Identifiability of Finite Mixture Models

Jang SCHILTZ (University of Luxembourg)

joint work with

Cédric NOEL(University of Lorraine & University of Luxembourg)

SMTDA 2020 June 4, 2020

B

 299

 299

 4 ロ } 4 \overline{m} } 4 \overline{m} } 4

2 [Characterization of Identifiability](#page-12-0)

4 0 8

2 [Characterization of Identifiability](#page-12-0)

[Identifiability of finite mixture models](#page-16-0)

 \leftarrow \Box

 \leftarrow \leftarrow \leftarrow -41 Ξ

Identifiability

 299

メロトメ 御 トメ 君 トメ 君 ト

Identifiability

Definition:

A finite mixture model is identifiable if a given dataset leads to a uniquely determined set of model parameter estimations up to a permutation of the clusters.

Identifiability of the parameters is a necessary condition for the existence of consistent estimators for any statistical model.

Without identifiability, there might be several solutions for the parameter estimation problem.

つくい

Teicher (1963): The class of all mixtures of one-dimensional normal distributions is identifiable.

COLLA

 QQ

- Teicher (1963): The class of all mixtures of one-dimensional normal distributions is identifiable.
- Yakowitz and Spragins (1968): Extension to the class of all Gaussian mixtures.

 QQ

- Teicher (1963): The class of all mixtures of one-dimensional normal distributions is identifiable.
- Yakowitz and Spragins (1968): Extension to the class of all Gaussian mixtures.
- Henning (2000): Identifiability for linear regression mixtures with Gaussian errors under certain conditions.

つくい

Finite Mixture Models

Data:

Variable of interest $Y_i = y_{i_1}, y_{i_2}, ..., y_{i_T}$

Covariants $x_1, ..., x_M$ and $z_{i_1}, ..., z_{i_T}$

 a_{i_t} age of subject i at time t

 \leftarrow \Box

Finite Mixture Models

Data:

Variable of interest $Y_i = y_{i_1}, y_{i_2}, ..., y_{i_T}$ Covariants $x_1, ..., x_M$ and $z_{i_1}, ..., z_{i_T}$ a_{i_t} age of subject i at time t

Model:

K groups of size π_k with trajectories

$$
y_{i_t} = \sum_{j=0}^{s_k} \left(\beta_j^k + \sum_{m=1}^M \alpha_m^k x_m + \gamma_j^k z_{i_t} \right) a_{it}^j + \varepsilon_{it}^k,
$$
 (1)

where $\varepsilon_{it}^k \sim \mathcal{N}(0, \sigma^k)$.

[Identifiability of finite mixture models](#page-16-0)

4日下

Ξ -41

Notations

Distribution f of a finite mixture model:

$$
f(y_i; \Omega) = \sum_{k=1}^K \pi_k g_k(y_i; \theta^k).
$$

Cumulative distribution function F of a finite mixture model:

$$
F(y_i; \Omega) = \sum_{k=1}^K \pi_k G_k(y_i; \theta^k).
$$

医毛囊 医心脏

 QQ

◆ロト ◆ 伊

Mixtures and mixing distributions

Let $\mathcal{F} = \big\{F(y;\omega),\,\,y\in\mathbb{R}^\mathcal{T},\,\,\omega\in\mathbb{R}_\mathcal{K}^{s+2}$ K^{s+2} } be a family of T-dimensional cdf's indexed by a parameter set ω , such that $F(y; \omega)$ is measurable in $\mathbb{R}^\mathcal{T} \times \mathbb{R}^{s+2}_\mathcal{K}$ s+2.
K

The the $s+2$ -dimensional cdf $H(x)=\int_{\mathbb{R}^{S+2}_+}F(y;\omega)dG(\omega)$ is the image of the above mapping, of the $s+2$ -dimensional cdf G.

The distribution H is called the mixture of $\mathcal F$ and G its mixing distribution.

Let G denote the class of all $s + 2$ -dimensional cdf's G and H the induced class of mixtures H.

Then H is identifiable if Q is a one-to-one map from G onto H.

Characterization of identifiability

The set H of all finite mixtures of class $\mathcal F$ of distributions is the convex hull of F .

$$
\mathcal{H} = \left\{ H(y) : H(y) = \sum_i c_i F(y, \omega_i), \ c_i > 0, \sum_i c_i = 1, \ F(y, \omega_i) \in \mathcal{F} \right\}.
$$
\n(2)

Theorem

A necessary and sufficient condition for the class H of all finite mixtures of the family F to be identifiable is that F is a linearly independent family over the field of real numbers.

