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Abstract—This paper develops adaptive graph filters that
operate in reproducing kernel Hilbert spaces. We consider both
centralized and fully distributed implementations. We first define
nonlinear graph filters that operate on graph-shifted versions of
the input signal. We then propose a centralized graph kernel least
mean squares (GKLMS) algorithm to identify nonlinear graph
filters’ model parameters. To reduce the dictionary size of the cen-
tralized GKLMS, we apply the principles of coherence check and
random Fourier features (RFF). The resulting algorithms have
performance close to that of the GKLMS algorithm. Additionally,
we leverage the graph structure to derive the distributed graph
diffusion KLMS (GDKLMS) algorithms. We show that, unlike
the coherence check-based approach, the GDKLMS based on
RFF avoids the use of a pre-trained dictionary through its data-
independent fixed structure. We conduct a detailed performance
study of the proposed RFF-based GDKLMS, and the conditions
for its convergence both in mean and mean-squared senses are
derived. Extensive numerical simulations show that GKLMS and
GDKLMS can successfully identify nonlinear graph filters and
adapt to model changes. Furthermore, RFF-based strategies show
faster convergence for model identification and exhibit better
tracking performance in model-changing scenarios.

Index Terms—Adaptive signal processing, distributed learning,
kernel graph filters, kernel LMS, random Fourier features.

I. INTRODUCTION

Graph signal processing (GSP) has recently received in-
creased attention due to its wide applicability to model,
process, and analyze signals and large data sets, ranging from
daily-life social networks to sensor networks for industrial and
military applications [1]–[5]. For instance, in the context of
a wireless sensor network, graph nodes and edges represent
sensors and communication links, respectively, while the so-
called graph signal is the measurement snapshot across sen-
sors [6]. Similar to traditional digital signal processing (DSP)
techniques, the basic building block in GSP is the graph-shift
operation, which captures node interconnections [7]. In the
particular case of linear networks, the graph-shifted signal on
a given node is a linear combination of adjacent node signals,
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where the weights relate to the edge values. This resemblance
to DSP has sparked the development of a vast amount of GSP
counterparts of methods related to spectral analysis [8]–[14]
and traditional time-series analysis [15], [16].

One of the key research areas in GSP is modeling unknown
relations between input and output graph signals through a
filter [11]–[18]. The application of linear shift-invariant filter
models is widely employed in the literature, e.g., to design
graph spectral filters [11], [12] and model dynamic graph
signals [15], [16]. Several works deal with adaptive learning
of graph filters, see, e.g., [19]–[23]. These methods were later
extended to multitask graphs [24], [25]. The previous works
adopt the ideas of linear adaptive networks [26], [27] to esti-
mate the graph filter through in-network processing. However,
linear models cannot accurately represent many real-world
systems that exhibit more sophisticated input-output relations.
Prominent examples include the relations between air pressure
and temperature [28], and wind speed and generated power in
wind turbines [29].

In conventional DSP, several approaches to nonlinear sys-
tem modeling exist in the literature [30]–[38]. In particular,
methods based on reproducing kernel Hilbert spaces (RKHS)
have gained popularity due to their efficacy and mathematical
simplicity [36]–[53]. There is extensive literature on function
estimation in RKHS for both single- and multi-node networks,
see, e.g., [39]–[57]. Most works on adaptive networks treat
each nodal signal as time series to estimate a common filter
vector. In contrast, in GSP, the graph filter operates on an in-
stantaneous topology-dependent snapshot of the network state
by exploiting graph shifts. Although some of the prior works
account for the input signals’ network-related characteristics,
such as smoothness across the graph, existing RKHS-based
approaches do not consider graph-shifted signals. The shift
operator and delayed versions of graph signals have been
explored for linear adaptive graph filters [22], [23].

This paper introduces nonlinear graph filters and presents
two adaptive methods for function estimation over graphs,
namely the centralized graph kernel least mean squares
(GKLMS) and the graph diffusion kernel least mean squares
(GDKLMS). Preliminary results on this topic have been pre-
sented in [58]. The proposed nonlinear graph filters generalize
conventional linear graph filters and consist of a nonlinearity
applied to a combination of graph-shifted versions of the
input signal. For the estimation methods, we consider two
approaches for model reduction, namely coherence check
(CC) [40], [52] that sparsifies the original dictionary of the
GKLMS, and random Fourier features (RFF) [59] that ap-
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proximate kernel evaluations with inner products in a fixed-
dimensional space. One of the main features of the CC-
based implementation is the automatic tuning of the model
order by selecting regressors based on a coherence mea-
sure [52]. On the other hand, RFF-based implementations
use a data-independent mapping into a space where kernel
evaluations can be approximated as inner-products, making
them resilient to model changes. Building upon ideas of
network diffusion [26], [27], the proposed RFF-based graph
diffusion KLMS (GDKLMS) avoids the centralized processing
and updates local estimates at each node through collaboration
with neighbors. One of the main features of the RFF-based
GDKLMS is its data-independent mapping that avoids using a
pre-trained dictionary. This makes the GDKLMS more robust
to changes in the underlying system since there is no need
to retrain dictionaries associated with distributed CC-based
solutions [52]. We analyze the performance of the GDKLMS
and establish the convergence conditions in both mean and
mean-squared senses.

