavesdrop other users.

3) As the proposed problem is non-convex, we propose
different convex formulations of the same problem,
that provides varying tradeoffs between security, com-
putational efficiency, and transmit power.

4) We compare the different PLS schemes with a bench-
mark scheme using a new metric that we propose,
that takes into account both the secure bit-rate and the
power consumption.

5) We finally investigate the performance of the proposed
schemes under different receive SNR levels at Eve.

The remainder of the paper is organized as follows:
Section II describes the system model. In Section III we
introduce the ML-based attack while in Section IV we pro-
pose novel SLP-based schemes as a countermeasure to this
attack. Simulation results are discussed in Section V followed
by the conclusion in Section VI.
Notations: Upper and lower boldface symbols are used to

denote matrices and column vectors, respectively. ‖·‖ rep-
resents the Euclidean norm. CN (m,Q) denotes the circular
symmetric complex Gaussian distribution with mean m and
covariance matrix Q. Rm×n and Cm×n represent the set of
m× n real matrices, and the set of m× n complex matrices,
respectively. The expectation operator is denoted by E[ · ]
and the absolute value by | · |.
II. SYSTEM MODEL
As depicted in Fig. 1, we consider a single cell multi-user
(MU) multiple-antenna multiple-input single-output (MISO)
downlink system, where the base station (BS) is equipped
with Nt transmit antennas serving K single-antenna users,
with K ≤ Nt, and one multi-antenna eavesdropper with M

antennas. We assume a block fading channel hj ∈ C1×Nt
between the transmit BS antennas and the j-th user. The
received signal at the j-th user can be expressed as:

yj[n] = hjx[n] + zj[n] (1)

where yj[n] ∈ C is the received signal at the j-th user in the
symbol slot n, x[n] ∈ CNt×1 is the transmitted vector from
the Nt transmit antennas, and zj[n] ∈ C is the additive white
Gaussian noise (AWGN) at the j-th user with variance σ 2

z .
The above model can be rewritten in a matrix form by

collecting the received signal at all users in vector y[n] ∈
CK×1 as

y[n] = Hx[n] + z[n] (2)

where H = [hT1 · · ·hTK]T ∈ CK×Nt represents the system
channel matrix and z[n] ∈ CK×1 gathers the independent
AWGN components of all users, with a variance of σ 2

z each.
We note that H is assumed to be known at the BS through
pilot-assisted channel estimation [36].
Similarly, the received signal at an Eve with M antennas,

ye[n] ∈ CM×1, can be expressed as follows

ye[n] = Hex[n] + ze[n] (3)

where He = [hTe,1 · · · hTe,M]T ∈ CM×Nt represents the system
channel matrix between the BS and the multi-antennas
Eve, and ze[n] ∈ CM×1 gathers the independent AWGN
components at all M antennas, with a variance of σ 2

e each.
In conventional block-level precoding, the transmitted vec-

tor x[n] is modeled as Wda[n], with W being the precoding
matrix and da[n] ∈ CK×1 the data information intended for
the K legitimate users. Specifically, the precoding matrix
W is designed depending only on the CSI. For this rea-
son, this type of precoding is commonly being referred
to as channel-level or block-level precoding [19], [36].
Consequently, the precoder W changes only when the CSI
changes and remains constant for several symbol slots,
making the relation between x[n] and da[n] linear.
In symbol-level precoding approach, however, the

precoding module directly designs the transmitted signal
vector x[n] based on both the CSI H and the input data
symbols da[n], hence the symbol-level nomenclature, i.e.,
the precoded signal x[n] changes at every symbol slot [37].
Therefore, this scheme optimizes the transmit vector x[n]
without any intermediate steps (such as designing W) while
constructively exploiting the inter-user interference. As a
result, the relation between the transmit vector x[n] and the
input symbol vector da[n] is no longer linear, as in the case
of block-level precoding, and is inherently embedded into
the precoding module. We note that the data symbols, da[n],
are assumed to be uncorrelated and drawn from a generic
multi-level constellation having unit average power. We also
assume that the channel to the Eve is known at the BS. This
assumption is reasonable when the Eve is a legitimate user
trying to eavesdrop other users. This assumption gives Eve
the advantage to know the modulation and coding parame-
ters used, while it provides the BS with the information of
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FIGURE 2. Summary of the ML-based attack.

his channel. For ease of notation, we drop the time index n
in the remainder of the paper.

III. ML-BASED ATTACK
In this section, we introduce the ML-based attack, where
an Eve can detect another user’s symbols with a sufficiently
low BER. Specifically, Eve would know the precoded pilot
symbols used and their placement in the frame. This side
information, which is usually publicly available in standards,
can be exploited by the Eve and used to eavesdrop another
user via the use of machine learning (ML) tools. This attack
encompasses two phases i) training phase and ii) prediction
phase. An overview of the attack is provided in Fig. 2.
Alongside, we present the two phases of the attack followed
by a formulation of it. We then conclude this section by
presenting a practical example of the ML-based attack on a
SLP benchmark scheme.

