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KERNEL SELECTION IN NONPARAMETRIC REGRESSION

HELENE HALCONRUY* AND NICOLAS MARIET

ABSTRACT. In the regression model Y = b(X) + o(X)e, where X has a density f, this paper deals
with an oracle inequality for an estimator of bf, involving a kernel in the sense of Lerasle et al. (2016),
selected via the PCO method. In addition to the bandwidth selection for kernel-based estimators already
studied in Lacour, Massart and Rivoirard (2017) and Comte and Marie (2020), the dimension selection
for anisotropic projection estimators of f and bf is covered.
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1. INTRODUCTION

Consider n € N* independent R? x R-valued (d € N*) random variables (X1,Y1),..., (X, Y,), having
the same probability distribution assumed to be absolutely continuous with respect to Lebesgue’s measure,
and

arXiv

1 n
Sk.e(n;z) == - ZK(Xi,x)Z(Yi) ;z € RY,
i=1

where £ : R — R is a Borel function and K is a symmetric continuous map from R¢ x R? into R. This is
an estimator of the function s : R* — R defined by
s(z) == B(¢(V1)| X1 = 2)f(z) ; Vo € RY,

where f is a density of X1. For £ = 1, Sk ¢(n;.) coincides with the estimator of f studied in Lerasle et
al. [13], covering Parzen-Rosenblatt’s and projection estimators already deeply studied in the literature
(see Parzen [16], Rosenblatt [17], Tsybakov [18§], etc.), but for £ # 1, it covers estimators involved in
nonparametric regression. Assume that for every ¢ € {1,... ,n},

(1) Y, = b0(X;) + o(Xi)e;

Key words and phrases. Nonparametric estimators ; Projection estimators ; Model selection ; Regression model.
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where ¢; is a centered random variable of variance 1, independent of X;, and b,o : R? — R are Borel
functions.
e If ¢/ =1dg, k is a symmetric kernel and
d

1 —
(2) K(:c’,:c)Hh—k<th zq) with hy,...,hqg >0
q=1 q q

for every z,2’ € RY, then S ¢(n;.) is the numerator of the well-known Nadaraya-Watson esti-
mator of the regression function b (see Nadaraya [I5] and Watson [20]). Precisely, Sk ¢(n;.) is an
estimator of s = bf because €1 is independent to X7 and E(e1) = 0. If £ # Idg, then Sk ¢(n;.) is
the numerator of the estimator studied in Einmahl and Mason [7} [§].

o If ¢ = Idg, B, = {¢1"*, ..., omi} (mg € N* and g € {1,...,d}) is an orthonormal family of
L2(R) and

d mg
(3) K x)=T]D ¢l (zg)e) " (z),)

q=1j=1
for every z,2’ € R%, then 5k ¢(n;.) is the projection estimator on S = span(By,, ® -+ ® Byy,,) of
s=0bf.

Now, assume that b = 0 in Model ([)): for every i € {1,...,n},

(4) Y: = o(X;)e;.

If /(z) = 22 for every z € R, then Sk ¢(n;.) is an estimator of s = o2 f.

These ten last years, several data-driven procedures have been proposed in order to select the band-
width of Parzen-Rosenblatt’s estimator (¢ = 1 and K defined by (2)). First, Goldenshluger-Lepski’s
method, introduced in [I0], which reaches the adequate bias-variance compromise, but is not completely
satisfactory on the numerical side (see Comte and Rebafka [5]). More recently, in [12], Lacour, Massart
and Rivoirard proposed the PCO (Penalized Comparison to Overfitting) method and proved an oracle
inequality for the associated adaptive Parzen-Rosenblatt’s estimator by using a concentration inequality
for the U-statistics due to Houdré and Reynaud-Bouret [II]. Together with Varet, they established the
numerical efficiency of the PCO method in Varet et al. [I9]. Still in the density estimation framework, the
PCO method has been extended to bandwidths selection for the recursive Wolverton-Wagner estimator
in Comte and Marie [3].

Comte and Marie [4] deal with an oracle inequality and numerical experiments for an adaptive Nadaraya-
Watson’s estimator with a numerator and a denominator having distinct bandwidths, both selected via
the PCO method. Since the output variable in a regression model has no reason to be bounded, there
were significant additional difficulties, bypassed in [4], to establish an oracle inequality for the numera-
tor’s adaptive estimator. Via similar arguments, the present article deals with an oracle inequality for
§Ré(n; .), where K is selected via the PCO method in the spirit of Lerasle et al. [I3]. As in Comte and
Marie [4], one can deduce an oracle inequality for the adaptive quotient estimator 5z ,(n;.)/5z | (n;.) of

K

E({(Y1)|X; = -), where K and L are both selected via the PCO method.

In addition to the bandwidth selection for kernel-based estimators already studied in [12} [4], the present
paper covers the dimension selection for projection estimators of f, bf when Y7,...,Y, are defined by
Model (@) with ¢ = Idg, and 0?f when Y1,...,Y, are defined by Model @) with ¢(z) = 22 for every
x € R. For projection estimators, when d = 1, the usual model selection method (see Comte [2], Chapter
2, Section 5) seems hard to beat. However, when d > 1 and K is defined by @), m1, ..., mq are selected
via a Goldenshluger-Lepski type method (see Chagny [I]), which has the same numerical weakness than
the Goldenshluger-Lepski method for bandwidth selection when K is defined by (2)). So, for the dimen-
sion selection for anisotropic projection estimators, the PCO method is interesting.

In Section 2] some examples of kernels sets are provided and a risk bound on Sk ¢(n;.) is established.

Section [3] deals with an oracle inequality for 5z ,(n;.), where K is selected via the PCO method.
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2. RISK BOUND

Throughout the paper, s € L2(R?%). Let K, be a set of symmetric continuous maps from R? x R? into
R, of cardinality less or equal than n, fulfilling the following assumption.

Assumption 2.1. There exists a deterministic constant mx ¢ > 0, not depending on n, such that
(1) For every K € K,
sup ||[K (2, )3 < mxen.
z/ €R?
(2) For every K € KC,,,

mICé

with
sice = EGrco(n: ) = B(K (X1, )(Y1)).
(3) For every K, K' € K,
E((K(X1,.),K'(X2, )0(Y2))3) < mi iSkr e
with
i = E(| K (X1, )0(Y1)|13)-
(4) For every K € K,, and ¢ € L*(R%),
E((K(X1,.),%)3) < myc e[ ¢]3.

The elements of IC,, are called kernels. Let us provide two natural examples of kernels sets.