This paper is organized as follows. Section II presents
the necessary concepts and notations of GSP, including the
conventional models of linear graph filters, and formulates the
problem of modeling nonlinear graph filters. The proposed
GKLMS and GDKLMS algorithms are presented in Sec-
tion III. We first derive the GKLMS as a centralized solution
for the modeling problem and present the implementations
based on CC and RFF. Thereafter, the RFF-based GDKLMS
is derived. In Section IV, we present the convergence analysis
of the RFF-based GDKLMS, along with the conditions for
convergence in the mean and mean-squared senses. In this
section, we also study the steady-state mean-squared error. In
Section VI, numerical experiments are conducted to demon-
strate the performance of the proposed solutions for identifying
and tracking the nonlinear graph filters. For this, we use both
synthetic and real-life networks. Synthetic examples employ
generic nonlinear functions, whereas real-life examples treat
the modeling of relations between temperature and humidity
data from sensor networks. Finally, in Section VII, we present
the concluding remarks of this work.

II. PROBLEM FORMULATION

Consider an undirected graph G = {N , E}, where N =
{1, 2, . . . ,K} is the set of nodes and E is the set of edges
such that (k, l) ∈ E if nodes k and l are connected. The
graph is associated with a graph-shift operator, S ∈ RK×K ,
whose entries [S]k,l = skl take non-zero values only if
(k, l) ∈ E [1], [2]. The graph adjacency matrix [2] and the
graph Laplacian matrix [1] are the most common choices
for S. At time instant n, the graph signal is defined by a
vector xn = [x1,n x2,n . . . xK,n]

T, with xk,n being the signal
value at node k. The graph-shift operation Sxn is performed
locally at each node k by linearly combining the samples from
neighboring nodes, namely

∑
l∈Nk

sklxl,n, where Nk denotes
the neighborhood of node k including k itself. In this work,
we assume the graph topology and the shift matrix are known.
For cases where S is not known, one can employ different
techniques for learning the graph structure available in the
GSP literature [11], [60]–[64].

A linear shift-invariant (LSI) graph filter of size L × 1
combines shifted graph signals and is defined by

H =
L−1∑
i=0

hiS
i, (1)

where [h0 h1 . . . hL−1]
T is the linear graph filter coefficient

vector [12], [22]. When streaming data is available, a two-
dimensional graph-time filter [13] can be employed. The filter
processes the signal xn and yields the graph filtered vector
yn = [y1,n y2,n . . . yK,n]

T as

yn =
L−1∑
i=0

M−1∑
j=0

hi,jS
ixn−j + υn, (2)

where M − 1 is the filter memory in temporal domain,
and υn = [υ1,n υ2,n . . . υK,n]

T is a zero-mean wide-
sense stationary (WSS) noise with covariance matrix Rυ =
diag{σ2

υ,1, σ
2
υ,2, . . . , σ

2
υ,K}. Also, υn and υm are i.i.d. for any

n 6= m. The model (2) uses walks of up to length L − 1
in the graph. Thus, it requires multihop communication in
distributed implementations, which limits its usage in real-time
applications.

A simplified model that avoids multihop communication can
be constructed by combining time and graph domains into one,
as

yn =
L−1∑
i=0

hiS
ixn−i + υn. (3)

A graph diffusion LMS strategy using model
(3) is proposed in [23]. In (3), samples
{xk,n, [Sxn−1]k, . . . , [S

L−1xn−L+1]k} are available locally
at node k. Thus, only one graph-shift operation is needed
at each time instant. A crucial difference between our
GSP approach and conventional single- and multi-variate
DSP approaches lies in our assumption that the signals’
spatio-temporal dynamics depend on the graph structure.

In many real-world applications, these linear models cannot
fully capture the input-output relations [37]. For this purpose,
we assume a nonlinear relation between input and output, at
node k, given by

yk,n = f(rk,n) + υk,n, (4)

where f : RL → R is a continuous nonlinear function on RL,
υk,n is the observation noise at node k, and

rk,n =
[
xk,n [Sxn−1]k . . . [S

L−1xn−L+1]k
]T

. (5)

The objective here is to identify f(·) at each node k given a
set of data pairs {rk,i, yk,i}, i ∈ {1, 2, . . . , n}. In this paper,
we characterize nonlinear graph filters using the principles of
kernel adaptive filters.

III. GRAPH KERNEL ADAPTIVE FILTERS

In order to estimate the nonlinear function f(·) in (4), kernel
methods first map the input regressors {rk,i}n,Ki=1,k=1 into a
higher dimensional feature space where f(·) takes a linear
form [37], [49]. This mapping is denoted by κ(·, rk,i), in
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which κ(·, ·) : RL × RL → R is a reproducing kernel, which
satisfies [37]

κ(rk,n, rk,i) = 〈κ(·, rk,n), κ(·, rk,i)〉H , (6)

where H is the induced RKHS and 〈·, ·〉H denotes the cor-
responding inner product. In (6), κ(·, rk,i) is a representer
evaluation at rk,i [51], [52]. The definition of the kernel
function is sufficient to evaluate the inner product in (6)
without explicitly mapping the data into RKHS.

A. Graph Kernel LMS

In the GSP context, K new data samples are avail-
able at each time instant. Then, given a set of regressors
{rk,i}n,Ki=1,k=1, the graph function f(·) can be expressed as
a kernel expansion in terms of the mapped data as

f(·) =
n∑
i=1

K∑
k=1

αik κ(·, rk,i). (7)

The model (7) can approximate any continuous function
f(·) [37]. Hence, the corresponding estimate of yl,n, at node
l, is given by

ŷl,n = f(rl,n) =
n∑
i=1

K∑
k=1

αik κ(rl,n, rk,i). (8)

The coefficients of the expansion in (8) are obtained through
the following minimization problem:

min
αik∈R

K∑
l=1

E

(yl,n − n∑
i=1

K∑
k=1

αik κ(rl,n, rk,i)

)2


= min
α∈RnK

E
[
‖yn −Kn α‖22

]
, (9)

where E[·] denotes the expected value of the argument, αT =
[αT

1 α
T
2 . . . αT

n ], with αT
i = [αi1 αi2 . . . αiK ], and the matrix

Kn = [K1,n K2,n . . . Kn,n] ∈ RK×nK (10)

is a Gram matrix with [Ki,n]l,k = κ(rl,n, rk,i) for k, l ∈ N .
Considering the growing nature of the dictionary, access to

the second-order statistics is impractical. Therefore, we use a
stochastic-gradient approach and minimize the instantaneous
value of (9) recursively. The update equation for the graph
KLMS (GKLMS) is given by

αn+1 = αn + µ KT
n (yn −Knαn), (11)

where µ > 0 is the step size.
The proposed GKLMS algorithm is summarized in Algo-

rithm 1.

