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Abstract—The ever-increasing number of machine-type com-
munications (MTC) devices and the limited available radio
resources are leading to a crucial issue of radio access network
(RAN) congestion in upcoming 5G and beyond wireless networks.
Thus, it is crucial to investigate novel techniques to minimize
RAN congestion in massive MTC (mMTC) networks while taking
the underlying short-packet communications (SPC) into account.
In this paper, we propose an adaptive Q-learning (AQL) algo-
rithm based on block error rate (BLER), an important metric in
SPC, for a non-orthogonal multiple access (NOMA) based mMTC
system. The proposed method aims to efficiently accommodate
MTC devices to the available random access (RA) slots in order
to significantly reduce the possible collisions, and subsequently to
enhance the system throughput. Furthermore, in order to obtain
more practical insights on the system design, the scenario of
imperfect successive interference cancellation (ISIC) is considered
as compared to the widely-used perfect SIC assumption. The
performance of the proposed AQL method is compared with the
recent Q-learning solutions in the literature in terms of system
throughput over a range of parameters such as the number of
devices, blocklength, and residual interference caused by ISIC,
along with its convergence evaluation. Our simulation results
illustrate the superiority of the proposed method over the existing
techniques, in the scenarios where the number of devices is higher
than the number of available RA time-slots.

Index Terms—BLER, MTC, NOMA, Q-Learning, short-packet
communications.

I. INTRODUCTION

The fifth generation (5G) and beyond wireless networks
(5GBNs) are expected to obtain a remarkable increase in cov-
erage, data rates, and connection density with ultra-high relia-
bility and ultra-low latency compared to the fourth generation
(4G) wireless networks [1]. These heterogeneous and stringent
requirements of 5GBNs are driving the strong development
of machine-type communications (MTC) networks. The main
benefit of these networks is able to support novel applications
such as Internet of Things (IoT), Industry 4.0, and Tactile
Internet with an extremely large number of devices (could be
around 125 billion devices by 2030, according to IHS Markit
forecast) [1]. However, the ever-increasing number of devices
is leading to critical challenges for massive MTC (mMTC)
networks related to Radio Access Network (RAN) conges-
tion and fulfilling the diverse requirements of heterogeneous
devices/services. Furthermore, to achieve the unprecedented
requirements of reliability and latency, the traditional analytic
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methods based on Shannon theorem using long data-packets
are no longer suitable for the MTC devices with short-packet
communications (SPC) [2]. Therefore, 5GBNs are demanding
for novel transmission methods, which can effectively support
SPC [3]. In this paper, we investigate the RAN congestion
issue in SPC-enabled mMTC networks, with the objective of
minimizing random access channel (RACH) congestion.

In recent years, random access (RA) scheme based on
machine learning (ML) has emerged as a promising solution
to avoid RAN congestion in ultra-dense cellular networks
including mMTC [1]. The conventional RA methods such
as access class barring, slotted RA, MTC-specific backoff,
separation of RA resources and paging-based RA [4]; priori-
tized RA, grouped-based RA, and code-expanded RA [5], are
mostly reactive methods performed in a centralized manner. In
contrast, the ML-based RA can bring the ability of learning
the system variations for MTC devices, where some promising
ML techniques such as Q-learning, can be implemented in a
model-free and distributed way [6].

Taking the ML-based RA into account, some research works
have been recently conducted under various scenarios [7–12].
Specifically, the authors in [7] considered a learning based
RACH access scheme enabling the coexistence of human-type-
communication (HTC) and MTC devices in a cellular network,
in which Q-learning algorithm is utilized to intelligently assign
access time-slots to the devices. The work in [8] applied Q-
learning to access class barring (ACB) scheme at the base
station (BS) to better adjust the value of ACB factor. In [9],
Q-learning was utilized to support MTC devices in order to
choose the best BS among the available BSs. Furthermore, the
authors in [10] proposed a RAN congestion avoidance scheme
based on collaborative distributed Q-learning to improve the
performance in terms of throughput, in which the reward
function is set by using the congestion level per time-slot.

