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Abstract. The technical complexity of automotive Cyber-Physical Sys-
tems (CPS) traditionally demands high development and validation ef-
forts. Due to the new technologies entering the automotive market, such
as Highly Automated Driving (HAD) (> SAE L3) and connected in-
fotainment, the overall system complexity is currently increasing sig-
nificantly, challenging traditional system development methods and re-
quiring new approaches for validation and verification (V&V). In paral-
lel, new Electric/Electronic (E/E) architecture patterns are emerging in
the automotive industry, distributing the functionalities across several
multi-core Electrical Control Units (ECU) connected via Ethernet-based
in-vehicle networks. This distributed approach leads to complex inter-
and intra-ECU timing relations challenging the concept of freedom from
interference according to the ISO 26262, and adding another dimen-
sion of effects analysis during V&V in the context of ISO PAS 21448
and the upcoming ISO TR 4804. This work enhances a cyber-physical
functional simulation tool to include timing effects in distributed cause-
effect chains and multi-technology-communication networks (incl. Eth-
ernet and CAN). The resulting simulation allows the system designer to
evaluate the impact of timing properties on a given distributed vehicle
function, enabling an early validation of the system, avoiding rework dur-
ing later stages of the development process resulting from wrong design
choices.

1 Introduction and Motivation

The future of mobility will be different, driven by the megatrends coming to
the automotive market, such as autonomous driving, connectivity, and shared
& services [1]. The current status of the automotive Electric/Electronic (E/E)
architecture results from the historical growth of the automotive systems, and it
is not designed for handling such increasingly advanced functionalities [2]. Ac-
cording to [3], and [4], these new functionalities require stronger co-engineering
between different fields such as control, software, and network, leading to not
always clear cross-cutting concerns (CCC) between the domains.

Today’s automotive E/E architecture systems can range up to 120 decentral-
ized electrical control units (ECUs), and 100 million lines of code [5]. Experts
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expect to cope with the megatrends, the number of lines of code will increase by a
factor of 10,000, with the coming functionalities varying from real-time-systems
to interactive apps, transforming the car to a software-defined vehicle. To handle
the megatrends reliably, cost-effectively, and with the complexity under control,
new automotive E/E architecture patterns are emerging, using state of the art
solutions from the information technology world, such as multi-core devices and
high-speed Ethernet links.

Figure 1 depicts the progress of the automotive E/E architecture and the
patterns, where the left column presents the evolution from a domain-centric
approach to a more integrated approach leading to fusion of ECUs and domains,
ultimately leading to centralized computers handling the core functionalities
of the vehicle. The right column presents a space of solutions for the domain
integration. Moreover, the picture shows the evolution from central gateways to a
zone gateway architecture. The latter enables the vehicle segmentation in zones,
having the legacy communications such as, controller area networking (CAN)
and local interconnect network (LIN), at the zone and a high-speed Ethernet
link to the centralized vehicle computer as a cross zone communication.
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Fig. 1: Automotive E/E architecture evolution and patterns! [6]

Those new solutions for the automotive E/E architecture challenge the con-
cept of freedom from interference according to the ISO 26262 [7], where such
systems have mixed-criticality processes sharing the runtime environment, mak-

!shared housing concept not shown.
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ing not trivial the relation between the Intra-/Inter-ECU? functionalities lead-
ing to complex cause-effect chains. On the Intra-ECU scope, tasks running in
multi-core processors could take longer to be executed than expected [8]. On the
Inter-ECU scope, data sent by communication channels could present additional
delays and jitter [9].

In order to evaluate the impacts of the timing behavior of the runtime en-
vironment, this work enhances a functional simulation tool to include a timing
model of the Inter- and Intra-ECU performance to enable the system designer
to evaluate the impact of the timing properties, allowing an early verification
of the system, avoiding rework during later stages of the development process
resulting from wrong design choices.

2 Methodology to extract the Timing Behavior of
Automotive Cyber-Physical Systems

To present the complexity of the runtime environment timing behavior in au-
tomotive cyber-physical systems summarized in the Introduction, this section
will explain the timing properties presented in automotive software solutions.
Moreover, later will be shown an approach to extract the timing behavior using
simulation tools.

2.1 Timing Behavior in Automotive Cyber-Physical Systems

Automotive software systems typically consist of several dozen functionalities
that are scheduled with static priority preemptive scheduling policies, typically
based on OSEK compliant operating systems. Scheduled entities are called tasks
that are repeated cyclically with a fixed period. Each task contains several pro-
cesses that contain the functional code. Processes are assigned to tasks according
to the continuous dynamics of the physical process they control. In the simplest
case, one functionality (e.g., one controller) is realized using a single process.
However, more complex functionalities are realized using several communicating
processes distributed over several tasks, which, in turn, might be executed on
different ECUs communicating via in-vehicle networks.

As shown in Figure 2 it is obvious that the scheduling leads to both a sampling
jitter (variable time between task release and process execution) as well as a
response time jitter of a process (variable time from process start to end), a
well-known and well-studied effect in real-time research. Note that for control
this means working with stale data (sampling jitter) and applying the control
decisions too late (response time jitter). Both effects might thus lead to decreased
performance of the control software.