B. Graph Kernel LMS using Coherence-check

As follows from (8), the model order grows with both time,
n, and network size, K, when new data samples arrive. This
increase makes this model unsuitable for real-time applications
and large-scale networks. The growing dimensionality of the
dictionary is a well-known issue in single-node kernel meth-
ods [40], [41], [49]–[53], where several solutions have been

Algorithm 1: GKLMS
Input: step size µ
Initialization: α0 = empty vector;
%Learning
for each time instant n do

Input: yn, {rk,n}Kk=1

append K zeros to αn;
compute Kn = [K1,n K2,n . . . Kn,n];
update αn+1 = αn + µ KT

n (yn −Knαn);
store regressors {rk,n}Kk=1;

end

proposed that learn a sparse, or fixed-size dictionary. Of these,
the coherence-based sparsification schemes use a coherence
metric [40], [52] between a candidate regressor and the current
dictionary to decide whether to include the candidate in
the dictionary. Given a set of data samples {rk,i}K,n−1k=1,i=1,
various approaches can be employed to construct a CC-based
sparse dictionary adaptively. In a centralized manner, one can
consider regressors from all nodes at each time instant and
test the coherence metric for each regressor rl,n, given by

δl,n = max
rj∈Dn

|κ(rl,n, rj)|, (12)

where Dn denotes the dictionary obtained before testing
regressor rl,n; the dictionary starts empty before running the
algorithm. Given a predefined threshold, δ > 0, if δl,n < δ, the
regressor is added to the dictionary. The process continues over
the remaining regressors, accounting for previous regressors
added to the dictionary, until a predefined dictionary size, D,
is achieved, or all the data samples are used.

Therefore, using the coherence check criterion, ŷl,n in (8)
can be rewritten as

ŷl,n =
∑
i∈Mn

∑
k∈Ki

αik κ(rl,n, rk,i), (13)

where Mn is a set of time instants (up to time instant n) in
which at least one input regressor is added to the dictionary,
with |Mn| ≤ n, and Ki is a set of node indices of the
regressors that passed the coherence check at time index i,
with |Ki| ≤ K. Under the CC criterion, at time index n, the
dictionary Dn contains |Dn| =

∑
i∈Mn

|Ki| regressors.
Remark 1. Given a set of reasonable conditions on the thresh-
old, δ, the maximum number of regressors in the dictionary
is finite, i.e., |Dn| stops increasing after a certain time [52].

The coefficients of the expansion in (13) are obtained
through the following minimization problem:

min
α̃ik∈R

K∑
l=1

E
[(
yl,n −

∑
i∈Mn

∑
k∈Ki

α̃ik κ(rl,n, rk,i)
)2]

= min
α̃∈R|Dn|

E
[
‖yn − K̃nα̃‖22

]
, (14)

where α̃T = [α̃T
1 α̃

T
2 . . . α̃T

|Mn|], with α̃T
i = [α̃i1 α̃i2 . . .

α̃i|Ki|] ∈ R|Ki|. The matrix K̃n is a Gram matrix given by

K̃n = [K̃1,n K̃2,n . . . K̃|Mn|,n] ∈ RK×|Dn|, (15)
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Algorithm 2: GKLMS using coherence check

Input: training data {r̃l,i, ỹl,i}K,tl=1,i=1, dictionary size
D, threshold δ, and step size µ

Initialization: D = ∅, α0 = empty vector;
%Learning
for each time instant n do

Input: yn, {rk,n}Kk=1

for k = 1, . . . ,K do
if |D| < D then

compute δl,n = maxrj∈D |κ(rl,n, rj)|;
if δl,n < δ then

add rl,n to D;
add l to Kn;

end
end

end
if |Kn| 6= 0 then

append |Kn| zeros to α̃n;
add n to Mn;

end
compute K̃n = [K̃1,n K̃2,n . . . K̃|Mn|,n];
update α̃n+1 = α̃n + µ K̃T

n (yn − K̃nα̃n);
end

with [K̃i,n]l,k = κ(rl,n, rk,i), for l ∈ N and k ∈ Ki.
Using the stochastic-gradient approach and minimizing the

instantaneous value of (14), we obtain the following update
rule of the centralized GKLMS using coherence check:

α̃n+1 = α̃n + µ K̃T
n (yn − K̃nα̃n). (16)

Algorithm 2 summarizes the steps for pre-training the
dictionary according to the CC criterion and the learning stage
of the CC-based GKLMS algorithm.

Remark 2. If coherence check is employed in an online
fashion, two events must be considered for each candidate
regressor. If the regressor does not satisfy the CC criterion,
the dictionary remains the same. Otherwise, K̃n gets one new
column and a zero-valued entry must be appended to α̃n [52].
At every time instant i, for i ∈Mn, |Ki| regressors are added
to the dictionary. Hence, |Ki| zeros must be appended to α̃n.