Proposition 2.2. Consider

K (hanin) ;{ f[hi <x :”‘1) ;hl,...,hde’H(hmin)},

where k is a symmetric kernel (in the usual sense), hmin € [n_l/d, 1] and H(hmin) s a finite subset of
[Amin, 1]. The kernels set Ki(hmin) fulfills Assumption [Z1] and, for any K € Ki(hmin) (i-e. defined by
@) with hy,...,hq € H(hmin)),

d
1
Sico = kIR T
=11
Proposition 2.3. Consider
d mgq
’CBl,...,Bn(mmax) = (.’L'/,.’L') — Hz(p;nq(‘rq)go;nq(x;) yMy,...,Mg S {15"'ammax} )
g=1j=1
where m&,. € {1,...,n} and, for every m € {1,...,n}, By, = {&7, ..., ™} is an orthonormal family
of L2(R) such that
sup » ¢ < mpm
s ERZ ;

with mp > 0 not depending on m and n, and such that one of the two following conditions is satisfied:
(5) By CBmt1 ;Yme{l,...,n—1}

or

(6) W= sup{|E(K(X1,2))| ; K € Ks,....

The kernels set Kp, ... B, (Mmax) fulfills Assumption [21] and, for any K € Kp, ... B, (Mmax) (i-e. defined
by (&) with my,...,mu, € {1,..., Mmax}),

B, (Mmax) and © € R} is finite and doesn’t depend on n.

d
Sxe < mEE(U(Y)?) [T m
=1
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Remark 2.4. For the sake of simplicity, the present paper focuses on Kp,
(2.3 is still true for the weighted projection kernels set

,,,,, B,, (Mmax), but Proposition
d mgq
Iclgl,...,lgn(wla---awn;mmax) = (:EI):E) = szjgo;nq(‘rq)@;nq(‘r;) My, ..., Mg € {15"'ammax} )
g=1j=1
where wy, ..., wy, € [0,1].

Remark 2.5. Note that Condition {f) is close, but more restrictive than Condition (19) of Lerasle et al.
[13], Proposition 3.2, which is that the spaces span(B,,), m € N are nested. See Massart [14], Subsection
7.5.2 for examples of nested spaces. Our Condition () is fulfilled by the trigonometric basis, Hermite’s
basis or Laguerre’s basis.

Note also that in the same proposition of Lerasle et al. [13], Condition (20) coincides with our Con-
dition (). The regular histograms basis satisfies Condition (8). Indeed, by taking 7' = P =

VMG 1)m,j/m] for everym € {1,...,n} and j € {1,...,m},

d Mmgq
1305t | = 35 35 (T im0
q=1j=1 Jji=1 Ja=1
ji/ma Ja/ma
x/ / £ ol da, - da,
(J1—1)/ma (ja—1)/ma
d Mg
< flloo TT D LiG=1)/ma smal(@a) < lIflloo
q=1j=1
for every my,...,mq € {1,...,n} and x € RY.

The following proposition shows that Legendre’s basis also fulfills Condition (@]).
Proposition 2.6. For everym € {1,...,n} and j € {1,...,m}, let & be the function defined on [—1,1]

by
\/ Qg ; Vo € [-1,1],
where
Qiwel s 1 L2y
J 2]j. dad .

is the j-th Legendre’s polynomial. If f € C?%([0,1]¢) and B,, = {&", ..., ™} for every m € {1,--- ,n},
then Kg,....B,, (Mmax) fulfills Condition ().

The following proposition provides a suitable control of the variance of Sk ¢(n;.).

Proposition 2.7. Under Assumption [2l(1,2,3), if s € L>(RY) and if there exists « > 0 such that
E(exp(all(Y1)])) < oo, then there exists a deterministic constant gy > 0, not depending on n, such that

for every 6 €]0, 1],
0 log(n)®
_Sm}) <qm ge(s) _

E( sup {
KeKkn,

Finally, let us state the main result of this section.

Theorem 2.8. Under Assumption[Z1), if s € L?(R%) and if there exists a > 0 such that E(exp(alf(Y71)])) <
00, then there exist deterministic constants qgg, @8 > 0, not depending on n, such that for every 0 €]0, 1],

E ( sup {||§K,e(n;.) —s|2-(1+0) <|sm — |2+ %) }) 1og( )°

Kek,

~ SK.
IS, .) = sicall3 — 24

and

SK.¢ IS 2 _ log(n)?
E _ SKL _ ) — < g
(KSSIIC)R{”SKZ sll3 + - 179||3K,é(n7 ) 3|2}) qmg(lf@)n
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Remark 2.9. Note that the first inequality in Theorem[2.8 gives a risk bound on the estimator Si ¢(n;.):

~ 5 log(n)®
B[Sz o1 < (1+0) (o o1 + 24 ) + iy

for every 6 €]0,1[. The second inequality is useful in order to establish a risk bound on the adaptive
estimator defined in the next section (see Theorem[32).

Remark 2.10. In Proposition [27 and Theorem [2.8, the exponential moment condition may appear too
strong. Nevertheless, this is de facto satisfied when

(7) Y1), ..., L(Yy) have a compactly supported distribution.

This last condition is satisfied in the density estimation framework because £ = 1, but even in the non-
parametric regression framework, where £ is not bounded, when Y1,...,Y, have a compactly supported
distribution. Moreover, note that under Condition ({4), the risk bounds of Theorem [Z8 can be stated in
deviation, without additional steps in the proof. Precisely, under Assumption[Z1] and Condition [@), if
s € L2(RY), then there exists a deterministic constant ¢, > 0, depending on L = SUD, coupp(By, ) [€(2)] but
not on n, such that for every ¥ €]0,1[ and A > 0,

SKZ
sup |[|sre — sl + == —
K n

n

~ Cr
s ) — s3] < S5 (14 )

with probability larger than 1 — 9.4|KC,[e™ .

When Condition {@) doesn’t hold true, one can replace the exponential moment condition of Proposition
[Z77 and Theorem[Z8 by a q-th order moment condition on £(Y1) (q € N*), but with a damaging effect on
the rate of convergence of Sk ¢(n;.). For instance, at Remark[B.3, it is established that under a (12—4¢) /-
th moment condition (¢ €]0,1[ and 0 < 3 < &/2), the rate of convergence is of order O(1/n'=¢) (instead
of 1/n) in Lemmal[B2. This holds true for the three technical lemmas of Subsection [Bl, and then for
Proposition [2.7 and Theorem [2.8.

3. KERNEL SELECTION

This section deals with a risk bound on the adaptive estimator s .), where

S o (;
K € arg min {[[Ske(n; ) = So,e(ni |3 + peny (K)},

Ky is an overfitting proposal for K in the sense that

Ko € arg max {Sup IK(z,z)l} ,

n ZERd
and

(8) pen, (K) = % DU X, Kol Xi)l(Yi)? 5 VK € Ko

Example. On the one hand, for any K € KCi(hmin) (i.e. defined by @) with hy,...,hqg € H(hmin)),
)|
sup |K(z, ) T
sup [ 0)l H
Then, for K, = Ki(hAmin),
/

d
1
Ko(2' i II < q> Vo, z' e RY
mln —1

mlH

On the other hand, for any K € Kp, ... B, (Mmax) (i-e. defined by @) with my,...,m, € {1,..., Mmax}),

d Mg

sup | K (z,z)| = sup HZ(pJ (z4)?

