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Abstract

In this note, we study the Gaussian fluctuations for the Wishart matrices d−1Xn,dX T
n,d, where

Xn,d is a n× d random matrix whose entries are jointly Gaussian and correlated with row and
column covariance functions given by r and s respectively such that r(0) = s(0) = 1. Under the
assumptions s ∈ ℓ4/3(Z) and ‖r‖ℓ1(Z) <

√
6/2, we establish the

√
n3/d convergence rate for the

Wasserstein distance between a normalization of d−1Xn,dX T
n,d and the corresponding Gaussian

ensemble. This rate is the same as the optimal one computed in [3–5] for the total variation
distance, in the particular case where the Gaussian entries of Xn,d are independent. Similarly,

we obtain the
√
n2p−1/d convergence rate for the Wasserstein distance in the setting of random

p-tensors of overall correlation. Our analysis is based on the Malliavin-Stein approach.

MSC 2010 subject classification. Primary: 60B20, 60F05; Secondary: 60G22,60H07.
Keywords: Stein’s method; Malliavin calculus; High-dimensional regime; Wishart matrices/tensors.

Abbreviated title: Gaussian fluctuation for Wishart matrices

1 Introduction and main result

Let H be a real separable Hilbert space equipped with the inner product 〈· , ·〉H and the Hilbert
norm ‖·‖H, and let {eij : i, j ≥ 1} ⊂ H be a family such that

〈eij , ei′j′〉H = r(i− i′) s(j − j′), (1.1)

where s, r : Z → R stand for some covariance functions satisfying s(0) = r(0) = 1. In particular,
observe that ‖eij‖H = 1 for all i, j ≥ 1.

Consider the corresponding Gaussian sequence Xij = X(eij) ∼ N(0, 1) where X = {X(h), h ∈
H} is an isonormal Gaussian process over H, that is, a centered Gaussian process indexed by H

such that E[X(g)X(h)] = 〈g , h〉H for all g, h ∈ H. Let Xn,d be the n× d random matrix given by

Xn,d = (Xij)1≤i≤n,1≤j≤d =




X11 X12 . . . X1d

X21 X22 . . . X2d
...

...
...

...
Xn1 Xn2 · · · Xnd


 . (1.2)

∗Research supported in part by FNR grant APOGee (R-AGR-3585-10) at University of Luxembourg.
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Our goal is to study the high-dimensional fluctuations of Gaussian Wishart matrices d−1Xn,dX T
n,d

by considering a normalized version given by

W̃n,d =
(
W̃ij

)
1≤i,j≤n

, (1.3)

where

W̃ij =
1√
d

d∑

k=1

(XikXjk − r(i− j)) . (1.4)

Since the eij ’s are not supposed to be orthogonal, see (1.1), it is important to note that the Gaussian
entries Xij of Xn,d are fully correlated in general.

Let Gr,s
n,d = (Gij)1≤i,j≤n be the n×n random symmetric matrix such that the associated random

vector (G11, . . . , G1n, G21, . . . , G2n, . . . , Gn1, . . . , Gnn) is Gaussian with mean 0 and has the same
covariance matrix as

(
W̃11, . . . , W̃1n, W̃21, . . . , W̃2n, . . . , W̃n1, . . . , W̃nn

)
.

Recall the definition of Wasserstein distance between two random variables with values in
Mn(R) (the space of n×n real matrices): for X ,Y : Ω → Mn(R) such that E‖X‖HS+E‖Y‖HS < ∞,

dWass(X ,Y) := sup
{
E[g(X )] − E[g(Y)] : ‖g‖Lip ≤ 1

}
, (1.5)

with

‖g‖Lip := sup
A,B∈Mn(R)

A 6=B

|g(A) − g(B)|
‖A−B‖HS

for g : Mn(R) → R,

and ‖ · ‖HS the Hilbert-Schmidt norm on Mn(R).
The main result of this paper is the following.

Theorem 1.1. Assume

‖r‖ℓ1(Z) <
√
6/2. (1.6)

Then for all n, d ≥ 1,

dWass

(
W̃n,d ,Gr,s

n,d

)
≤

‖r‖3/2
ℓ1(Z)

3− 2‖r‖2
ℓ1(Z)

√√√√√32n3

d


∑

|k|≤d

|s(k)|4/3



3

. (1.7)

Remark 1.2. (1) We will actually show that

dWass

(
W̃n,d ,Gr,s

n,d

)
≤

‖r‖3/2
ℓ1(Z)

3− 2‖r‖2
ℓ1(Z)

√√√√√ 32d
∑d

k,ℓ=1 s(k − ℓ)2
× n3

d


∑

|k|≤d

|s(k)|4/3



3

.

This implies (1.7) since
∑d

k,ℓ=1 s(k − ℓ)2 ≥ d s(0)2 = d.

2



(2) Under the condition (1.6) and if we assume s ∈ ℓ4/3(Z), then (1.7) leads to

dWass

(
W̃n,d ,Gr,s

n,d

)
= O(

√
n3/d).