To further improve the ability of RAN congestion avoidance
in mMTC networks, the use of Q-learning and non-orthogonal
multiple access (NOMA) was considered in [11]. Specifically,
in the proposed method in [11], each MTC device selects
the time-slot and transmit power for its transmission using
Q-learning to improve the system throughput. However, the
works [7–11] did not investigate SPC, which is considered
as a potential paradigm to meet the stringent requirements
of reliability and latency from 5G and beyond applications.
Furthermore, the work in [11] considered perfect successive
interference cancellation (PSIC), which is an ideal assumption



for NOMA transmission. Given this context, Han et al. [12]
proposed a power allocation solution to maximize energy
efficiency for SPC in NOMA-based mMTC networks. Fur-
thermore, the authors applied Q-learning to allocate devices
to different subchannels such that the number of devices
sharing the same subchannel does not exceed a predetermined
threshold. However, the work in [12] did not investigate the
resource allocation optimization problem (i.e., transmit power
and subchannel/time-slot) based on Q-learning to enhance the
throughput of NOMA-based mMTC networks with SPC.

In this paper, we investigate the combination of Q-learning
and NOMA-based SPC for time-slot and power allocation
to address RACH congestion problem in mMTC networks.
Specifically, we utilize block error rate (BLER), an important
performance metric to characterize the SPC-based systems, as
a global cost during the learning process. Given this context,
we propose an adaptive Q-learning (AQL) algorithm for a
NOMA-based mMTC network, namely BLER-NOMA-AQL.
The main contributions of this paper are briefly summarized as
follows: i) we propose a BLER-NOMA-AQL scheme for time-
slot and power allocation to address the RACH congestion
problem in a NOMA-based mMTC network; ii) we study the
effects of imperfect SIC (ISIC) on the proposed method in
terms of the system throughput as compared to the widely-used
PSIC assumption; iii) we analyze and compare the throughput
performance of the proposed BLER-NOMA-AQL method
with some recently proposed techniques in the literature, along
with its convergence analysis.

The remainder of the paper is organized as follows. Section
II depicts the system model in detail. Section III presents the
Q-learning algorithm for RA, effective BLER for SPC-based
NOMA transmission, and the proposed BLER-NOMA-AQL
scheme. Section IV describes the numerical results. Finally,
Section V concludes this paper.

II. SYSTEM MODEL

We investigate an uplink NOMA-based mMTC network
consisting of one cellular base station (BS) and M MTC
devices, as depicted in Fig. 1. In this network, the devices
transmit their short data packets to the BS through a frame-
based slotted aloha (SA) scheme, as utilized in [10, 11]. We
assume that each frame has T available time-slots, denoted
by T = {1; 2; . . . ;T}, and each device has L data packets
ready for transmission. Following the principle of SA scheme,
each device transmits a single packet to the BS by using
one of T time-slots within a frame. After each frame, the
BS transmits a feedback bit to the devices in order to inform
their transmission outcomes (i.e., success or failure) [10, 11].
In addition, this control message can be used for synchronizing
the devices [11]. Note that in SA scheme, multiple devices can
select the same time-slot for their transmissions, which may
result in a collision. In the conventional SA, a collision occurs
when there are more than one device selecting the same time-
slot. In contrast, the NOMA-based SA which is considered
in this paper can serve multiple devices in one time-slot by
utilizing different transmit power levels [11].
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Fig. 1. Model of an uplink NOMA-based mMTC network under SPC.

Let us assume that there are M̂ (M̂ < M ) devices using
the same t-th (1 ≤ t ≤ T ) time-slot to transmit their messages
to the BS. Given the NOMA principle, the received signal at
the BS in the t-th time-slot of the i-th frame is given by [11]

yt (i) =

M̂∑
m=1

hm,t (i)

√
Pm,td

−θ
m xm,t (i) + nt (i) , (1)

where hm,t(i) denotes the Rayleigh channel coefficient of the
link from device m to the BS in time-slot t, which is assumed
to be constant during frame i under a quasi-static scenario
[11]; Pm,t is the transmit power of device m in time-slot t;
dm is the distance from device m to the BS; θ denotes the
path loss exponent; xm,t(i) denotes the message of device m
in time-slot t; and nt (i) ∼ CN

(
0, σ2

)
is the additive white

Gaussian noise (AWGN).
At the BS, SIC is utilized to detect multi-user data by

treating the messages of weaker devices as noise when de-
coding the message of a stronger device [12]. Specifically, the
device set