T€R4 r€R4 g=1j=1

.....
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Then, for K,, = Kpg,,...B, (Mmax), at least for the usual bases mentioned at Remark 2.5

.....

d Mmax

Koa',2) = [ 3. o0 (ag)em> (a}) ; Va2’ € RY.

q=1 j=1
In the sequel, in addition to Assumption 2.1} the kernels set K,, fulfills the following assumption.

Assumption 3.1. There exists a deterministic constant Wi ¢ > 0, not depending on n, such that

E( sup <K(X1,.),SK/,4>§)<H,C,Z.
K,K'eK,

The following theorem provides an oracle inequality for the adaptive estimator 57 Z(n; ).

Theorem 3.2. Under Assumptions 21l and [31, if s € L2(R?) and if there ewists o > 0 such that
E(exp(a|€(Y1)])) < oo, then there exists a deterministic constant > 0, not depending on n, such that
for every ¥ €0, 1],

~ . ~ q log(n)®
B3 518) < (1-+0) i BSuca(mi.) = )+ B2 (s = sl + <20

Remark 3.3. As mentioned in Comte and Marie [4], p. 6, when K, = Ki(hmin), if s belongs to a
Nikol’skii ball and hmin = 1/n, then Theorem [T2 says that the PCO estimator has a performance of
same order than Oy, := mingex, E(||Sk.e(n;.) — s||3) up to a factor 1 +9. When K,, = Kg, ... 5, (Mmax),
it depends on the bases Bi,...,B,. For instance, with the same ideas than in Comte and Marie [4],
thanks to DeVore and Lorentz [6], Theorem 2.3 p. 205, if s belongs to a Sobolev space and mpax = n,
then our Theorem [3.3 also says that the PCO estimator has a performance of same order than O,,.

Notation. For any B € B(R?), ||.||2,,5 is the norm on L?(B, f(z)\4(dx)) defined by

1/2
nwwﬁ:(éwm%@Mwﬂ Vg € L2(B, f(2)\a(da)).

The following corollary provides an oracle inequality for 5% ,(n;.)/57 ;(n;.), where K and L are both
selected via the PCO method.

Corollary 3.4. Let (8;)jen be a decreasing sequence of elements of |0, 00[ such that lime, 8; = 0 and,
for every j € N, consider

Bj:={x cR%: f(z) > B;}.
Under Assumptions [Z1 and [31 for ¢ and 1, if s,f € L2(RY) and if there exists o > 0 such that
E(exp(alt(Y1)])) < oo, then there exists a deterministic constant > 0, not depending on n, such that
for every ¥ €]0,1],
2

S s q
E ||| 2 <[1+19 min _{E(||5k.¢(n;.) — s||2) + E([5z.1(n;.) — flI3
Si,l(n;-) f . 32 ( )(K,L)eICEL{ (I5k.e(ns ) 2) (I[sz,1(ns.) 2)}
1 log(n)®
45 (lowe =l + e = 113 + 225
where R
K € arg min {[[8x.e(n;-) = Sko,e(n; )13 + peny(K)}
and

L € arg yuin {||3L1(n: ) — 80,1 (n5) 3 + peny (L)}
The proof of Corollary B4l is the same than the proof of Comte and Marie [4], Corollary 4.3.

Finally, let us discuss about Assumption B.Il This assumption is difficult to check in practice, then
let us provide a sufficient condition.
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Assumption 3.5. The function s is bounded and
my = sup{|| K (2, )||? ; K € K,, and 2’ € R?}
doesn’t depend on n.

Under Assumption B.5 /C,, fulfills Assumption 3.1l Indeed,

E( sup <K<X174>,sw,e>%) < ( sup HSK%Hoo)]E( sup ||K<X174>||?)
K’ KeKn

K,K'€Kn €Kn
o) 2
< mg Sup{(/ |K'(x',x)s(x)|d:v) ; K' € Ky and 2 GR} mi|s]|%.

Note that in the nonparametric regression framework (see Model (), to assume s bounded means that
bf is bounded. For instance, this condition is fulfilled by the linear regression models with Gaussian
inputs.
Let us provide two examples of kernels sets fulfilling Assumption 3.5 the sufficient condition for Assump-
tion 3.1}
e Consider K € Ki(hmin). Then, there exist hq,...,hq € H(hmin) such that
d

1 i
K(x’,z):]:[—k (zq zq) Va2’ € RY
q=1 hq hq

Clearly, ||[K (2, .)||1 = ||k||{ for every 2’ € RY. So, for K,, = Ki(hmin), mx < || k]34
e For K, = Kp,....B, (Mmax), the condition on mx seems harder to check in general. Let us show
that it is satisfied for the regular histograms basis defined in Section 2l For every my,...,mgq €

{1,...,n},

d Mmgq

13 v o] <

q=1j=1 1
Now, let us show that even if it doesn’t fulfill Assumption B.5] the trigonometric basis fulfills Assumption
B1

Proposition 3.6. Consider x1 := 19,1 and, for every j € N*, the functions x2; and x2j+1 defined on
R by

Mq j/mqg
qul[(a‘—n/mq,j/mq[(zf;)/( dr ) <1.

j=1 j—1)/mgq

i}
Il 8
—

X2;(x) = \/5(:05(2#]’:1:)1[071] (x) and x2j41(x) == \/§sin(27rj$)1[071] (x) ; Vz e R.
Ifs € C*(RY) and B, = {x1,- -, Xm} for everym € {1,...,n}, then Kp, ... 5, (Mmax) fulfills Assumption
E1

APPENDIX A. DETAILS ON KERNELS SETS: PROOFS OF PROPOSITIONS [2.2] 23] AND

A.1. Proof of Proposition Consider K, K" € Kj,(hmin). Then, there exist h,h’ € H(hmpin)? such
that

K(z',x) = kp(2' — z) and K'(2',2) = kp/ (2 — )

for every x, 2’ € R%, where

(1) For every 2’ € R4, since nhd, >

1
d
) 1K (', .)]13 = (H %) VRH’f

1
< lIkl3" 7= < [IklI3"n

min

o — 2\ d
d A d = ||k —
( - ) o) = g T -
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(2) Since sk ¢ = K * s and by Young’s inequality, sk (/|3 < || k]/2%||s]|3.
(3) On the one hand, thanks to Equality (@),

d
_ 1
S0 = E(I K (X1, )eM)II3) = |k 13E( H 7
q=1 q

On the other hand, for every z, 2’ € R?,
(K(z,.),K'(2,.)s = /]R'i kn(z — 2" kp (2" — 2" )Aa(dz"") = (kp * ko ) (x — 7).
Then,
E((K(X1,.), K'(X2,.)0(Y2))3) = E((kn * kn) (X1 — X2)(Y2)?)
= [ w2 [ ke’ = 02 )| B, ()
RA+1 Rd
< 1 lloollBn * ko 1BE(E(Y2)?) < [ flloo BN 5 50,0
(4) For every ¢ € L2(R%),
E((K (X1,.),9)3) = E((kn * ¢)(X1)%)
< A flloollkn 9113 < 1 oo IEITN190115-