Hence in this case of overall correlation, Wn,d continues to be close to the Gaussian random
matrix Gr,s

n,d as long as n3/d → 0, exactly like in the row independence case in [10, Theorem
1.2]; see also the full independence case considered in [3–5].

(3) An explicit example of covariance function satisfying (1.6) is r(k) = e−λ|k|α for k ∈ Z, with
1 ≤ α ≤ 2 and where λ > 0 is chosen large enough.

The
√

n3/d convergence rate obtained in Theorem 1.1 relies on Malliavin calculus and Stein’s
method, precisely, Proposition 2.1 below, which has already been employed in [10] to investigate the
Gaussian approximation for Wishart matrix in the row independence case (that is, r(k) = 1k=0). In
the case of overall correlation, it is not clear if the covariance matrix C in Proposition 2.1 is invertible
or not. To bypass this problem, the authors of [10] made use of the bounds from [7, Theorem 6.1.2]
and [9, Theorem 9.3] with, as a price to pay, the necessity to consider a smoother distance instead
of Wasserstein distance; see [10, Proposition 4.1 and Theorem 4.3].

Fortunately, in the case of overall correlation, we discover that condition (1.6) guarantees that
the covariance matrix C in Proposition 2.1 is strictly diagonally dominant and hence invertible.
Moreover, we can bound the operator norms ‖C‖op and ‖C−1‖op in terms of ‖r‖ℓ1(Z). Therefore,
we are able to apply the inequality (2.3) in Proposition 2.1 to derive the estimate in (1.7); see the
proof of Theorem 1.1 in Section 3.

The Malliavin-Stein approach can also be applied to study Gaussian approximation of Wishart
p-tensors in the case of overall correlation. In Theorem 4.1, we propose a condition on ‖r‖ℓ1(Z) (see
(4.3) below) under which the covariance matrix of the p-tensors is invertible. Hence we appeal to
the Proposition 2.1 again and establish the

√
n2p−1/d convergence rate for the Wasserstein distance

between the p-tensors; the same as full independence case considered in [10, Theorem 4.3]. We refer
to [1, 2, 6] for some other recent applications of Malliavin calculus and Stein method in the study
of high-dimensional regime of Wishart matrices/tensors.

2 Preliminaries

In this section, we collect some elements of Malliavin calculus and Stein’s method and refer to [7]
(see also [11,12]) for more details. Recall the isonormal Gaussian process X = {X(h), h ∈ H} over
a real separable Hilbert space H defined on some probability space (Ω,F ,P).

For every p ≥ 1, we let Hp denote the pth Wiener chaos of X, that is, the closed linear subspace
of L2(Ω) generated by the random variables of the form {Hp(X(h)), h ∈ H, ‖h‖H = 1}, where Hp

stands for the pth Hermite polynomial. The relation that Ip(h
⊗p) = Hp(X(h)) for unit vector

h ∈ H can be extended to a linear isometry between the symmetric pth tensor product H⊙p and
the pth Wiener chaos Hp.

Consider f ∈ H⊙p and g ∈ H⊙q with p, q ≥ 1. For j ∈ {0, . . . , p ∧ q}, f ⊗j g denotes the
j-contraction of f and g (see [7, Section B.4] for the precise definition) and f⊗̃jg stands for the
symmetrization of f ⊗j g. For f ∈ H⊙p, the Malliavin derivative of Ip(f) is the random element of
H given by DIp(f) = pIp−1(f) (see [7, Proposition 2.7.4]) and we have for f, g ∈ H⊙p,

E
[
p−1〈DIp(f) ,DIp(g)〉H

]
= E[Ip(f)Ip(g)] = p!〈f , g〉H⊗p . (2.1)

3



Moreover, according to the formula [7, (6.2.3)], for f, g ∈ H⊙p,

Var
(
p−1〈DIp(f) ,DIp(g)〉H

)
= p2

p−1∑

j=1

(j − 1)!2
(
p− 1

j − 1

)4

(2p− 2j)‖f⊗̃jg‖2H⊗(2p−2j) . (2.2)

The following result, the so-called Malliavin-Stein approach, provides a powerful machinery to
investigate the normal approximation for the Gaussian Wishart matrix of overall correlation.

Proposition 2.1 (see [8, Corollary 3.6]). Fix integers m ≥ 2 and 1 ≤ p1 ≤ . . . ≤ pm. Consider a
random vector F = (F1, . . . , Fm) = (Ip1(f1), . . . , Ipm(fm)) with fj ∈ H⊙pj for each j. On the other
hand, let C be an invertible covariance matrix and let Z ∈ Nm(0, C). Then

dWass(F,Z) ≤ ‖C−1‖op‖C‖1/2op


 ∑

1≤i,j≤m

E

[(
Cij − p−1

j 〈DFi ,DFj〉H
)2]



1/2

, (2.3)

where ‖ · ‖op denotes the usual operator norm.