C. Graph Kernel LMS using Random Fourier Features

An alternative to sparsification methods, like CC, is pro-
vided by RFF [59]. The shift-invariant kernel evaluation
κ(rl,n, rk,i) = κ(rl,n − rk,i) can be approximated as an
inner product in the D-dimensional RFF space. This turns the
problem into a finite-dimension linear filtering problem, while
avoiding the evaluation of kernel functions [59]. Let zl,n be
the mapping of rl,n into the RFF space RD, given by

zl,n =

(D/2)
− 1

2
[
cos(vT

1 rl,n + b1) . . . cos(v
T
Drl,n + bD)

]T
,
(17)

Algorithm 3: GKLMS using RFF
Input: RFF-space dimension D, pdf p(v), step size µ
Initialization:
draw vectors {vi}Di=1 from p(v);
draw phase terms {bi}Di=1 from [0, 2π];
h0 = 0D;
%Learning
for each time instant n do

Input: yn, {rk,n}Kk=1

compute {zl,n}Kl=1 using (17);
construct matrix Zn using (21);
update hn+1 = hn + µZnen;

end

where the phase terms {bi}Di=1 are drawn from a uniform
distribution on the interval [0, 2π]. Vectors {vi}Di=1 are drawn
from the probability density function (pdf) p(v) such that

k(rl,n − rk,i) =

∫
p(v) exp

(
jvT(rl,n − rk,i)

)
dv, (18)

where j2 = −1. In other words, the Fourier transform of
k(rl,n − rk,i) is given by p(v). From (17) and (18), it can
be verified that E[zTk,izl,n] = k(rl,n, rk,i). Then, the kernel
evaluation can be approximated as κ(rl,n, rk,i) ≈ zTk,izl,n and
the estimate ŷl,n in (8) can be approximated by

ŷl,n ≈
( n∑
i=1

K∑
k=1

αik zk,i

)T
zl,n = hTzl,n, (19)

where h ∈ RD is the representation of the function f(·) in the
RFF space. A higher value of D improves the approximation
of the kernel function. Therefore, the choice of D depends
mostly on the application, as it represents a trade-off between
performance and complexity.

We note that, if a Gaussian kernel given by κ(rl,n, rk,i) =
exp

(
−‖rl,n − rk,i‖22/(2σ2)

)
is used, the pdf p(v) is given in

closed form as a normal distribution. See [59] for closed-form
representations of p(v) when other kernel functions are used.

The linear representation of f(·) in the RFF space, h, can
be estimated by solving the following optimization problem:

min
h∈RD

E
[
‖yn − ZT

nh‖22
]

, (20)

where the matrix

Zn = [z1,n z2,n . . . zK,n] (21)

represents the RFF mapping of all input vectors at time n.
Similar to (16), approximating the solution through stochastic-
gradient descent iterations yields the RFF-based centralized
graph kernel LMS (GKLMS) update rule

hn+1 = hn + µZnen, (22)

where en = yn − ZT
nhn. The proposed GKLMS using RFF

is summarized in Algorithm 3.
Notice that the estimates α̃ in (16) and h in (22) require

knowledge of the input of the entire graph, which can be
impractical in applications without a centralized processing
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unit. Therefore, we propose a distributed implementation of
the GKLMS, named graph diffusion KLMS (GDKLMS).

Remark 3. A CC-based distributed implementation requires a
pre-trained dictionary available at each node [40]. The dictio-
nary can be pre-trained in a centralized way and broadcasted to
the entire network, or by a single node that shares its dictionary
with all nodes. More importantly, the dictionary depends on
available training data, and may be retrained whenever there
are changes in the underlying model. Therefore, RFF-based
algorithms seem more suitable for distributed implementations
and robust to changes in model and data statistics.

D. Graph Diffusion Kernel LMS using RFF

In order to derive a distributed implementation, the global
optimization problem (20) is expressed alternatively in the
following separable form:

argmin
ψ1,...,ψK∈RD

K∑
k=1

E
[
(yk,n − zTk,nψk)

2
]
, (23)

where ψk is the local estimate of h at node k. The op-
timization problem in (23) can be solved in a distributed
fashion by minimizing E

[
(yk,n − zTk,nψk)

2
]

at each node.
Let ek,n = yk,n − zTk,nψk. Following the similar lines of
centralized GKLMS, the update rule for ψk is given by

ψk,n+1 = ψk,n + µ ek,nzk,n. (24)

We now leverage the graph structure and adopt the adapt-
then-combine (ATC) strategy to improve individual estimates
via graph diffusion [22], [23], [26], [40], [65]. The ATC
strategy is one common diffusion strategy composed by two
steps. At iteration n, the first step updates the local estimate,
at a given node k, using the new input {rk,n, yk,n}, generating
an intermediate estimate. In the second step, nodes share
and combine their intermediate estimates to generate the final
estimate for that iteration. That is, the parameter update of
hk,n at node k is obtained by combining the estimates from its
neighborhood. Note that the graph structure defines a node’s
neighborhood, and adjacent nodes relate to each other. The
ATC update rule for the GDKLMS using RFF is given by

ψk,n+1 = hk,n + µ ek,nzk,n, (25a)

hk,n+1 =
∑
l∈Nk

alk ψl,n+1, (25b)

where the combination coefficients alk are non-negative and
satisfy the condition

∑
l∈Nk

alk = 1 [26]. We could use a
similar combine-then-adapt (CTA) strategy [65]. Both ATC
and CTA strategies share fundamentally the same structure
and yield similar results [27]. Algorithm 4 summarizes the
steps of the GDKLMS implementation using RFF.

IV. CONVERGENCE ANALYSIS

In this section, we study the performance of the pro-
posed RFF-based GDKLMS and establish the conditions
for its convergence both in mean and mean-squared senses.