A. TRAINING PHASE
As shown in Fig. 2, the BS sends multiple frames within one
coherence time Tc, where at the beginning of each frame,
we find precoded pilots, xp ∈ CNt×1, for channel and SNR
estimation. The received pilot signals at the i-th antenna of
the Eve, ype,i ∈ C, can be written as follows

ype,i = he,ixp + ze,i (4)

where he,i ∈ C1×Nt is the vector of the channel coefficients
between the BS and the i-th antenna of the Eve and ze,i ∈ C
is the AWGN at the Eve with variance σ 2

e,i. The overall
received pilot signal at Eve at all antennas, ype ∈ C1×M , can
be written as

ype = Hexp + ze. (5)

As ype,i is Eve’s received pilot signal, it knows beforehand
the corresponding pilot symbol p that was transmitted. We
note that the transmitted signal xp is a function of all user

symbols, however the introduced attack targets a specific
user, for which we know the transmitted pilot symbols in
advance. In other words, the Eve is not trying to decode
the data of all the users, it instead attempts to decode the
data of a single user. As such, the Eve would create a map-
ping between the received signal ype and the corresponding
labels p. Thus, the Eve can exploit the knowledge of the
precoded pilots, that are sent regularly according to commu-
nication standards for signal-to-noise ratio (SNR) estimation,
in order to improve its detection performance.
We note that, as the number of antennas at Eve, M,

increases, the number of input features increase accordingly,
which often leads to better prediction accuracy. In essence,
each antenna at Eve receives a different distorted copy of
the same transmitted signal xp, the more different copies of
xp received by Eve, the better the machine-learning model
performance will be, thus resulting in an improved symbol
detection accuracy.
In the case of QPSK, there are only 4 possible pilot sym-

bols, hence 4 classes. In the ML world, these classes are
commonly being referred to as labels. As such, the cor-
responding machine learning problem is a supervised ML
problem [38]. Meanwhile, since the labels are discrete, i.e.,
constellation points, the problem is categorised as a clas-
sification problem. Namely, the training set D contains N
training points, i.e., {ype,n, pn}, n = 1, . . . ,N, where ype,n rep-
resents the n-th received pilot signal at Eve, while pn is the
corresponding constellation point (label) associated with the
observations ype,n. We further define the training set D as

{
ype,n, pn

}
∼ f (y, p), n = 1, . . . ,N (6)

where the operator ∼ signifies that the pairs {ype,n, pn}, n =
1, . . . ,N are i.i.d with probability distribution f (y, p). The
training set D can be written in a more compact form as
below

D = {
Yp
e,p

}
(7)

where Yp
e ∈ CN×M is the received pilot symbols at Eve and

p ∈ CN×1 are the corresponding transmitted pilot symbols.
For simplicity, we denote the real and imaginary parts

of Yp
e as two real numbers, called input features, while

we represent each pilot symbol in p using four1 decimal
c = {0, 1, 2, 3}, with each class corresponding to one QPSK
symbol. Hence, the training set becomes {Yp,r

e ,Yp,im
e , cp}

with Yp,r
e ∈ RN×M being the real part of Eve’s received pilot

signals, Yp,im
e ∈ RN×M is its imaginary part, and cp ∈ NN×1

are their corresponding classes. Based on the training set D,
we derive a predictor (the trained ML model) that predicts
a class l based on the observation ye.

B. PREDICTION PHASE
As depicted in Fig. 2, the BS sends precoded data, xd ∈
CNt×1, to the users. The received symbol at Eve in each

1. The number of classes depends on the modulation order used. In the
case of QPSK, the number of classes equals four.
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symbol period, yde ∈ CM×1, can be written as follows

yde = Hexd + ze. (8)

where xd ∈ CNt×1 represents the transmitted precoded signal
from the Nt transmit antennas intended for all the users
during one symbol period. If we assume that there are L
data symbols in one coherence time, Yd

e ∈ CL×M represents
the collection of all received symbols at Eve during one
coherence time Tc.
The goal of classification is to predict a label d for a new,

usually unobserved, received precoded signals, yde , that is
outside the pilot signals. Namely, a machine learning-based
detection can be performed over Yd

e using the trained ML
model, as shown in Fig. 2. The output of the ML-based
detector block is the symbols vector d ∈ CL×1, which is
an estimate of d ∈ CL×1 (symbols intended for a specific
user). Then, we perform demapping over d to obtain the
corresponding bit-vector b. Finally, we compare b to b (the
actual bits sent to a specific user) to obtain the BER at Eve.

C. ML ATTACK FORMULATION
As stated above, the idea of supervised learning classification
is to find a robust mapping h between the input features Yp

e

and the classes p using the training dataset D. To further
illustrate, we give the example of the support vector machine
(SVM) classifier. The goal of SVM classifier is to separate
the four2 classes using lines that are usually hyperplanes.

The hyperplanes can be described using the below
equation

wye + b = 0 (9)

where w is the normal to the hyperplane and b
‖w‖ is the

perpendicular distance from the hyperplane to the origin.
Support vectors, as their names imply, are the separating
hyperplanes and the goal of the SVM algorithm is to orientate
the hyperplanes in such a way to be as far as possible
from the closest members of the different classes. Namely,
implementing the SVM classifier boils down to selecting the
parameters w and b that best achieve the aforementioned goal
through the use of the training data. Once these parameters
are estimated, the trained ML model can be used to directly
predict the transmitted symbols from observing any received
signal at the Eve during the same coherence time Tc.

D. ATTACK EXAMPLE ON A BENCHMARK SCHEME -
CISPM
As a Benchmark, we use the approach in [37], which is
commonly being referred to as constructive interference for
sum power minimization (CISPM). This particular scheme
is designed to exploit inter-user interference for power gains
at the intended users, in other words, this scheme propels
the intended users’ received signals deeper into the cor-
rect detection region of the desired symbol for each user.