Note that the Wasserstein distance dWass(F,Z) between two general m-dimensional random
vectors F and Z is defined as

dWass(F ,Z) := sup {E [g(F )] − E [g(Z)] : ‖g‖Lip ≤ 1} , (2.4)

where ‖g‖Lip denotes the usual Lipschitz constant of a function g : Rm → R with respect to the
Euclidean norm.

Lemma 2.2 of [10] has provided a trick to pass the high-dimensional regime for the full-size
symmetric matrix to that of half-matrix. Recall that the half matrix Zhalf of a n × n random
symmetric matrix Z = (Zij)1≤i,j≤n is the n(n + 1)/2- dimensional random vector formed by the
upper-triangular entries, namely:

Zhalf = (Z11, Z12, . . . , Z1n, Z22, . . . , Z23, . . . , Z2n, . . . , Znn). (2.5)

According to [10, Lemma 2.2], for two symmetric random matrices X ,Y: Ω →Mn(R),

dWass(X ,Y) ≤
√
2 dWass(X half ,Yhalf), (2.6)

where the left-hand side Wasserstein distance is defined in (1.5) while the right-hand defined in
(2.4).

Finally, in order to apply Proposition 2.1 to obtain the rate for the Wasserstein distance stated
in Theorem 1.1, we use the product formula for the multiple Wiener-Itô integrals (see [7, Theorem

2.7.10]) to realize the (i, j)th entry of W̃n,d defined in (1.4) as an element in the second Wiener
chaos H2, namely:

W̃ij =
1√
d

d∑

k=1

(XikXjk − r(i− j)) =
1√
d

d∑

k=1

(I1(eik)I1(ejk)− 〈eik , ejk〉H)

= I2(f
(d)
ij ), (2.7)

where

f
(d)
ij =

1√
d

d∑

k=1

eik⊗̃ejk =
1

2
√
d

d∑

k=1

(eik ⊗ ejk + ejk ⊗ eik). (2.8)
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3 Proof of Theorem 1.1

We prove Theorem 1.1 in this section and assume that (1.6) holds throughout this section. We
begin to establish the following supporting lemmas.

Lemma 3.1. For all n ≥ 1 and for all fixed (i, j) with 1 ≤ i ≤ j ≤ n,
∑

1≤u≤v≤n
(u,v)6=(i,j)

|r(i− u)r(v − j) + r(i− v)r(u− j)| ≤ 2‖r‖2ℓ1(Z) − 2 < 1. (3.1)

Proof. The second inequality in (3.1) is clearly true by (1.6). In order to prove the first one, we
write

∑

1≤u≤v≤n
(u,v)6=(i,j)

|r(i− u)r(v − j) + r(i− v)r(u− j)|

≤
∑

1≤u≤v≤n
(u,v)6=(i,j)

|r(i− u)r(v − j)|+
∑

1≤u≤v≤n
(u,v)6=(i,j)

|r(i− v)r(u− j)| . (3.2)

For the first sum on the right-hand side of (3.2), we have

∑

1≤u≤v≤n
(u,v)6=(i,j)

|r(i− u)r(v − j)| ≤ r(0)
∑

v 6=j

|r(v − j)|+
∑

u 6=i

∑

v∈Z

|r(i− u)| |r(v − j)|

=
(
r(0) + ‖r‖ℓ1(Z)

)
‖r‖ℓ1(Z\{0})

= ‖r‖2ℓ1(Z) − 1. (3.3)

For the second sum on the right-hand side of (3.2),

∑

1≤u≤v≤n
(u,v)6=(i,j)

|r(i− v)r(u− j)| ≤ |r(i− j)|
∑

v 6=j

|r(i− v)|+
∑

1≤u≤v≤n
u 6=i

|r(i− v)r(u− j)| (3.4)

We observe that

|r(i− j)|
∑

v 6=j

|r(i− v)| ≤
{
r(0)‖r‖ℓ1(Z\{0}) = ‖r‖ℓ1(Z) − 1, if i = j,
1
2‖r‖ℓ1(Z\{0})‖r‖ℓ1(Z) = ‖r‖ℓ1(Z)(‖r‖ℓ1(Z) − 1)/2, if i < j.