{
1, . . . , M̂

}
is assumed to be ordered in decreasing

received power, i.e., Pm,tλm,t, where λm,t = |hm,t|2d−θm . In
this paper, we use three transmit power levels, denoted by
P = {Pt − δ, Pt, Pt + δ}, where Pt is the reference power
and δ denotes the power deviation, so that NOMA can work
properly, as discussed in [11]. Thus, each device will select
one of these transmit power levels for its transmission. Fur-
thermore, unlike [11] considering PSIC, this paper investigates
a more practical scenario by taking ISIC into account. From
(1), the instantaneous signal-to-interference-plus-noise ratio
(SINR) of device m is given by

γm,t =
Pm,tλm,t

Im,t + Îm,t + σ2
, (2)

where Im,t =
M̂∑

j=m+1

Pj,tλj,t denotes the interference of

device m, Îm,t =
m−1∑
j=1

ηPj,tλj,t is the residual interference

component due to ISIC [12], and 0 ≤ η ≤ 1 represents the
level of residual interference caused by ISIC.



In this paper, we consider a scenario that the message of
device m is successfully decoded if its instantaneous SINR is
larger than or equal to a threshold [11], γth, i.e.,

γm,t ≥ γth, (3)

where γth = 2rth − 1 and rth denotes the minimum spectral
efficiency threshold for successful transmission.

III. PROPOSED ADAPTIVE Q-LEARNING METHOD

In this section, the proposed BLER-NOMA-AQL method is
presented. This approach aims to effectively allocate the power
and time-slot for MTC devices utilizing the effective BLER
of each device as the global cost during the learning process.
Furthermore, the analysis of effective BLER for the considered
NOMA-based MTC system is provided in Sec. III-B.

A. Q-learning for Random Access

The application of reinforcement learning, especially Q-
learning, to MTC networks has recently gained great attention
[1]. It can be implemented in a distributed manner and sup-
ports MTC devices to learn from the previous experiment by
interacting with the environment. The RA in an MTC network
can be modeled as Markov Decision Process (MDP). Given
MDP principle, an agent can interact with the environment to
move from the current state to the next state by performing
an appropriate action and receive a respective reward [6].

With Q-learning, the agent builds its own action-value func-
tion, so-called the Q-table, to depict the agent-environment
relationship. The simplest way to select the action is to utilize
a greedy policy. Given this policy, at time step k and state
sk ∈ S, an agent selects an action ak ∈ A with the highest
Q-value. As a result, the agent moves to the next state sk+1

and receives a reward rk+1. After performing action ak, the
new Q-value for state-action pair (sk, ak), i.e., Qk+1 (sk, ak),
is updated based on the following iterative procedure [6, 10]

Qk+1 (sk, ak) = (1− αk)Qk (sk, ak)

+ αk

[
Rk+1 + γmax

a
Qk (sk+1, a)

]
,

(4)

where 0 ≤ α ≤ 1 denotes the learning rate applied at the
k-th time step, 0 ≤ γ ≤ 1 is the discount factor, and Rk+1

represents the reward function defined as follows [10]:

Rk+1 =

{
1, for successful transmission,
pf , for otherwise. , (5)

where pf = −1 denotes the penalty function.
The adoption of Q-learning algorithm to our system model

can be achieved by considering the devices as the agents, the
investigated network as the environment, and the combination
of the transmit power and time-slot as the state-action pair.
Specifically, a device is in state s(p, t) ∈ S (p ∈ P and t ∈ T)
if it occupies a (transmit power, time-slot) pair (p, t). An
action a(s, s′) ∈ A is a transition from a certain state s to
a target state s′, where a device changes its selection from
one (transmit power, time-slot) pair to another one. In this
regard, each device will use the greedy policy to build its

own Q-table. In particular, at the beginning, all Q-values, for
every (transmit power, time-slot) pair, are initialized to zero.
Then, each device selects randomly a (transmit power, time-
slot) pair for its transmission. Next, each device updates Q-
value of selected (transmit power, time-slot) pair based on
its successful or unsuccessful transmission outcome by using
(4). After the first frame, each device chooses a (transmit
power, time-slot) pair with the highest Q-value for its next
transmission. This learning process continues in several frames
till the convergence, i.e., all devices find unique (transmit
power, time-slot) pairs for their transmissions, is observed.