 Ω

2 [Characterization of Identifiability](#page-12-0)

4日 8

∍

The Model

$$
Y_{it} = f(a_{it}; \beta^k, \delta^k) + \varepsilon_{it}^k = \beta^k A_{it} + \delta^k W_{it} + \varepsilon_{it}^k.
$$
 (3)

We can write

$$
\mathcal{L}\left((Y_i)_{i\in I}\right) = \bigotimes_{i\in I} F_{A_i,W_i,J}.\tag{4}
$$

Identifiability of a model means that knowing the data distribution $\mathcal{L}(Y_i)$, $i \in I$, one can uniquely identify the mixing distribution J.

That is, no two distinct sets of parameters lead to the same data distribution.

Nagin's base model

$$
\mathcal{C}_1 = \left(F_{A,J} : F_{A,J} = \bigotimes_{i \in I} F_{A_i,J} \right)_{J \in \Omega_1}
$$

Theorem

Let
$$
h_j = \min \{q : \{A_{ij}, i \in I\} \subseteq \bigcup_{i=1}^q H_i \mid H_i \in \mathcal{H}_{n-1}\}.
$$

If there exist j such that $|S(J)| < h_j$, $\forall J$ then C_1 is identifiable.

 \leftarrow \Box \rightarrow

4 何 ト 4 Ξ \leftarrow \equiv

Adding covariates independent of cluster membership

$$
C_2 = \left(F_{A,J} : F_{A,J} = \bigotimes_{i \in I} F_{A_i, W_i, J} \right)_{J \in \Omega_1},
$$
\n
$$
C_{2A} = \left(F_{A,J} : F_{A,J} = \bigotimes_{i \in I} F_{A_i, J} \right)_{J \in \Omega_1},
$$
\n
$$
C_{2W} = \left(F_{A,J} : F_{A,J} = \bigotimes_{i \in I} F_{W_i, J} \right)_{J \in \Omega_1}.
$$
\n(7)

Theorem

If C_{2A} and C_{2W} are identifiable and W_{ii} is not a multiple of A_{ii} , for all i, j, then C_2 is identifiable.

Jang SCHILTZ Identifiability of Finite Mixture Models with Unite 1, 2020 14/20

Numerical Example

- Two clusters with sizes $\pi_1=\pi_2=\frac{1}{2}$ $rac{1}{2}$.
- Two time-points 1 and 2.
- Same variability in both clusters $\sigma = 0.1$

We simulate 50 samples of 100 trajectories with parameters

\n- •
$$
\beta^1 = (3, -2)
$$
 and $\beta^2 = (0, 2)$ (linear model)
\n- • $\beta^1 = (10, -12.5, 3.5)$ and $\beta^2 = (-2, 5, -1)$ (polynomial model).
\n

Parallel coordinate plots of the estimated parameter

Linear Model Parabolic Model

4 000 16

 QQ

The generalized model

Theorem

The model is identifiable if

- $d_k < T$ for all $1 \leq k \leq K$ and all a_{it} are distinct, for all i_t.
- \bullet W_k has full rank for all $1 \leq k \leq K$.
- $rk(A_k, W_k) = rk(A_k) + rk(W_k)$, for all $1 \leq k \leq K$.

Numerical Example

- Two clusters with sizes $\pi_1=\pi_2=\frac{1}{2}$ $rac{1}{2}$.
- Two time-points 1 and 2.
- Same variability in both clusters $\sigma = 0.1$
- Shape description parameters $\beta_1 = (3, -2)$, $\beta_2 = (0, 2)$, $\delta_1 = 2$ and $\delta_2 = -3$.

We simulate 50 samples of 100 trajectories for 3 types of models:

- The covariate is independent of time and only takes values 0 or 1
- The covariate is time dependent but in a nonlinear way
- The covariate is time dependent in a linear way

 Ω

Parallel coordinate plots of the estimated parameter

Model 1 Model 2 Model 3

British

4日下

 QQ

Bibliography

- Nagin, D.S. 2005: Group-based Modeling of Development. Cambridge, MA.: Harvard University Press.
- Schiltz, J. 2015: A generalization of Nagin's finite mixture model. In: Dependent data in social sciences research: Forms, issues, and methods of analysis' Mark Stemmler, Alexander von Eye & Wolfgang Wiedermann (Eds.). Springer 2015.
- Teicher, H. 1963: Identifiability of Finite Mixtures. Annals of Mathematical Statistics, 34,4,1265–1269.
- Yakowitz, S.J. and Spragins, J.D. 1968: On the identifiability of finite mixtures. Annals of Mathematical Statistics, 39, 209–214.
- Hennig, C. 2000: Identifiability of Models for Clusterwise Linear Regression. Journal of Classification, 17, 273–296.