(3.5)

Moreover, since i ≤ j,
∑

1≤u≤v≤n
u 6=i

|r(i− v)r(u− j)| =
∑

1≤u≤v≤n
u<i

|r(i− v)r(u− j)| +
∑

i<u≤v≤n

|r(i− v)r(u− j)|

≤ ‖r‖ℓ1(Z)
∑

1≤u<i

|r(u− j)| +
∑

i<v≤n

|r(i− v)|‖r‖ℓ1(Z)

≤ ‖r‖ℓ1(Z)‖r‖ℓ1(Z\{0}) = ‖r‖ℓ1(Z)(‖r‖ℓ1(Z) − 1). (3.6)

By (3.4)–(3.6), it yields that
∑

1≤u≤v≤n
(u,v)6=(i,j)

|r(i− v)r(u− j)| ≤ (‖r‖ℓ1(Z) − 1)
((
1 ∨ (‖r‖ℓ1(Z)/2)

)
+ ‖r‖ℓ1(Z)

)
. (3.7)
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Therefore, we combine (3.3) and (3.7) to obtain

∑

1≤u≤v≤n
(u,v)6=(i,j)

|r(i− u)r(v − j) + r(i− v)r(u− j)|

≤ (‖r‖ℓ1(Z) − 1)
((
1 ∨ (‖r‖ℓ1(Z)/2)

)
+ 2‖r‖ℓ1(Z) + 1

)
, (3.8)

Elementary calculation on quadratic inequality shows that

(‖r‖ℓ1(Z) − 1)
((
1 ∨ (‖r‖ℓ1(Z)/2)

)
+ 2‖r‖ℓ1(Z) + 1

)
< 1 ⇔ ‖r‖ℓ1(Z) <

√
6/2,

whence

(‖r‖ℓ1(Z) − 1)
((
1 ∨ (‖r‖ℓ1(Z)/2)

)
+ 2‖r‖ℓ1(Z) + 1

)
= 2‖r‖2ℓ1(Z) − 2 (3.9)

provided ‖r‖ℓ1(Z) <
√
6/2.

Therefore, under the assumption (1.6), the estimate (3.1) follows from (3.8) and (3.9).

Recall the n × n symmetric Gaussian random matrix Gr,s
n,d = (Gij)1≤i,j≤n from (1.4). Let C

denote the covariance matrix of (Gr,s
n,d)

half. Notice that the matrix norms ‖C‖1 and ‖C‖∞ of the
symmetric matrix C are equal and given by

‖C‖1 = ‖C‖∞ = sup
1≤i≤j≤n

∑

1≤u≤v≤n

|E[GijGuv]| . (3.10)

Lemma 3.2. The matrix C is invertible and the following estimates on operator norms hold:

‖C−1‖op ≤ d
∑d

k,ℓ=1 s(k − ℓ)2

(
3− 2‖r‖2ℓ1(Z)

)−1
and ‖C‖op ≤

2‖r‖2ℓ1(Z)
d

d∑

k,ℓ=1

s(k − ℓ)2. (3.11)

Proof. According to [10, (4.3)], the entries of C are given by

E[GijGuv] =
(r(i− u)r(v − j) + r(i− v)r(u− j))

d

d∑

k,ℓ=1

s(k − ℓ)2 (3.12)

for 1 ≤ i ≤ j ≤ n and 1 ≤ u ≤ v ≤ n. Letting (u, v) = (i, j) in (3.12), we obtain the following lower
and upper bounds on the diagonal entries of C:

1

d

d∑

k,ℓ=1

s(k − ℓ)2 = inf
1≤i≤j≤n

E[G2
ij ] ≤ sup

1≤i≤j≤n
E[G2

ij ] =
2

d

d∑

k,ℓ=1

s(k − ℓ)2. (3.13)

Moreover, under the condition (1.6), we have

‖C‖1 = ‖C‖∞ = sup
1≤i≤j≤n

∑

1≤u≤v≤n

|E[GijGuv ]| ≤
2‖r‖2ℓ1(Z)

d

d∑

k,ℓ=1

s(k − ℓ)2 (3.14)

thanks to (3.13) and Lemma 3.1. Hence the second inequality in (3.11) follows from (3.14) and the
Hölder’s inequality for matrix norms: ‖C‖op ≤

√
‖C‖1‖C‖∞ (see [13, Theorem 4.3.1]).
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Furthermore, by (3.12) and (3.13) in the first equality,

inf
1≤i≤j≤n


E[G2

ij ]−
∑

1≤u≤v≤n
(u,v)6=(i,j)

|E[GijGuv ]|


 ≥ inf

1≤i≤j≤n
E[G2

ij ]− sup
1≤i≤j≤n

∑

1≤u≤v≤n
(u,v)6=(i,j)

|E[GijGuv ]|

=
1

d

d∑

k,ℓ=1

s(k − ℓ)2


1− sup

1≤i≤j≤n

∑

1≤u≤v≤n
(u,v)6=(i,j)

|r(i− u)r(v − j) + r(i− v)r(u− j)|




≥ 1

d

d∑

k,ℓ=1

s(k − ℓ)2
(
3− 2‖r‖2ℓ1(Z)

)
> 0, by Lemma 3.1 and under (1.6), (3.15)

which implies that the symmetric matrix C is strictly diagonally dominant and hence invertible.
Now we apply [14, Corollary 2] and (3.15) to see that

‖C−1‖−1
op ≥ inf

1≤i≤j≤n


E[G2

ij ]−
∑

1≤u≤v≤n
(u,v)6=(i,j)

|E[GijGuv]|




≥ 1

d

d∑

k,ℓ=1

s(k − ℓ)2
(
3− 2‖r‖2ℓ1(Z)

)
, (3.16)

which proves the first inequality in (3.11).