2. The number of classes depends on the modulation order. For QPSK,
the number of classes equals four.

TABLE 1. Performance of different classifiers for SLP-based dataset.

Although this scheme applies no processing towards Eve’s
received signal, it still provides security gains. Namely, since
the transmitted signals are designed to have constructive
interference (CI) only with the intended users channels, Eve’s
received signal would in all likelihood fall in a different
region than the correct one, as his channel is different than
the intended user’s one. Hence, the benchmark scheme is
inherently secure against a conventional eavesdropper. The
corresponding optimization problem is defined as

x(d,H, γ ) = arg min
x

||x||2
subject to Re{hjx} � σz

√
γjRe{dj}, j = 1, . . . ,K

Im{hjx} � σz
√

γjIm{dj}, j = 1, . . . ,K

(10)

where γj is the target SINR for the j-th user, γ =
[γ1, . . . , γK] ∈ RK×1 represents the target SINR for all users.
This problem is convex as both objective function and con-
straints are convex and can be solved efficiently using second
order cone programming [39].
Although the CISPM scheme is secure against conven-

tional eavesdropper, it can not stand against a sophisticated
Eve that employs machine learning for symbol detection. As
we shall demonstrate subsequently, the CISPM is vulnerable
to the ML-based attack as it uses no specific pre-processing
for Eve’s received signal.
The setup of the experiment is as follows. We consider a

BS using the CISPM scheme to precode the transmit signal x
intended to the K users. Particularly, both transmit signals xp
and xd are designed using the CISPM scheme. In Table 1, we
show the symbol detection accuracy3 of the different clas-
sifiers when the CISPM scheme is used. We note that, for
this simulation we used QPSK modulation, Nt = 10, K = 6,
and a single antenna Eve. In this particular experiment, we
used 100 symbols as pilots and 1000 symbols as data. In this
setting, we used MATLAB for data generation and Python
for classification and performance analysis. We should men-
tion that we did not use deep learning [40] in this context
despite its high performance mainly because it requires con-
siderable amount of training data that is not available in
our case. Namely, in each coherence time, only one portion
of the frame is dedicated to pilot symbols, which in turn
serve as the training data, and since the channel and data
change in each frame, training could be done only within the

3. This accuracy refers to the accuracy of the trained ML model, i.e.,
the learning block of the diagram in Fig. 2.
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frame itself, hence the limitation of training data. We notice
that the symbol detection accuracy is relatively high when
using such a scheme. This is due to the fact that at the BS,
there was no particular constraint or processing towards the
received signal at Eve. Therefore, Eve is using the power
of ML tools to be able to still discriminate between the
intended symbols for a particular user, even though the pre-
coded signal was specifically designed for channel vectors
that are considerably different than Eve’s one.

IV. COUNTERMEASURE - PHYSICAL-LAYER SECURITY
(PLS) SCHEME
In this section, we first present a novel secure principle
for designing secure precoding schemes that counteract the
ML-based Eve. Then, based on this principle, we propose a
precoder that yields high achievable BER at the Eve. Since
the formulation of the latter scheme is non-convex, we pro-
pose an equivalent convex formulation. As a tradeoff between
security and transmit power, we propose three other convex
secure precoding schemes that are more energy efficient.

A. SECURE DESIGN PRINCIPLE
As presented in the earlier section, an Eve with multiple
antennas can achieve a decent detection performance that
allows it to detect most of the received symbols by using the
power of machine leaning. In order to dramatically worsen its
detection performance, we propose a novel design principle
of the precoded signal. Namely, we deliberately force the
received signal at the Eve to lie at the boundaries of the
detection regions.
This specific design has two advantages 1) to increase PLS

as the detection decisions at the Eve will be mostly made
depending on noise and 2) for energy efficiency purposes
since it involves only a small deviations of the received
constellation point.

B. PLS SCHEME
In this section, we introduce the SLP-based countermeasure,
that we call subsequently PLS scheme. Similar to [12], the
idea is to design the transmitted signal x so as to have
constructive interference at the intended users, and at the
same time, to confuse the Eve by maximizing its detection
uncertainty using the above secure design principle.
The PLS scheme is demonstrated in Fig. 3. Herein, we

adopt the example of QPSK modulation for illustration pur-
poses, where the dark circles represent the constellation
points. We design the transmitted signal in such a way
to have constructive interference at the intended users, that
is represented by the grey shared regions. The goal here
is to push the received points deeper into the detection
region in order to improve the intended users’ detection
accuracy. However, we design Eve’s received signal to lie
in the strapped region (boundary of the detection region),
whose width is controlled by the parameter δ. The lower the
value of δ, the sharper the strapped region, thus the higher
the probability of falling into a different region after noised

FIGURE 3. Example of PLS scheme using QPSK modulation.

adds up, resulting in higher BER at Eve. It is worth noticing
that this particular design makes Eve’s detection decisions
to be mostly based on noise.
For a downlink MU-MISO system, with Nt transmit

antennas and K users, the aforementioned precoder design
problem can be formulated as a power minimization
problem as

x(d,H,he, γ, δ) = arg min
x

‖x‖2 (11)

subject to Re{hjx}�σz
√

γjRe{dj},
j = 1, · · ·,K (12)