A.2. Proof of Proposition 2.3 Consider K, K’ € Kg, .. g, (Mmax). Then, there exist m,m’ €
{1,..., Mmax }? such that

m’
d Mg Mg

K(2',z) = H Zgﬁ?q (xq)cp;n"( o) and K'(z', x) H ZQQT; (xq)p ; ()

q=1j=1 q=1j=1

for every x, 2’ € R%.
d

(1) For every 2’ € RY, since m?, < n,
d mq 0o d mg
(10) 1K@ )05 =11 D2 w?q(zfz)@}nq(x@/ P (@) (w)de = T Y ) ()’
g=1jj/=1 —c0 a=1j=1
d
< mdB H mg < mdBn
q=1
(2) Since
ma mq

se() =) D> (5,01 @ @) (P @ @ PT)(.),

by Pythagoras theorem, ||sk. |3 < |s]3-
(3) First of all, thanks to Equality (I0),

m/
q

d
S =E (M) ] D@ (X1.9)? | < mEEEM)?) [[m:

q=1j=1 q=1
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On the one hand, under Condition (E) on By, ..., B,, for any j € {1,...,m}, ¢7* doesn’t depend
on m, so it can be denoted by ¢;, and then

2
d mq/\m

E(<K(X1,-),K’(X27~)€(Y2)>§):/ E H Z i (1)9i(X2,4) | £(Y2)*| f(a")Aalda’)

d
R q9=

d mq/\m

B |60 TT 3 oy (KaadesCha) [ y@hes(a)ae

q=1 j,5'=1
< N fllooSkr e

On the other hand, under Condition (@) on By,...,B,, since X; and (Xo,Y3) are independent,
and since K (z,7) > 0 for every z € R%,

E((K (X1,.), K'(X2,.)((Y2))3) < E(|K(X1,.)[3]1K (X2,.)[36(Y2))
= E(K (X1, X1)E(| K’ (X2, .)[30(Y2)?) < Mp5xr,e.

(4) For every ¢ € L2(R%),

2
ma mq
E(K(X1,.),)3) =E |[|Y > (@@l @ @@l )a(pft @+ @ ¢')(X1)
Jji=1 Ja=1
2
ma mq
<l |3 - D @ @ (e @ @ 0| < el
Jji=1 Ja=1 9

A.3. Proof of Proposition For the sake of readability, assume that d = 1. Consider m €

{1,..., Mmax}. Since each Legendre’s polynomial is uniformly bounded by 1,
> g (X)E ()
j=1 —
Moreover, since ); is a solution to Legendre’s differential equation for any j € {1,..., m}, thanks to the
integration by parts formula,
[ aisn Lo [ @i
() f(x)der = ————— —[(1—= ()] f(x)dx
N jG+1) /oy dw !
1

- <y+1Kl*f*)@Q(x)f(zﬂiﬁ..1 [ 4= @

- ]+1 / Q,(z 1—m2)f’(x)]dac.

Then,

1 2¢1 . 2\/§C1
‘ / 1Qj(w>f(:c)d:c' < 2l =

with ¢ = max{2[| f'[|oc, [ /"]l }- So,

S eng@)|| <203 o5 <2ac (3)
j=1

where ¢ is Riemann’s zeta function. Thus, Legendre’s basis satisfies Condition (@)).
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A.4. Proof of Proposition The proof of Proposition relies on the following technical lemma.

Lemma A.1. For every x € [0,27] and p,q € N* such that ¢ > p,

zq: sin(jz) < 2
2 T | S Ut psina
See Subsubsection [A.4.] for a proof.

For the sake of readability, assume that d = 1. Consider K, K’ € Kg,
ist m,m’ € {1,..., Mmax} such that

B, (Mmax). Then, there ex-

.....

K(z',x) = ij(z)xj(:cl) and K'(2,x) = ij(z)xj(:cl) Vo, 2’ € R.
j=1 j=1

First, there exist my(m,m’) € {0,...,n} and ¢; > 0, not depending on n, K and K’, such that for any
x € [0,1],

(K (2", ), s e)2| = Z E((Y1)x;(X1))x;(2)

my(m,m’)

<a+2| Y E((Y1)(cos(2mjXy) cos(2mja’) + sin(2mjXy) sin(2mja’))10,1(X1))
j=1

my(m,m’)

=a+2| > E((Y)cos(2mi(X1 — 2')1(X1))|-

j=1

Moreover, for any j € {2,...,my(m,m’)},

E(0(Y1) cos(2mj(X1 — 2'))1p,11(X1)) = /0 cos(2mj(z — 2'))s(z)dz

_ 1 [sin(2mj x—x))s .
S [ ( )]0
1 [eos@mj(z—2') , 1" 1 ['cos2mj(z—2') ,
+j—2 [—47r2 5 (x)]o — J_2/0 I E—— (z)dz

(0 - s() ey | Bi(a)

2m J J?

where o (z’) := sin(2mjz’) and
Bj(z') = ﬁ ((s’(l) — §'(0)) cos(2mjz") —/0 cos(2mj(z — x'))s”(m)dw) :

Then, there exists a deterministic constant ¢s > 0, not depending on n, K, K’ and z/, such that

my(m,m’) my(m,m’) ?

(11) <K(z/, _), SK/7g>§ <cy |1+ Z M + Z ﬂ]

=7
Let us show that each term of the right-hand side of Inequality (] is uniformly bounded in 2, m and
m’. On the one hand,

my (m,m’)

ﬂ 1
=< max Hﬂgl\oo 7 < 572118 loo + 115" lloo)-
4

.....
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On the other hand, for every = €]0, 7] such that [7/z] + 1 < my(m,m’) (without loss of generality), by

Lemma [AT]

mi(mm’) . . [x/x] . . mi(m,m’) . .
Z sin(jz) < Z sin(jz) n Z sin(jz)
= J = j=lrjal+1 7

P 2
S [m] + (1 + [/x]) sin(z/2)

Since x +— sin(x) is continuous, odd and 27-periodic, Inequality (I2) holds true for every x € R. So,

(12) <m+2.

my(m,m’)

> <+ 2
j=1
Therefore,
1
E sup (K(X1,.),sK03 | < e (1+(7T+2)2+ 515 (2l oo + 115" llo0) )
K,K'€Kp,,....By (Mmax) 24

A.4.1. Proof of LemmalAd For any z € [0,2n] and q € N*, consider

) :Zsmgj , gol@ i( Hl)hj(z) and hg( Zsm jz).

j=1 j=1
On the one hand,
1 1
0(£) = n(0) = ) + 35 505(0) = hy=a(0)
Then,
1
fo(@) = gq(z) + mhq(x)-

On the other hand,

I ; sin(qxz/2)
hq() Z eV | =Im [e‘(qul)I/Qi

sin(z/2)

sin((q + 1)x/2) sin(gx/2) _ cos(x/2) — cos((q + 1/2)x)
sin(z/2) 2sin(x/2)

Then,

and, for any p € N* such that ¢ > p,

sin () 194(w) = gp(2)| < ﬁ _ q%
Therefore,
sin () Wal@) = fo(@)l < sin () laa() — (o) +sin (5) ";if' +sin (2) |pr1)|
2
Syl

In conclusion,

sin(jx) 2
2 | STy
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APPENDIX B. PROOFS OF RISK BOUNDS

B.1. Preliminary results. This subsection provides three lemmas used several times in the sequel.