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Recall that (W̃n,d)
half is the half matrix of the Wishart matrix W̃n,d defined

in (1.3) and (1.4), whose entries can be represented as the elements in the second Wiener chaos

H2; see (2.7) and (2.8). By Lemma 3.2, the covariance matrix of (W̃n,d)
half is invertible and hence

we can apply Proposition 2.1 with m = n(n+1)/2, p1 = . . . = pm = 2 and F = (W̃n,d)
half. Indeed,

we have

dWass

(
(W̃n,d)

half , (Gr,s
n,d)

half
)
= dWass

(
F , (Gr,s

n,d)
half
)

≤ ‖C−1‖op‖C‖1/2op


 ∑

1≤i,j≤m

E

[(
Cij −

1

2
〈DFi ,DFj〉H

)2
]


1/2

.
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Using the identities (2.1) and (2.2), the proceeding yields that

dWass

(
(W̃n,d)

half , (Gr,s
n,d)

half
)
≤ ‖C−1‖op‖C‖1/2op




∑

1≤i≤j≤n
1≤p≤q≤n

Var

(
1

2
〈DW̃ij ,DW̃pq〉H

)



1/2

= ‖C−1‖op‖C‖1/2op


8

∑

1≤i≤j≤n
1≤p≤q≤n

‖f (d)
ij ⊗̃1f

(d)
pq ‖2

H⊗2




1/2

≤
‖r‖ℓ1(Z)

3− 2‖r‖2
ℓ1(Z)

√√√√√
16d

∑d
k,ℓ=1 s(k − ℓ)2

∑

1≤i≤j≤n
1≤p≤q≤n

‖f (d)
ij ⊗1 f

(d)
pq ‖2

H⊗2 , (3.17)

where the second inequality follows from (3.11) and the fact that ‖h̃‖H⊗r ≤ ‖h‖H⊗r .
It remains to estimate the last term in (3.17). Appealing to [10, (4.7)],

‖f (d)
ij ⊗1 f

(d)
pq ‖2

H⊗2 ≤ Xi,j,p,q

16d


∑

|k|≤d

|s(k)|4/3



3

, (3.18)

where Xi,j,p,q is a sum of sixteen terms given by the expression below (4.7) in [10]. Moreover, we
have

Xi,j,p,q ≤ 7|r(j − q)|+ 5|r(p− j)| + 3|r(i− q)|+ |r(i− p)|, (3.19)

which together with [10, (4.12)] implies that

∑

1≤i≤j≤n
1≤p≤q≤n

Xi,j,p,q ≤ 16n3‖r‖ℓ1(Z). (3.20)

Taking into account (3.17), (3.18) and (3.20), we conclude that

dWass

(
(W̃n,d)

half , (Gr,s
n,d)

half
)
≤

‖r‖3/2
ℓ1(Z)

3− 2‖r‖2
ℓ1(Z)

√√√√√ 16d
∑d

k,ℓ=1 s(k − ℓ)2
× n3

d


∑

|k|≤d

|s(k)|4/3



3

. (3.21)

Finally, we combine (3.21) with (2.6) to obtain the estimate in Remark 1.2(1), which leads to
(1.7)

4 Random p-tensors

The result of Theorem 1.1 for Gaussian Wishart matrix can be extended to random p-tensors
(p ≥ 2). We first introduce some notations of p-tensors. Let Xi = (X1i, . . . ,Xni)

T be the ith
column of the random matrix Xn,d defined in (1.2). We write

Xi =

n∑

j=1

Xji εj ,
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where {εj , j = 1, . . . , n} is the canonical basis of Rn. Then the p-tensor product of Xi is given by

X
⊗p
i =




n∑

j=1

Xji εj




⊗p

=

n∑

j1,...,jp=1

(
p∏

k=1

Xjki

)
εj1 ⊗ . . .⊗ εjp

so that

1√
d

d∑

i=1

X
⊗p
i =

n∑

j1,...,jp=1

1√
d

d∑

i=1

(
p∏

k=1

Xjki

)
εj1 ⊗ . . .⊗ εjp .

A repeated application of the product formula for the multiple Wiener-Itô integrals (see [7, Theorem
2.7.10]) ensures that

p∏

k=1

Xjki =

p∏

k=1

I1(ejki) = Ip
(
sym

(
ej1i ⊗ · · · ⊗ ejpi

))
+ lower order terms,

where sym denotes the canonical symmetrization.
Analogous to the choice of W̃ij defined in (2.7) and (2.8), in the case of overall correlation, we

consider the following normalized version of p-tensor of Xn,d:

(
Ỹj = Ip(f

(d)
j ), j = (j1, . . . , jp) ∈ {1, . . . , n}p

)
,

where

f
(d)
j =

1√
d

d∑

k=1

sym
(
ej1k ⊗ · · · ⊗ ejpk

)
. (4.1)

Moreover, we remove the diagonal terms and focus on the Gaussian approximation of

Ỹn,d =
(
Ỹj = Ip(f

(d)
j ), j ∈ ∆p

)
, (4.2)

where f
(d)
j is defined in (4.1) and ∆p = {(j1, . . . , jp) ∈ {1, . . . , n}p : j1, . . . , jp are mutually distinct}.