Algorithm 4: GDKLMS using RFF
Input: RFF-space dimension D, pdf p(v), step size µ,

combination coefficients alk
Initialization:
draw vectors {vi}Di=1 from p(v);
draw phase terms {bi}Di=1 from [0, 2π];
hk,0 = 0D, ∀k ∈ {1, 2, . . . ,K};
ψk,0 = 0D, ∀k ∈ {1, 2, . . . ,K};
%Learning
for each time instant n do

for k = 1, . . . ,K do
compute zk,n using (17);
update ψk,n+1 = hk,n + µ ek,nzk,n;

end
for k = 1, . . . ,K do

update hk,n+1 =
∑
l∈Nk

alk ψl,n+1;

end
end

For this, at network level, we define the filter coeffi-
cient vector in the RFF space hg = 1K ⊗ h, the es-
timated filter coefficient vector in RFF space hg,n =
[hT

1,n hT
2,n . . . hT

K,n]
T, and the (RFF-mapped) input data ma-

trix Zn = blockdiag {z1,n, z2,n, . . . , zK,n}. In these defini-
tions, 1K is a vector of size K×1 with every entry taking the
value one, ⊗ denotes the right Kronecker product operator, and
blockdiag{·} denotes the block-diagonal-stacking operator.
Using these definitions, the network-level data model is given
by

yn = ZT
nhg + υn. (26)

From these definitions, the network-level recursion of the
RFF-based GDKLMS can then be expressed as follows:

hg,n+1 = A
(
hg,n + µZnen

)
, (27)

where A = AT ⊗ ID. The matrix A, with [A]l,k = alk, is a
K×K left stochastic matrix (i.e., each column consists of non-
negative real numbers whose sum is unity). In the following,
we study the convergence behavior of the proposed RFF-based
GDKLMS governed by the form (27). For this, we assume the
following:
A1: Given a node k ∈ N , the RFF-mapped data signal zk,n

is drawn from a WSS multivariate random sequence with
correlation matrix Rz,k = E[zk,nzTk,n]; in addition, the
data vectors zk,n and zl,m are independent, for all k 6=
l ∈ N .

A2: The observation noise υn is a zero-mean WSS multivari-
ate random sequence, with diagonal correlation matrix
Rυ = E[υnυ

T
n ] = diag{σ2

υ,1, σ
2
υ,2, . . . , σ

2
υ,K}, being

independent of any other random signal in the model.
A3: The weight vector hk,n is taken to be independent of

zk,n, for k ∈ N .
A4: The graph topology is assumed to be static, meaning

the shift matrix S and the combiner coefficients alk are
constant throughout the process.
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A5: The step size µ is sufficiently small so that the terms
involving higher order powers of µ can be ignored.

The above assumptions are commonly used in the analysis of
distributed adaptive schemes over networks.
Remark 4. Note that the vector zk,n is the representation of
rk,n in the RFF space. Hence, zk,n may not be normally
distributed. If the basis of the RFF space is generated in a
way such that the basis vectors vi 6= vj for any i 6= j, the
autocorrelation matrix Rz,k, for k ∈ N will be strictly positive
definite [47].

Apart from these assumptions, the analysis also requires
properties of the block maximum norm of a matrix (i.e., ‖ ·
‖b,∞), the block vectorization operator (i.e., bvec{·}) [27], and
the block Kronecker product of two matrices (i.e., ⊗b) [66].
Details of these operators can be found in [27], [66], [67].

A. First-order Convergence Analysis

Denoting the global weight deviation vector of the proposed
GDKLMS using RFF, at time instant n, as h̃g,n = hg −hg,n,
recalling the fact that Ahg = hg (since the matrix A is
left stochastic), from (27), the recursion for h̃g,n can then
be obtained as

h̃g,n+1 = Bnh̃g,n − µ AZnυn, (28)

where Bn = A
(
IDK − µZnZT

n

)
. In the following, we

establish the condition for the convergence in mean.
Theorem 1. Assume the data model (26) and the assumptions
A1-A4 hold (assumption A5 is not required here). Then a
sufficient condition for the proposed RFF-based GDKLMS to
converge in mean is given by

0 < µ <
2

max
1≤k≤K

{
max

1≤i≤D
{λi( Rz,k)}

} . (29)

Proof. Taking the statistical expectation E[·] on both sides of
(28), and using the assumptions A1-A4, we obtain

E[h̃g,n+1] = B E[h̃g,n], (30)

with B = E[Bn] = A
(
IDK − µRz

)
, where Rz = E[ZnZT

n ]
= blockdiag(Rz,1,Rz,2, . . . ,Rz,K).

From (30), it is easily seen that limn→∞ E
[
h̃g,n

]
attains a

finite value if and only if ‖B‖ < 1, where ‖ · ‖ denotes any
matrix norm. We derive a convergence condition in terms of µ,
by constraining the block maximum norm of the matrix B (i.e.,
‖B‖b,∞). Using the properties of block maximum norm [26],
we can write

‖B‖b,∞ ≤ ‖A‖b,∞‖IDK − µRz‖b,∞. (31)

Since the matrix A is left stochastic, we have ‖A‖b,∞ =
‖AT⊗ID‖b,∞ = 1. Furthermore, as the matrix (IDK−µRz)
is block diagonal symmetric, using [26, Lemma D. 3(a), D. 5],
a sufficient condition for E[h̃g,n] to converge in mean is given
by ρ(IDK − µRz) < 1, or, equivalently, |1− µλj(Rz))| < 1
for j ∈ {1, 2, . . . , DK}, where ρ(·) denotes the spectral radius
of the argument matrix and λj(Rz) denotes the jth eigenvalue
of Rz . After solving this, we arrive at (29).