Im{hjx}�σz
√

γjIm{dj},
j = 1, · · ·,K (13)

Re{hiex} � ∓δ, i = 1, . . . ,M

(14)

Im{hiex} � ∓δ, i = 1, . . . ,M

(15)

where hjx is the j-th user’s noiseless received signal, hex is
the noiseless received signal at the Eve, � denotes the correct
detection region [22], δ is the distance parameter controlling
the width of the strapped region, the operator � ∓ refers to
≤ + and ≥ − simultaneously, while Re and Im denotes real
and imaginary parts, respectively. The above problem4 is
non-convex because of the non-convexity of target region of
Eve’s received signal.The physical meaning of constraints in
the PLS scheme are of two types. Constructive interference
(CI) at the legitimate users, achieved by constraints (12)

4. We note that the formulation in (11) is valid for a generic multi-
level constellation, such as M-QAM, however it can be tailored to other
constellations as APSK.
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Algorithm 1 PLS - Square Scheme

Input: d,H,He, γ, σ 2
z , δ;

1: Do: Solve problem (11) as follows:
2: Satisfy CI constraints in (12) and (13)
3: Satisfy constraints (14) and (15) simultaneously.

Output: xs

and (13). The CI effect results in increased power gains at
the legitimate users. However, constraints (14) and (15) are
intended to have destructive interference at Eve to increase
the uncertainty during symbol detection. Particularly, making
his received signal lie at the boundary regions, so that the
noise will move it in either direction of the detection regions
and hence increase the BER at the latter. We note that the
quality of service of the users, exhibited by constraints (12)
and (13), does not affect constraints (14) and (15) of the
boundary regions.
Namely, in problem (11), the non-convex constraints are

the ones related to the Eve, they are as follows

Re{hiex} � ∓δ, i = 1, . . . ,M (16)

Im{hiex} � ∓δ, i = 1, . . . ,M. (17)

Given these constraints, the feasibility region of Eve’s
received signal is non-convex, as shown in Fig. 3 (the
strapped region). In the following, we propose four con-
vex implementations of the problem in (11), with varying
security and energy efficiency trade-offs.

1) PLS - SQUARE SCHEME

In this scheme, we take the intersection of the vertical
boundary region and the horizontal one, characterized by
constraints (16) and (17), respectively. The intersection of the
two form a square, hence the name. With this, the problem
in (11) becomes convex and could be solved efficiently using
convex solvers such as CVX. This scheme designs Eve’s
received signal to lie in the square whose center is the ori-
gin and side is 2δ. When noise is added, the received signal
at Eve will lie on any of the 4 detection regions (in case of
QPSK), thus providing high security. Algorithm 1 explains
the process of signal design of the PLS - Square scheme.
We note that Algorithm 1 is executed for every symbol

slot.

2) PLS - TWO-STEPS NEAREST SCHEME

In this scheme, as its name implies, the transmit signal x
is designed in two steps. In the first step, we aim to deter-
mine the region in which Eve’s received signal would lie
when CISPM scheme is used (we name the transmit sig-
nal inhere xCI). Once we identify the coordinates of Eve’s
received signal, HexCI , we feed this information into the sec-
ond problem as an input. Herein, we execute problem (11)
with the formulation of nearest. Namely, depending on where
Eve’s signal would land, we design it to fall into the near-
est boundary region, either vertical one or horizontal one.

Algorithm 2 PLS - Two-Steps Nearest

Input: d,H, γ, σ 2
z ; � Step 1

1: Solve problem (10)
Output: xCI
Input: d,H,He, γ, σ 2

z , δ, xCI ; � Step 2
2: Do: Solve problem (11) as follows:
3: Satisfy CI constraints in (12) and (13)
4: if |Re{hiexCI}| < |Im{hiexCI}| then
5: return Satisfy constraint (14)
6: else
7: Satisfy constraint (15)

Output: xn

Algorithm 3 PLS Scheme - Two-Steps Farthest

Input: d,H, γ, σ 2
z ; � Step 1

1: Solve problem (10)
Output: xCI
Input: d,H,He, γ, σ 2

z , δ, xCI ; � Step 2
2: Do: Solve problem (11) as follows:
3: Satisfy CI constraints in (12) and (13)
4: if |Re{hiexCI}| > |Im{hiexCI}| then
5: return Satisfy constraint (14)
6: else
7: Satisfy constraint (15)

Output: xf

The detailed steps of the procedure are found in Algorithm
2, where condition |Re{hiexCI}| < |Im{hiexCI}| implies that
Eve’s received signal is closer to the vertical boundary
region, hence in this scheme we design Eve’s received signal
to lie in the vertical boundary region (constraint (character-
ized by 14)). Otherwise, we design Eve’s received signal to
lie in the horizontal boundary region instead (represented by
constraint (15)).

3) PLS - TWO-STEPS FARTHEST SCHEME

This scheme can be considered as opposite of the PLS -
Two-steps nearest scheme, i.e., instead of picking the clos-
est boundary region, it always chooses the farthest one.
Intuitively, this scheme would provide higher security gains
than the nearest scheme (as it pushes the constellation point
even farther, leading to higher chances of falling into the
wrong region), however, it would consume more transmit
power, the bigger the introduced deviation by the constraint,
the higher power required to move it. Below we formulate
the algorithm for the PLS - Two-steps farthest scheme.
Algorithm 3, where condition |Re{hiexCI}| > |Im{hiexCI}|

indicates that Eve’s received constellation point is closer
to the horizontal boundary region, and since this is far-
thest scheme, we design Eve’s received signal to fall into
vertical boundary region (constraint (characterized by 14)).
However, if the condition is not fulfilled, we design Eve’s
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FIGURE 4. 16-QAM constellation showing the 6 lines boundary regions.

received signal to lie in the horizontal boundary region
instead (represented by constraint (15)).