Lemma B.1. Consider

(13) UKyK/yg(n) = Z<K(X“ )K(YZ) — SKﬁg,K/(Xj )E(Yj) — SK/14>2 5 VK, K/ c ICn
i#]j

Under Assumption 211 (1,2,3), if s € L2(RY) and if there exists a > 0 such that E(exp(al¢(Y1)])) < oo,
then there exists a deterministic constant @1 >0, not depending on n, such that for every 6 €]0,1],

Uk k' e(n 0 log(n)®
E( sup {Mﬁgm})gmﬁ_

K,K'eK,, n On

Lemma B.2. Consider
1 n
V == K(X;, )0Y;) — 2. VK € K,.
K,e(n) n;ll (X, )UY:) — skl €

Under Assumption [211.(1,2), if s € L2(RY) and if there exists a > 0 such that E(exp(a|f(Y1)])) < oo,
then there exists a deterministic constant > 0, not depending on n, such that for every 6 €]0,1],

1 _ 0_ log(n)®
E h S =2 < g
< sup { [Vi.e(n) — 3k nSK,e}) B

Kek, (1 on

Lemma B.3. Consider
(14) Wik o(n) = (Ske(n;.) — sxe,sxr0— 8)2 3 VK, K' € K.

Under Assumption 211 (1,2,4), if s € L2(RY) and if there exists a > 0 such that E(exp(alf(Y1)])) < oo,
then there exists a deterministic constant B3>0, not depending on n, such that for every 6 €]0,1],

10g(n)4
E su W o(n)| — 0||sk ¢ — sl|? ) < .
< 7 E}Cnﬂ K,k e(n)| = Ollsk e — s|2} T3,

B.1.1. Proof of LemmalBdl The proof of Lemma [B.1l relies on the following concentration inequality for
U-statistics, proved in dimension 1 in Houdré and Reynaud-Bouret [I1] first, and then extended to the
infinite-dimensional framework by Giné and Nickl in [9].

Lemma B.4. Let &,...,&, be i.i.d. random wvariables on a Polish space Z equipped with its Borel o-
algebra. Let f; ;, 1 <i# j < n, be some bounded and symmetric measurable maps from =2 into R such
that, for every i # j,

fi,j = fj,i and E(f@j(Z,fﬂ) =0 dz—a.e.

Consider the totally degenerate second order U-statistic

Un =Y fii(&:&)-

i#j
There exists a universal constant m > 0 such that for every A > 0,

P(Up < m(cuAY2 40,0 4+ 0,032 +a,02)) > 1 —2.7¢7*
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where
a, = sup { sup |fi1j(z,z/)|},
i,j=1,....n \z,2’€E
i—1
bi = max supZE fw z fj ; sup Z fz,g fza ) )
(2% 2 J,% —_]-‘,-1
2 = ZE(L—,J-(@,@) ) and
i#£]
0, = sup E Zfl,] €la§] al(gl) (5.7)
(a,b)eA i<j
with

A=< (a,b): E <7i ai(fz-)2> <1 andE ibj(éj)Q <1

=1

See Giné and Nickl [9], Theorem 3.4.8 for a proof.

Consider m(n) := 8log(n)/a. For any K, K’ € IC,,,
Uk k' e(n) = U}(,K’,é(n) + UIQ(,K’,E(TL) + U?(,K’,Z(n) + U?(,K’,é(n)

where
Ué(,K’, TL) = ZglIQK’j(n;XiaY;anaYrj) 5 l= 132;334
i#]

with, for every (z/,%), (z",y') € E =R% x R,

Qk,K/,e(n;z/,%x” /) : <K($/, )g(y)l\ﬂ(y)\<m(n) 5},4(7% )aK/(sz )g(y/)l\f(y)Km(n) SK’ (n;.))2,
g?{ﬁK’ﬁl(n;xlayax”ay/) : <K($Ia )E(y)l\l( )[>m(n SK7g(n7 )aKI(:E”a )f(yl)l\e( )|<m(n SK/ (n7 )>Qa
9k i iy, 2 ) = (K (@, )0Y) L) <m(n) _SKe(ny ), K (2", )Y ) L e >mn) — Sgr 0(15-))2,
g e y, 7 y) = (K@ ) e smm) — Sx.e(ns ), K' (2" )g(y/)l\f(y)bm(n) — Sgrg(n3.))2

and, for every k € IC,,,
sze(n; ) = E(k(Xl, ')E(Yl)]-M(Yl)Km(n)) and SI;Z(TL; ) = E(k(Xl, ')E(Yl)llf(yﬂbm(n))'

On the one hand, since E(gj¢ g ,(n;2,y, X1,Y1)) = 0 for every («/,y) € E, by Lemma [B4] there exists
a universal constant m > 1 such that for any A > 0, with probability larger than 1 — 5.4e~?,

Uk i ()] m
% < E(C[{y[{/ﬁg(n))\lm + DKyK/ﬁg(n)A + beK/yg(n)/\g/Q + Cl[g[«yg(ﬂ))?)

where the constants ax g/ ¢(n), bx K/ e(n), ¢k K/ e(n) and Vg g+ ¢(n) are defined and controlled later.
First, note that

U}(,K’,Z(n) = Z(@K,K’,Z(n;XiaY;ana}/j)

i#£J
(15) —Yr i (s X, Yi) — Yo ree(n; X5, Y5) 4+ Eler ko o(n; X, Ve, X5, Y5))),
where
o, e(nya’ y, 2" y") = (K@, )0y) 1) <mm)» K@ DY ) Lo <mm))2
and

Vi e (52, y) = k(@ YY) ey <mn)s Spr o (5 )2 = B(@rpr o (n; 2, y, X1, Y1)
for every k, k' € IC,, and (2, y), (¢”,y") € E. Let us now control ax g ¢(n), b xe(n), ¢k xr¢(n) and
DK,K/,Z(n):
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e The constant ax g/ ¢(n). Consider

ag,ke(n) = sup 9k rcr o(ns @'y, 2"y
(2',y),(z",y")EE

By (IH), Cauchy-Schwarz’s inequality and Assumption [Z11(1),

ar, xre(n) < 4 sup (K (2, )W) o0y <mny, K (2, DY) o0y 1<m(n)) 2]
(z',y), (=" y')EE

< dm(n)? ( sup |K<:c’,.>||2) ( sup |K'<x",.>|2) < dmyc gm(n)’n
z’GRd I”GRd

So,
ia )\2 < é 2)\2
2 K e(n)A < nmlc,em(”) :
e The constant by i’ ¢(n). Consider

br o e(n)® :=n sup E(gx g (n;a’,y, X1,Y1)?).
(z',y)EE

By ([{3)), Jensen’s inequality, Cauchy-Schwarz’s inequality and Assumption 211(1),

bk i e(n)? < 16”( SU)PEE(<K(SE/,-)f(y)l\e(y)\gm(n),K’(Xl,-)f(Y1)1|e(y1)\<m(n)>§)
x’y)E