B. Second-order Convergence Analysis

Next, we focus on the second-order convergence analysis
of the proposed GDKLMS using RFF. Using the energy
conservation approach, we investigate the steady-state MSE
performance of the proposed scheme.

Defining the Σ-weighted norm-square of h̃g,n as
‖h̃g,n‖2Σ = h̃T

g,nΣh̃g,n, where Σ is a positive semi-
definite matrix that can be chosen arbitrarily, and using the
assumptions A1-A4, one can write

E
[
‖h̃g,n+1‖2Σ

]
= E

[
‖h̃g,n‖2Σ′

]
+ µ2E[υT

nZ
T
nA

TΣAZυn], (32)

where the cross terms are zero since υn is taken to be zero-
mean and statistically independent of zk,n. The matrix Σ′ is
given by

Σ′ = E[BT
nΣBn]. (33)

Now, using the block Kronecker product denoted by ⊗b [66]
and the bvec{·} operator [66], we can relate the vectors σ =
bvec{Σ} and σ′ = bvec{Σ′} as

σ′ = FTσ, (34)

with
F = E[Bn ⊗b Bn] = (A⊗A)H, (35)

where

H ≈ ID2K2 − µ(Rz ⊗b IDK)− µ(IDK ⊗b Rz). (36)

In the above expression, using the assumption A5, the
terms involving high-order powers of µ are ignored, and we
continue our analysis with this approximation. Note that this
approximation is standard in the analysis of many distributed
schemes over networks [26], [27].

Now, consider the second term on the right-hand side
of (32). We can write it as

E[υT
nZ

T
nA

TΣAZυn]

= Tr
(
E[υT

nZ
T
nA

TΣAZυn]
)

= Tr
(
AE[ZnυnυT

nZ
T
n ]A

TΣ
)

= Tr
(
AE[Φn]ATΣ

)
, (37)

where Φn = ZnRυZT
n .

Using the properties of block Kronecker product [66], we
finally have

Tr
(
AE[Φn]ATΣ

)
= γTσ, (38)

where γ = bvec{AE[Φn]AT} = (A⊗A)γυ , with

γυ = bvec{E[Φn]}
= bvec{E[ZnRυZT

n ]}
= E[Zn ⊗b Zn] · bvec{Rυ}. (39)

Combining these results, (32) can be expressed as

E
[
‖h̃g,n+1‖2bvec−1{σ}

]
= E

[
‖h̃g,n‖2bvec−1{FTσ}

]
+ µ2γTσ, (40)
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where bvec−1{·} rearranges the argument vector of size
D2K2 × 1 into a DK ×DK matrix, i.e., Σ = bvec−1{σ}.
Theorem 2. Assume the data model (26) and that assumptions
A1-A5 hold. Furthermore, assume that the step size µ is
sufficiently small such that the approximation (36) is justified
by ignoring the higher-order powers of µ, so that (40) can be
used as a reasonable representation for studying the dynamics
of the weighted mean-squared deviation (MSD). Then, the
proposed RFF-based GDKLMS converges in mean-squared
sense under

0 < µ <
1

max
1≤k≤K

{
max

1≤i≤D
{λi(Rz,k)}

} . (41)

Proof. Iterating the recursion (40) backwards down to n = 0,
we obtain

E
[
‖h̃g,n+1‖2bvec−1{σ}

]
=E

[
‖h̃g,0‖2bvec−1{(FT)n+1σ}

]
+ µ2γT

(
ID2K2 +

n∑
i=1

(
FT
)i)

σ,

(42)

where h̃g,0 = hg − hg,0. Note that under ‖FT‖ = ‖F‖ <
1, we will have (FT)n+1 → 0D2K2 as n → ∞. Hence,
E[‖h̃g,n‖2bvec−1{σ}] attains a finite value. Therefore, a sufficient
condition for convergence of E[‖h̃g,n+1‖2σ] is then given by
‖F‖ < 1. To derive a convergence condition in terms of µ, we
use the block maximum norm of the matrix F , i.e., ‖F‖b,∞.
From the properties of the block maximum norm [26], we can
write

‖F‖b,∞ = ‖(A⊗bA)H‖b,∞ ≤ ‖(A⊗bA)‖b,∞‖H‖b,∞.
(43)

The term (A⊗bA) can be written as (A⊗A)T⊗ (ID⊗ID).
Again, from the properties of the block maximum norm, we
have ‖A ⊗b A‖b,∞ = ‖(A ⊗ A)T ⊗ ID2‖b,∞ = 1. Now,
substituting the definition of H as given by (36), we have

‖F‖b,∞ ≤ ‖ID2K2 − µ(Rz ⊗b IDK)− µ(IDK ⊗b Rz)‖b,∞.
(44)

Since the argument of the norm on the right-hand side
of (44) is a block diagonal symmetric matrix, from the proper-
ties of block maximum norm, it is seen that E[‖h̃g,n‖2bvec−1{σ}]
converges under

ρ(‖ID2K2−µ(Rz⊗b IDK)−µ(IDK⊗bRz)‖b,∞) < 1, (45)

or, equivalently,

|1− µλp(Rz)− µλq(Rz)| < 1, p, q ∈ {1, 2, . . . , DK}.
(46)

Note that (Rz ⊗b IDK) and (IDK ⊗b Rz) have the same set
of eigenvectors and eigenvalues. Also, λl(Rz) has multiplicity
of DK, for l ∈ N . After solving the above condition, we
obtain the mean-squared convergence condition on µ given in
(41).