4) PLS - TWO-STEPS 6-LINES SCHEME

This scheme is also a two-step scheme, however, this par-
ticular scheme is designed for higher order modulation such
as 16-QAM, where the detection regions are numerous.
Fig. 4 depicts the 6-lines that define the 6 boundary regions
(the region where Eve’s received signal should lie) for this
scheme. Namely, this scheme consist of designing Eve’s
received signal to lie in one of these lines by choosing the
closest boundary region to it. Below we define the different
constraints characterizing the 6 boundary regions:

Re{hiex} � ∓δ, i = 1, . . . ,M (18)

Re{hiex} + thre � ∓δ, i = 1, . . . ,M (19)

Re{hiex} − thre � ∓δ, i = 1, . . . ,M (20)

Im{hiex} � ∓δ, i = 1, . . . ,M. (21)

Im{hiex} + thim � ∓δ, i = 1, . . . ,M. (22)

Im{hiex} − thim � ∓δ, i = 1, . . . ,M (23)

where thre and thim denotes the threshold that determines
the boundary regions of both real and imaginary parts,
respectively, as depicted in Fig. (4).
Naturally, this scheme would require less power than

all the aforementioned PLS schemes, considering that it
introduces the smallest deviation of the constellation point.
Algorithm 4 shows the details of this scheme.
We note that the above-mentioned implementations of the

optimization problem in (11) are convex, and thus their
global optimum can be obtained using standard convex
optimization tools [39].

Algorithm 4 PLS Scheme - Two-Steps 6 Lines

Input: d,H, γ, σ 2
z ; � Step 1

1: Solve problem (10)
Output: xCI
Input: d,H,He, γ, σ 2

z , δ, xCI ; � Step 2
2: Do: Solve problem (11) as follows:
3: Satisfy CI constraints in (12) and (13)
4: Determine the closest line to hiexCI
5: Apply the corresponding constraint from

(18,19,20,21,22,23)
Output: x6l

TABLE 2. Performance of different classifiers for countermeasure SLP-based dataset.

C. ATTACK EXAMPLE ON PLS SCHEME
As demonstrated in Section III-D, a sophisticated eaves-
dropper that employs ML can predict a precoded signal to
a user with high accuracy. However, in the case of the PLS
scheme (we used Random scheme implementation in this
experiment), the prediction accuracy is quite low compared
to the CISPM scheme. In fact, these values are close to 1

4 ,
which is the lower bound when Eve has no side information
and is randomly picking symbols out of the QPSK set. The
main reason for this behavior is because we are forcing
Eve’s received signal to lie at the boundary region. Hence
the received signal at the latter will be randomly distorted
because of noise, thus making it very difficult for the ML
algorithm to map the received signals to the pilot sym-
bols. Similarly, we compared many classifiers, where their
prediction accuracy is summarised in Table 2.

V. NUMERICAL RESULTS
In the numerical results, we define the considered
performance metrics. First, the total transmit power by the
BS antennas is defined as Ptot = ||x||2. In the simulations, we
take the average of the above quantity over a large number of
symbol slots, i.e., Edn,H[Ptot], to obtain the frame-level total
transmit power, which is then averaged over a large number
of channel realizations. We also compute the effective BER
at the Eve, by detecting the received signal at the latter. In
addition, we compute the BER at the intended users in order
to investigate the impact of the countermeasure scheme on
the intended user performance.
Consequently, we define the metric that we call effective

rate, Ra, that quantifies the error-free part of the total rate,
and can be written as in [26] as

Ra = WRc(1 − BERa) (24)
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where W is the bandwith, Rc is the rate (equals 2 in the case
of QPSK), and BERa is the effective BER, where a can be
either intended user or Eve.
Similar to the performance metric used in [41], we define

the secure rate as

Rsec = Rint − Reve (25)

where Rint is the effective rate at the intended user and Reve
is the one at the Eve.
Last but not least, we define a new metric that we call

Energy Efficiency for Secure Transmission (EEST) ηeest that
combines both the secure bits transmitted and the transmit
power consumed, so it will be [secure − bits/Joule], and
defined as

ηeest = Rsec
Edn,H[Ptot]

. (26)

We note that we have devised this metric to compare the
overall performance of the PLS schemes, by taking into
account simultaneously security and transmit power. The
EEST increases either by increasing the secure rate and/or by
decreasing the power consumption, and thus, higher values
of it indicate either better security and/or lower power con-
sumption. Therefore, if an A scheme provides higher EEST
than another scheme B, then scheme A is providing higher
security with respect to its consumed power. We note that
the metric for secure transmission is the secure rate, in the
numerator of the EEST, the higher the secure rate, the more
secure the scheme will be. Particularly, we can observe a
very high EEST that was due to very low power consump-
tion and little security. As a result, there is no value of it
that can guarantee secure transmission.
In the below figures, we used the SVM classifier for