B. Effective BLER for SPC-based NOMA System

Considering SPC in the investigated NOMA-based MTC
network, the instantaneous BLER of decoding the message of
the m-th device at the BS in the t-th time-slot is given by [3]

ε̂m,t ≈ Q

(
log2 (1 + γm,t)− bm/Bm + log2Bm/2Bm√

vm,t/Bm

)
,

(6)

where Q (x) =
∞∫
x

1√
2π
e−

t2

2 dt is the Gaussian Q-function,

vm,t = (log2e)
2
[
1− 1

(1+γm,t)
2

]
represents the channel dis-

persion, Bm and bm denote the blocklength and the number
of information bits to device m, respectively.

It is noted that the BS needs to decode the messages of the
former (m−1) stronger devices before detecting the message
of the m-th device. Therefore, the effective BLER for the m-th
device is given by

εm,t = 1− Ej,t + Ej,tε̂m,t, (7)

where Ej,t =
m−1∏
j=1

(1− ε̂j,t) and ε̂j,t is calculated from (6).

C. Proposed BLER-NOMA-AQL Scheme

Based on (2) and (6), we observe that the SINR of the
devices decreases when the number of devices increases due
to the higher interference. This causes increase in the BLER,
hence, leading to the reduction of reliability level in short-
packet transmission. Therefore, awareness of reliability level
is necessary so that the devices can select the best (transmit
power, time-slot) pairs for their transmission in case the large
inter-user interference is observed in chosen time-slots.

We consider the reliability level of transmission process
based on the instantaneous BLER of each device calculated
at the BS. Thus, for proposed AQL algorithm, we define the
reward function similar to (5), where the penalty function pf
is defined as

pf = −εm,t. (8)

The devices update their Q-table by using (4) with the reward
and penalty functions defined in (5) and (8), respectively. The
value of εm,t to be used in (8) is obtained from the effective
BLER given by (7). The detail of the proposed method is
depicted in Algorithm 1.



Algorithm 1: Proposed BLER-NOMA-AQL algorithm
for minimizing RACH congestion in NOMA-based
MTC networks.

Data : M , T , Pt, δ, bm, Bm, γth, number of
iterations/frames for learning process K.

Result: Q-Table for M devices.

1 Initialize 3× T zero Q-table for all devices, k ← 1;
2 while k ≤ K do
3 Device m (1 ≤ m ≤M ) selects an action am, i.e.,

selecting a (power transmit, time-slot) pair for its
transmission, with highest Q-value;

4 if size(am) > 1 then
5 Choose from am an action randomly;
6 end
7 Take action am, observe reward according to (5)

and (8);
8 Update Q-value according to (4);
9 k ← k + 1;

10 end

IV. NUMERICAL RESULTS

In this section, we provide the performance analysis in terms
of throughput of the proposed AQL method over a range of
system parameters via numerical results. For the proposed
AQL algorithm, we set the learning rate α = 0.1, the discount
factor γ = 0.5, the reward and penalty functions are defined
in (5) and (8), respectively. In addition, the predetermined
simulation parameters are set as follows [11, 12]: the time-
slots T = 150, the reference power Pt = 10 dBm, the power
deviation δ = 7.78 dB, device m (1 ≤ m ≤M ) are randomly
deployed around the BS with the distance dm ≤ 120 m, the
path loss exponent θ = 3, the noise variance σ2 = −174
dBm, the number of messages L = 100, the spectral efficiency
rth = 2 bits/s/Hz. All devices have the same number of
information bits b = 40 and blocklength B.

To evaluate the system performance, we use throughput met-
ric which is defined as the number of successful transmissions
over the number of available time-slots [11]. In Fig. 2, we
plot the throughput versus the number of devices (M ) with
different schemes. Herein, we compare our proposed BLER-
NOMA-AQL method to the following three schemes: SA, SA
with NOMA (NOMA-SA), and NOMA-based QL (NOMA-
QL) [11]. In SA, the devices randomly select the time-slot
within a frame, where a collision occurs when there are more
than one device utilizing the same time-slot [10]. In NOMA-
SA, NOMA is used to support the decoding of the collided
messages. In NOMA-QL, both QL and NOMA are applied
to enable the devices to choose the best time-slots for their
transmissions using the binary reward defined in (5), where
the penalty function pf = −1. In contrast to NOMA-QL,
our proposed method utilizes BLER as the global cost for
the learning process to define the penalty function in (8).