The following result extends the Gaussian approximation of random p-tensors of full indepen-
dence in [10, Theorem 4.6] to the case of overall correlation.

Theorem 4.1. Let Ỹn,d be defined in (4.2) and Z = (Zj : j ∈ ∆p) a centered Gaussian vector

in R
p!(np) which has the same covariance matrix as Ỹn,d. Assume that the covariance function r

satisfies
(
1−

(
‖r‖ℓ1(Z) − 1

)
(p!‖r‖p−1

ℓ1(Z)
+ (p!− 1)/2)

)
> 0. (4.3)

Then there exists a positive constant Cp depending on p and ‖r‖ℓ1(Z) (see (4.21) below) such that

dWass

(
Ỹn,d ,Z

)
≤ Cp

√√√√√ d∣∣∣
∑d

k,ℓ=1 s(k − ℓ)p
∣∣∣


∑

|k|≤d

|s(k)|4/3



3

n2p−1

d
. (4.4)

Remark 4.2. (1) Note that the above Wasserstein distance is for Rp!(np)-valued random vectors;
as defined in (2.4).
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(2) The estimate in (4.4) is trivial if
∑d

k,ℓ=1 s(k− ℓ)p = 0. Hence we assume
∑d

k,ℓ=1 s(k− ℓ)p 6= 0
in the following.

(3) Under the condition (4.3), if we assume s ∈ ℓ4/3(Z) and in addition that p is even or s(k) ≥ 0
for all k ∈ Z, (4.4) leads to dWass(Ỹn,d ,Z) = O(

√
n2p−1/d); the same as the full independence

case considered in [10, Theorem 4.6].

Similar to the proof of Theorem 1.1, we reduce the estimate of Wasserstein distance between

Ỹn,d and Z to that of their ”half matrices”, given by the following R
(np)-valued random vectors

Ỹ↑
n,d =

(
Ỹj = Ip(f

(d)
j ), j ∈ ∆↑

p

)
and Z↑ =

(
Zj : j ∈ ∆↑

p

)
, (4.5)

where ∆↑
p = {j ∈ {1, . . . , n}p : j1 < j2 < . . . < jp}. Denote S(p) the collection of all permutations

of {1, . . . , p}.

Lemma 4.3. Let C̃ be the covariance matrix of Ỹ↑
n,d. Under the condition (4.3), C̃ is invertible

and we have

‖C̃−1‖op ≤ d

∣∣∣∣∣∣

d∑

k,ℓ=1

s(k − ℓ)p

∣∣∣∣∣∣

−1 (
1−

(
‖r‖ℓ1(Z) − 1

) (
p!‖r‖p−1

ℓ1(Z)
+ (p!− 1)/2

))−1
(4.6)

and

‖C̃‖op ≤ 1

d

∣∣∣∣∣∣

d∑

k,ℓ=1

s(k − ℓ)p

∣∣∣∣∣∣

(
1 +

(
‖r‖ℓ1(Z) − 1

) (
p!‖r‖p−1

ℓ1(Z)
+ (p!− 1)/2

))
. (4.7)

Proof. The proof is similar to that of Lemma 3.2. We will see that the condition (4.3) guarantees
that the symmetric matrix C̃ is strictly diagonally dominant and hence invertible. We first compute
the entries of C̃. For j = (j1, . . . , jp), j

′ = (j′1, . . . , j
′
p) ∈ ∆↑

p, using (4.2), (4.1) and isometry,

E[ỸjỸj′ ] = E[Ip(f
(d)
j

)Ip(f
(d)
j′

)]

=
p!

d

d∑

k,ℓ=1

〈
sym

(
ej1k ⊗ · · · ⊗ ejpk

)
, sym

(
ej′1ℓ ⊗ · · · ⊗ ej′pℓ

)〉
H⊗p

=
1

p!d

d∑

k,ℓ=1

∑

σ,τ∈S(p)

〈
ejσ(1)k ⊗ · · · ⊗ ejσ(p)k , ej′τ(1)ℓ

⊗ · · · ⊗ ej′
τ(p)

ℓ

〉
H⊗p

=
1

p!d

d∑

k,ℓ=1

s(k − ℓ)p
∑

σ,τ∈S(p)

p∏

m=1

r(jσ(m) − j′τ(m)). (4.8)

As a consequence of (4.8), we have the following lower and upper bounds on the diagonal entries
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of C̃: for all j ∈ ∆↑
p

E[Ỹ2
j ] ≥

1

p!d

∣∣∣∣∣∣

d∑

k,ℓ=1

s(k − ℓ)p

∣∣∣∣∣∣


p!r(0)p −

∑

σ,τ∈S(p)
σ 6=τ

p∏

m=1

∣∣r(jσ(m) − jτ(m))
∣∣




≥ 1

p!d

∣∣∣∣∣∣

d∑

k,ℓ=1

s(k − ℓ)p

∣∣∣∣∣∣

(
p!− ((p!)2 − p!)