< 16mm(n)? sup [, DIZE(IK (X0, JOD)Lr<menl3) < 16mecen’mn) S e
z’€R

So, for any 6 €]0, 1],

1 3m\'/? 2 ml/2 o\ 1 _ip
—brrr (A2 < 2(7) 7 em(n n)A*? x (—) 7z cri

3m
0 N 12m\3
S
3mn K on

e The constant cx x/ ¢(n). Consider
cx i 0(n)? = n’E(gfe g o(n; X1, Y1, X2,Y2)?).
By ([3)), Jensen’s inequality and Assumption 211(3),
crce(n)? < T6n*E((K (X1, )Y vy <miny K (X2, J(Y2)Li0(va) | <m(n))3)
< 16n°m(n)’E((K(X1,.), K'(X2,.)((Y2))3) < 16m en’m(n)*Sk o

< mmﬁzm(n)?

So,

0 _ n 12m)\m y )2
SK — n)-.
3mn K on ot

1
ECK,K’,Z(R)/\UQ <
e The constant dx x/ ¢(n). Consider
O kre(n) = sup B Y ai(Xi, Yi)by (X5, Y5)gk s o(m; X, Vi, X5, Y5) |
(a,b)e A i<j

where
n—1
A= (a,b):z (ai(X;,Y;)?) <1 and ZE X;,Y)?) <1
i=1

By (IH), Jensen’s inequality, Cauchy-Schwarz’s mequahty and Assumption [Z11(3),

DKK/ ( ) 4 sup E Z Z |0J»L Xz,Y (Xj,E)@K,K/,Z(R,Xw}/hXjﬂ}/J”
(a,b)eA i=1 j—it+1

< dnm(n)E((K(X1,.), K' (X2, )0(Y2))2)Y? < dmTnm(n)5,L7,.
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So,
1 0 _ 12m\2 )
EGK,K’,Z(R)/\ < T K + o my em(n)”.
Then, since m > 1 and A > 0, with probability larger than 1 — 5.4e™*,
Uk . ,(n 0 40m?
M < ZBxr g+ ——wmge m(n)2(1+ N3
n n On

So, with probability larger than 1 — 5.4|KC,, |2,

Uk o ,(n 40m?2
Sk.e(n,0) == sup {M—%Ew,g} < 0: mngm(n)2(1+)\)3.

K,K'ek,, n?

For every t € R, consider

t 1/8 40m 9
A 0,t) :=—1 _ ith 0) = .
;Qg(n, , ) + (mm,e(n,9)> wi m;g,g(n, ) on m;ggm(n)

Then, for any T > 0,

oo

E(S}Q@(n, 9)) < T+ /T P(S}Qe(n, 9) > (1 + )\IC,Z(TL, 0, t))gm;cyg(n, 9))dt

/N

T+5.4|1Cn|2/ exp(—A,e(n, 0,t))dt
T

) 0o t1/3 t1/3
T+ 54K, - 1= — dt
54Kl /T eXp( 2m1c,e(n,9)1/3) exp( 2m1c,e(n79)1/3)

T1/3 o0 1/3
2 . _ 1—r1/3/2
< T+ 54C1|K:n| m;gg(n,@) exp (—W> with ¢ = /0 e / dr.
Moreover,
1 2 40 - 82m?
m;g,g(n,H) < e og(n) with ¢ = 72mmlc,g.
«
So, by taking
1 5
T = 2%¢, og(n) :
on
and since |K,| < n,
1 5 K, |2 1 5
E(Sk.¢(n,0)) < 2%% + 5 dcime i(n, 0) n2| < (24 4540 )cy Oge(;‘) .

On the other hand, by Assumption 2T1(1), Cauchy-Schwarz’s inequality and Markov’s inequality,

E(}(}S{UPK |g?(,K/,Z(n§X17Yl7X27Y2)|> <dm(n) D E(EYD) L s mm [(K(X1,2), K (X2, .))2])
K€K

K,K'eKp,
< am(n)menlfCo PE(EY)?) 2B(EYD)] > m(n) 2 < e 25

with

_ g ]E E 2 1/2]E g 1/2

€ = —mp (0(Y1)*) /“E(exp(alt(Y1)])) /=
So,
Uz ., ,(n 1
E( sup | K,K2,e( )|> < e Og(”)
K,K'eK, n n

and, symmetrically,

K,K'€Kn n? n

U . ,(n 1
E( “up Uk, xcr 0( )|><c3 og(n)_

15
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By Assumption 2.I1(1), Cauchy-Schwarz’s inequality and Markov’s inequality,

]E( sup Ig}?,m,z(n;X1,Y1,X27Y2)|> <4 Y BT L) eva) s mim (K (X1, ), K (X2, )2])

’
K,K'ekn K,K'€Kn,

< el PECCR) (YD) > m(m) <

with
¢q = dmc (B(L(Y1)?)E(exp(all(Y1)])).
So,
E ( sup |U;1(,K’2,é(n)|> < C_z;.
K,K'€K, n n
Therefore,

, 6 1 5 1
E( sup [Urmreml 0o AN 91 5a0)c, 28000 4o loe() | ca
K.K'€K, n? n On n nd

B.1.2. Proof of Lemmal[B.2. First, the two following results are used several times in the sequel:

lsreelly < BEOAR) [ 76 [ Ko hatdn) o)
(16) < E(((Y1)*)mi en
and
E(Vi,e(n)) = E(|K (X1, )0(Y1) = sk.el3)
(1) = BUK ORI + el =2 | | sicaolBOK (X, 20V Aalde) = e = el

Consider m(n) := 2log(n)/a and
vie(n) == Vice(n) — E(Vi e(n)) = vk o(n) + vic 4(n),

where

S

Ve o(n) = = (gl (0 X0, Vi) = Blgh ,(n: X3, Y3))) 5 5 = 1,2
=1

with, for every (2',y) € E,

I y) = K (@', )(y) = sxel31 o) <m(n)
and
oz’ y) = K (2", )e(y) = sxell31jeqy) > min)-
On the one hand, by Bernstein’s inequality, for any A > 0, with probability larger than 1 — 2e=*,

27
1 <1/Zv A
ohe )] <\ orc(n) + Sexc(n)
where
9k ¢(n5 )loo
cx.o(n) = % and vy o(n) = E(gk,(n; X1, Y1)?).
Moreover,
1
cre(n) = 3 Sup 1K (', )(y) = sk.ell3110()1<m(n)
(z',y)EE
2 2
< 3 (w2 sup 1 I + sl ) < 5 o) + B0V
z’/€R
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by Inequality (I6]), and
vre(n) < llgice(ns )| E(Vic,e(n))
< 2(m(n)? + E(U(Y1)?)me en(Sx.e — [Isk.ell3)
by Inequality (I6) and Equality (7). Then, for any 6 €]0, 1],

vkl < 2/\(m(n)? + BEO)me oG — malB) + o (mln)? + E(UY)mc

9sm+%(1+w( 1 12))mp em(n)2

with probability larger than 1 — 2e~*. So, with probability larger than 1 — 2|KC,,|e ™,

|0k o(n)] 0_ 5\

For every t € Ry, consider

3Lt E(((Y1)?))mg,em(n)?.