Obviously, in the case that a functionality is realized using several commu-
nicating processes (running on the same ECU or even distributed over network)

2This work, will make the separation between the computations inside the ECU as
Intra-ECU functions, and the ones related to distributed ECUs through the in-vehicle
networks as Inter-ECU functions.
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Fig. 2: Sample schedule of a system consisting of three tasks with different prior-
ities. Preemptions by higher priority tasks lead to sampling jitter and response
time jitter for process P5 influencing its functional behavior

additional timing effects related to communication need to be considered (com-
pare [10] for examples) increasing the sampling and response time jitters, and,
thus, also the impact on the functional behavior.

The mentioned timing affects have practical implication as has been discussed
in [12] and [13]. However, both, control engineering and real-time systems en-
gineering often assume idealized system abstractions that mutually neglect cen-
tral aspects of the other discipline. Control engineering theory, on the one hand,
usually assumes jitter free sampling and constant input-output latencies disre-
garding complex real-world timing effects. Real-time engineering theory, on the
other hand, uses abstract performance models [11] that neglect the functional
behavior, and derives worst-case situations that have little expressiveness for
control functionalities in automotive systems. As a consequence, there is a lot
of potential for a systematic co-engineering between both disciplines, increasing
design efficiency and confidence. In this paper, we discuss a possible approach
for such a co-engineering and show the effectiveness on a real-world example.

2.2 Extracting Timing Behavior and Methodology for Cause-Effect
Chains Verification

As described in the Introduction Section, the automotive systems evolve from
a domain concentration approach to a vehicle centralized approach, relying on
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heterogeneous in-vehicle networks to connect the embedded ECUs, sensors, and
actuators. Such solutions, with functionalities distributed across the E/E archi-
tecture, raises the awareness of cause-effect chains. A cause-effect chain can be
understood as the path from an input (e.g., sensor) across the required software
elements until the desired output (e.g., actuator) [8]. The Intra-ECU software
tasks and Inter-ECU communications’ timing properties affect such chains’ per-
formance, as described in the subsection before, meaning there are necessary
methods to extract such timing behaviors in order to verify the effects.

To verify real-time systems, response time is a metric to evaluate the sys-
tem’s performance, giving the latencies and jitters for the processing and for-
warding of data through the software devices. There are different techniques to
capture those values, such as using hardware tools in a testbed or using simula-
tion environments. In both cases, it is possible to record the timestamps of event
changes or states, leading to a statistical distribution of when a task is processed,
or a message arrives. Figure 3 illustrates the distribution of a frame’s response
time in a non-deterministic communication channel, illustrating that most of the
events are captured by a testbed setup and the long tail is detected mostly by
long simulation runs. Moreover, it is possible to use worst-case analysis or com-
puted bounds (e.g., network calculus [14] ) to determine the maximum bounds
from the distribution. However, such metrics tend to be pessimistic, where a
testbed or a simulation environment could never record such values [15].
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Fig. 3: Metrics for timing behavior and techniques to verify [15]

Figure 4 illustrates an approach to verify the effects of the E/E architecture
timing behavior on a given automotive functionality. It starts defining the func-
tional and non-functional requirements for the specific use-case, later leading to
the system architecture describing the E/E architecture elements and connec-
tions. In order to evaluate the timing behavior, tools for the in-vehicle networks
simulation (e.g., RTaW [16]) and embedded multi-core systems (e.g., chronSIM
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[17]) can be used. The results from the timing simulator tools are then used to
validate the response times and to create timing behavior models that will be
included in the functional simulation tool. For a further investigation of the re-
sponse times, error injection can be done to evaluate how additional effects (e.g.,
frame drops and transient loads) can affect the timing behavior. Enhancing the
functional simulation tool to reproduce the additional delays and jitters from
the response time gives the designer a better understanding of how the E/E
architecture runtime environment impacts the vehicle functionality cause-effect
chains and comes with an argument for the verification of the use case.
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Fig. 4: Methodology for the verification of cause-effect chains in automotive func-
tionalities

To evaluate the methodology, Section 3 illustrates an automotive function to
be verified, and Section 4 will provides evidences using a simulation setup.