the ML-based attack as it possesses one of the highest
prediction accuracies, thus making the Eve as sophisticated
as possible. Moreover, all results have been averaged over
100 channel realisations and using 1000 symbols in each
realizations, in order to give an accurate performance anal-
ysis of the proposed precoders. The simulated MU-MISO
system comprises of Nt = 15 antennas at the BS, K = 6
single-antenna intended users, M = {1, 3, 6} number of
antennas at Eve depending on the simulation, σ 2

z = 1, and
σ 2
e = {0, 0.2, . . . , 1} depending on the figure. MATLAB was

used as the main software for simulations, embedded with
CVX as the convex optimization solver. We note that since
the proposed schemes and the benchmark scheme pertain to
the same class of optimization convex problems, they are of
comparable complexity.
For the numerical results, a value for the thresholds thre

and thim has to be chosen. For that, we investigate the impact
of the thresholds on both the total transmit power and the
BER at Eve. We note that these threshold values are relevant
only for the Two-steps 6-lines scheme, where we set thre =
thim because of the symmetry of the 16-QAM constellation.
As shown in Figure 5, part (a) plots the total transmit power

FIGURE 5. 16-QAM with Nt = 15, K = 6, 15 dB target SINR, and 1 antennas at the
Eve.

vs. the threshold while part (b) depicts the BER at Eve vs.
the threshold.
As expected, and in accordance with the SLP schemes

behavior in this section, higher security (BER at Eve) comes
at the cost of higher power consumption. In Fig. 5, part (a),
the transmit power shows a minimum, corresponding to the
position of the threshold close to the original position of
the received symbols, i.e., the constraints are not too strin-
gent, hence the consequent power saving. Before reaching
this minimum, we observe a decrease of the power, due
to the constraints becoming less and less strict. However,
after reaching the minimum, the total power starts increas-
ing because of constraints getting more stringent, but going
in the opposite direction. As for the behavior of the BER at
Eve depicted in part (b) of Fig. 5, the stricter the constraints,
the more distant are the boundary regions from the original
position of the received symbols, the more likely for Eve to
make wrong detection decisions, hence the increase in the
BER at Eve.
Finally, we have picked the value of thre = thim = 6√

(2)
as a trade-off value between the total power consumed and

VOLUME 1, 2020 543



MAYOUCHE et al.: LEARNING-ASSISTED EAVESDROPPING AND SYMBOL-LEVEL PRECODING COUNTERMEASURES

FIGURE 6. QPSK - BER vs. number antennas at Eve, with Nt = 15, K = 6, δ = 0.1,
and 10dB of target SINR at intended user.

security. But after all, varying the threshold barely affects the
performance, as shown in Figure 5, values of transmit power
and BER vary slightly with the change of the threshold. We
note that the suggested fixed value of the threshold is for
the selected parameters used in this section.
Fig. 6 and 7 plots the BERs at Eve as a function

of the number of antennas at Eve, for case of QPSK
and 16-QAM modulations, respectively. We compare the
benchmark scheme (CISPM) with the PLS schemes. The
parameters used in the simulation are Nt = 15, K = 6,
δ = 0.1, and 10dB of target SINR at intended user. In
both QPSK and 16-QAM, all PLS schemes outperform the
CISPM one with PLS Random providing the highest security
gains. We also observe that the more antennas at Eve, the
higher the prediction accuracy (more samples of same sig-
nal), and ultimately the lower the BER. However, we notice
that PLS - Random scheme is not affected much by this
increase in the number of antennas at Eve, and it is due
to nature of this scheme, in particular, it randomly assigns
Eve’s received signal to either the horizontal boundary region
or vertical one, and hence making it super hard for the ML
engine to find a relationship, as it is practically impossible to
predict something random, thus it provides the highest secu-
rity. On the other hand, the other PLS schemes still provide
better security gains than the CISPM one, but not as good
as the Random one, mainly because in their design is inher-
ently deterministic, hence the ML engine would often find
ways to find the relationship between the observed precoded
symbols and the actual symbols intended for a specific user,
thus the decrease of the BER as the number of antennas at
Eve increase, i.e., more training data. We also observe that
in the case of 16-QAM.
Fig. 8 and 9 depicts the BERs at Eve as a function

of the target SINR at the intended user, that we set to the
same value for all users for simplicity, for case of QPSK
and 16-QAM modulations, respectively. We compare the
benchmark scheme (CISPM) with the PLS schemes. The

FIGURE 7. 16-QAM - BER vs. number antennas at Eve, with Nt = 15, K = 6, δ = 0.1,
thre = thim = 6√

2
, and 20dB of target SINR at intended user.

FIGURE 8. QPSK - BER vs. target SINR, with Nt = 15, K = 6, δ = 0.1, and 3 antennas
at the Eve.

parameters used in the simulation are Nt = 15, K = 6,
δ = 0.1, and 3 antennas at the Eve. Similarly, for all
precoding schemes, the higher the target SINR at the
intended user, the lower the BER at the Eve, except for
the PLS - Random scheme, where its performance is not
affected by the target SINR due it its invulnerability to
ML-based attack, given the employed randomness in the
design. We also observe that all PLS schemes outperform
the CISPM one as they include some Eve-related constraints
in their formulation, with the same behavior in both QPSK
and 16-QAM.
Fig. 10 and 11 plots the BERs at intended user as a

function of the target SINR at the intended user, that we set
to the same value for all users for simplicity, for case of
QPSK and 16-QAM modulations, respectively. We compare
the benchmark scheme (CISPM) with the PLS schemes. The
parameters used in the simulation are Nt = 15, K = 6,
δ = 0.1, and 3 antennas at the Eve. As expected, for all the
schemes and both modulations, the BER at the intended user
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FIGURE 9. 16-QAM - BER vs. target SINR, with Nt = 15, K = 6, δ = 0.1,
thre = thim = 6√

2
, and 3 antennas at the Eve.