1

2
‖r‖ℓ1(Z\{0})

)

=
1

d

∣∣∣∣∣∣

d∑

k,ℓ=1

s(k − ℓ)p

∣∣∣∣∣∣

(
1− (p!− 1)

1

2

(
‖r‖ℓ1(Z) − 1

))
, (4.9)

and similarly

E[Ỹ2
j ] ≤

1

d

∣∣∣∣∣∣

d∑

k,ℓ=1

s(k − ℓ)p

∣∣∣∣∣∣

(
1 + (p!− 1)

1

2

(
‖r‖ℓ1(Z) − 1

))
. (4.10)

Moreover, the identity (4.8) implies the following estimate on the off-diagonal entries of C̃: for

all j ∈ ∆↑
p,

∑

j′∈∆↑
p

j′ 6=j

∣∣∣E[ỸjỸj′ ]
∣∣∣ ≤ 1

p!d

∣∣∣∣∣∣

d∑

k,ℓ=1

s(k − ℓ)p

∣∣∣∣∣∣

∑

σ,τ∈S(p)

∑

j′∈∆↑
p

j′ 6=j

p∏

m=1

∣∣∣r(jσ(m) − j′τ(m))
∣∣∣

≤ 1

p!d

∣∣∣∣∣∣

d∑

k,ℓ=1

s(k − ℓ)p

∣∣∣∣∣∣
(p!)2‖r‖ℓ1(Z\{0})‖r‖p−1

ℓ1(Z)

=
p!

d

∣∣∣∣∣∣

d∑

k,ℓ=1

s(k − ℓ)p

∣∣∣∣∣∣
(
‖r‖ℓ1(Z) − 1

)
‖r‖p−1

ℓ1(Z)
. (4.11)

Therefore, we obtain from (4.9) and (4.11) that

inf
j∈∆↑

p


E[Ỹ2

j ]−
∑

j′∈∆↑
p, j

′ 6=j

∣∣∣E[ỸjỸj′ ]
∣∣∣




≥ 1

d

∣∣∣∣∣∣

d∑

k,ℓ=1

s(k − ℓ)p

∣∣∣∣∣∣

(
1−

(
‖r‖ℓ1(Z) − 1

) (
p!‖r‖p−1

ℓ1(Z)
+ (p!− 1)/2

))
> 0, (4.12)

thanks to (4.3). Hence the symmetric matrix C̃ is strictly diagonally dominant and invertible. One
more appeal to [14, Corollary 2] yields that

‖C̃−1‖−1
op ≥ inf

j∈∆↑
p


E[Ỹ2

j ]−
∑

j′∈∆↑
p, j

′ 6=j

∣∣∣E[ỸjỸj′ ]
∣∣∣


 , (4.13)
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which together with (4.12) proves (4.6).
Furthermore, we deduce from (4.10) and (4.11) that

‖C̃‖1 = ‖C̃‖∞ = sup
j∈∆↑

p

∑

j′∈∆↑
p

∣∣∣E[ỸjỸj′ ]
∣∣∣

≤ 1

d

∣∣∣∣∣∣

d∑

k,ℓ=1

s(k − ℓ)p

∣∣∣∣∣∣

(
1 +

(
‖r‖ℓ1(Z) − 1

) (
p!‖r‖p−1

ℓ1(Z)
+ (p!− 1)/2

))
. (4.14)

Hence (4.7) follows from (4.14) and the Hölder’s inequality for matrix norms.

Lemma 4.4. Let f
(d)
j , j ∈ ∆↑

p be defined in (4.1). For all 1 ≤ q ≤ p− 1,

∑

j,j′∈∆↑
p

∥∥∥f (d)
j ⊗q f

(d)
j′

∥∥∥
2

H⊗2p−2q
≤ ‖r‖ℓ1(Z)

n2p−1

d


∑

|k|≤d

|s(k)|4/3



3

. (4.15)

Proof. We first compute the norm on the left-hand side of (4.15). For j = (j1, . . . , jp) and j′ =

(j′1, . . . , j
′
p), using the definition of f

(d)
j

and f
(d)
j′

,

f
(d)
j

⊗q f
(d)
j′

=
1

d

d∑

k,ℓ=1

sym
(
ej1k ⊗ · · · ⊗ ejpk

)
⊗q sym

(
ej′1ℓ ⊗ · · · ⊗ ej′pℓ

)