(1 E@(Y))me m(n)?.

)\;Qg(n,e,ﬂ = 30m

ith 0
—— with mg ¢(n,0) =

Then, for any T" > 0,
E(Sk.¢(n,0)) < T+ / P(Sk.o(n, 0) > Ac.e(n, 6, ym.o(n, 0))dt
T

< T+2|1Cn|/ exp(—Ax,¢(n,0,t))dt
T

e t t
—ri ) [ o (~ gt e (gt )
| | T *Pp QmK,g(TL,G) *p QmK,g(TL,G)

T (o]

18 < T+ 20K, 0 ————— | with ¢, = 24y = 2.
(18) + 201 Ky |mic e (n, )exp< 2m;c7g(n,9)) with ¢ /o e r
Moreover,

! 2 20
my ¢(n,0) < cg% with ¢y = . (1 + E(¢(Y; ) ))mc e
So, by taking
3
T — 26, log(n) ,
on
and since |[K,| < n
10g( ) 1Kx| log(n)?
<2 .
E(S;C,g(n,e)) < on + dmy g(n 9) o < 6¢o on

On the other hand, by Inequality (I6]) and Markov’s inequality,

[vg (1) 2 2
E| sup ———| < —E( sup [|[K(X1,.)l(Y1) = sk.cll21je(vi)|>m(n)
Kek, n n Kek,

<2
n

\emﬁ sup | K(X0 )2+ sup sl
Kek, K

n

with
c3 = 8myc (B(((Y1)*)/*E(exp(alf(Y1)]) />,

0 I 3
E ( sup {M — —EK,g)}) < 6eo ogo(n) + )

Kekn n n n n

Therefore,

971/2
] B(l6(Y1)] > m(n))"/2 < =

17
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and, by Equality (), the definition of vg ¢(n) and Assumption [2Z11(2),

1 9 log(n)? ¢z +m
E( sup {g'VKI(n)_EKl'_EEK,@}) < 6¢y gQ(TL) —+ 3 ’C’Z.

KeK, n

Remark B.5. As mentioned in Remark[210, replacing the exponential moment condition by the weaker
q-th moment condition with ¢ = (12—4e)/B, € €]0,1[ and 0 < 8 < /2, allows to get a rate of convergence
of order 1/n'=¢. Indeed, by Inequality ({3), with m(n) =n® and
_ 2C1
T Onl-e
and by letting oo = 1+ 23 — ¢, there exist n. o € N* and ¢. o > 0 not depending on n, such that for any
n 2= MNeaq,

with ¢ = g(l + E(E(Y1)2))m;<:,g,

2¢1 TLQB_l -2

E(SIC,Z(na 0)) < oni—c + 4C1|Kn|T exp(—n°® )
20 n?%  2c1(1 4+ 2¢c.0)
S gis P T T g

Furthermore, by Markov’s inequality,
E(J¢(v1)|*2719/7)

nl2—4e

P(|¢(Y1)] > n”) <

So, as previously, there exists a deterministic constant ¢ > 0 such that
C3E(|€(Y1)|(12_48)/ﬂ)1/4

nl—a

Y

1E< sup |WI2(,K’,€(n>|) < ol Knl*P(|£(Y1)] > m(n))/* <
K,K'€Kn

and then

]E< sup {|Wi.rre(n)| — 0||sr e — 5|2 }) 1 — with c3 = 2¢1 (1 + 2¢0.0) + cE(J(Y7)|(12749)/8)1/4,
K,K'ek,, 9

B.1.3. Proof of LemmalB.3. Consider m(n) = 12log(n)/a. For any K, K’ € K,,
Wi, ir,e(n) = Wi gr,0(n) + Wi r.()
where

I . ,
Wi ser e :ngm (5 X5, Y:) = Elgf oo o (n: X1, Y3))) 5 5 = 1,2

with, for every (2/,y) € E,
gk rc (i@’ y) o= (K (', )(y), sk .0 — 8)21 10 | <m(n)

and
9rc.rcr (i’ y) o= (K (', )0(y), sk 0 — 8)2lio(y)|>m(n)-
On the one hand, by Bernstein’s inequality, for any A > 0, with probability larger than 1 — 2e™*,

2 A
(Wi ko o(n)] < —Okke(n) + e e(n)

where
95 xcr 0(n5 )l oo
ki 0(n) = % and vk g ¢(n) = E(g}(ﬁK,ye(n;Xl,Ylf).

Moreover,

1

ok e(n) = 3 sup (K (2", )(y), skre — 8)2|1je(y) <m(n)
(z',y)EE
1 1/2
< Sl — sl sup [KG, ) < Smil2nt2m(m) s — sl

z’/€R4
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by Assumption 2I1(1), and
vie(n) SE(K (X1, (Y1), ske — 8)5110(vy) 1 <m(n)) < m(n) muc ellskr e — 8|3
).

by Assumption 211 (4). Then, since A > 0, for any 6 €]0, 1],

Wil <y e e — 13 + gt e — sl
mi,¢ 2 2
<0 i — 8|24+ —=Lm 14+ X
< Bllsrce — sl3 + TaLmn)?(1+ )

with probability larger than 1 — 2e~*. So, with probability larger than 1 — 2|KC,, |2,

mg ¢
Ske(n,0) == sup  {|Wg o o(n)] = Ollsrr e — s[5} < 5p=m(n)(1+X)%
K,K'€kn 20n

For every t € Ry, consider

1/2
t . mg ¢ 2
A 0.t) :=—1 _ th 0) = —— .
elna0.) = <1+ () with e (n,6) = Gt

Then, for any T > 0,

E(Sk.o(n,0)) < T+ /T P(Skc.e(n,0) > (14 Me.e(n, 0, £))>mc.o(n, 0))dt

N

T+2|1Cn|2/ exp(—Aic,e(n,0,t))dt
T

) &) t1/2 t1/2
T + 2|, B — 1————— | dt
21Kl /T exp< 2m1c,e(n,9)1/2)exp< 2m1c,e(n,9)1/2)

/2 e
2 : _ 1—r 2
< T+ 2C1|Kn| m;gg(n,@) exp (—W) with ¢ = /O € / dr.
Moreover,
1 2 122
m)cyg(n,e) < ¢ Oge(s) with ¢y = ﬁmmﬁg.
So, by taking
1 4
T = 23C2 Og(n) ,
on
and since |K,| < n,
log(n)* a2 log(n)*

