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Identifiability

Definition:

A finite mixture model is identifiable if a given dataset leads to a uniquely
determined set of model parameter estimations up to a permutation of the
clusters.

Identifiability of the parameters is a necessary condition for the existence
of consistent estimators for any statistical model.

Without identifiability, there might be several solutions for the parameter
estimation problem.
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Literature Review

Teicher (1963): The class of all mixtures of one-dimensional normal
distributions is identifiable.

Yakowitz and Spragins (1968): Extension to the class of all Gaussian
mixtures.

Henning (2000): Identifiability for linear regression mixtures with
Gaussian errors under certain conditions.
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Finite Mixture Models

Data:

Variable of interest Yi = yi1 , yi2 , ..., yiT

Covariants x1, ..., xM and zi1 , ..., ziT

ait age of subject i at time t

Model:

K groups of size πk with trajectories

yit =

sk∑
j=0

(
βkj +

M∑
m=1

αk
mxm + γkj zit

)
ajit + εkit , (1)

where εkit ∼ N (0, σk).
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Notations

Distribution f of a finite mixture model:

f (yi ; Ω) =
K∑

k=1

πkgk(yi ; θ
k).

Cumulative distribution function F of a finite mixture model:

F (yi ; Ω) =
K∑

k=1

πkGk(yi ; θ
k).
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Mixtures and mixing distributions

Let F =
{
F (y ;ω), y ∈ RT , ω ∈ Rs+2

K

}
be a family of T-dimensional

cdf’s indexed by a parameter set ω, such that F (y ;ω) is measurable in
RT × Rs+2

K .

The the s + 2-dimensional cdf H(x) =
∫
Rs+2
K

F (y ;ω)dG (ω) is the image of

the above mapping, of the s + 2-dimensional cdf G .

The distribution H is called the mixture of F and G its mixing distribution.

Let G denote the class of all s + 2-dimensional cdf’s G and H the induced
class of mixtures H.

Then H is identifiable if Q is a one-to-one map from G onto H.
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Characterization of identifiability

The set H of all finite mixtures of class F of distributions is the convex
hull of F .

H =

{
H(y) : H(y) =

∑
i

ciF (y , ωi ), ci > 0,
∑
i

ci = 1, F (y , ωi ) ∈ F

}
.

(2)

Theorem

A necessary and sufficient condition for the class H of all finite mixtures of
the family F to be identifiable is that F is a linearly independent family
over the field of real numbers.
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The Model

Yit = f (ait ;β
k , δk) + εkit = βkAit + δkWit + εkit . (3)

We can write
L ((Yi )i∈I ) =

⊗
i∈I

FAi ,Wi ,J . (4)

Identifiability of a model means that knowing the data distribution
L(Yi ), i ∈ I , one can uniquely identify the mixing distribution J.

That is, no two distinct sets of parameters lead to the same data
distribution.
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Nagin’s base model

C1 =

(
FA,J : FA,J =

⊗
i∈I

FAi ,J

)
J∈Ω1

Theorem

Let hj = min
{
q : {Aij , i ∈ I} ⊆ ∪qi=1Hi Hi ∈ Hn−1

}
.

If there exist j such that |S(J)| < hj , ∀J then C1 is identifiable.
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Adding covariates independent of cluster membership

C2 =

(
FA,J : FA,J =

⊗
i∈I

FAi ,Wi ,J

)
J∈Ω1

, (5)

C2A =

(
FA,J : FA,J =

⊗
i∈I

FAi ,J

)
J∈Ω1

, (6)

C2W =

(
FA,J : FA,J =

⊗
i∈I

FWi ,J

)
J∈Ω1

. (7)

Theorem

If C2A and C2W are identifiable and Wij is not a multiple of Aij , for all i , j ,
then C2 is identifiable.
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Numerical Example

Two clusters with sizes π1 = π2 = 1
2 .

Two time-points 1 and 2.

Same variability in both clusters σ = 0.1

We simulate 50 samples of 100 trajectories with parameters

β1 = (3,−2) and β2 = (0, 2) (linear model)

β1 = (10,−12.5, 3.5) and β2 = (−2, 5,−1) (polynomial model).
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Parallel coordinate plots of the estimated parameter
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The generalized model

Theorem

The model is identifiable if

dk < T for all 1 ≤ k ≤ K and all ait are distinct, for all it .

Wk has full rank for all 1 ≤ k ≤ K .

rk(Ak ,Wk) = rk(Ak) + rk(Wk), for all 1 ≤ k ≤ K .
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Numerical Example

Two clusters with sizes π1 = π2 = 1
2 .

Two time-points 1 and 2.

Same variability in both clusters σ = 0.1

Shape description parameters β1 = (3,−2), β2 = (0, 2), δ1 = 2 and
δ2 = −3.

We simulate 50 samples of 100 trajectories for 3 types of models:

The covariate is independent of time and only takes values 0 or 1

The covariate is time dependent but in a nonlinear way

The covariate is time dependent in a linear way
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Parallel coordinate plots of the estimated parameter
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