=
1

d(p!)2

d∑

k,ℓ=1

∑

σ,τ∈S(p)

(
ejσ(1)k ⊗ · · · ⊗ ejσ(p)k

)
⊗q

(
ej′

τ(1)
ℓ ⊗ · · · ⊗ ej′

τ(p)
ℓ

)

=
1

d(p!)2

d∑

k,ℓ=1

∑

σ,τ∈S(p)

ejσ(q+1)k ⊗ · · · ⊗ ejσ(p)k ⊗ ej′
τ(q+1)

ℓ ⊗ · · · ⊗ ej′
τ(p)

ℓ

× s(k − ℓ)q
q∏

m=1

r(jσ(m) − j′τ(m)). (4.16)

Now we take the square norm and it yields that
∥∥∥f (d)

j ⊗q f
(d)
j′

∥∥∥
2

H⊗2p−2q

=
1

d2(p!)4

d∑

k,k′,ℓ,ℓ′=1

∑

σ,σ′,τ,τ ′∈S(p)

s(k − ℓ)qs(k′ − ℓ′)q
q∏

m=1

r(jσ(m) − j′τ(m))r(jσ′(m) − j′τ ′(m))

× s(k − k′)p−qs(ℓ− ℓ′)p−q
p∏

m=q+1

r(jσ(m) − jσ′(m))r(j
′
τ(m) − j′τ ′(m)). (4.17)

For 1 ≤ q ≤ p− 1, since |s(k)| ≤ 1 for all k ∈ Z,

1

d2

d∑

k,k′,ℓ,ℓ′=1

∣∣s(k − ℓ)qs(k′ − ℓ′)qs(k − k′)p−qs(ℓ− ℓ′)p−q
∣∣

≤ 1

d2

d∑

k,k′,ℓ,ℓ′=1

∣∣s(k − ℓ)s(k′ − ℓ′)s(k − k′)s(ℓ− ℓ′)
∣∣ ≤ 1

d


∑

|k|≤d

|s(k)|4/3



3

, (4.18)
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where the second inequality follows from the same computations as in [7, page 134-135].
Moreover, for any σ, σ′, τ, τ ′ ∈ S(p),

∑

j,j′∈∆↑
p

∣∣∣∣∣∣

(
q∏

m=1

r(jσ(m) − j′τ(m))r(jσ′(m) − j′τ ′(m))

)


p∏

m=q+1

r(jσ(m) − jσ′(m))r(j
′
τ(m) − j′τ ′(m))



∣∣∣∣∣∣

≤
∑

j,j′∈∆↑
p

∣∣∣r(jσ(1) − j′τ(1))
∣∣∣ ≤ n2p−2

n∑

k,ℓ=1

|r(k − ℓ)| ≤ n2p−1‖r‖ℓ1(Z). (4.19)

Therefore, we combine (4.18), (4.19) and (4.17) to obtain (4.15).

We are now at the position to prove Theorem 4.1

Proof of Theorem 4.1. Recall the random vectors Ỹn,d and Z↑ defined in (4.5). By Lemma 4.3, the

covariance matrix C̃ of Z↑ is invertible. Hence, according to Proposition 2.1 and the identity (2.1),
we have

dWass

(
Ỹ↑
n,d ,Z

↑
)
≤ ‖C̃−1‖op‖C̃‖1/2op



∑

j,j′∈∆↑
p

Var

(
p−1

〈
DIp(f

(d)
j ) ,DIp(f

(d)
j′ )
〉
η

)



1/2

= ‖C̃−1‖op‖C̃‖1/2op



∑

j,j′∈∆↑
p

O




p−1∑

q=1

‖f (d)
j ⊗q f

(d)
j′

‖2η⊗2p−2r







1/2

= ‖C̃−1‖op‖C̃‖1/2op ‖r‖1/2
ℓ1(Z)


∑

|k|≤d

|s(k)|4/3



3/2

O

(√
n2p−1

d

)
, (4.20)

where the first equality holds by (2.2) and the second follows from Lemma 4.4. Moreover, we apply
Lemma 4.3 to see that there exists a constant cp > 0 such that

dWass

(
Ỹ↑
n,d ,Z

↑
)
≤ cp

√√√√ d∣∣∣
∑d

k,ℓ=1 s(k − ℓ)p
∣∣∣

(
1−

(
‖r‖ℓ1(Z) − 1

) (
p!‖r‖p−1

ℓ1(Z)
+ (p!− 1)/2

))1/2

1−
(
‖r‖ℓ1(Z) − 1

) (
p!‖r‖p−1

ℓ1(Z)
+ (p!− 1)/2

)

× ‖r‖1/2
ℓ1(Z)

√√√√√n2p−1

d
×


∑

|k|≤d

|s(k)|4/3



3

. (4.21)

Applying the argument of Step 2 on page 22 of [10] (similar to (2.6)), we conclude the proof of
(4.4).
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