Remark 5. We observe that the bounds established for µ are
inversely proportional to the spectral radius of the covariance
matrix of vectors zk. Hence, similar to conventional stochastic

gradient algorithms, µ requires tuning according to the largest
eigenmode.

C. Steady-State Mean-Squared Error

For µ under (41), letting n→∞ on both sides of (40), we
have

lim
n→∞

E
[
‖h̃g,n‖2bvec−1{(ID2K2−FT)σ}

]
= µ2γTσ. (47)

By selecting σ = (ID2K2 −FT)−1bvec(Rz), (47) becomes

lim
n→∞

E
[
‖h̃g,n‖2Rz

]
= µ2γT(ID2K2 −FT)−1bvec(Rz).

(48)
Using (48), the network-level steady-state mean-squared

error (SMSE) of the proposed RFF-based GDKLMS is given
by

SMSE =
1

K
lim
n→∞

E[eT
nen]

=
1

K
lim
n→∞

[
E[h̃T

g,nZnZ
T
n h̃g,n] + E[υT

nυn]
]

=
1

K

[
lim
n→∞

E[‖h̃g,n‖2Rz
] + lim

n→∞
E[υT

nυn]
]

=
1

K

[
µ2γT(ID2K2 −FT)−1bvec(Rz) + tr(Rυ)

]
.

(49)

V. COMPLEXITY ANALYSIS

This section details the computational complexity of the
proposed algorithms. For the GKLMS algorithm, the Gram
matrix computation (10) requires a total of nK2 kernel
evaluations. The complexity of kernel evaluations is treated
separately, as we do not consider a specific kernel function.
The computational cost of (11) is 2nK2 + nk multiplications
and 2nK2 additions. These values reveal that kernel methods’
complexity does not scale well with time and network size
without using techniques to deal with the growing dictionary.

CC-based sparsification requires K|D| kernel evaluations
per iterations for computing the Gram matrix, where D denotes
the dictionary size, and |D|(2K+1) multiplications and 2K|D|
additions for the parameter update. The CC-based approach
also requires dictionary training, and the minimum number of
kernel evaluations for training is |D|(|D|−1)/2, assuming the
first |D| regressors are added to the dictionary. An upper bound
for the training process is t|D| kernel evaluations, where t is
the number of training data samples.

For the RFF-based computation, the mapping’s complexity
into RFF space is assumed similar to that of the kernel
evaluation. In this case, the RFF-GKLMS requires KD kernel
evaluations for the mapping, and D(2K + 1) multiplications
and 2KD additions for the update, where D denotes the di-
mension of the RFF space. Considering the case where |D| and
D are the same for the CC- and RFF-based implementations,
their complexities per iteration are also the same. The CC-
based approach, however, has the added complexity of training
the dictionary.

Finally, The GDKLMS using RFF requires, at each node,
D(|N |+3) multiplications and D(|N |+1) additions, with |N |
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Fig. 1. Learning curves (network-level MSE vs iteration index) for the
proposed algorithms with large dictionary size and RFF-space dimension.

denoting the node’s neighborhood cardinality. The mapping
into the RFF space needs D kernel evaluations.

VI. NUMERICAL RESULTS

This section demonstrates the performance of the proposed
algorithms through extensive numerical experiments under
synthetic and real network data. This section demonstrates
the performance of the proposed algorithms through extensive
numerical experiments under synthetic and real network data.
We exclude comparisons with state-of-the-art methods based
on the linear model (3) because their performance in the
considered setting will be poor. In all simulations, the value
of δ is adjusted as a function of the target dictionary size,
such that we can reach the target size while still having a
representative dictionary.

A. Nonlinear Graph Filter Identification

First, we consider a connected Erdös-Renyi graph com-
prising K = 20 nodes with edge probability equal to 0.2.
The shift matrix S is constructed as follows: first, the ex-
isting edges, according to the previously constructed graph,
receive a weight value drawn from the uniform distribution
in the interval (0, 1]; each entry skl receives the value of
the corresponding edge weight or zero if the edge does
not exist; the eigenvalues {λk}Kk=1 of S are normalized by
the largest eigenvalue such that |λk| ≤ 1. Input signal xn
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Fig. 2. Learning curves (network-level MSE vs iteration index) for the
proposed algorithms considering small values for D.

and observation noise υn are drawn from zero-mean normal
distributions with covariance matrices Rx = diag{σ2

x,k} and
Rυ = diag{σ2

υ,k}, respectively, where σ2
x,k are drawn from

the uniform distribution in [1, 1.5] and σ2
υ,k from [0.1, 0.15].

For distributed implementations, the combination coefficients
akl are computed according to the Metropolis rule [26]. We
used a Gaussian kernel with σ2 = 1. For a filter of length
L = 4, we aim at estimating the time-invariant nonlinear
function given by

f(rk,n) =
√
r2k,n,1 + sin2(rk,n,4π)

+ (0.8− 0.5 exp(−r2k,n,2)rk,n,3.
(50)

The network-level instantaneous MSE, given by MSEn =
1
K

∑K
k=1 e

2
k,n, is considered as the performance metric and

results are displayed by plotting MSEn versus the iteration
index n, averaging over 1000 independent runs.

In Fig. 1a, we present the learning curves of the centralized
approaches based on CC and RFF. We limit the size of
the dictionary and set the dimension of the RFF space to
D = 256. Results show that, for large enough dictionary
sizes and RFF-space dimensions, these implementations are
able to reach similar performance to that of the GKLMS
implementation without sparsification methods. In Fig 1b,
we show similar results comparing the CC- and RFF-based
GDKLMS against the GKLMS without sparsification. For the
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Fig. 3. Learning curves for the RFF-based GDKLMS with different values
of D and the theoretical steady-state MSE values.