3 Use Case Example and Architecture

The methodology discussed in section 2 is demonstrated in detail using a Lane
Keeping Assist (LKA) system as the use case, which is an advancement of the
lane departure warning driver assistance system. LKA system supports to correct
the course of a vehicle gradually deviating out of its lane due to driver inactivity.
Often, an advance warning is given to the driver to correct the steering angle and
in case driver does not respond in time, the system applies a small amount of
steering to prevent the vehicle from leaving its lane. The paper discusses this use
case in the below section 3.1 especially to show the influence of non-functional
requirements on the functional behavior of LKA.
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3.1 LKA feature and test scenario

LKA systems in advanced vehicles typically use an array of sensors to detect
different types of the lane markings in various weather conditions and are re-
warded according Euro NCAP, based on a standard set of tests performed on a
test track. In this paper we discuss a simplified LKA system with only one camera
sensor fitted to behind the windscreen to detect the lane markings and provide
the processed inputs to the Highly Automated Driving (HAD) motion control
for optimal steering actuation. Test cases to demonstrate the LKA functionality
in simulation are performed on a curvy two-lane road with dotted makings as
shown in Figure 5.
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Fig.5: LKA test scenario. The left figure shows a correct behavior, with the
system following the center of the lane. The right picture illustrate a wrong
behavior with the system not following the center of the road. The scenario has
a total time of 30s with the vehicle in a constant velocity of 50km/h
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3.2 System Architecture and Cause-Effect Chain

Figure 6 illustrates the system architecture of the simplified LKA system dis-
cussed in this paper. As mentioned in section 3.1, the system use only one cam-
era sensor mounted behind the windscreen of the vehicle. This camera sensor is
interfaced to the High Autonomous Driving (HAD) Motion Controller with au-
tomotive grade 100BASE-T1 Ethernet protocol according to IEEE802.3 via an
Ethernet Switch, which also interfaces other sensors or control units referred to
as Other 1-4 in Figure 6. Steering Controller responsible for the lateral dynamics
of the vehicle is interfaced to the HAD Motion Controller with CAN-FD protocol
according to ISO 11898-1:2015. The HAD Motion Controller is interfaced also
to other actuators referred to as Other 5-8 in Figure 6 via the same CAN-FD
channel.
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Fig. 6: LKA system architecture overview

It is important to understand these interfaces in the system architecture as
the rest of the paper illustrates with the support of simulation, how the latencies
and jitters caused due to these communication channels and computations time
influence the overall cause-effect chain of the LKA system. Typically, the cause-
effect chain in this use-case is Sens— > Think— > Act with Camera sensor,
HAD Motion Controller and Steering Controller respectively as shown in the
Figure 7 below with a random distribution of latency and jitter between the
modules of the cause-effect chain.
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Fig.7: LKA cause-effect chain

The test cases in simulation are assumed to pass if the vehicle maintains
the lane using solely the LKA functionality for a simulation time of 30sec with
varied latency and jitter as discussed in Section 4.

4 Simulation Results

To evaluate the timing behavior impact on the LKA use case scenario, it is nec-
essary to build a functional simulation environment capable of simulating the
cause-effect chain elements (camera, motion controller, and steering controller)
and the environment (car and road). As this work focuses on integrating a novel
approach to simulate the response time from the software devices, an of-the-
shelf simulation for the LKA system is used [18]. To model the timing behavior,
a timing orchestrator block is added to the simulation environment in Mat-
lab/Simulink. The block is responsible for providing the triggers and durations
in the simulation for the response time of the LKA software components.

Using the timing simulation tools approach presented in Section 2.2, the
camera’s timing behavior, the Ethernet network, the HAD motion controller,
the CAN-FD network, and the steering controller are generated. The figure 8
presents in details the response time distribution of the camera data. The camera
system generates and sends the images in 30H z in a burst of Ethernet frames.
In the picure it is possible to observe that the delay for all the frames to reach
the HAD motion controller is around 10ms with a probability deviation up to
10.20ms. The computed bound is 10.24ms. Moreover, the HAD controller has a
cycle time of 0.1ms+0.01 to process the data and send the steering angle by the
CAN-FD Bus. The CAN frame of the steering angle has a delay of 0.2ms up to
0.5ms. The response time of the steering controller was neglected in this work.
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Fig. 8: Transversal network time: Camera eth. frames to HAD motion controller

As a result of the simulation, the figure 9 illustrates two simulation outcomes:
One assuming a perfect technology with no delays and jitter from the response
time of the systems, and another using the response time values described be-
fore (nominal response time). As can be seen from the figure, the one with the
additional timing behavior follows the center of the lane with almost no relative
deviation from the perfect technology, however, with a more oscillatory control
signal for the steering angle.

As a further investigation, the system elements’ response time was increased
to see which values the functionality will not be able to follow the center of the
lane. This investigation comes from the fact that transient or permanent faults
on the system could increase the response time (e.g., Babbling Idiot [19]). With
an increase of 6ms on the camera Ethernet frame jitter and 10ms on the steering
angle CAN frame jitter compared to the nominal response time, the system is
unstable. Figure 10 shows the results.

5 Conclusion

In this paper we discussed a methodology to extract different timing behaviors of
the automotive cyber-physical systems using state of the art timing simulation
tools. With a Lane Keep Assist system as use case we then demonstrated the
effects of timing propagation on the functionality, especially the lateral maneuver
in a simulation environment. Using a novel timing orchestrator we then analyzed
the maximum transportation delay allowed to keep the vehicle in the desired
lane. The feasibility of the approach shall be validated in the future by comparing
with the real vehicle behavior as well and the usage of timing orchestrator in a
co-simulation environment shall be explored with multiple control units.
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