E(Sk,e(n,0)) < 23¢, + 2¢cim ¢(n, ) 3 < (23 + 2¢1)c

on
On the other hand, by Assumption 2.11(2,4), Cauchy-Schwarz’s inequality and Markov’s inequality,
E< sup |W12(K/e(”)|) < 2E(g(yl)21|é(1/1)\>m(n))1/2 Z E((K(X1,.), sk — 8)3)1/?
K,K'eKy KK'ekn
¢
< 2m e — sRE(EY) ) PP(EY)] > mm) 4 <
with
3 = 2myfmy/S + [ls)E(U(Y1)) B exp(al((¥i)]) .
Therefore,
log(n)* ¢ log(n)*
]E( sup  {|Wi.ser.0(n)| — Ol|sxre — s||§}) < (23 4 20))es %(n) + 2 < %(n)

K,K'ek,

with ¢4 = (23 + 2¢1)ca + c3.
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B.2. Proof of Proposition 2.7 For any K € K,

3 U n Vieln
(19) [Sacatm) = sl = 25 4 Tl

with Uk ¢(n) = Uk k.e(n) and Vi ¢(n) = Vi k.¢(n). Then, by Lemmas [B.1] and [B:2]

0 _ log(n)®
_Z <
= { ri}) <

on
with @7 = (EI+ @2

Skce(ns) = sicell3 = ==

B.3. Proof of Theorem [2.8. On the one hand, for every K € K,
S S
5 .e(n;.) = 5 = (1+6) <||sm — |3+ %)

can be written

~ Sk
8o = s1celd = (1 4+ 0) 5L 1 2Wi () — Ol s — 518,

where Wi ¢(n) := Wk i ¢(n) (see (Id)). Then, by Proposition 277 and Lemma [B:3]

5 (s (IRt 1~ ) (Lowe s+ 5 ]) < gl

KeKk,

with =@+ @3 On the other hand, for any K € IC,,,
Isk.e = sll3 = [Br,e(n:.) = sll3 = [8x,e(n;.) = sellz = Wiee(n).
Then,

SK.¢ —~ SK
(1= 0) (Il = 51 + 24 ) = i) = o1 < Wi ()] = Ol =l + A a() — 075

where
~ SK.¢
Aco(n) = ||[Bx.e = swcell3 = =)
By Equalities (I9) and (IT),
Uk, e(n vie(n s 2
AK,Z(”):‘ K,eQ( ), vre(n) _ Jlswell3
n n n

with Uk ¢(n) = Uk ke(n) (see (I3)). By Lemmas and [BJ] there exists a deterministic constant
¢; > 0, not depending n and 6, such that

E( sup {AK,e(n) —9%}) < Ogo(:) )

KeKk,

By Lemma [B3]

log(n)*
E u n)| —0 — 3|2 < .
( SEEH{IWK,Z( ) = Olisk.e S||2}> B3I,

Therefore,

5 1 _ log(n)®
E 2y SKL - ) — g2 < oY
<ngllgn {IISK,e sl + == = 7 [I5x.e(ns.) = sll2 2By — o)

with: B3+ -
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B.4. Proof of Theorem The proof of Theorem [B.2]is dissected in three steps.
Step 1. This first step is devoted to provide a suitable decomposition of
135 4 (15 ) — slI3-
First,
3% o) = sll3 = 35 4(n ) = Sko,e (105 )15 + 80,0 (115 ) = 5]13 = 2(Sko,0(n3 ) =55 (05 ), Sk e (157) — 5)2

)

From (8], it follows that for any K € I,
135 ¢(n5) = sll3 < [[8x,e(n;-) — s[5 + peny(K) — peny(K) + [[3xq,e(n;-) — sl3
—2(5ke(n;) = 5% (0 ), 5K4.0(n; 1) — 5)2
(20) = |15x.e(n; ) = 83 + ¥ (K) — 1 (K)
where
Y (K) = 2(Sk e(n; ) — 8,5k, 0(n;+) — $)2 — pen,(K).
Let’s complete the decomposition of |[s3 ,(n;-) — 5|3 by writing

’l/)n(K) = 2(1/}1,71([{) + "/)2,n(K) + 7/)3,n(K)),

where
Uk K,
(K = M
n
1 (& - 1
Yon(K) = 3 (;K(Yi)(KO(Xi’ )y SK.0)2 + ;ﬂ(Yi)(K(Xi, -)aSKo,é>2> + g(sKo,éaSK,M and

Y30 (K) := Wik ko,0(n) + Wiy k,0(n) + (Sk.e — 8, SKo0 — S)2-

Step 2. In this step, we give controls of the quantities

E (1, (K)) and E(¢; o (K)) ;i = 1,2,3.
e By Lemma [B1] for any 6 €]0, 1],

0_ log(n)®
E([11,0(K)|) < ESK,Z + MT
and ()7
~ 0 log(n
E(l1n(B) < ~EGz ) + BI—5,
e On the one hand, for any K, K’ € K,,, consider
\Pgn K K Zﬁ .),SK/75>2.

Then, by Assumption [B.1]
1/2
E ( sup [Py, (K, K’)|) < E((y)?)YVE ( sup (K(X7, .),sK,@%)
K,K'€K, K,K'€Kn
—1

< MLIE(UY))2.
On the other hand, by Assumption 211(2),

{sKk.e, SKo.0)2] < M g

Then, there exists a deterministic constant ¢; > 0, not depending on n and K, such that
€1

E([2,n (K)]) < = and E(ln, (K)]) < 2
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e By Lemma [B.3]

E([¢sn(K)|) < log(n)*

on

0 1/2 9 1/2
+(5) tswemslex (3) lswor sl
log(n)*

0 , (0 1 )
< Gllsice = s+ (5 +75 ) Iswcoe — sl + Sy

>~

(Isk.e = sl3 + Isoe — slI3) + 8933

4

and

~ 0 0 1 log(n)*
Bl (R < §E(lsze —s18) + (G + 5 ) sk = o8 + Sy

Step 3. By the previous step, there exists a deterministic constant ¢ > 0, not depending on n, 6, K
and Ky, such that

SK. 0 2 log(n)®
B () < 0 (s = st + 22) 4 (54 2 ) e = ol + 25

and

R Sk 0 2 log(n)®
B (R < 08 (g — sl + 52 ) + (5 + 5 ) sk = sl + 250

Then, by Theorem 2.8]

6 N 6 2 ) log(n)®
< — ) —slD+ (2 + 2 —sl3+ (= —
B (K)) < g B0t —l3) + (5 + 3 ) oo — sl + (2 + 25 ) 1L

and

0
1-06 2 0 1-6 n

By decomposition (20), there exist two deterministic constants cs, ¢4 > 0, not depending on n, 6, K and
Ky, such that

E(|3% ,(n:-) = sll3) < E(I8k.e(n:-) = s]3) + E(jvon (K)]) + E(jon(K)])

0 . 0 -
< (14 725 ) Bk ) - s1B) + 5B ISz ) = o1

N — 5
B(n(R)) < Tog Bz () = B+ (5 + 5 ) Dowe — ol + (3 + 285 ) B,

4 log(n)®
1-0) '

%]
+5 lsKoe = sllz + 5
This concludes the proof.
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