FIGURE 10. QPSK - BER at intended user vs. target SINR, with Nt = 15, K = 6,
δ = 0.1, and 3 antennas at the Eve.

decreases as the target SINR at the latter increases. Namely,
higher target SINR implies higher transmit power, hence
better SNR at intended, that leads to an improved BER. We
also note that all the schemes have the same performance at
the intended user, a match is observed among all schemes,
both PLS and CISPM, consequently, we can conclude that
despite the security gains offered by the PLS schemes, their
use does not impact the performance at the intended user.
Fig. 12 and 13 show the total transmit power, in dBW,

as a function of the target SINR, that we set to the same
value for all users for simplicity, for case of QPSK and
16-QAM modulations, respectively. We compare the bench-
mark CISPM with the PLS schemes. The parameters used in
the simulation are Nt = 15, K = 6, δ = 0.1, and 3 antennas
at the Eve. As expected, the power consumption increases
linearly with target SINR, with benchmark scheme consum-
ing a bit less power than the PLS ones. In particular, the
PLS - Random scheme consumes more than PLS - Twosteps-
farthest which consumes more than PLS - Twosteps-nearest.

FIGURE 11. 16-QAM - BER at intended user vs. target SINR, with Nt = 15, K = 6,
δ = 0.1, thre = thim = 6√

2
, and 3 antennas at the Eve.

FIGURE 12. QPSK - Total transmit power vs. target SINR, with Nt = 15, K = 6,
δ = 0.1, and 3 antennas at the Eve.

This is intuitive in the sense that the Twosteps-nearest con-
sumes less than the Twosteps-farthest as it incur a smaller
deviation of the target received signal. To illustrate more,
this behavior is due to the fact that, the more we con-
strain our signal design problem, the more power is required.
Moreover, the more antennas at the Eve, the higher the trans-
mit power for the PLS schemes, i.e., number of constraints
increase with the number of antennas at Eve. For 16-QAM
alone, the Twosteps-6lines consuming the least among all
PLS schemes, as it requires the smallest deviation of the
Eve’s received constellation point, i.e., it moves it to the
closest line among the 6 lines (boundary regions). We also
observe that the power consumption difference between the
two scheme is only of 1 dB in the case of 3 antennas at
Eve. Thus, only a small additional power consumption is
required to provide such high security.
Fig. 14 and 15 plots the energy efficiency for secure

transmission ηeest, in [Secure bits/Joule], as a function of
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FIGURE 13. 16-QAM - Total transmit power vs. target SINR, with Nt = 15, K = 6,
δ = 0.1, thre = thim = 6√

2
, and 3 antennas at the Eve.

FIGURE 14. QPSK - Rate/power efficiency vs. number of antennas at Eve, with
Nt = 15, K = 6, δ = 0.1, and 5 dB target SINR.

the number of antennas at Eve, for case of QPSK and
16-QAM modulations, respectively. We compare the bench-
mark scheme with the PLS schemes. The parameters used
in the simulation are Nt = 15, K = 6, δ = 0.1, and 5 dB
target SINR for QPSK and 15 dB for 16-QAM. In the case
of QPSK, Fig. 10, it turns out that, when taking into account
both total transmit power and secure rate, PLS schemes still
outperform CISPM scheme. This is due to the fact that
the difference in power consumption is relatively smaller
than the difference in secure bits, hence keeping the same
ranking, with PLS Random scheme providing the highest
efficiency. For 16-QAM on the other hand, we see the same
pattern when Eve has 1 antennas, however, as the num-
ber of antennas at Eve increases, the ranking among PLS
schemes changes accordingly, and this is due to the differ-
ence in power consumption that becomes relatively higher
than the difference in secure rate, thus the change in the
ranking. Despite this small change in ranking among PLS

FIGURE 15. 16-QAM - Rate/power efficiency vs. number of antennas at Eve, with
Nt = 15, K = 6, δ = 0.1, thre = thim = 6√

2
, and 15 dB target SINR.

FIGURE 16. QPSK - Total transmit power vs. Nt , with K = 6, δ = 0.1, 5 dB target
SINR, and 3 antennas at the Eve.

schemes, PLS schemes still outperform CISPM scheme in
all the cases.
Fig. 16 and 17 depicts the total transmit power, in dBW,

as a function of the number of antennas Nt, for a fixed
target SINR of 5 dB for QPSK and 15 dB for 16-QAM,
respectively. We compare the CISPM scheme with the PLS
schemes. The parameters used in the simulation are Nt = 15,
K = 6, δ = 0.1, and 3 antennas at the Eve. We observe that,
for all the schemes, the power consumption decreases with
the number of antennas. Namely, increasing the number of
antennas, Nt, leads to higher power gains at the receivers,
hence the less required power by the transmitter. In other
words, increasing Nt leads to stronger inter-user interference,
hence higher power gains. Similarly to Fig. 8 and 9, PLS
schemes consumes more power than CISPM scheme, where
increasing the number of antennas at Eve leads to even
higher power consumption, i.e., more antennas at Eve imply
more constraints given that the constraints are applied on a
per-antenna basis, hence the more power required.
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FIGURE 17. 16-QAM - Total transmit power vs. Nt , with K = 6, δ = 0.1, 15 dB target
SINR, thre = thim = 6√

2
, and 3 antennas at the Eve.