CC-based GDKLMS, we pre-train the dictionary before the
learning process. The centralized implementations can better
approximate the GKLMS without sparsification when com-
pared to the GDKLMS. This is an expected result considering
that data from the entire graph is available during the learning
process of the centralized approaches.

In Fig. 2a we compare the proposed algorithms when
smaller dictionaries and RFF-space dimensions are considered.
Specifically, we compare the implementations based on RFF
and coherence check against each other. For this purpose, we
adjust the step-size µ and assess the convergence speed as
the learning curves for both implementations achieve similar
values of network-level steady-state MSE. Again, the value
D ∈ {16, 32} represents both the dimension of the RFF space
and the size of the pre-trained dictionary for the coherence
check approach. Results show that both CC- and RFF-based
algorithms are capable of effectively representing the target
function. Fig. 2a also shows that, for the same value of D
and for similar values of network-level steady-state MSE, the
RFF-based GKLMS converges faster than the CC-based one.
Moreover, it can be observed that the performance of the
implementations with fixed-size dictionaries greatly improves
as D is increased from 16 to 32.

Fig. 2b shows the results for the distributed GDKLMS
using CC and RFF. Similar to the centralized case, the plots
show that both approaches can effectively represent the tar-
get function, achieving network-level MSE of approximately
−5 dB for D = 16 and −7 dB for D = 32 for the noise
scenario simulated. Again, the RFF-based solution exhibits
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Fig. 4. Tracking performance of the proposed algorithms.

faster convergence for both values of D when the network-
level steady-state MSE is matched.

B. SMSE of the RFF-based GDKLMS

In this experiment, we observe the steady-state behavior of
the proposed RFF-based GDKLMS. The network and data
parameters employed in this simulation are the same used
in Section VI-A. We run the RFF-based GDKLMS for a
total of T = 50000 iterations, for different dimensions of
the RFF space. In Fig. 3, we show the learning curves for
D ∈ {25, 50, 250} and the value of the SMSE computed
using (49). The step-size is µ = 0.05. Results show that
increasing D reduces the gap between the numerical and the-
oretical results for the steady-state behavior of the algorithm.
This observation is in line with the result presented in [47].

C. Tracking Performance of the Proposed Algorithms

In this section we study the performance of the algorithms
subjected to an abrupt change in the underlying model. The
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Fig. 5. Time series of original and estimated humidity signals using the proposed algorithms for the Intel Lab dataset.
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Fig. 6. Network structure for the Intel Lab simulation and snapshots of the original and estimated humidity signals.

simulation setup is the same as in Section VI-A. The nonlinear
function to be estimated is given by

fn(rk,n) = (51)
√
r2k,n,1 + r2k,n,4 − rk,n,3e

−r2k,n,2 0 < n ≤ 4000√
r2k,n,1 + r2k,n,2 + r2k,n,3 + r2k,n,4 4000 < n.

Fig. 4 shows the learning curves for the centralized and dis-
tributed algorithms for two values of dictionary sizes and RFF-
space dimension, namely, D = 16 and D = 32. We see that
the RFF-based implementations are resilient to model changes,
while the CC-based implementations suffer from noticeable
performance losses, especially for small dictionaries. This is an
expected behavior, since larger dictionaries can represent more
functions. We also see that the GKLMS achieves the lowest
MSE, however, at the cost of an unconstrained dictionary size.

D. Laboratory-monitoring Data

We consider the Intel Lab database [68] that contains
temperature and humidity data, measured during March 2004,
from 52 sensors spread across a laboratory and its common
areas. The undirected graph is constructed by connecting
each sensor to its four nearest neighbors. We consider the
task of estimating humidity from the temperature signal. The
data set comprises asynchronous sensor measurements, and

we construct a snapshot of the graph signal by considering
windows of 5 minutes from which we collect the first value
available for each sensor. The model from temperature to
humidity is expected to change with time. For instance, as
workers arrive in the lab, the temperature and humidity are
expected to change.

In our simulations, we used L = 5 and D = 128, for
centralized and distributed implementations. The step sizes are
0.03 for CC- and RFF-based GKLMS, and 0.5 for GDKLMS
implementations.

The humidity signals from Sensors 1 and 40 are plotted
in Figs. 5a and 5b, respectively, together with the estimated
signals from the graph filters. The variations in the plots are
aligned with events that induce model changes. For example,
the most notable peaks are aligned with the beginning and end
of work shifts. The implementations based on CC and RFF
have similar performances, while the latter exhibit slightly
more resilience to changes in the model. Fig. 6 depicts the
graph representation of the Intel Lab sensor network and
presents snapshots of the humidity signals, both the original
and the one estimated via RFF-based GDKLMS. These results
confirm that the proposed algorithms can effectively estimate
the humidity level from temperature readings.
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VII. CONCLUSION

This paper introduced nonlinear adaptive graph filters for
model estimation in the reproducing kernel Hilbert space.
To this end, a centralized graph kernel LMS (GKLMS) al-
gorithm was derived. To overcome the growing dimension
problem encountered in the centralized GKLMS algorithm,
coherence check based dictionary-sparsification and random
Fourier features (RFF) were proposed. Furthermore, diffusion-
based distributed implementations of both coherence check
and RFF-based graph KLMS algorithms were developed that
update filter parameters through local communications and in-
network processing. Mean and mean-square-error convergence
conditions were established for the proposed GDKLMS using
RFF. Numerical simulations were conducted to demonstrate
the performance of the proposed algorithms. Simulations
confirmed that coherence check and RFF-based approaches
effectively estimate nonlinear graph filters, while the latter
exhibits a faster convergence and is robust to model changes.
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