Fig. 2 shows that the throughput of SA can be significantly
improved by utilizing NOMA. This figure also indicates
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that using Q-learning brings better performance in terms of
throughput than the case without Q-learning. Furthermore, in
comparison with NOMA-QL, our proposed BLER-NOMA-
AQL method outperforms in high M regime, but it obtains
slightly lower performance in small M area. This can be
due to the opposite relationship between SINR and BLER,
as depicted in (6). For a smaller M , the SINR of the devices
are higher due to the decrease in the interference. This leads to
the reduction of BLER, making it less crucial. Meanwhile, for
a higher M , the interference is larger and the SINR decreases,
leading to the increase in BLER and its role becomes important
for learning process of the proposed AQL algorithm. When
considering long-packets for transmission as utilized in [11],
BLER can be ignored. However, it is an important performance
metric to be considered in SPC. With the growing role of SPC
in new applications of 5GBNs, the proposed method could be
a promising solution to mitigate RAN congestion considering
the ever-increasing number of devices in mMTC networks.
It is noteworthy to mention that under the given conditions,
the peak throughput occurs when M = 1.67T for NOMA-QL,
whereas it is achieved when M = 2T for our proposed method
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as reflected in Fig. 2. Furthermore, compared to NOMA-QL,
our proposed scheme can improve the throughput with 6.42%
when M = 1.67T and 10.01% when M = 2T .

To evaluate the effect of blocklength (B) on the system
performance, we depict the variation of throughput obtained
from the proposed BLER-NOMA-AQL scheme with different
values of B, as also depicted in Fig. 2. One can observe from
this figure that the lower throughput can be achieved when B
increases. This can be explained by the fact the increase in
the value of B leads to the reduction of BLER, making its
importance reduced when implementing AQL algorithm.

In practice, it is difficult to achieve perfect SIC which is
used in [11]. Therefore, it is reasonable to consider ISIC when
evaluating the benefits of different NOMA-based Q-learning
algorithms for RAN congestion problem. Taking the effect of
ISIC on throughput performance into account, Fig. 3 plots
the throughput of NOMA-QL and BLER-NOMA-AQL versus
M with the different values of the residual interference level
obtained after ISIC η. This figure shows that the throughput
values achieved in case of using NOMA-QL scheme and
our proposed BLER-NOMA-AQL method decrease with the
increase in η due to the resulting higher interference, leading
to the reduction of SINR. However, in this case, our pro-
posed BLER-NOMA-AQL method still achieves higher peak
throughput than NOMA-QL in high M regime.

Considering the learning process of the Q-learning algo-
rithm, the achieved Q-value will gradually converge to a
certain value when the devices find unique (transmit power,
time-slot) pairs for their transmissions [6, 10]. To achieve the
further analysis of our proposed BLER-NOMA-AQL method,
we evaluate this convergence via the parameter total Q-value of
all learning MTC devices, as depicted in Fig. 4. Specifically,
we consider three cases: M < T , M = T , and M > T
(M ∈ {100, 150, 200} and T = 150). For M ≤ T , the
proposed method obtains slightly lower total Q-value leading
to the slower convergence ability compared to NOMA-QL.
Meanwhile, for M > T , our proposed method gradually
converges to a total Q-value much higher than NOMA-QL.

This confirms the results achieved from Figs. 2 and 3, where
our proposed method outperforms the NOMA-QL when M is
relatively higher than T .

V. CONCLUSION

This paper has proposed a novel AQL method to address
the issue of RACH congestion in SPC-enabled NOMA-based
mMTC networks. In contrast to the Q-learning schemes con-
sidered in the literature, the proposed AQL utilizes BLER
as the global cost in the learning process. Numerical results
have shown that the proposed AQL method provides better
performance compared to the existing schemes (SA, NOMA-
SA, and NOMA-QL) when M is higher than the number
of available time-slots, making it important as the number
of devices is ever-increasing in beyond 5G-mMTC networks.
Furthermore, the impact of ISIC on throughput performance of
the proposed scheme has been analyzed and it has been noted
that the throughput decreases with the increase in the value of
residual interference caused by the ISIC. In our future work,
we plan to evaluate the performance of the proposed AQL
method for other SPC scenarios such as sparse code division
multiple access (SCMA)-based mMTC networks.
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