FIGURE 18. QPSK - BER vs. δ, with Nt = 15, K = 6, 5 dB target SINR, and 3
antennas at the Eve.

Fig. 18 and 19 represent the BER at Eve, as a function of δ,
for a fixed target SINR of 5 dB for case of QPSK and 15 dB
for 16-QAM, respectively. We compare the CISPM scheme
with the PLS schemes. The parameters used in the simulation
are Nt = 15, K = 6, and 3 antennas at the Eve. Similarly,
PLS schemes outperform CISPM scheme, with PLS Random
providing highest security gains. We observe that for all PLS
schemes, the BER at Eve decreases as δ gets smaller. This
can be explained intuitively as follows. The larger the δ,
the thicker the boundary region, hence the more chances
for constellations points to fall into a deeper position inside
the detection region, in this case, noise will have a smaller
chance on pushing this to the opposite region as opposed
to the case where the boundary region is very thin, thus the
smaller the δ, the higher the BER (more security gains). We
note that same pattern is observed for both constellations,
QPSK and 16-QAM.
In all of the below results, we considered a noisy channel

of Eve. In the below simulation, however, we investigate the

FIGURE 19. 16-QAM - BER vs. δ, with Nt = 15, K = 6, 15 dB target SINR,
thre = thim = 6√

2
, and 3 antennas at the Eve.

FIGURE 20. QPSK - Rate/power efficiency vs. σ2
ze , with Nt = 15, K = 6, δ = 0.1,

10 dB target SINR, and 3 antennas at the Eve.

case where Eve has different SNR levels. For instance, in the
case where Eve is very close to the BS, the received signal
at the later will be strong, and vice-versa in the case when
Eve is far from the BS. Similarly, if Eve uses sophisticated
radio-frequency (RF) hardware, then the noise variance at
the latter might be negligible.
Fig. 20 and 21 plots the energy efficiency for secure trans-

mission ηeest, in [Secure bits/Joule], as a function of the noise
variance at Eve σ 2

ze, for the case of QPSK and 16-QAM mod-
ulations, respectively. We compare the benchmark scheme
with the PLS schemes. The parameters used in the simu-
lation are Nt = 15, K = 6, δ = 0.1, and 10 dB target
SINR for QPSK and 20 dB for 16-QAM. It turns out that
in the case where Eve has almost noiseless receive signal,
the PLS - two-step-farthest scheme outperforms the PLS -
Square scheme in both BER and ηeest, and even consumes
less power. This behavior can be explained in the sense that
the boundary schemes strength lies in the assumption that
the noise at Eve would push it to either detection regions
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FIGURE 21. QAM-16 - Rate/power efficiency vs. σ2
ze , with Nt = 15, K = 6, δ = 0.1,

20 dB target SINR, and 3 antennas at the Eve.

with almost equal probability, therefore in the case of noise-
less Eve, noise is no longer there to move the receive signal,
and by design the PLS - two-step-farthest scheme feasible
region is bigger than the PLS - Square scheme, therefore it is
harder for the ML algorithm to track the Two-steps-farthest
than the Square scheme. However, in the case of noisy Eve,
the Square scheme performs better in BER and ηeest because
noise will push it not only to the opposite detection region
but also the other neighbouring ones, hence the increase in
security. Concurrently, in all schemes we observe that ηeest
increases with the increase of σ 2

ze as a result of noise moving
the received signals. More noise makes it harder for the ML
algorithm to track the mapping, hence the higher BER at
Eve and consequently higher ηeest.

VI. CONCLUSION
In this paper, we proposed a new ML-based attack that per-
mits a sophisticated eavesdropper to detect a message in a
downlink MU-MISO system with a decent accuracy. The Eve
learns patterns from the sent precoded pilots and predicts data
symbols accordingly, where this sophisticated Eve employs
several antennas and has ability to detect multi-level modula-
tion schemes. We showed that this vulnerability is valid even
when conventional SLP based precoding is employed. Still,
these conventional precoders, such as CISPM scheme, have
the advantage of not requiring the knowledge of Eve’s chan-
nel. As a countermeasure to this attack, we propose novel
SLP-based precoders. In general, the Square scheme provides
the highest security gains and also computationally wise, it
consumes almost half of the computation time than the other
two-steps schemes, however it consumes the highest transmit
power. However, as shown in the numerical results, depend-
ing on the modulation used, the number of antennas at Eve
and the noise power at the latter, both Two-steps-farthest and
nearest can outperform the Square scheme. Therefore, the
proposed PLS schemes provide different tradeoffs between
security, computation time, and transmit power, which would

give the BS options to choose the most suitable scheme
depending on level of security required and/or transmit power
needed and parameters used. Notably, despite all the security
gains offered by the PLS schemes, their use does not affect
the performance at the intended user. Numerical results val-
idate both the attack as well as the countermeasures, where
the proposed PLS precoders achieve drastic security gains at
the expense of only a small additional power consumption
at the transmitter. Future research topics would be to extend
this work to the case of non-perfect CSI and also where the
channel to the Eve is unknown to the BS.
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